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ABSTRACT

In functional sequential process monitoring, a process is characterized by sequences of
observations called profiles which are monitored over time for stability. The goal is to halt a
process when the process generating these observations deviates from a specified in control
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standard. We propose a Bayesian sequential process control (SPC) methodology which uses
wavelets to monitor the functional responses and detect out of control profiles. Our contri-
bution is to propose a solution to the growing computational cost by constructing an effi-
cient and accurate approximation to the posterior distribution of the wavelet coefficients,

without recourse to Markov chain Monte Carlo.

1. Introduction

Statistical process control (SPC) techniques are com-
monly used to ensure the quality of a process over
time. For example, in the context of manufacturing,
SPC may be used to determine if and when a manu-
facturing process deviates from a desired quality level.
We consider an observed sequence of discretely
sampled functional profiles
Vi =1"x) + €
where y* = (y},...,},) is a noise-contaminated quality
characteristic profile, x; is a covariate, n is the number
of observations in a functional profile, and € repre-
sents the noise associated with the process. For
example, observations y! can be measurements of a
manufactured part at the corresponding positions x;.
Examples of profile monitoring applications in the
literature include roundness evaluation of mechanical
components, where radial measurement is a function
of turning (Colosimo, Semeraro, and Pacella 2008),
and automobile engine testing, where torque produced
is a function of engine speed (Amiri, Jensen, and
Kazemzadeh 2009). SPC methods are carried out in
two phases; this paper will focus on Phase II profile
monitoring, which falls into an area of statistics
known as quickest change detection (QCD).
We propose a wavelet-based Bayesian framework
for Phase II non-linear profile monitoring. To avoid

i=1,..,n

making assumptions about the functional form f*(x;),
we will use the wavelet-based approach to model the
profiles introduced in Varbanov et al. (2019), where
the full posterior probability of a change point occur-
ring at each observed time point is computed.

A key limitation of performing exact change-point
detection is that, given T observed profiles, computing
the posterior probability that a change has occurred
ostensibly requires O(T) computations. Accordingly,
as time proceeds, the overall computational require-
ment is on the order O(Y)/, t) = O(T?). This is a
substantial drawback when it is desired to perform
SPC with data arriving in real-time. Our primary con-
tribution is to propose a solution to the problem of
growing computational cost by constructing an effi-
cient and accurate approximation of the posterior dis-
tribution of wavelet coefficients such that the total
computational cost at time ¢ is bounded. Our approxi-
mate posterior is constructed by “merging” together
the posterior distribution at times which carry similar
information about the underlying process. Our
approach can be compared with other approximation
methods, such as windowing. Windowing methods,
such as those described by Willsky and Jones (1976)
and Hawkins and Zamba (2005), assume at time T
that a change has occurred only within the last W
time-points. If the signal is sufficiently small, however,
it may be the case that the window size is too small
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2 W. SHAMP ET AL.

to detect a change with non-negligible probability.
Relative to these methods, our approach has the bene-
fit of approximately maintaining the entire history of
the process, and allowing for the possibility of the
change-point occurring far in the past.

The paper is organized as follows. In Section 2, we
review relevant material on SPC methods, wavelet
methods, and the wavelet-based Bayesian approach
developed by Varbanov et al. (2019) as well as its
computational limitations. In Section 3 we introduce
our posterior approximation method and the merged
Wavelet-based Bayesian (MWBB) method for sequen-
tial change-point detection. In Section 4 we compare
the proposed method to existing methods through
simulation, and apply the methodology to the vertical
density profiling dataset of Winistorfer, Young, and
Walker (1996). Section 5 concludes with a discussion
of results and considerations for future work.

2. Review of relevant material

2.1. Statistical process control background and
quickest change detection

SPC is traditionally done in two separate steps. The
first step, Phase I, uses historical data to identify and
summarize in control performance. The next step,
Phase II, collects and analyzes new data to detect sig-
nificant deviations from the in control performance
established in Phase I. Statistically, Phase I focuses on
parameter estimation based on data from the in con-
trol distribution, while Phase II focuses on performing
inference using online methods that operate until the
process is stopped. We focus primarily on Phase II of
SPC, and assume that the in control behavior is
known a priori (in-control behavior can also be esti-
mated). This reduces the Phase II problem to per-
forming the quickest change detection (QCD)
problem in an online fashion.

Throughout this paper, we will consider the follow-
ing model for the observed functional observations:

yh= %) + g(x)I(t > 1) + €, Efi’ig 0,02) (1)

where f° is the functional relationship between the
explanatory variable and the quality characteristic
when the process is in control and g is the unknown
functional change introduced when the process goes
out of control. The goal is to determine whether the
process is in control given the profiles observed at
times t =1,2,...,T and continuously classify profiles
control state with each newly observed y' =

"> ..»¥4). Once the process is stopped, we may also
be interested in estimating 7, the time of the first out

of control profile. In Phase II, fo and ag are assumed
to either be known or are approximated, and hence
can be taken without loss of generality to be f°(x;) =
0 and o? = 1, respectively.

Performance of an SPC procedure can be measured
by a tradeoff of allowing an in control process to con-
tinue to run and stopping an out of control process
quickly. A false alarm occurs when a monitoring pro-
cedure flags an in control process as out of control.
Monitoring procedures are typically assessed according
to their ability to detect changes quickly, subject to
maintaining a desired false alarm rate. Let T be a stop-
ping rule such that the process is halted at time 7.
Given the model (1), let E;(-) denote the expectation
operator for the model with [t = t]. We define the in
control average run length (ARL,) to be E, (), which
is the average time until a false alarm occurs when the
process is in control. Subject to the constraint E,(7) =
ARL, is a specific value, we then aim to find proce-
dures with a small detection delay E.(T — 1|t > 1).

Bayesian approaches to the generic QCD problem
have a long history, being initially developed by
Shiryaev (1963). This perspective treats the 7 as a ran-
dom variable with a prior distribution 7(t). Bayesian
procedures have been of general interest as a tool for
deriving traditional (minimax-optimal) procedures.
Assuming a zero-inflated geometric prior on 1,
Shiryaev (1963) showed that the rule which stops
when 7(t < T| observed data up to T)
specified upper control limit U is optimal from a
Bayesian perspective. Tartakovsky and Veeravalli
(2005) extended this result, demonstrating that this
rule is asymptotically optimal for a very broad class of
changepoint models. For practical purposes, an online
implementation of the Bayesian sequential change-
point detection was developed by Adams and MacKay
(2007). When the data generating mechanism lies in
an exponential family, QCD can be performed effi-
ciently by storing a collection of sufficient statistics.

exceeds a

2.2, Wavelet background

Wavelets are localized wave-like functions that can be
translated and dilated to create a basis for a wide
range of functions. Wavelets possess inherent spatial
adaptivity, which is useful when analyzing functions
with discontinuities and sharp spikes, as well as time-
frequency localization. Wavelets are attractive as tools
for function estimation because most functions f(x)
can be well-approximated using a wavelet basis expan-
sion in which most coefficients are zero. For a more



complete introduction and overview of wavelets see
Ogden (2012) and Vidakovic (2009).

