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ABSTRACT

In functional sequential process monitoring, a process is characterized by sequences of
observations called profiles which are monitored over time for stability. The goal is to halt a
process when the process generating these observations deviates from a specified in control
standard. We propose a Bayesian sequential process control (SPC) methodology which uses
wavelets to monitor the functional responses and detect out of control profiles. Our contri-
bution is to propose a solution to the growing computational cost by constructing an effi-
cient and accurate approximation to the posterior distribution of the wavelet coefficients,
without recourse to Markov chain Monte Carlo.
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1. Introduction

Statistical process control (SPC) techniques are com-

monly used to ensure the quality of a process over

time. For example, in the context of manufacturing,

SPC may be used to determine if and when a manu-

facturing process deviates from a desired quality level.

We consider an observed sequence of discretely

sampled functional profiles

yti ¼ f tðxiÞ þ �ti , i ¼ 1, :::, n

where yt ¼ ðyt1, :::, ytnÞ is a noise-contaminated quality

characteristic profile, xi is a covariate, n is the number

of observations in a functional profile, and �ti repre-

sents the noise associated with the process. For

example, observations yti can be measurements of a

manufactured part at the corresponding positions xi.

Examples of profile monitoring applications in the

literature include roundness evaluation of mechanical

components, where radial measurement is a function

of turning (Colosimo, Semeraro, and Pacella 2008),

and automobile engine testing, where torque produced

is a function of engine speed (Amiri, Jensen, and

Kazemzadeh 2009). SPC methods are carried out in

two phases; this paper will focus on Phase II profile

monitoring, which falls into an area of statistics

known as quickest change detection (QCD).

We propose a wavelet-based Bayesian framework

for Phase II non-linear profile monitoring. To avoid

making assumptions about the functional form f tðxiÞ,
we will use the wavelet-based approach to model the

profiles introduced in Varbanov et al. (2019), where

the full posterior probability of a change point occur-

ring at each observed time point is computed.

A key limitation of performing exact change-point

detection is that, given T observed profiles, computing

the posterior probability that a change has occurred

ostensibly requires O(T) computations. Accordingly,

as time proceeds, the overall computational require-

ment is on the order OðPT
t¼1 tÞ ¼ OðT2Þ: This is a

substantial drawback when it is desired to perform

SPC with data arriving in real-time. Our primary con-

tribution is to propose a solution to the problem of

growing computational cost by constructing an effi-

cient and accurate approximation of the posterior dis-

tribution of wavelet coefficients such that the total

computational cost at time t is bounded. Our approxi-

mate posterior is constructed by “merging” together

the posterior distribution at times which carry similar

information about the underlying process. Our

approach can be compared with other approximation

methods, such as windowing. Windowing methods,

such as those described by Willsky and Jones (1976)

and Hawkins and Zamba (2005), assume at time T

that a change has occurred only within the last W

time-points. If the signal is sufficiently small, however,

it may be the case that the window size is too small
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to detect a change with non-negligible probability.

Relative to these methods, our approach has the bene-

fit of approximately maintaining the entire history of

the process, and allowing for the possibility of the

change-point occurring far in the past.

The paper is organized as follows. In Section 2, we

review relevant material on SPC methods, wavelet

methods, and the wavelet-based Bayesian approach

developed by Varbanov et al. (2019) as well as its

computational limitations. In Section 3 we introduce

our posterior approximation method and the merged

Wavelet-based Bayesian (MWBB) method for sequen-

tial change-point detection. In Section 4 we compare

the proposed method to existing methods through

simulation, and apply the methodology to the vertical

density profiling dataset of Winistorfer, Young, and

Walker (1996). Section 5 concludes with a discussion

of results and considerations for future work.

2. Review of relevant material

2.1. Statistical process control background and

quickest change detection

SPC is traditionally done in two separate steps. The

first step, Phase I, uses historical data to identify and

summarize in control performance. The next step,

Phase II, collects and analyzes new data to detect sig-

nificant deviations from the in control performance

established in Phase I. Statistically, Phase I focuses on

parameter estimation based on data from the in con-

trol distribution, while Phase II focuses on performing

inference using online methods that operate until the

process is stopped. We focus primarily on Phase II of

SPC, and assume that the in control behavior is

known a priori (in-control behavior can also be esti-

mated). This reduces the Phase II problem to per-

forming the quickest change detection (QCD)

problem in an online fashion.

Throughout this paper, we will consider the follow-

ing model for the observed functional observations:

yti ¼ f 0ðxiÞ þ gðxiÞIðt � sÞ þ �ti , �ti�
iidNð0, r2�Þ (1)

where f0 is the functional relationship between the

explanatory variable and the quality characteristic

when the process is in control and g is the unknown

functional change introduced when the process goes

out of control. The goal is to determine whether the

process is in control given the profiles observed at

times t ¼ 1, 2, :::,T and continuously classify profiles

control state with each newly observed yt ¼
ðyt1, :::, ytnÞ: Once the process is stopped, we may also

be interested in estimating s, the time of the first out

of control profile. In Phase II, f0 and r2� are assumed

to either be known or are approximated, and hence

can be taken without loss of generality to be f 0ðxiÞ ¼
0 and r2� ¼ 1, respectively.

Performance of an SPC procedure can be measured

by a tradeoff of allowing an in control process to con-

tinue to run and stopping an out of control process

quickly. A false alarm occurs when a monitoring pro-

cedure flags an in control process as out of control.

Monitoring procedures are typically assessed according

to their ability to detect changes quickly, subject to

maintaining a desired false alarm rate. Let ŝ be a stop-

ping rule such that the process is halted at time ŝ:

Given the model (1), let Etð�Þ denote the expectation

operator for the model with ½s ¼ t�: We define the in

control average run length (ARL0) to be E1ðŝÞ, which

is the average time until a false alarm occurs when the

process is in control. Subject to the constraint E1ðŝÞ ¼
ARL0 is a specific value, we then aim to find proce-

dures with a small detection delay Esðŝ � sjŝ � sÞ:
Bayesian approaches to the generic QCD problem

have a long history, being initially developed by

Shiryaev (1963). This perspective treats the s as a ran-

dom variable with a prior distribution pðsÞ: Bayesian
procedures have been of general interest as a tool for

deriving traditional (minimax-optimal) procedures.

Assuming a zero-inflated geometric prior on s,

Shiryaev (1963) showed that the rule which stops

when pðs � Tj observed data up to TÞ exceeds a

specified upper control limit U is optimal from a

Bayesian perspective. Tartakovsky and Veeravalli

(2005) extended this result, demonstrating that this

rule is asymptotically optimal for a very broad class of

changepoint models. For practical purposes, an online

implementation of the Bayesian sequential change-

point detection was developed by Adams and MacKay

(2007). When the data generating mechanism lies in

an exponential family, QCD can be performed effi-

ciently by storing a collection of sufficient statistics.

2.2. Wavelet background

Wavelets are localized wave-like functions that can be

translated and dilated to create a basis for a wide

range of functions. Wavelets possess inherent spatial

adaptivity, which is useful when analyzing functions

with discontinuities and sharp spikes, as well as time-

frequency localization. Wavelets are attractive as tools

for function estimation because most functions f(x)

can be well-approximated using a wavelet basis expan-

sion in which most coefficients are zero. For a more
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complete introduction and overview of wavelets see

Ogden (2012) and Vidakovic (2009).

Let / and w denote the compactly-supported father

and mother wavelet functions, respectively. The trans-

lations and dilations of / and w given by

/jkðxÞ ¼ 2j=2/ð2jx� kÞ, wjkðxÞ ¼ 2j=2wð2jx� kÞ

generate (for any fixed integer j0) an orthonormal

basis f/j0k,wjkjj0, j, k 2 Z; j � j0g for the space of

square-integrable functions L2ðRÞ: A function f 2
L2ðRÞ can then be expressed as the infinite series

f ðxÞ ¼
X

k

nj0k/j0kðxÞ þ
X

1

j¼j0

X

k

hjkwjkðxÞ, (2)

with wavelet coefficients nj0k ¼ hf ,/j0k
i and hjk ¼

hf ,wjki where hf , gi ¼
Ð

f gdx is the usual inner prod-

uct on L2ðRÞ: The first series in Eq. [2], consisting of

translations of /j0k
, represent the smoothest structure

of the function, while the second series in Eq. [2],

consisting of translations and dilations of wjk, repre-

sent the higher frequency parts of the function. We

will refer to nj0k and hjk as smooth (also called coarse)

and detail wavelet coefficients, respectively. Projecting

a function onto the wavelet basis allows for a multire-

solution analysis (Mallat 1989b). The variable j gives

the resolution level, while the variable k represents the

location along the x-axis.