Let ¢ and y denote the compactly-supported father
and mother wavelet functions, respectively. The trans-
lations and dilations of ¢ and s given by

i(x) = 2P (2x = k), Yylx) = 2PP(2Dx — k)

generate (for any fixed integer j,) an orthonormal
basis {¢; > Wiljo. ok € Z;j > jo} for the space of
square-integrable functions L,(R). A function f €
L,(R) can then be expressed as the infinite series

[.°]
flx) = Z SiokPjok (%) + Z Z Ot () (2)
k j=io k

with wavelet coefficients &« = (f, ¢;r) and Op =
(f W) where (f,g) = [ f gdx is the usual inner prod-
uct on Ly(R). The first series in Eq. [2], consisting of
translations of ¢;;, represent the smoothest structure
of the function, while the second series in Eq. [2],
consisting of translations and dilations of ., repre-
sent the higher frequency parts of the function. We
will refer to ;x and 0j as smooth (also called coarse)
and detail wavelet coefficients, respectively. Projecting
a function onto the wavelet basis allows for a multire-
solution analysis (Mallat 1989b). The variable j gives
the resolution level, while the variable k represents the
location along the x-axis.

In practice, functional data is observed discretely.
Suppose we have y=f-+e€ where f=(f(x1) ...
f(x,))" and €~ N(0,62I), such that the x;s are
evenly spaced and n = 2/ is a dyadic integer. Then the
pyramid algorithm described in Mallat (1989a) can be
used to perform the Discrete Wavelet Transform
(DWT) on y with O(n) computations. This gives a
vector of n estimated wavelet coefficients

d = Wy = (Cjo,O’Cjo,l’ veey jo,ZjO’I’djo»O’djo,l’ ...,d]_l)zl—l).

The coefficients ¢, x ~ &, and dj; ~ 0j are
approximations of the coefficients from the wavelet
series expansion in Eq. [2]. Due to the orthonormality
of the basis, the linear transformation W encoding the
DWT is orthogonal, so d ~ N (0, 6*I) where 0 = E(d)
consists of the coefficients ¢ x and 0j. For the
remainder of the paper, the term wavelet coefficient
will refer to the wavelet coefficient obtained by
the DWT.

2.3. Wavelet-based Bayesian SPC

The discrete version of the SPC problem sets y' =
I(t>1)g+€  where € ~N(0,I) and g=
(g(x1),...g(x,))"; recall that we have set fO(x;) =0
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and ¢? = 1 without loss of generality and that t repre-
sents the first time at which the process is out of con-
trol. Let d'= Wy' denote the vector of wavelet
coefficients obtained from the t™ observed profile.
When the process is in control we have d' = We' ~
N(0,1); hence, the in control wavelet coefficients will
contain only white noise. Once the process is out of
control, we have d' ~ A/(0,I), where 0 = Wg is the
vector of true wavelet coefficients for the functional
change g. Varbanov et al. (2019) use priors on the
wavelet coefficients 0 to flexibly estimate g. Let DT =
(d',...,d") denote the empirical wavelet coefficients
obtained up-to-and-including time T. We will use =
to refer to the prior and posterior mass functions for
(0,7) and we will use f to refer to marginal/condi-
tional densities of the data. When a mass function for
7 needs to be evaluated at a particular time t we will
write 7(t = t). The marginal posterior distribution of

the change point 7 can be written
TC(‘C|DT) — ff(DT|T’ 0) TC(T) 7'C(0)d0 (3)

> [f(D"[r,0) n(c) n(6)d0

_ (O R)n(x)
> (DTt = O)n(t = 1) + f(D]r > T)n(z > T)
(4)

Varbanov et al. (2019) uses the Shiryaev procedure
(Shiryaev 1963), which classifies the process as out of
control if the monitoring statistic n(t < T|DT) =
S rm(t =t|DT) exceeds a specified upper control
limit (UCL) U. Varbanov et al. (2019) use a geometric
prior 7(t) = (1 —p)" " p with the mean 1/p giving
the prior average time at which the process goes out
of control.

To model the sparsity of the detail coefficients,
they use a spike-and-slab prior (Abramovich,
Sapatinas, and Silverman 1998; Johnstone and
Silverman 2005). Sparsity in the wavelet representa-
tion is encoded through the mixture prior

m(05) = (1 — @) So(04) + © N(0x]0,5%), (5

where J; is the Dirac mass at zero and N (y|u, 0?) is a
normal density function centered at u with scale o.

Draws from the mixture prior (5) are zero with
probability 1 — w, and are normal with scale s other-
wise. The normal density is used because it is a conju-
gate prior for the normal likelihood associated with
the observed coefficients. For the coarse coefficients,
we remove the point mass at zero, giving 7(¢jox)
= N(&jox/0:5”).

In order to compute the posterior distribution of T,
we need to compute the density of the observed
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coefficients f(DT|t). Integrating out @, Varbanov
et al. (2019) shows that this is given by

f(D"e) = [H | B ] lﬁmd?f) v(di”)],

t=1 i=

with
T —t>7\2
d —d.
W(d=) = —— _exp < Zt(z)>
n.(2m)" !
V(@) = (1= @) Nyt (@710, 150) + 0 N(@77(0, 8 + 7).
Here, di”" = (d}, ...,d,»T),(;l;ZT is the average of d\~*

and n, =T — 1+ 1 is the number of profiles which
are out of control given 7. This results in a tractable
posterior distribution of the change-point probability.
For the remainder of the paper, this method will be
called full wavelet-based Bayesian (FWBB) method.

2.4. Calibration and hyperparameters

The FWBB procedure requires specification of the
hyperparameters (w,s, p). Previous works have consid-
ered setting the parameters w and s via empirical
Bayes, optimizing the marginal likelihood f(DT) —
which depends implicitly on (w,s,p) — with respect
to the hyperparameters. Unfortunately, optimization
of the hyperparameters is too costly in an online set-
ting. Instead, we consider a heuristic approach where
o and s are chosen to match a standard thresholding
rule. Specifically, Johnstone and Silverman (2005) note
that the posterior median estimate of 0 = (0y,...,6,)
corresponds to the soft-thresholding

median(0;|d) = sign(d;) max(0, h(d;, w,s)).

The function h is given by
|di|

S g (1 + min(w;, 1))
V14 s 2 ’
where ; denotes the posterior odds of a coefficient
being zero and ® denotes the distribution function of
a standard normal variable. These equations establish
a relationship between w, s, and the posterior median
threshold, which is defined as Apeq =inf{d >0:
h(d,w,s) > 0}. Given a user-specified ®, Varbanov
et al. (2019) select s so that it matches the universal
threshold Ayniy = /2 logn introduced by Donoho and
Johnstone (1994). User can also specify s, and select @
such that it matches the universal threshold. Donoho
and Johnstone (1994) discuss the efficiency of this

52
h(di, w, S) = m

thresholding procedure to select wavelet coefficients
pertaining to signal while ignoring wavelet coefficients
related to noise with high probability.

3. Merging components for posterior
approximation

A fundamental issue with process monitoring meth-
ods is the cost of computing the monitoring statistic.
At time T, a change point statistic requires O(T) com-
putations, and computing the statistic at times t =

2,.., T requires O(T?) computations. This creates
problems in functional profile monitoring, where the
cost of computing the monitoring statistic is also a
function of the dimension of the observation, which
can be large. For the FWBB procedure discussed in
Section 2.3, each possible change point requires O(n)
computations and the statistic 7(t < T|DT) requires
O(Tn) computations for profiles of length n.

We solve the problem of growing computational
cost by approximating the posterior distribution of
(1,0) at each time. The computational cost will be
controlled by maintaining an approximation to
n(0,7 € A|DT) for A in a partition A of N.

To motivate our procedure, note that for any parti-
tion A" of {1,..,T} we can write n(t < T|DT) =
> aeqre m(t € AIDT) =37, o [ (0,7 € AIDT)d0;
hence, computing 7(0,7 € A|DT) is sufficient to com-
pute the monitoring statistic 7(t < T|DT). We use the
superscript Pres to denote the partition up to present
time 7. Additionally, we can compute the summation
terms sequentially as

n(t € AID") o< n(z € A|DTTY) f(d"|r € A,DTTY).

This requires computing |.A"™| 4 1 factors (one for
each element of the summation, and one for
A ={t:t>T}). By comparison, the non-partitioned
expression 7(t < T|DT) = Zthl n(t = T|DT) requires
computing T+ 1 factors. Unfortunately, computing
exactly n(t € A|DT!) requires just as much work as
computing the full posterior. For example,

f@reAD™) =) n(r=tltc AD™") f(d"|x
— t,DT71>,

so that we still need to compute f(d"|t = t,DT") for
each t. The distribution f(d”"|t € A, DT') is a mixture
of components that correspond to possible change-
points for times t € A. In the special case where
n(0]t = t,DT71) is identical for all t € A the mixture
simplifies to f(d"|t € A,DT™") = f(d"|t = t,DT").
This motivates iteratively building the partition in



such a fashion that the distributions f(d’|t = t,DT"1)
are similar for all + € A, and then approximating each
term with the same single factor.

In principle, an ideal approximation would form the
partition by grouping together times ¢ for which f(d” |t =
t,DT~!) have minimal distance. We will see, however,
that we can control the approximation error for 7(t <
T|DT) by combining groups of times A and B for which
n(t € AUB|DT) is smaller than any other group of times
(ie. n(t € AUBIDT) < n(r € C|DT) VC € A). This is
extremely convenient because 7(t € A UB|DT) is com-
puted as a byproduct of computing 7(t < T|DT).

3.1. Algorithm

The algorithm we propose is given in Algorithm 1,
with the specifics of each step laid out in the follow-
ing sections.

Algorithm 1 Merged Wavelet-Based Bayesian QCD

Input: T,d", Ar, {pI3h ol mI7LvIg A€ Ar}, U

1. Compute f(d"|t € A) for A € Ay according to (7).

2. Compute ph=rnr (tcAld’) for AcAr
according to (8)

3. If) 4 Apes ph > U : Return out of control.

4. Choose B#Ce€ Ay so that max{p},pl}
is minimized.

5. Set Ary according to (10).

6. For A € Ay, compute o!,,m!,,v!, according
to (9) and set w; 4 = o, mZA =0and v; 4 =1 for
A={T+1}and {t:t>T}.

7. Compute !y, mly ., and vipic as in (11)
and (12).

8. Return Ar.y, {o],,m] v, Aec Ar}.

3.1.1. Notation
At time T, we maintain an approximation to the dis-
tribution 7(0,7 € A|DT"!) denoted by 7y (0,7 € A).
This approximation is stored only for A € Ay where
Ar is a partition of N={1,2,...}. We assume
(Th{t:t>T}cAr. Let A7 = {Ac Ar: A # {¢t:
t > T}} consist of the elements of Ar corresponding
to the past and present times. Using similar rational
as before, we take the approximation to have spike-
and-slab form 7r_;(t € A) = pl~! and

n

7~'CT,1(0|T (S A) = H
i=1 (6)

{0 = 0l200(0) + 0N (O]mI3 v |-

As d' arrives, we can compute an approximation
to its predictive distribution 7 € A as
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fdred) = jﬁT,1(0|7: cA) f(d'|t €A 0)d0
—Hl—wlA N(dl'o,1)

+W1A N(dT|m1TA1’V;TA1 +1).
(7)
This holds for A G.A};res. For A={T+1,T+

2,...}, the changepoint has not occurred, so we

take f(d"|t € A) = [\, N(dT|0,1).

3.2. Updating the monitoring statistic

For the moment, we assume that we are at time T
and have already in-hand the approximation r_;. In
order to flag the process as out of control at time T
we need to compute the statistic n(t < T|DT). In
terms of sequential updates, this can be written as

S peur n(z € ADTY) f(d"|z € A, DT
> aca, m(t € AIDTY) f(d"|r € A,DT-1)
ey f(@d]r e 4)

T Caeaph e )’

n(t < T|DT) =

Hence we can approximate the monitoring statistic
given d’ by computing (7) and using the above formula.