In practice, functional data is observed discretely.

Suppose we have y ¼ f þ � where f ¼ ðf ðx1Þ, :::,
f ðxnÞÞ> and � � Nð0, r2IÞ, such that the xi’s are

evenly spaced and n ¼ 2J is a dyadic integer. Then the

pyramid algorithm described in Mallat (1989a) can be

used to perform the Discrete Wavelet Transform

(DWT) on y with O(n) computations. This gives a

vector of n estimated wavelet coefficients

d ¼ Wy ¼ ðcj0, 0, cj0, 1, :::, cj0, 2j0�1 , dj0, 0, dj0, 1, :::, dJ�1, 2J�1Þ:

The coefficients cj0 , k � nj0, k and dj, k � hj, k are

approximations of the coefficients from the wavelet

series expansion in Eq. [2]. Due to the orthonormality

of the basis, the linear transformation W encoding the

DWT is orthogonal, so d � Nðh, r2IÞ where h ¼ EðdÞ
consists of the coefficients nj0, k and hjk. For the

remainder of the paper, the term wavelet coefficient

will refer to the wavelet coefficient obtained by

the DWT.

2.3. Wavelet-based Bayesian SPC

The discrete version of the SPC problem sets yt ¼
Iðt � sÞg þ �

t where �
t � Nð0, IÞ and g ¼

ðgðx1Þ, :::, gðxnÞÞ>; recall that we have set f 0ðxiÞ ¼ 0

and r2� ¼ 1 without loss of generality and that s repre-

sents the first time at which the process is out of con-

trol. Let dt ¼ Wyt denote the vector of wavelet

coefficients obtained from the tth observed profile.

When the process is in control we have dt ¼ W�
t �

Nð0, IÞ; hence, the in control wavelet coefficients will

contain only white noise. Once the process is out of

control, we have dt � Nðh, IÞ, where h ¼ Wg is the

vector of true wavelet coefficients for the functional

change g: Varbanov et al. (2019) use priors on the

wavelet coefficients h to flexibly estimate g: Let DT ¼
ðd1, :::, dTÞ denote the empirical wavelet coefficients

obtained up-to-and-including time T. We will use p

to refer to the prior and posterior mass functions for

ðh, sÞ and we will use f to refer to marginal/condi-

tional densities of the data. When a mass function for

s needs to be evaluated at a particular time t we will

write pðs ¼ tÞ: The marginal posterior distribution of

the change point s can be written

pðsjDTÞ ¼
Ð

f ðDT js, hÞ pðsÞ pðhÞdh
P

s

Ð

f ðDT js, hÞ pðsÞ pðhÞdh (3)

¼ f ðDT jsÞpðsÞ
PT

t¼1f ðDT js ¼ tÞpðs ¼ tÞ þ f ðDT js > TÞpðs > TÞ
:

(4)

Varbanov et al. (2019) uses the Shiryaev procedure

(Shiryaev 1963), which classifies the process as out of

control if the monitoring statistic pðs � TjDTÞ ¼
P

t�T pðs ¼ tjDTÞ exceeds a specified upper control

limit (UCL) U. Varbanov et al. (2019) use a geometric

prior pðsÞ ¼ ð1� pÞs�1 p with the mean 1=p giving

the prior average time at which the process goes out

of control.

To model the sparsity of the detail coefficients,

they use a spike-and-slab prior (Abramovich,

Sapatinas, and Silverman 1998; Johnstone and

Silverman 2005). Sparsity in the wavelet representa-

tion is encoded through the mixture prior

pðhjkÞ ¼ ð1� xÞ d0ðhjkÞ þ x Nðhjkj0, s2Þ, (5)

where d0 is the Dirac mass at zero and Nðyjl, r2Þ is a
normal density function centered at l with scale r.

Draws from the mixture prior (5) are zero with

probability 1� x, and are normal with scale s other-

wise. The normal density is used because it is a conju-

gate prior for the normal likelihood associated with

the observed coefficients. For the coarse coefficients,

we remove the point mass at zero, giving p(nj0k)

¼ N(nj0kj0,s2).
In order to compute the posterior distribution of s,

we need to compute the density of the observed
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coefficients f ðDT jsÞ: Integrating out h, Varbanov

et al. (2019) shows that this is given by

f ðDT jsÞ ¼
Y

s�1

t¼1

Y

n

i¼1

Nðdti j0, 1Þ
" #

Y

n

i¼1

uðdt�s
i Þ vð�dt�s

i Þ
" #

,

with

uðdt�s
i Þ ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nsð2pÞns�1
q exp �

XT

t¼s
ðdti � �d

t�s

i Þ2

2

 !

,

vð�dt�s

i Þ ¼ ð1� xÞ N n�1
s
ð�dt�s

i j0, n�1
s Þ þ x Nð�dt�s

i j0, s2 þ n�1
s Þ:

Here, dt�s
i ¼ ðdsi , :::, dTi Þ, �d

t�s

i is the average of dt�s
i

and ns ¼ T � sþ 1 is the number of profiles which

are out of control given s. This results in a tractable

posterior distribution of the change-point probability.

For the remainder of the paper, this method will be

called full wavelet-based Bayesian (FWBB) method.

2.4. Calibration and hyperparameters

The FWBB procedure requires specification of the

hyperparameters ðx, s, pÞ: Previous works have consid-

ered setting the parameters x and s via empirical

Bayes, optimizing the marginal likelihood f ðDTÞ —

which depends implicitly on ðx, s, pÞ — with respect

to the hyperparameters. Unfortunately, optimization

of the hyperparameters is too costly in an online set-

ting. Instead, we consider a heuristic approach where

x and s are chosen to match a standard thresholding

rule. Specifically, Johnstone and Silverman (2005) note

that the posterior median estimate of h ¼ ðh1, :::, hnÞ
corresponds to the soft-thresholding

medianðhijdÞ ¼ signðdiÞ maxð0, hðdi,x, sÞÞ:
The function h is given by

hðdi,x, sÞ ¼
s2

s2 þ 1
jdij

� s
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2
p U

�1 1þminðxi, 1Þ
2

� �

,

where xi denotes the posterior odds of a coefficient

being zero and U denotes the distribution function of

a standard normal variable. These equations establish

a relationship between x, s, and the posterior median

threshold, which is defined as kmed ¼ inffd � 0 :

hðd,x, sÞ > 0g: Given a user-specified x, Varbanov

et al. (2019) select s so that it matches the universal

threshold kuniv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log n
p

introduced by Donoho and

Johnstone (1994). User can also specify s, and select x

such that it matches the universal threshold. Donoho

and Johnstone (1994) discuss the efficiency of this

thresholding procedure to select wavelet coefficients

pertaining to signal while ignoring wavelet coefficients

related to noise with high probability.

3. Merging components for posterior

approximation

A fundamental issue with process monitoring meth-

ods is the cost of computing the monitoring statistic.

At time T, a change point statistic requires O(T) com-

putations, and computing the statistic at times t ¼
1, 2, :::,T requires OðT2Þ computations. This creates

problems in functional profile monitoring, where the

cost of computing the monitoring statistic is also a

function of the dimension of the observation, which

can be large. For the FWBB procedure discussed in

Section 2.3, each possible change point requires O(n)

computations and the statistic pðs � TjDTÞ requires

OðTnÞ computations for profiles of length n.