3.3. Sequential updating

We now describe how to compute an approximation

nr(0,t € A) for A€ Ar. First, using the same
approximation as for the monitoring statistic, we have
1 f(dTre A

ZAG.AT - f(dT|T € A)

For A={T+1,T +2,...}, the changepoint has not
occurred at time T. Conditional on the changepoint not
occurring, the posterior 7(0|t € A, DT) is exactly equal
to the prior; hence, we set m], =0,v], =s* and
wly = o. For A € AT, we treat nT_1(0 TEA) asa
prior at time T, giving the approximate model

[df JRN(0; 1),
~ fir_1(0]7 € A),

0] € A]
Tr_1 (’E S A) = pz;il

We now apply Bayes rule to this approximate
model. Using the conjugacy of the normal spike-and-
slab prior, for A € A}, we have

n

ir (0 € A,d") =]

i=1

+ wZAN(9i|mZA’ VZA)

— o] 1)30(0;)
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where

+VT 'df T-1 vy

m:. :—, ]/.A :’7’

i, A +1 i — +1
T 1 Ty, T—1
a)Aoca)lA/\/(d |m1A’ Via + )

©)

3.4. Splitting

After 7r(0,7 € A) is constructed for these sets, we
can now use splitting to construct Ary; and the
approximation for A € Aryy. Let B={T +1} and
C={T+2,T+3,...}. From the previous step, we
have the approximate posterior 7r(6,7 € BUC).
Since B,C € Ar,;, we instead need 7r(6,7 € B) and
7r(0,7 € C). Because the changepoint has not
occurred for 1 € BUC, we can take 7r(0|t € B) and
7ir(0]t € C) to be exactly equal to their posterior dis-
tribution, i.e.,

mip=myc=0, Vip=vic=5s,
Wi p = Wi c = O.
To approximate n(t € B|DT), we note that
n(t € BID") = n(z > T + 1|D")
xn(t € Blt > T+1).

This holds because, given that the changepoint has
not occurred, D' carries no information about when
the process will go out of control. Approximating

n(t > T|D") = p} - from the previous step, we take
n(t=T+1)
P5 = Pruc X wesT11) 0d pe
1-n(t=T+1)
T
= X
Puc n(t>T+1)

When 7 is geometric with success probability p, this
simplifies to p;; = py ¢ x p and p¢ = pp ¢ x (1= p).

3.5. Merging

Now, fix B,C € A, which are selected according to
some as-yet unspecified criteria. To maintain a fixed
computational budget, we require |Arii| < Kpax +2
for some user-specified K., The choice of K., can
be based on balancing approximation accuracy and
computational cost allowance. The effect of different
choices of K, is discussed in Section 4. If we formed
Ariy by only splitting {T + 1, T+ 2,...} into {T + 1}
and {T +2,T +3,...}, we would increase |Ar,;| by 1
every iteration. To preserve a fixed size for Ar,;, we
“merge” B and C together. That is, we set

Ary ={Ac A : A#B,CYU{BUC}
U{T+1}}u{{t:t>T+1}}, (10)

In order to be consistent with the approximation
iy already constructed, we set ph .~ = pr + pL; unlike
before, however, we cannot set 7r(f|t € BUC) =
fir_1(0]t € BUC,d"), because 7ir (0]t € BUC,d")
is not a product of independent spike-and-slab distri-
butions. In particular, we have

7r (0t e BUCd") =

Pl

{(1=0l3)00(0) + LN Olm{ 5 vl 5)}

N

+a)ZC/\/(9,-|mZC, Z/ITC)}

This is a mixture of two spike-and-slab distribu-
tions. Our goal is to approximate this mixture with a
single spike-and-slab distribution. To do this, we con-
sider the marginal posterior of 0;:

7~'ET,1(01'|T €BU C, dT)
1 — T
— ( )+pc( lC) 50(0’)
Ph +Pc ph+pé
pEo zB

pi +

+

N(0|m1 B’VzTB)

PLoic
+ TN (Om] e vc).
ps +pC vt

This is a mixture of three distributions: a point
mass at 0, and two normal distributions. We match
the weight assigned to 0 by setting

T T T T

ol = Pp®ip  Pc®jc
4WBUC ™ T L T VT LT
Pg t+Pc PptPc

Given that 0; #0, 0; has a marginal posterior
which is a normal mixture

(11)

ol
B— (9|sz’l/zTB)
po B+PCCO1C
)
Pc—zc N (Oifm] e, v ).
po B+pr1C T

We approximate this mixture with a single normal
distribution by matching the first two moments of the
mixture to the moments of the approximating normal.



This gives
T T
m _ Pp®Wip mT
i,BUC = _T,.T T, T i,B
P+ Pcwj ¢
T T T T
Pcw; ¢ T T Pp®Wip T
m; cVipuc = iB

___Fc%ic __ BB,
T T T T T T 7.7 Vi
Pp®; g+ Pcwj ¢ Pp®i g+ Pcwj ¢

T T T,T
Pp®; pPcW;i ¢

T T T T
3O T PEO; )

T T

Pco;c T
T T T 1 Yic
P+ Pcwj ¢

T T \2
2 (mi,B - mi,C) .

(12)

This approximation is carried out whenever T >
Kiax- For T < Koy, this approximation is not neces-
sary, as we can simply take Ay =
1L {2} ... {T+1}L{t:t>T+2}} and maintain
the posterior distribution exactly.

3.6. Justification of merging approximation

The selection of (11) and (12) can be justified as min-
imizing the Kullback-Leibler divergence from
fir_1(0]t € BUC,d") to 7p(0]t € BUC). We con-
sider the problem of finding an optimal approxima-
tion to 77 (0]t € BUC,d") within the family
Q ={q(0)} subject to the condition that g(0) is a
spike-and-slab prior

q(0) = H(l —K;)00(0;) + KN (0;|&;, p;)-

i=1

(13)

A commonly used measure of how close a given
distribution G is to another distribution H is the
Kullback-Leibler divergence from G to H, given by
KL(G||H) = [ log (j—g)dG where dG/dH is the
Radon-Nikodym derivative of G with respect to H.
The following proposition, which is proved in the
Supplementary Material, implies that our choice of
7r(8]t € BUC) is optimal in the sense that it mini-
mizes the Kullback-Leibler divergence from
7r_1(0)t € BUC,d") to q(0).

Proposition 1. Let n(0) denote a mixture of spike-
and-slab distributions

w(0) = 211~ 0)60(0) + 0N (O s, v)}

+(1- })ﬁ{(l — wi)oo(0;) + CUizN(Hi|mi27Vi2)}’

and consider the family Q of densities of the form (13).
Then the Kullback-Leibler divergence KL(n||q) is mini-
mized at
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Ki = Awy + (1 - )v)wiZ;

¢ = Awi S (1—-A)wpn "
b Ao + (1= Dop T don + (1 = Awp >
AW (1—-2)wp
Pi

= Vi + Vi
A1 + (1 — ;»)C()iz i iw,-l + (]. — ;\,)Cl),'z 2

/1(0,‘1 (1 — /I)co,-z

2
(o + (1 — Dan)? (i = mz)"

Minimization of divergences such as KL(zl|q),
where 7 is a target distribution and g is an approxi-
mation, covers many approximate inference techni-
ques used in practice. The approximating ¢(0)
chosen according to this criterion is required to
cover the entire support of m which, when com-
bined with the factorization assumption ¢(0) =
[1;4i(6;), results in g being more diffuse than .
This can be contrasted with the commonly used
variational Bayes approach (see Blei, Kucukelbir,
and McAuliffe 2017 for a review), which considers
the minimization of KL(g||n); this tends to result in
approximations g which are more highly concen-
trated than 7. Minimization of KL(x||q) has connec-
tions with expectation propagation algorithms (see,
e.g., Bishop 2006, Chapter 10). We also note that
our merging algorithm can be cast as a mixture
reduction algorithm where the mixing weights are
given by 7n(t = t|D”) and the mixture components
are given by m(0]t =t,DT). In that context, our
approach is similar in spirit to the approach of
Runnalls (2007), which merges mixture components
in a Gaussian mixture model by minimiz-
ing KL(x|q).

3.7. Selection of components to merge

One way of understanding the approximation scheme
above is that, at time T, we select B,C € Al;res and
replace 7ir_1(0|t € B,d") and 7y, (0]t € C,d") with
a single term 7y_1(0)t € BUC,d’), which is then
approximated using the spike-and-slab approximation
nir(0]t € BUC). That is, the merging algorithm is
equivalent to setting

7r(0|t € B) = (0t € C) = 7p(0)r € BUC).
Ideally, we should aim to have 7r(0,7 € A) close

to r_1(0,7 € A|d"). For example, we might aim to
minimize the L, distance

> J 7r(0,7 € A) — ir1(0,7 € Ald")).

A
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For all terms except for the B and C to be merged,
the terms of the summation cancel exactly; hence, this
reduces to

Ar(B,C) = 7ty (r € Bld") [ |7r

(0t € BUC) — 7ty (0]t € B,d")|d0
+ 7 (t e Cld”) [|7r(0lt € BUC)
—~7ir_1(0]t € C,d")|do.

In principle Ar(B,C) could be minimized directly
over all possible B,C € A to find the optimal sets
to merge. We adopt a simpler approach by noting
that, from the triangle inequality,

AT(B, C) < 4max{ﬁT_1(r c B|dT),7~'CT_1(‘L' c C|dT)}
(14)

This holds independently of the quality of the approxi-
mation 7i7(0|t € BU C). Therefore, in practice, we take
B and C to minimize the right hand side of (14); that is,
we take B and C corresponding to the least-likely sets to
contain 7. This approach has the advantage of being fast
and automatic, while producing surprisingly accurate
results in the simulation settings we examined.

As mentioned previously, the problem of selecting
which B and C to merge is similar in spirit to the
mixture reduction problem, which has been widely
studied in the case of Gaussian mixtures; see Crouse
et al. (2011) for a review. In principle, a more refined
approach to selection of components to merge could
be developed along similar lines using, for example,
clustering algorithms to select times to merge (see
Schieferdecker and Huber 2009).

and Simpson (2009). Throughout, we refer the exact
full wavelet-based Bayesian method as FWBB, and
the approximate method based on merging as
MWBB. We refer to the likelihood ratio based
method as LRT. This comparison is of particular
interest because both methods use wavelets to
address the Phase II profile monitoring problem-
one with a Bayesian approach, the other with a
Frequentist approach. Both methods operate under
the assumptions of i.i.d. Gaussian errors and require
that the in control profile is known or estimated
prior to conducting Phase II analysis. Also, both
methods use the universal threshold for wavelet coef-
ficients and a single sustained change in the structure
of profiles. The parameters of simulation are similar
to those used in Chicken, Pignatiello, and Simpson
(2009), where the LRT outperformed similar methods
described in Fan (1996), Jeong, Lu, and Wang (2006)
and Jin and Shi (2001).

We also compare the performance of our proposed
methodology to the classic profile monitoring
approach of windowing. This windowing approach is
discussed in Willsky and Jones (1976) and Hawkins
and Zamba (2005). With this approach only the most
recent data is considered when computing the poster-
ior. Let W denote the window size in number of time
steps and let Ty, Ty, ..., Tw denote the respective time
indices of profiles in the window at time T (note that
T)=T—W+1 and Ty = T). The windowed poster-
ior, or the posterior given only the data D}, := {d' :
t="T,Ts...,Tw}, is then

f(Diy|1)m(r)

n(t|Djy) =

S fDh e = et = 1) + f(Dlylt > Thme(z > T)

F(DL ) (2) (15)

F(Dlyle < T)me(e < 1) + 301 (DRt = Omelt = 0) + f(Dlyfe > Thae(e > T).

4, Results

We evaluate our approximation in three areas: (1) sta-
bility when monitoring an in control process, (2) how
quickly we detect an out of control process, and (3)
quality of the approximation to the ideal/exact moni-
toring statistic. We compare the performance of the
merging wavelet Bayesian method to the exact full
wavelet-based Bayesian method, as well as to the like-
lihood ratio method proposed by Chicken, Pignatiello,

Since f(DI |t =t) is constant for + < T;, we can
quickly compute f(D} |t < T) by considering only ¢
= T, eliminating most of the cost of computing the
denominator. We will use window size of 10, based
on a balance between computation speed and approxi-
mation accuracy. We refer to this method as
Window 10.

Lastly, we will compare the performance of our

proposed MWBB procedure to the monitoring
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Figure 1. Different forms of functional change g with different magnitudes.

procedure presented in Jeong, Lu, and Wang (2006).
This approach examines a subset of the wavelet coeffi-
cients using a data-adaptive thresholding procedure.
We will refer to this methodology as the M* method.

4.1. Simulations

We first evaluate our approximation under simulated
settings. We show that the upper control limits to
obtain a desired average in control run length are
consistent across levels of K,,, and that the monitor-
ing statistic approximation is well-approximated when
the process is in control. We then show that, under a
variety of fault conditions, the MWBB procedure
obtains similar performance to the FWBB procedure.

4.1.1. Test functions
An effective monitoring procedure should perform
well under a variety of fault conditions. We consider

several different functional changes g at different mag-
nitudes m. The functional changes we consider are
defined in Chicken, Pignatiello, and Simpson (2009)
and are given in Figure 1; we refer to these as triangu-
lar, parabolic, broken line, and local jumps test func-
tions. These test functions represent possible out of
control scenarios. These test functions are scaled to
give a target magnitude of change, which we define as

m = ||g||; = ngdx,

which is the squared L, norm of g.