We solve the problem of growing computational

cost by approximating the posterior distribution of

ðs, hÞ at each time. The computational cost will be

controlled by maintaining an approximation to

pðh, s 2 AjDTÞ for A in a partition A of N:
To motivate our procedure, note that for any parti-

tion APres of f1, :::,Tg we can write pðs � TjDTÞ ¼
P

A2APres pðs 2 AjDTÞ ¼PA2APres

Ð

pðh, s 2 AjDTÞdh;
hence, computing pðh, s 2 AjDTÞ is sufficient to com-

pute the monitoring statistic pðs � TjDTÞ: We use the

superscript Pres to denote the partition up to present

time T. Additionally, we can compute the summation

terms sequentially as

pðs 2 AjDTÞ / pðs 2 AjDT�1Þ f ðdT js 2 A,DT�1Þ:
This requires computing jAPresj þ 1 factors (one for

each element of the summation, and one for

A ¼ ft : t > Tg). By comparison, the non-partitioned

expression pðs � TjDTÞ ¼PT
t¼1 pðs ¼ TjDTÞ requires

computing Tþ 1 factors. Unfortunately, computing

exactly pðs 2 AjDT�1Þ requires just as much work as

computing the full posterior. For example,

f ðdT js 2 A,DT�1Þ ¼
X

t2A
pðs ¼ tjs 2 A,DT�1Þ f ðdT js

¼ t,DT�1Þ,

so that we still need to compute f ðdT js ¼ t,DT�1Þ for

each t. The distribution f ðdT js 2 A,DT�1Þ is a mixture

of components that correspond to possible change-

points for times t 2 A: In the special case where

pðhjs ¼ t,DT�1Þ is identical for all t 2 A the mixture

simplifies to f ðdT js 2 A,DT�1Þ ¼ f ðdT js ¼ t,DT�1Þ:
This motivates iteratively building the partition in
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such a fashion that the distributions f ðdT js ¼ t,DT�1Þ
are similar for all t 2 A, and then approximating each

term with the same single factor.

In principle, an ideal approximation would form the

partition by grouping together times t for which f ðdT js ¼
t,DT�1Þ have minimal distance. We will see, however,

that we can control the approximation error for pðs �
TjDTÞ by combining groups of times A and B for which

pðs 2 A [ BjDTÞ is smaller than any other group of times

(i.e. pðs 2 A [ BjDTÞ � pðs 2 CjDTÞ 8C 2 A). This is

extremely convenient because pðs 2 A [ BjDTÞ is com-

puted as a byproduct of computing pðs � TjDTÞ:

3.1. Algorithm

The algorithm we propose is given in Algorithm 1,

with the specifics of each step laid out in the follow-

ing sections.

Algorithm 1 Merged Wavelet-Based Bayesian QCD

Input: T, dT ,AT , fpT�1
i,A ,xT�1

i,A ,mT�1
i,A , �T�1

i,A : A 2 ATg,U

1. Compute ~f ðdT jt 2 AÞ for A 2 AT according to (7).

2. Compute pTA ¼ ~pT�1ðs 2 AjdTÞ for A 2 AT

according to (8)

3. If
P

A2APres
T

pTA � U : Return out of control.

4. Choose B 6¼ C 2 APres
T so that maxfpTB , pTCg

is minimized.

5. Set ATþ1 according to (10).

6. For A 2 APres
T , compute xT

i,A,m
T
i,A, �

T
i,A according

to (9) and set xi,A ¼ x,mT
i,A ¼ 0 and �i,A ¼ 1 for

A ¼ fT þ 1g and ft : t > Tg:
7. Compute xT

i,B[C, m
T
i,B[C, and �i,B[C as in (11)

and (12).

8. Return ATþ1, fxT
i,A,m

T
i,A, �

T
i,A : A 2 ATþ1g:

3.1.1. Notation

At time T, we maintain an approximation to the dis-

tribution pðh, s 2 AjDT�1Þ denoted by ~pT�1ðh, s 2 AÞ:
This approximation is stored only for A 2 AT where

AT is a partition of N ¼ f1, 2, :::g: We assume

fTg, ft : t > Tg 2 AT : Let APres
T ¼ fA 2 AT : A 6¼ ft :

t > Tgg consist of the elements of AT corresponding

to the past and present times. Using similar rational

as before, we take the approximation to have spike-

and-slab form ~pT�1ðs 2 AÞ ¼ pT�1
A and

~pT�1ðhjs 2 AÞ ¼
Y

n

i¼1

ð1� xT�1
i,A Þd0ðhiÞ þ xT�1

i,A NðhijmT�1
i,A , �T�1

i,A Þ
n o

:

(6)

As dT arrives, we can compute an approximation

to its predictive distribution s 2 A as

~f ðdT js 2 AÞ ¼
Ð

~pT�1ðhjs 2 AÞ f ðdT js 2 A, hÞdh

¼
Y

n

i¼1

ð1� wT�1
i,A ÞN ðdTi j0, 1Þ

þwT�1
i,A NðdTi jmT�1

i,A , �T�1
i,A þ 1Þ:

(7)

This holds for A 2 APres
T : For A ¼ fT þ 1,T þ

2, :::g, the changepoint has not occurred, so we

take ~f ðdT js 2 AÞ ¼Qn
i¼1 NðdTi j0, 1Þ:

3.2. Updating the monitoring statistic

For the moment, we assume that we are at time T

and have already in-hand the approximation ~pT�1: In
order to flag the process as out of control at time T

we need to compute the statistic pðs � TjDTÞ: In

terms of sequential updates, this can be written as

pðs � TjDTÞ ¼
P

A2APres
T

pðs 2 AjDT�1Þ f ðdT js 2 A,DT�1Þ
P

A2AT
pðs 2 AjDT�1Þ f ðdT js 2 A,DT�1Þ

�
P

A2APres
T

pT�1
A

~f ðdT js 2 AÞ
P

A2AT
pT�1
A

~f ðdT js 2 AÞ
:

Hence we can approximate the monitoring statistic

given dT by computing (7) and using the above formula.

3.3. Sequential updating

We now describe how to compute an approximation

~pTðh, s 2 AÞ for A 2 AT : First, using the same

approximation as for the monitoring statistic, we have

pTA ¼ pT�1
A

~f ðdT js 2 AÞ
P

A2AT
pT�1
A

~f ðdT js 2 AÞ
: (8)

For A ¼ fT þ 1,T þ 2, :::g, the changepoint has not

occurred at time T. Conditional on the changepoint not

occurring, the posterior pðhjs 2 A,DTÞ is exactly equal

to the prior; hence, we set mT
i,A ¼ 0, �Ti,A ¼ s2, and

xT
i,A ¼ x: For A 2 APres

T , we treat ~pT�1ðh, s 2 AÞ as a

prior at time T, giving the approximate model

dTi jh, s 2 A
� �

�indNðhi, 1Þ, hjs 2 A½ �
� ~pT�1ðhjs 2 AÞ, ~pT�1ðs 2 AÞ ¼ pT�1

A :

We now apply Bayes rule to this approximate

model. Using the conjugacy of the normal spike-and-

slab prior, for A 2 APres
T , we have

~pT�1ðhjs 2 A, dTÞ ¼
Y

n

i¼1

ð1� xT
i,AÞd0ðhiÞ

þ xT
i,ANðhijmT

i,A, �
T
i,AÞ
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where

mT
i,A ¼ mT�1

i,A þ �T�1
i,A dTi

�T�1
i,A þ 1

, �T�1
i,A ¼ �T�1

i,A

�T�1
i,A þ 1

,

xT
i,A / xT�1

i,A NðdTi jmT�1
i,A , �T�1

i,A þ 1Þ:
(9)

3.4. Splitting

After ~pTðh, s 2 AÞ is constructed for these sets, we

can now use splitting to construct ATþ1 and the

approximation for A 2 ATþ1: Let B ¼ fT þ 1g and

C ¼ fT þ 2,T þ 3, :::g: From the previous step, we

have the approximate posterior ~pTðh, s 2 B [ CÞ:
Since B,C 2 ATþ1, we instead need ~pTðh, s 2 BÞ and

~pTðh, s 2 CÞ: Because the changepoint has not

occurred for s 2 B [ C, we can take ~pTðhjs 2 BÞ and

~pTðhjs 2 CÞ to be exactly equal to their posterior dis-

tribution, i.e.,

mi,B ¼ mi,C ¼ 0, �i,B ¼ �i,C ¼ s2,

xi,B ¼ xi,C ¼ x:

To approximate pðs 2 BjDTÞ, we note that

pðs 2 BjDTÞ ¼ pðs � T þ 1jDTÞ

	pðs 2 Bjs � T þ 1Þ:
This holds because, given that the changepoint has

not occurred, DT carries no information about when

the process will go out of control. Approximating

pðs � TjDTÞ � pTB[C from the previous step, we take

pTB ¼ pTB[C 	 pðs ¼ T þ 1Þ
pðs � T þ 1Þ , and pTC

¼ pTB[C 	 1� pðs ¼ T þ 1Þ
pðs � T þ 1Þ :

When s is geometric with success probability p, this

simplifies to pTB ¼ pTB[C 	 p and pTC ¼ pTB[C 	 ð1� pÞ:

3.5. Merging

Now, fix B,C 2 APres
T , which are selected according to

some as-yet unspecified criteria. To maintain a fixed

computational budget, we require jATþ1j � Kmax þ 2

for some user-specified Kmax. The choice of Kmax can

be based on balancing approximation accuracy and

computational cost allowance. The effect of different

choices of Kmax is discussed in Section 4. If we formed

ATþ1 by only splitting fT þ 1,T þ 2, :::g into fT þ 1g
and fT þ 2,T þ 3, :::g, we would increase jATþ1j by 1

every iteration. To preserve a fixed size for ATþ1, we

“merge” B and C together. That is, we set

ATþ1 ¼ fA 2 APres
T : A 6¼ B, Cg [ fB [ Cg

[ ffT þ 1gg [ fft : t > T þ 1gg, (10)

In order to be consistent with the approximation

~pT already constructed, we set pTB[C ¼ pTB þ pTC; unlike

before, however, we cannot set ~pTðhjs 2 B [ CÞ ¼
~pT�1ðhjs 2 B [ C, dTÞ, because ~pT�1ðhjs 2 B [ C, dTÞ
is not a product of independent spike-and-slab distri-

butions. In particular, we have

~pT�1ðhjs 2 B [ C, dTÞ ¼ pTB
pTB þ pTC

Y

n

i¼1

ð1� xT
i,BÞd0ðhiÞ þ xT

i,BNðhijmT
i,B, �

T
i,BÞ

n o

þ pTC
pTB þ pTC

Y

n

i¼1

�

ð1� xT
i,CÞd0ðhiÞ

þxT
i,CNðhijmT

i,C, �
T
i,CÞ
�

:

This is a mixture of two spike-and-slab distribu-

tions. Our goal is to approximate this mixture with a

single spike-and-slab distribution. To do this, we con-

sider the marginal posterior of hi:

~pT�1ðhijs 2 B [ C, dTÞ

¼ pTBð1� xT
i,BÞ

pTB þ pTC
þ pTCð1� xT

i,CÞ
pTB þ pTC

 !

d0ðhiÞ

þ pTBx
T
i,B

pTB þ pTC
NðhijmT

i,B, �
T
i,BÞ

þ pTCx
T
i,C

pTB þ pTC
NðhijmT

i,C, �
T
i,CÞ:

This is a mixture of three distributions: a point

mass at 0, and two normal distributions. We match

the weight assigned to 0 by setting

xT
i,B[C ¼ pTBx

T
i,B

pTB þ pTC
þ pTCx

T
i,C

pTB þ pTC
: (11)

Given that hi 6¼ 0, hi has a marginal posterior

which is a normal mixture

pTBx
T
i,B

pTBx
T
i,B þ pTCx

T
i,C

NðhijmT
i,B, �

T
i,BÞ

þ pTCx
T
i,C

pTBx
T
i,B þ pTCx

T
i,C

NðhijmT
i,C, �

T
i,CÞ:

We approximate this mixture with a single normal

distribution by matching the first two moments of the

mixture to the moments of the approximating normal.
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This gives

mT
i,B[C ¼ pTBx

T
i,B

pTBx
T
i,B þ pTCx

T
i,C

mT
i,B

þ pTCx
T
i,C

pTBx
T
i,B þ pTCx

T
i,C

mT
i,C�

T
i,B[C ¼ pTBx

T
i,B

pTBx
T
i,B þ pTCx

T
i,C

�Ti,B

þ pTCx
T
i,C

pTBx
T
i,B þ pTCx

T
i,C

�Ti,C þ pTBx
T
i,Bp

T
Cx

T
i,C

ðpTBxT
i,B þ pTCx

T
i,CÞ2

ðmT
i,B �mT

i,CÞ2:

(12)

This approximation is carried out whenever T >
Kmax: For T � Kmax, this approximation is not neces-

sary, as we can simply take ATþ1 ¼
ff1g, f2g, :::, fT þ 1g, ft : t � T þ 2gg and maintain

the posterior distribution exactly.

3.6. Justification of merging approximation

The selection of (11) and (12) can be justified as min-

imizing the Kullback-Leibler divergence from

~pT�1ðhjs 2 B [ C, dTÞ to ~pTðhjs 2 B [ CÞ: We con-

sider the problem of finding an optimal approxima-

tion to ~pT�1ðhjs 2 B [ C, dTÞ within the family

Q ¼ fqðhÞg subject to the condition that qðhÞ is a

spike-and-slab prior

qðhÞ ¼
Y

n

i¼1

ð1� jiÞd0ðhiÞ þ jiNðhijni, qiÞ: (13)

A commonly used measure of how close a given

distribution G is to another distribution H is the

Kullback-Leibler divergence from G to H, given by

KLðGjjHÞ ¼
Ð

log dG
dH

	 


dG where dG/dH is the

Radon-Nikodym derivative of G with respect to H.

The following proposition, which is proved in the

Supplementary Material, implies that our choice of

~pTðhjs 2 B [ CÞ is optimal in the sense that it mini-

mizes the Kullback-Leibler divergence from

~pT�1ðhjs 2 B [ C, dTÞ to qðhÞ:
Proposition 1. Let pðhÞ denote a mixture of spike-

and-slab distributions

pðhÞ ¼ k
Y

n

i¼1

ð1� xi1Þd0ðhiÞ þ xi1Nðhijmi1, �i1Þ
� �

þ ð1� kÞ
Y

n

i¼1

ð1� xi2Þd0ðhiÞ þ xi2Nðhijmi2, �i2Þ
� �

,

and consider the family Q of densities of the form (13).

Then the Kullback-Leibler divergence KLðpjjqÞ is mini-

mized at

ji ¼ kxi1 þ ð1� kÞxi2,

ni ¼
kxi1

kxi1 þ ð1� kÞxi2
mi1 þ

ð1� kÞxi2

kxi1 þ ð1� kÞxi2
mi2,

qi ¼
kxi1

kxi1 þ ð1� kÞxi2
�i1 þ

ð1� kÞxi2

kxi1 þ ð1� kÞxi2
�i2

þ kxi1ð1� kÞxi2

ðkxi1 þ ð1� kÞxi2Þ2
ðmi1 �mi2Þ2:

Minimization of divergences such as KLðpjjqÞ,
where p is a target distribution and q is an approxi-

mation, covers many approximate inference techni-

ques used in practice. The approximating qðhÞ
chosen according to this criterion is required to

cover the entire support of p which, when com-

bined with the factorization assumption qðhÞ ¼
Q

i qiðhiÞ, results in q being more diffuse than p.

This can be contrasted with the commonly used

variational Bayes approach (see Blei, Kucukelbir,

and McAuliffe 2017 for a review), which considers

the minimization of KLðqjjpÞ; this tends to result in

approximations q which are more highly concen-

trated than p. Minimization of KLðpjjqÞ has connec-
tions with expectation propagation algorithms (see,

e.g., Bishop 2006, Chapter 10). We also note that

our merging algorithm can be cast as a mixture

reduction algorithm where the mixing weights are

given by pðs ¼ tjDTÞ and the mixture components

are given by pðhjs ¼ t,DTÞ: In that context, our

approach is similar in spirit to the approach of

Runnalls (2007), which merges mixture components

in a Gaussian mixture model by minimiz-

ing KLðpjjqÞ:

3.7. Selection of components to merge

One way of understanding the approximation scheme

above is that, at time T, we select B,C 2 APres
T and

replace ~pT�1ðhjs 2 B, dTÞ and ~pT�1ðhjs 2 C, dTÞ with

a single term ~pT�1ðhjs 2 B [ C, dTÞ, which is then

approximated using the spike-and-slab approximation

~pTðhjs 2 B [ CÞ: That is, the merging algorithm is

equivalent to setting

~pTðhjs 2 BÞ 
 ~pTðhjs 2 CÞ 
 ~pTðhjs 2 B [ CÞ:
Ideally, we should aim to have ~pTðh, s 2 AÞ close

to ~pT�1ðh, s 2 AjdTÞ: For example, we might aim to

minimize the L1 distance

X

A

ð

j~pTðh, s 2 AÞ � ~pT�1ðh, s 2 AjdTÞj:
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For all terms except for the B and C to be merged,

the terms of the summation cancel exactly; hence, this

reduces to

DTðB,CÞ ¼ ~pT�1ðs 2 BjdTÞ
Ð

j~pT

ðhjs 2 B [ CÞ � ~pT�1ðhjs 2 B, dTÞjdh
þ ~pT�1ðs 2 CjdTÞ

Ð

j~pTðhjs 2 B [ CÞ
�~pT�1ðhjs 2 C, dTÞjdh:

In principle DTðB,CÞ could be minimized directly

over all possible B,C 2 APres
T to find the optimal sets

to merge. We adopt a simpler approach by noting

that, from the triangle inequality,

DTðB,CÞ � 4maxf~pT�1ðs 2 BjdTÞ, ~pT�1ðs 2 CjdTÞg:
(14)

This holds independently of the quality of the approxi-

mation ~pTðhjs 2 B [ CÞ: Therefore, in practice, we take

B and C to minimize the right hand side of (14); that is,

we take B and C corresponding to the least-likely sets to

contain s. This approach has the advantage of being fast

and automatic, while producing surprisingly accurate

results in the simulation settings we examined.