4.1.2. Calibration
We first examine the MWBB procedure’s sensitivity to
the value of K., during the calibration of the
hyperparameters.

Table 1 gives calibration summaries for different
values of K., for the MWBB, FWBB, LRT, and
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Table 1. A calibration summary of in control performance for
different values of K.« based on 250 replications, n=128

Table 2. A comparison of FWBB vs MWBB procedures compu-
tation time for p= 11@ with the length of profile

and p = ;5. sequence varying.
Method w s ucL ARL, SDRL, Ratio of Comp Time for FWBB vs MWBB
Kimax = 5 g~?g %‘7‘ 8;; 188&2 ggg; Kina T=100 T=200 T=300 T=400  T=500
0.25 061 029 100.42 9481 5 426 10.74 13.61 18.18 21.34
Kypox = 10 0.05 1.74 0.18 100.01 9280 10 238 6.05 7.53 1019 12.62
0.10 1.07 021 100.56 99.94 20 1.33 3.04 4.07 544 6.77
Kax = 20 0.05 1.74 0.18 100.06 89.90
0.10 1.07 021 100.16 97.62
025 0.61 027 100.11 98.35
Full 0.05 1.74 0.17 100.07 88.85 g
0.10 1.07 021 100.16 97.62 -
025 0.61 027 100.24 95.86 g
LRT 0.05 1.74 0.07 100.61 98.66 T g |
0.10 1.07 0.07 100.21 106.26 £ S
025 061 0.07 100.61 98.67 5
Window 10 0.05 1.74 030 100.24 57.46 E o
0.10 1.07 034 100.32 66.73 ER= — p=1/100,w =05
0.25 0.61 039 100.03 71.02 § p=1/100,w = .10

Windowed Wavelet procedures with p=1/100 and
ARL = 100. Results for p=1/370 and 1/500 are given
in the Supplementary Material.

Given this target ARL, we choose the UCL to be
the smallest value for which the mean of the 250
simulated run lengths is at least the target ARL,. We
also report the standard deviation of the run length
for each procedure, denoted as SDRL,.

We see from Table 1 that the UCL is insensitive to
the number of components carried forward (K,,,,) in
the approximation procedure (small differences can be
attributed to random error and are not statistically
significant). The UCL for the MWBB method is sensi-
tive to w; this can attributed to more non-zero wave-
let coefficients being monitored which introduces
more noise into the profiles. This additional noise
requires a higher UCL to obtain the desired ARL.
From the tables in the Supplementary Material, we
also see that the UCL is not affected by the choice of
p for the FWBB and MWBB methods, although it
does influence the windowing method.

4.1.3. Computation time
We now study the computational gains from using
the merging procedure. Because FWBB requires
O(T?) computations while MWBB requires O(KT)
computations, we expect that MWBB will be faster by
a factor of O(T/K). The Window Procedure is com-
parably fast, but we will see that it has lower power to
detect out of control profiles. Results are given in
Table 2 for p=1/100. Results are similar for p =1/370
and are given in the Supplementary Material.

Next we generate a sequence of 1000 in control
profiles, with K,,x varying from 1 to 500. Figure 2
shows the computation time associated with each

— p=1/370,w
— p=1/370,w = .10
I I T I I

0 100 200 300 400 500

Kmax

Figure 2. Computation time of MWBB procedure while vary-
ing Knax-

procedure. We see that computation time is growing
as K. increases. The growth is not quite linear due
to boundary effects as Ky, approaches T; for
example, if Kyax = T then the merging algorithm will
never activate and the computation will be the same
as FWBB. This holds true for the four different par-
ameter settings. Again, the windowing procedure is
competitive in terms of computational efficiency; in
order to justify the use of MWBB relative to window-
ing, we will analyze the approximation accuracy and
detection delay of MWBB relative to windowing.

4.1.4. Approximation quality for in control settings
We now examine how well MWBB approximates the
posterior obtained by FWBB, as measured by the L;
difference between n(t < T|DT) and 7ir(t < T). We
show two different parameter settings for p and use
(w,s) = (0.05,1.74). We base the results on 250 repli-
cations of 500 profiles of length n =128 generated
under the in control setting. Results are given in
Tables 3 and 4.

We see that the error is quite small for the MWBB
procedures (less than 1% difference in probability of
change point), even for K., as small as 5, with the
error decreasing as K, increases. The windowing
procedure has a much larger error, due to data being
discounted outside of the defined window size. We
also note that, as p decreases, the differences become
substantially smaller, suggesting that the ideal



Table 3. A comparison of FWBB vs MWBB procedures per-
formance for p:ﬂm with the length of profile

sequence varying.

Mean Absolute Error

K max T=100 T=200 T=300 T=400 T=500
5 0.00077  0.00218 000347 000564  0.01018
10 000020  0.00010  0.00212  0.00431  0.00829
20 000003  0.00025  0.00088  0.00186  0.00442
Window 10 000761  0.02471  0.05361  0.09729  0.15576

Table 4. A comparison of FWBB vs MWBB procedures per-
formance for p=-:% with the length of profile

! 370
sequence varying.

Mean Absolute Error

K max T=100 T=200 T=300 T=400 T=500
5 0.00018 0.00043 0.00045 0.00065 0.00093
10 0.00006 0.00021 0.00019 0.00043 0.00069
20 0.00001 0.00004 0.00010 0.00026 0.00026
Window 10 0.00195 0.00529 0.00898 0.01316 0.01759

approach is to set p small and
accordingly.

Figure 3 displays the average value of n(t < T|DT)
and 7r(t < T) for different values of K for the merg-
ing and windowing procedures, for 250 replications of
500 in-control profiles of length n =128. The approxi-
mation accuracy is generally very good for the
MWBB, and is very poor for windowing. For the
remainder of this section, we will no longer consider
the windowing procedure due to its poor perform-
ance. Next, using the same generated data, the middle
50% quantile of n(t < T|D") for different procedures
is displayed in Figure 4. We again notice that a better
approximation is obtained for p=1/370 rather than
p=1/100, with the approximation becoming worse
the further we move beyond the ARL; we note that
the approximation quality is less important for times
far beyond the ARL since a false alarm will likely have
occurred by this point regardless.