As mentioned previously, the problem of selecting

which B and C to merge is similar in spirit to the

mixture reduction problem, which has been widely

studied in the case of Gaussian mixtures; see Crouse

et al. (2011) for a review. In principle, a more refined

approach to selection of components to merge could

be developed along similar lines using, for example,

clustering algorithms to select times to merge (see

Schieferdecker and Huber 2009).

4. Results

We evaluate our approximation in three areas: (1) sta-

bility when monitoring an in control process, (2) how

quickly we detect an out of control process, and (3)

quality of the approximation to the ideal/exact moni-

toring statistic. We compare the performance of the

merging wavelet Bayesian method to the exact full

wavelet-based Bayesian method, as well as to the like-

lihood ratio method proposed by Chicken, Pignatiello,

and Simpson (2009). Throughout, we refer the exact

full wavelet-based Bayesian method as FWBB, and

the approximate method based on merging as

MWBB. We refer to the likelihood ratio based

method as LRT. This comparison is of particular

interest because both methods use wavelets to

address the Phase II profile monitoring problem-

one with a Bayesian approach, the other with a

Frequentist approach. Both methods operate under

the assumptions of i.i.d. Gaussian errors and require

that the in control profile is known or estimated

prior to conducting Phase II analysis. Also, both

methods use the universal threshold for wavelet coef-

ficients and a single sustained change in the structure

of profiles. The parameters of simulation are similar

to those used in Chicken, Pignatiello, and Simpson

(2009), where the LRT outperformed similar methods

described in Fan (1996), Jeong, Lu, and Wang (2006)

and Jin and Shi (2001).

We also compare the performance of our proposed

methodology to the classic profile monitoring

approach of windowing. This windowing approach is

discussed in Willsky and Jones (1976) and Hawkins

and Zamba (2005). With this approach only the most

recent data is considered when computing the poster-

ior. Let W denote the window size in number of time

steps and let T1,T2, :::,TW denote the respective time

indices of profiles in the window at time T (note that

T1 ¼ T �W þ 1 and TW ¼ T). The windowed poster-

ior, or the posterior given only the data DT
W :¼ fdt :

t ¼ T1,T2, :::,TWg, is then

Since f ðDT
W js ¼ tÞ is constant for t � T1, we can

quickly compute f ðDT
W js � TÞ by considering only t

¼ T1, eliminating most of the cost of computing the

denominator. We will use window size of 10, based

on a balance between computation speed and approxi-

mation accuracy. We refer to this method as

Window 10.

Lastly, we will compare the performance of our

proposed MWBB procedure to the monitoring

pðsjDT
WÞ ¼ f ðDT

W jsÞpsðsÞ
XT

t¼1
f ðDT

W js ¼ tÞpsðs ¼ tÞ þ f ðDT
W js > TÞpsðs > TÞ

¼ f ðDT
W jsÞpsðsÞ

f ðDT
W js � T1Þpsðs � T1Þ þ

XTW

t¼T2
f ðDT

W js ¼ tÞpsðs ¼ tÞ þ f ðDT
W js > TÞpsðs > TÞ

:
(15)
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procedure presented in Jeong, Lu, and Wang (2006).

This approach examines a subset of the wavelet coeffi-

cients using a data-adaptive thresholding procedure.

We will refer to this methodology as the M� method.

4.1. Simulations

We first evaluate our approximation under simulated

settings. We show that the upper control limits to

obtain a desired average in control run length are

consistent across levels of Kmax and that the monitor-

ing statistic approximation is well-approximated when

the process is in control. We then show that, under a

variety of fault conditions, the MWBB procedure

obtains similar performance to the FWBB procedure.

4.1.1. Test functions

An effective monitoring procedure should perform

well under a variety of fault conditions. We consider

several different functional changes g at different mag-

nitudes m. The functional changes we consider are

defined in Chicken, Pignatiello, and Simpson (2009)

and are given in Figure 1; we refer to these as triangu-

lar, parabolic, broken line, and local jumps test func-

tions. These test functions represent possible out of

control scenarios. These test functions are scaled to

give a target magnitude of change, which we define as

m ¼ jjgjj22 ¼
ð

g2dx,

which is the squared L2 norm of g.

4.1.2. Calibration

We first examine the MWBB procedure’s sensitivity to

the value of Kmax during the calibration of the

hyperparameters.

Table 1 gives calibration summaries for different

values of Kmax for the MWBB, FWBB, LRT, and

Figure 1. Different forms of functional change g with different magnitudes.
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Windowed Wavelet procedures with p¼ 1/100 and

ARL ¼ 100: Results for p¼ 1/370 and 1/500 are given

in the Supplementary Material.

Given this target ARL0 we choose the UCL to be

the smallest value for which the mean of the 250

simulated run lengths is at least the target ARL0. We

also report the standard deviation of the run length

for each procedure, denoted as SDRL0.

We see from Table 1 that the UCL is insensitive to

the number of components carried forward (Kmax) in

the approximation procedure (small differences can be

attributed to random error and are not statistically

significant). The UCL for the MWBB method is sensi-

tive to x; this can attributed to more non-zero wave-

let coefficients being monitored which introduces

more noise into the profiles. This additional noise

requires a higher UCL to obtain the desired ARL.

From the tables in the Supplementary Material, we

also see that the UCL is not affected by the choice of

p for the FWBB and MWBB methods, although it

does influence the windowing method.

4.1.3. Computation time

We now study the computational gains from using

the merging procedure. Because FWBB requires

OðT2Þ computations while MWBB requires O(KT)

computations, we expect that MWBB will be faster by

a factor of OðT=KÞ: The Window Procedure is com-

parably fast, but we will see that it has lower power to

detect out of control profiles. Results are given in

Table 2 for p¼ 1/100. Results are similar for p¼ 1/370

and are given in the Supplementary Material.

Next we generate a sequence of 1000 in control

profiles, with Kmax varying from 1 to 500. Figure 2

shows the computation time associated with each

procedure. We see that computation time is growing

as Kmax increases. The growth is not quite linear due

to boundary effects as Kmax approaches T; for

example, if Kmax ¼ T then the merging algorithm will

never activate and the computation will be the same

as FWBB. This holds true for the four different par-

ameter settings. Again, the windowing procedure is

competitive in terms of computational efficiency; in

order to justify the use of MWBB relative to window-

ing, we will analyze the approximation accuracy and

detection delay of MWBB relative to windowing.

4.1.4. Approximation quality for in control settings

We now examine how well MWBB approximates the

posterior obtained by FWBB, as measured by the L1
difference between pðs � TjDTÞ and ~pTðs � TÞ: We

show two different parameter settings for p and use

ðx, sÞ ¼ ð0:05, 1:74Þ: We base the results on 250 repli-

cations of 500 profiles of length n¼ 128 generated

under the in control setting. Results are given in

Tables 3 and 4.

We see that the error is quite small for the MWBB

procedures (less than 1% difference in probability of

change point), even for Kmax as small as 5, with the

error decreasing as Kmax increases. The windowing

procedure has a much larger error, due to data being

discounted outside of the defined window size. We

also note that, as p decreases, the differences become

substantially smaller, suggesting that the ideal

Table 1. A calibration summary of in control performance for
different values of Kmax based on 250 replications, n¼ 128
and p ¼ 1

100
:

Method x s UCL ARL0 SDRL0

Kmax ¼ 5 0.05 1.74 0.17 100.24 92.91
0.10 1.07 0.25 100.46 98.58
0.25 0.61 0.29 100.42 94.81

Kmax ¼ 10 0.05 1.74 0.18 100.01 92.80
0.10 1.07 0.21 100.56 99.94
0.25 0.61 0.29 100.56 94.18

Kmax ¼ 20 0.05 1.74 0.18 100.06 89.90
0.10 1.07 0.21 100.16 97.62
0.25 0.61 0.27 100.11 98.35

Full 0.05 1.74 0.17 100.07 88.85
0.10 1.07 0.21 100.16 97.62
0.25 0.61 0.27 100.24 95.86

LRT 0.05 1.74 0.07 100.61 98.66
0.10 1.07 0.07 100.21 106.26
0.25 0.61 0.07 100.61 98.67

Window 10 0.05 1.74 0.30 100.24 57.46
0.10 1.07 0.34 100.32 66.73
0.25 0.61 0.39 100.03 71.02

Table 2. A comparison of FWBB vs MWBB procedures compu-
tation time for p ¼ 1

100
with the length of profile

sequence varying.

Ratio of Comp Time for FWBB vs MWBB

Kmax T¼ 100 T¼ 200 T¼ 300 T¼ 400 T¼ 500

5 4.26 10.74 13.61 18.18 21.34
10 2.38 6.05 7.53 10.19 12.62
20 1.33 3.04 4.07 5.44 6.77
Window 10 4.56 8.55 13.80 17.87 22.48

Figure 2. Computation time of MWBB procedure while vary-
ing Kmax.

10 W. SHAMP ET AL.



approach is to set p small and adjust to UCL

accordingly.

Figure 3 displays the average value of pðs � TjDTÞ
and ~pTðs � TÞ for different values of K for the merg-

ing and windowing procedures, for 250 replications of

500 in-control profiles of length n¼ 128. The approxi-

mation accuracy is generally very good for the

MWBB, and is very poor for windowing. For the

remainder of this section, we will no longer consider

the windowing procedure due to its poor perform-

ance. Next, using the same generated data, the middle

50% quantile of pðs � TjDTÞ for different procedures

is displayed in Figure 4. We again notice that a better

approximation is obtained for p¼ 1/370 rather than

p¼ 1/100, with the approximation becoming worse

the further we move beyond the ARL; we note that

the approximation quality is less important for times

far beyond the ARL since a false alarm will likely have

occurred by this point regardless.

Lastly, Figure 5 displays the L1 difference between

pðs � TjDTÞ and ~pTðs � TÞ: The error for the

MWBB does accumulate for larger values of T, but is

small enough to not be of concern even for T � Kmax

because the error is small relative to the UCL. We

again see better performance for small values of p,

with the approximation quality not increasing sub-

stantially for p¼ 1/370.

4.1.5. Out of control performance

We now introduce different types of functional

changes into our generated profiles. We evaluate pro-

cedures according to their average detection delay,

which we denote as ARL1, and the probability of a

false alarm. We also report the standard deviation of

the detection delay as SDRL1. We use the same values

of x, s, p, n, and number of replications as before.

We simulate data with change points at s 2
f1, 10, 50g: These choices of s allow us to assess the

ability of each method to immediately signal a change

and the ability to run in control before signaling

a change.

Results for s¼ 10 are given in Tables 5 and 6, with

results for other values of s given in the

Supplementary Material. We see that there is a modest

increase in detection delay for smaller values of Kmax,

particularly when the magnitude of the change m

is small.

As p decreases (with ARL0 fixed at 1=p), the prob-

ability of a false alarm decreases sharply, with a mod-

est increase in ARL1. In the case of the LRT, M�, and
Windowing methods, the low probability of false

alarms must be balanced against the substantially lon-

ger detection delays. For example, we can match the

performance of Windowing at ARL0 ¼ 100 in terms

of average run length and false positive rate with bet-

ter performance of MWBB at Kmax ¼ 10 even with a

longer average run-length ARL0 ¼ 370: We conclude

that, rather than using windowing to obtain a better

false alarm rate, it is preferable to use FWBB with a

higher ARL, which is better simultaneously in terms

of ARL, detection delay, and false alarm probability.

Overall, we observe that MWBB and FWBB have very

similar performance characteristics, indicating that

MWBB performs well as an approximation to FWBB.

4.2. Non-normal errors

To assess the sensitivity of our framework to the form

of the error distribution, we replace the normal errors

in (1) with a skewed error distribution. In the follow-

ing experiments, we generate 250 in-control profiles

and set p ¼ 1
100

and ARL0 ¼ 100, with ðx, sÞ ¼
ð0:05, 1:74Þ: We consider skew normal errors; similar

experiments with gamma-distributed errors are given

in the Supplementary Material. We set �ti to have a

skew-normal distribution, with density f ð�Þ ¼
ð2=cÞ/fð�� nÞ=cg Ufað�� nÞ=cg, where /ð�Þ and

Uð�Þ are the standard normal density and distribution

functions respectively. The parameter n is a location

parameter, c is a scale parameter, and a is a skewness

parameter. After being generated, these errors are

then scaled to have mean 0 and variance 1. A table

giving the calibration and performance metrics of our

procedure are given in Table S.8 in the Supplementary

Material, with ðn, c, aÞ ¼ ð5, 3, 6Þ:

Table 3. A comparison of FWBB vs MWBB procedures per-
formance for p ¼ 1

100
with the length of profile

sequence varying.

Mean Absolute Error

K max T¼ 100 T¼ 200 T¼ 300 T¼ 400 T¼ 500

5 0.00077 0.00218 0.00347 0.00564 0.01018
10 0.00020 0.00010 0.00212 0.00431 0.00829
20 0.00003 0.00025 0.00088 0.00186 0.00442
Window 10 0.00761 0.02471 0.05361 0.09729 0.15576

Table 4. A comparison of FWBB vs MWBB procedures per-
formance for p ¼ 1

370
with the length of profile

sequence varying.

Mean Absolute Error

K max T¼ 100 T¼ 200 T¼ 300 T¼ 400 T¼ 500

5 0.00018 0.00043 0.00045 0.00065 0.00093
10 0.00006 0.00021 0.00019 0.00043 0.00069
20 0.00001 0.00004 0.00010 0.00026 0.00026
Window 10 0.00195 0.00529 0.00898 0.01316 0.01759
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Figure 3. The average value of pðs � TjDTÞ and ~pTðs � TÞ at each T from the 250 replications of the in control setting used to
calibrate each method under different settings of p.

Figure 4. The middle 50 percent quantile of pðs � TjDTÞ of different procedures under different settings of p. Solid lines give the
75th percent quantile, while dashed lines give the 25th percent quantile.
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After calibrating the UCL, we investigate the ability

to detect a change when the simulated profiles have

the skew normal errors. Table 7 gives the detection

delay and false alarm probabilities under this setting.

We see a modest increase in detection delay from

Table S.4, but the MWBB methodology is still capable

of detecting change before the LRT method and the

windowing procedures. For skew-normal errors,

MWBB still obtains performance nearly equivalent to

FWBB; Kmax ¼ 20, for example, is essentially identical

to FWBB in terms of performance. We also investi-

gated larger s for this error setting and found similar

results. The performance metrics can be found in

Table S.9 in the Supplementary Material.

4.3. Vertical density profile data

We now analyze a dataset consisting of vertical dens-

ity profiles (VDP) of pressed wood panels presented

in Walker and Wright (2002). Understanding the

VDP of these panels is important because the VDP is

related to the machinability of the wood. The data

consists of measurements of the density of panels

under varying depths across the thickness of the

boards. We observe T¼ 24 profiles, which were col-

lected in three different 8 hour shifts (Shifts A, B, and

C). Observations of each wood panel were taken at

314 depths. For simplicity, we trim the profiles on

either end down to the next lowest dyadic profile

length (n¼ 256). This data has been the analyzed in

many other works in statistical process control.

Operating in a similar framework to ours, Walker

and Wright (2002) develop a class of generalized

additive models that are used to assess the sources of

variation within profiles, while Williams, Woodall,

and Birch (2007) construct various T2 statistics based

on nonlinear models to determine control limits

for monitoring.

The data are displayed in Figure 6. In order to

apply our Phase II methodology to the dataset, we fol-

low the approach for defining the in control set used

in McGinnity, Chicken, and Pignatiello (2015), which

performs three different analyses with Shift A, B, or C

assumed to be in control. We take f 0 to be the mean

of the in-control profiles. These profiles are displayed

in Figure 6.