Lastly, Figure 5 displays the L; difference between
n(t < T|Dy) and 7r(t < T). The error for the
MWBB does accumulate for larger values of T, but is
small enough to not be of concern even for T > Kpax
because the error is small relative to the UCL. We
again see better performance for small values of p,
with the approximation quality not increasing sub-
stantially for p=1/370.

adjust to UCL

4.1.5. Out of control performance

We now introduce different types of functional
changes into our generated profiles. We evaluate pro-
cedures according to their average detection delay,
which we denote as ARL;, and the probability of a
false alarm. We also report the standard deviation of
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the detection delay as SDRL;. We use the same values
of w,s,p,n, and number of replications as before.

We simulate data with change points at 7€
{1,10,50}. These choices of 7 allow us to assess the
ability of each method to immediately signal a change
and the ability to run in control before signaling
a change.

Results for =10 are given in Tables 5 and 6, with
results  for
Supplementary Material. We see that there is a modest
increase in detection delay for smaller values of K.y,
particularly when the magnitude of the change m

other values of <t given in the

is small.

As p decreases (with ARL, fixed at 1/p), the prob-
ability of a false alarm decreases sharply, with a mod-
est increase in ARL;. In the case of the LRT, M*, and
Windowing methods, the low probability of false
alarms must be balanced against the substantially lon-
ger detection delays. For example, we can match the
performance of Windowing at ARL; = 100 in terms
of average run length and false positive rate with bet-
ter performance of MWBB at K, = 10 even with a
longer average run-length ARL; = 370. We conclude
that, rather than using windowing to obtain a better
false alarm rate, it is preferable to use FWBB with a
higher ARL, which is better simultaneously in terms
of ARL, detection delay, and false alarm probability.
Overall, we observe that MWBB and FWBB have very
similar performance characteristics, indicating that
MWBB performs well as an approximation to FWBB.

4.2. Non-normal errors

To assess the sensitivity of our framework to the form
of the error distribution, we replace the normal errors
in (1) with a skewed error distribution. In the follow-
ing experiments, we generate 250 in-control profiles
and set p=1; and ARLy =100, with (o,s)=
(0.05,1.74). We consider skew normal errors; similar
experiments with gamma-distributed errors are given
in the Supplementary Material. We set € to have a
skew-normal distribution, with density f(e) =
/) é1(e - O)/3} Olale— &)/}, where @) and
®(e) are the standard normal density and distribution
functions respectively. The parameter ¢ is a location
parameter, 7 is a scale parameter, and o is a skewness
parameter. After being generated, these errors are
then scaled to have mean 0 and variance 1. A table
giving the calibration and performance metrics of our
procedure are given in Table S.8 in the Supplementary
Material, with (&,y,a) = (5,3,6).
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Figure 3. The average value of n(tr < T|D') and 7i7(z < T) at each T from the 250 replications of the in control setting used to

calibrate each method under different settings of p.
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Figure 5. The average L, distance between n(t < T|Dr) and
7r(t < T) at each time under different settings of p,.

After calibrating the UCL, we investigate the ability
to detect a change when the simulated profiles have
the skew normal errors. Table 7 gives the detection
delay and false alarm probabilities under this setting.
We see a modest increase in detection delay from
Table S.4, but the MWBB methodology is still capable
of detecting change before the LRT method and the
windowing procedures. For skew-normal errors,
MWRBB still obtains performance nearly equivalent to
FWBB; Kyax = 20, for example, is essentially identical
to FWBB in terms of performance. We also investi-
gated larger 7 for this error setting and found similar
results. The performance metrics can be found in
Table S.9 in the Supplementary Material.
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4.3. Vertical density profile data

We now analyze a dataset consisting of vertical dens-
ity profiles (VDP) of pressed wood panels presented
in Walker and Wright (2002). Understanding the
VDP of these panels is important because the VDP is
related to the machinability of the wood. The data
consists of measurements of the density of panels
under varying depths across the thickness of the
boards. We observe T'=24 profiles, which were col-
lected in three different 8 hour shifts (Shifts A, B, and
C). Observations of each wood panel were taken at
314 depths. For simplicity, we trim the profiles on
either end down to the next lowest dyadic profile
length (n=256). This data has been the analyzed in
many other works in statistical process control.
Operating in a similar framework to ours, Walker
and Wright (2002) develop a class of generalized
additive models that are used to assess the sources of
variation within profiles, while Williams, Woodall,
and Birch (2007) construct various T? statistics based
on nonlinear models to determine control limits
for monitoring.

The data are displayed in Figure 6. In order to
apply our Phase II methodology to the dataset, we fol-
low the approach for defining the in control set used
in McGinnity, Chicken, and Pignatiello (2015), which
performs three different analyses with Shift A, B, or C
assumed to be in control. We take f° to be the mean
of the in-control profiles. These profiles are displayed
in Figure 6.

There is a large amount of variability in the mean
VDP across profiles. As our primary goal is to detect
differences in the shape of the profiles rather than in

Table 5. The (ARL;, SDRL;, PFA) for different values of K.« and different out of control conditions, based on 250 replications,

Parabolic

Broken Line

Local Jumps

1=10and p = 5.
Method m Triangular
MWBB 0.01 (25.45, 15.69, 0.06)
Knax = 5 0.09 (3.20, 1.26, 0.08)
0.25 (1.52, 0.53, 0.08)
MWBB 0.01 (26.23, 14.77, 0.08)
Kmax = 10 0.09 (3.25, 1.32, 0.06)
0.25 (1.47, 0.53, 0.07)
MWBB 0.01 (24.08, 13.76, 0.10)
Knax = 20 0.09 (3.42, 1.30, 0.05)
0.25 (1.53, 0.51, 0.09)
FWBB 0.01 (23.90, 13.67, 0.05)
0.09 (3.26, 1.27, 0.08)
0.25 (1.50, 0.51, 0.09)
LRT 0.01 (94.26, 83.57, 0.07)
0.09 (10.63, 9.14, 0.06)
0.25 (1.75, 1.04, 0.08)
Window 10 0.01 (43.13, 31.61, 0.04)
0.09 (3.64, 1.35, 0.02)
0.25 (1.65, 0.60, 0.02)
M* 0.01 (85.84, 86.75, 0.09)
0.09 (18.60, 17.91, 0.09)
0.25 (3.40, 2.86, 0.10)

(13.18, 8.46, 0.07)
(2.00, 0.86, 0.05)
(1.13, 0.35, 0.06)
(11.40, 7.05, 0.08)
(1.95, 0.86, 0.06)
(1.09, 0.29, 0.07)
(12.34, 7.88, 0.05)
(2.09, 0.87, 0.06)
(1.10, 0.30, 0.03)
(11.37, 7.38, 0.10)
(1.97, 0.79, 0.04)
(1.11, 0.31, 0.06)
(99.45, 84.50, 0.06)
(7.81, 6.41, 0.13)
(1.35, 0.63, 0.09)
(16.05, 12.16, 0.02)
(2.31, 0.95, 0.03)
(1.13, 033, 0.03)
(86.11, 85.08, 0.09)
(18.42, 18.70, 0.09)
(3.36, 2.80, 0.11)