There is a large amount of variability in the mean

VDP across profiles. As our primary goal is to detect

differences in the shape of the profiles rather than in

Figure 5. The average L1 distance between pðs � TjDTÞ and
~pTðs � TÞ at each time under different settings of p,.

Table 5. The (ARL1, SDRL1, PFA) for different values of Kmax and different out of control conditions, based on 250 replications,
s¼ 10 and p ¼ 1

100
:

Method m Triangular Parabolic Broken Line Local Jumps

MWBB 0.01 (25.45, 15.69, 0.06) (13.18, 8.46, 0.07) (17.32, 10.21, 0.05) (34.22, 25.23, 0.06)
Kmax ¼ 5 0.09 (3.20, 1.26, 0.08) (2.00, 0.86, 0.05) (2.57, 1.01, 0.06) (4.42, 1.79, 0.04)

0.25 (1.52, 0.53, 0.08) (1.13, 0.35, 0.06) (1.21, 0.42, 0.06) (1.98, 0.71, 0.05)
MWBB 0.01 (26.23, 14.77, 0.08) (11.40, 7.05, 0.08) (16.84, 9.67, 0.07) (32.70, 22.08, 0.06)
Kmax ¼ 10 0.09 (3.25, 1.32, 0.06) (1.95, 0.86, 0.06) (2.56, 1.10, 0.08) (4.59, 2.10, 0.08)

0.25 (1.47, 0.53, 0.07) (1.09, 0.29, 0.07) (1.29, 0.46, 0.06) (1.94, 0.68, 0.06)
MWBB 0.01 (24.08, 13.76, 0.10) (12.34, 7.88, 0.05) (16.56, 9.83, 0.04) (34.42, 21.11, 0.07)
Kmax ¼ 20 0.09 (3.42, 1.30, 0.05) (2.09, 0.87, 0.06) (2.47, 1.03, 0.07) (4.65, 2.07, 0.05)

0.25 (1.53, 0.51, 0.09) (1.10, 0.30, 0.03) (1.21, 0.43, 0.07) (1.93, 0.66, 0.06)
FWBB 0.01 (23.90, 13.67, 0.05) (11.37, 7.38, 0.10) (15.58, 9.92, 0.08) (33.08, 20.94, 0.05)

0.09 (3.26, 1.27, 0.08) (1.97, 0.79, 0.04) (2.58, 1.15, 0.09) (4.29, 2.04, 0.08)
0.25 (1.50, 0.51, 0.09) (1.11, 0.31, 0.06) (1.28, 0.45, 0.08) (1.88, 0.64, 0.09)

LRT 0.01 (94.26, 83.57, 0.07) (99.45, 84.50, 0.06) (90.55, 84.55, 0.08) (100.50, 86.66, 0.08)
0.09 (10.63, 9.14, 0.06) (7.81, 6.41, 0.13) (9.28, 7.52, 0.08) (19.44, 15.60, 0.10)
0.25 (1.75, 1.04, 0.08) (1.35, 0.63, 0.09) (1.62, 0.95, 0.06) (3.78, 2.74, 0.09)

Window 10 0.01 (43.13, 31.61, 0.04) (16.05, 12.16, 0.02) (24.89, 16.03, 0.02) (49.04, 33.99, 0.04)
0.09 (3.64, 1.35, 0.02) (2.31, 0.95, 0.03) (2.85, 1.21, 0.02) (4.89, 1.96, 0.02)
0.25 (1.65, 0.60, 0.02) (1.13, 0.33, 0.03) (1.37, 0.49, 0.03) (2.12, 0.66, 0.03)

M� 0.01 (85.84, 86.75, 0.09) (86.11, 85.08, 0.09) (82.53, 82.75, 0.072) (85.74, 82.20, 0.07)
0.09 (18.60, 17.91, 0.09) (18.42, 18.70, 0.09) (19.04, 18.00, 0.10) (21.91, 23.41, 0.06)
0.25 (3.40, 2.86, 0.10) (3.36, 2.80, 0.11) (3.47, 2.72, 0.12) (3.41, 3.11, 0.06)
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their location on the y-axis, we center each profile to

have mean 0 as a preprocessing step.

To determine an appropriate UCL, we calibrated

each method under consideration by generating in

control profiles by bootstrapping appropriately scaled

errors from the assumed in control profiles. The boot-

strapped errors were randomly selected deviations of

the defined in control profiles from the estimated f0,

taken at each point within the profile length. The ran-

domly selected error is then scaled by the standard

deviation of the errors at each of the 256 points in the

profiles. A more detailed description of this bootstrap-

ping procedure can be found in McGinnity, Chicken,

and Pignatiello (2015). Selection of hyperparameters is

described in Section 2.4. In the results in Table 8, the

UCL for the FWBB and the MWBB procedures are

nearly identical, with MWBB accurately approximat-

ing FWBB. Hence, for the VDP data, FWBB and

MWBB perform essentially the same when running

in-control.

To illustrate the MWBB procedure’s ability to run

online in control for a long stretch of time, as well as

quickly detect a change, we generated a sequence of

100 in control profiles from the defined in control

profiles using the bootstrapping procedure described

above, followed by profiles from shifts A, B and C.

Results are given in Figure 7 for Kmax ¼ 5, 10, 20

and FWBB.

Table 6. The (ARL1, SDRL1, PFA) for different values of Kmax and different out of control conditions, based on 250 replications,
s¼ 10 and p ¼ 1

370
:

Method m Triangular Parabolic Broken Line Local Jumps

MWBB 0.01 (36.41, 19.75, 0.02) (16.47, 8.93, 0.01) (24.06 12.50, 0.02) (58.61, 37.05, 0.03)
Kmax ¼ 5 0.09 (3.66, 1.33, 0.01) (2.35, 0.94, 0.03) (3.18, 1.16, 0.01) (5.52, 2.05, 0.02)

0.25 (1.76, 0.51, 0.03) (1.14, 0.35, 0.02) (1.40, 0.49, 0.02) (2.28, 0.73, 0.00)
MWBB 0.01 (32.19, 14.36, 0.01) (16.83, 9.57, 0.03) (24.04, 12.44, 0.02) (50.38, 25.44, 0.02)
Kmax ¼ 10 0.09 (3.75, 1.27, 0.03) (2.37, 0.97, 0.01) (3.05, 1.13, 0.02) (5.33 2.07 0.02)

0.25 (1.67, 0.55, 0.02) (1.18, 0.39, 0.00) (1.40, 0.50, 0.01) (2.16 0.65 0.01)
MWBB 0.01 (31.45, 14.06, 0.02) (16.46, 9.18, 0.01) (22.33, 11.86, 0.01) (48.19, 23.60, 0.01)
Kmax ¼ 20 0.09 (3.87, 1.38, 0.01) (2.30, 0.98, 0.02) (3.08, 1.14, 0.02) (5.45, 1.85, 0.02)

0.25 (1.70, 0.57, 0.02) (1.15, 0.36, 0.02) (1.41, 0.51, 0.02) (2.31, 0.70, 0.03)
FWBB 0.01 (33.92, 14.25, 0.01) (17.12, 9.28 0.03) (23.32, 11.53, 0.01) (48.92, 24.52, 0.02)

0.09 (3.87, 1.40, 0.02) (2.52, 0.99, 0.02) (3.07, 1.10, 0.02) (5.43, 2.09, 0.02)
0.25 (1.76, 0.59, 0.02) (1.21, 0.41, 0.01) (1.39, 0.50, 0.00) (2.20, 0.75, 0.01)

LRT 0.01 (185.31, 108.13, 0.04) (190.39, 105.31, 0.02) (186.78, 108.03, 0.03) (194.82, 102.33 0.02)
0.09 (18.75, 14.10, 0.03) (12.23, 9.60 0.02) (17.69, 13.47, 0.03) (37.89, 24.57, 0.01)
0.25 (2.03, 1.22, 0.04) (1.63, 1.05, 0.01) (1.95, 1.17, 0.02) (5.68, 4.46, 0.02)

Window 10 0.01 (156.43, 88.36, 0.00) (46.08, 30.35, 0.00) (87.02, 60.45, 0.00) (206.91, 83.81, 0.00)
0.09 (5.51, 1.77, 0.00) (4.23, 1.26, 0.00) (4.74, 1.35, 0.00) (7.50, 2.19, 0.00)
0.25 (3.54, 1.08, 0.00) (2.27, 1.49, 0.00) (2.76, 1.48, 0.00) (3.89, 0.68, 0.00)

M� 0.01 (115.28, 115.63, 0.07) (106.63, 97.86, 0.07) (113.42, 119.68, 0.04) (114.56, 121.75, 0.05)
0.09 (22.20, 20.74, 0.07) (21.48, 21.30, 0.06) (22.09, 22.00, 0.07) (24.63, 25.25, 0.05)
0.25 (3.61, 2.97, 0.08) (3.61, 3.19, 0.09) (3.80, 2.90, 0.10) (3.83, 3.57, 0.04)

Table 7. The ARL1 (SDRL1) for different values of Kmax and different out of control conditions, based on 250 replications, s¼ 1
and p ¼ 1

100
and skew normal errors.

Method m Triangular Parabolic Broken Line Local Jumps

MWBB 0.01 29.74 (16.55) 51.54 (39.57) 33.4 (19.03) 51.10 (37.23)
Kmax ¼ 5 0.09 3.85 (1.51) 6.30 (2.62) 4.31 (1.70) 6.05 (2.44)

0.25 1.67 (0.56) 2.58 (0.99) 1.89 (0.63) 2.42 (0.76)
MWBB 0.01 28.69 (14.81) 44.82 (28.35) 31.42 (16.24) 45.77 (29.48)
Kmax ¼ 10 0.09 3.86 (1.51) 6.30 (2.63) 4.32 (1.70) 6.04 (2.43)

0.25 1.67 (0.56) 2.58 (0.99) 1.89 (0.63) 2.42 (0.76)
MWBB 0.01 27.96 (14.41) 42.75 (25.48) 31.02 (15.76) 43.65 (26.98)
Kmax ¼ 20 0.09 3.85 (1.51) 6.30 (2.62) 4.31 (1.70) 6.04 (2.43)

0.25 1.67 (0.56) 2.58 (0.99) 1.89 (0.63) 2.42 (0.76)
FWBB 0.01 27.92 (14.37) 42.68 (25.25) 30.96 (15.69) 43.55 (26.76)

0.09 3.85 (1.51) 6.30 (2.62) 4.31 (1.70) 6.04 (2.43)
0.25 1.67 (0.56) 2.58 (0.99) 1.89 (0.63) 2.42 (0.76)

LRT 0.01 75.97 (67.72) 78.38 (70.90) 76.96 (69.27) 78.58 (73.04)
0.09 15.31 (12.30) 45.49 (42.07) 22.40 (18.50) 27.91 (22.55)
0.25 2.15 (1.30) 6.32 (5.04) 2.98 (2.03) 5.70 (4.18)

Window 10 0.01 52.02 (36.33) 73.24 (53.50) 56.12 (41.17) 71.25 (51.46)
0.09 3.94 (1.50) 6.60 (2.78) 4.50 (1.75) 6.38 (2.50)
0.25 1.72 (0.56) 2.69 (0.98) 1.95 (0.64) 2.49 (0.78)
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Table 8. Calibration summary and L1 difference of MWBB from FWBB of the VDP data using 3 different sets of in control data.

Profiles in control Method UCL ARL0 SDRL0 Average L1 Difference

Shift A Kmax ¼ 5 0.17 100.06 68.46 0.000534
Kmax ¼ 10 0.17 100.47 69.57 0.000181
Kmax ¼ 20 0.16 100.14 69.57 0.000055
Full 0.16 100.14 69.57 —

LRT 0.02 100.43 67.49 —

Shift B Kmax ¼ 5 0.14 100.41 67.06 0.000607
Kmax ¼ 10 0.14 100.02 66.74 0.000181
Kmax ¼ 20 0.14 100.02 66.74 0.000053
Full 0.14 100.02 66.74 —

LRT 0.01 100.12 69.96 —

Shift C Kmax ¼ 5 0.07 100.27 66.37 0.000283
Kmax ¼ 10 0.07 101.29 67.47 0.000083
Kmax ¼ 20 0.07 101.29 67.47 0.000022
Full 0.07 101.29 67.47 —

LRT 0.002 100.70 74.19 —

Figure 6. VDPs obtained during Shift A, B, and C, as well as the estimated in-control profile obtained from the three differ-
ent shifts.
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We see that the process is classified as in control

for the first 100 profiles, and out of control when the

profiles from the shifts are introduced. We also see

that, when shift B is considered in control, the prob-

ability of a change jumps down when shift B profiles

are introduced. We note that our assumption that

each shift consists entirely of in-control profiles is

contradicted by this experiment, as the second profile

in shift A leads to the process being classified as out

of control; we make the working assumption that

each shift is in control with respect to itself, but a

proper Phase I method is required in practice. To

assess the impact of this assumption, we performed a

permutation study to determine which profiles signal

a change with high frequency.

Intuitively, profiles which deviate from in con-

trol behavior will have a high probability of signal-

ing out of control, while profiles which behave

similar to an in control process will rarely signal

out of control.

Results are displayed in Figure 8. We see that

which shift is in control has an effect on which pro-

files signal a change, with the in control shift having

fewer out of control profiles.

In Figure 9, we repeated the simulation of Figure 7,

but with the profiles classified as out of control in

Shift A removed. In this study, the in control Shift A

profiles no longer detect a change, while the out of

control profiles from Shift A do (as do profiles from

Shift B and Shift C).

The propensity for the wavelet-based approach to

classify profiles as out of control is related to both (i) its

ability to detect even subtle changes in profiles from the

estimated in control behavior and (ii) the fact that we

assume that the noise terms within each profile are inde-

pendent, while auto-correlation is apparent in the VDP

data. The independence assumption is used in works

such as Kang and Albin (2000), Kim, Mahmoud, and

Woodall (2003), and Williams, Woodall, and Birch

(2007), but is dubious in this case; for wavelet based

Figure 7. Probability of change of 100 bootstrapped in control profiles generated from the in control datasets. The vertical line
reflects the time point at which profiles the VDP data are introduced. The horizontal line reflects the calibrated UCL for each in
control set.
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methods, this assumption makes the methodology highly

sensitive. A promising avenue for future work is

accounting for auto-correlation in the data.

While our procedure is strictly a Phase II method,

it is informative to compare the results of the permu-

tation study with the results of other Phase I analyses

to determine what features of a profile lead to it being

classified as out of control. Figure 10 displays three

profiles that signal a change with high frequency

under the three different control settings, while Figure

11 displays three different profiles that do not signal a

change. We see that in control behavior is associated

with deviating from the in control profile by a fixed

amount (due to the centering), whereas out of control

behavior deviates from the overall shape of the in

control profile. For instance, we find profile A2 to be

out of control, and we see that this is because the

VDP “bends” further toward the middle of the profile.

By contrast, results from Williams, Woodall, and

Birch (2007), which are given in Table 9, A2 is found

to be in control.

5. Discussion and possible future work

Bayesian approaches to quickest change detection

have a long history, but are difficult to apply with

complex models due to the computational complexity

of computing the posterior distribution. In this paper

we addressed the problem of performing quickest

change detection with a functional response by devel-

oping an accurate approximation to a Bayesian ana-

lysis. Our approach incurs a fixed computational cost

Figure 8. Results of the permutation study, displaying each
shift against its probability of signaling out of control. As all
sequences are eventually classified as out of control, the prob-
abilities sum to 1.

Figure 9. Probability of change of 100 bootstrapped in control
profiles generated from the in control datasets. The vertical
line reflects the time point at which profiles outside of our in
control set are introduced. The horizontal line reflects the UCL.

Figure 10. Example of profiles determined to be out of control by the permutation study under three different in control settings.
The difference between the profile from the in-control mean is given in gray.
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at each time while still allowing for complex func-

tional deviations from in control to be detected.

There are several interesting areas for future

research. Throughout, we have assumed that there is a

single shift from in control to out of control, with the

profiles being homogeneous within each condition. A

related problem is to consider a profile which

migrates out of control slowly, or allow for the pro-

cess to return to in control after a certain amount

of time.

Additionally, our methods are derived under the

assumption of iid Gaussian errors or known non-nor-

mal errors, with the error level constant across pro-

files. For the VDP data, this assumption was seen to

be suspect. Further work might consider unknown

error distribution, or allow for the incorporation of

dependent errors within a profile.
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