(17.32, 10.21, 0.05)
(2.57, 1.01, 0.06)
(1.21, 0.42, 0.06)
(16.84, 9.67, 0.07)
(2.56, 1.10, 0.08)
(1.29, 0.46, 0.06)
(16.56, 9.83, 0.04)
(2.47, 1.03, 0.07)
(1.21, 0.43, 0.07)
(15.58, 9.92, 0.08)
(2.58, 1.15, 0.09)
(1.28, 0.45, 0.08)

(90.55, 84.55, 0.08)
(9.28, 7.52, 0.08)
(1.62, 0.95, 0.06)

(24.89, 16.03, 0.02)
(2.85, 1.21, 0.02)
(1.37, 0.49, 0.03)

(82.53, 82.75, 0.072)

(19.04, 18.00, 0.10)
(3.47, 2.72, 0.12)

(34.22, 25.23, 0.06)
(4.42, 1.79, 0.04)
(1.98, 0.71, 0.05)

(32.70, 22.08, 0.06)
(4.59, 2.10, 0.08)
(1.94, 0.68, 0.06)

(34.42, 21.11, 0.07)
(4.65, 2.07, 0.05)
(1.93, 0.66, 0.06)

(33.08, 20.94, 0.05)
(4.29, 2.04, 0.08)
(1.88, 0.64, 0.09)

(100.50, 86.66, 0.08)

(19.44, 15.60, 0.10)
(3.78, 2.74, 0.09)

(49.04, 33.99, 0.04)
(4.89, 1.96, 0.02)
(2.12, 0.66, 0.03)

(85.74, 82.20, 0.07)

(21.91, 23.41, 0.06)
(3.41, 3.11, 0.06)
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Table 6. The (ARL1, SDRL,, PFA) for different values of K., and different out of control conditions, based on 250 replications,

t=10and p = 370
Method m Triangular Parabolic Broken Line Local Jumps
MWBB 0.01 (36.41, 19.75, 0.02) (16.47, 8.93, 0.01) (24.06 12.50, 0.02) (58.61, 37.05, 0.03)
Kmax = 5 0.09 (3.66, 1.33, 0.01) (2.35, 0.94, 0.03) (3.18, 1.16, 0.01) (5.52, 2.05, 0.02)
0.25 (1.76, 0.51, 0.03) (1.14, 035, 0.02) (1.40, 0.49, 0.02) (2.28, 0.73, 0.00)
MWBB 0.01 (32.19, 14.36, 0.01) (16.83, 9.57, 0.03) (24.04, 12.44, 0.02) (50.38, 25.44, 0.02)
Knax = 10 0.09 (3.75, 1.27, 0.03) (2.37, 0.97, 0.01) (3.05, 1.13, 0.02) (5.33 2.07 0.02)
0.25 (1.67, 0.55, 0.02) (1.18, 0.39, 0.00) (1.40, 0.50, 0.01) (2.16 0.65 0.01)
MWBB 0.01 (31.45, 14.06, 0.02) (16.46, 9.18, 0.01) (22.33, 11.86, 0.01) (48.19, 23.60, 0.01)
Kmax = 20 0.09 (3.87, 1.38, 0.01) (2.30, 0.98, 0.02) (3.08, 1.14, 0.02) (5.45, 1.85, 0.02)
0.25 (1.70, 0.57, 0.02) (1.15, 0.36, 0.02) (1.41, 0.51, 0.02) (2.31, 0.70, 0.03)
FWBB 0.01 (33.92, 14.25, 0.01) (17.12, 9.28 0.03) (23.32, 11.53, 0.01) (48.92, 24.52, 0.02)
0.09 (3.87, 1.40, 0.02) (2.52, 0.99, 0.02) (3.07, 1.10, 0.02) (5.43, 2.09, 0.02)
0.25 (1.76, 0.59, 0.02) (1.21, 0.41, 0.01) (1.39, 0.50, 0.00) (2.20, 0.75, 0.01)
LRT 0.01 (185.31, 108.13, 0.04) (190.39, 105.31, 0.02) (186.78, 108.03, 0.03) (194.82, 102.33 0.02)
0.09 (18.75, 14.10, 0.03) (12.23, 9.60 0.02) (17.69, 13.47, 0.03) (37.89, 24.57, 0.01)
0.25 (2.03, 1.22, 0.04) (1.63, 1.05, 0.01) (1.95, 1.17, 0.02) (5.68, 4.46, 0.02)
Window 10 0.01 (156.43, 88.36, 0.00) (46.08, 30.35, 0.00) (87.02, 60.45, 0.00) (206.91, 83.81, 0.00)
0.09 (5.51, 1.77, 0.00) (4.23, 1.26, 0.00) (4.74, 1.35, 0.00) (7.50, 2.19, 0.00)
0.25 (3.54, 1.08, 0.00) (2.27, 1.49, 0.00) (2.76, 1.48, 0.00) (3.89, 0.68, 0.00)
M* 0.01 (115.28, 115.63, 0.07) (106.63, 97.86, 0.07) (113.42, 119.68, 0.04) (114.56, 121.75, 0.05)
0.09 (22.20, 20.74, 0.07) (21.48, 21.30, 0.06) (22.09, 22.00, 0.07) (24.63, 25.25, 0.05)
0.25 (3.61, 2.97, 0.08) (3.61, 3.19, 0.09) (3.80, 2.90, 0.10) (3.83, 3.57, 0.04)

Table 7. The ARL; (SDRL,) for different values of K.x and different out of control conditions, based on 250 replications, =1

and p = 100 and skew normal errors.

Method m Triangular Parabolic Broken Line Local Jumps
MWBB 0.01 29.74 (16.55) 51.54 (39.57) 33.4 (19.03) 51.10 (37.23)
Kmax = 5 0.09 3.85 (1.51) 6.30 (2.62) 431 (1.70) 6.05 (2.44)
0.25 1.67 (0.56) 2.58 (0.99) 1.89 (0.63) 2.42 (0.76)
MWBB 0.01 28.69 (14.81) 44.82 (28.35) 31.42 (16.24) 45.77 (29.48)
Knax = 10 0.09 3.86 (1.51) 6.30 (2.63) 4.32 (1.70) 6.04 (2.43)
0.25 1.67 (0.56) 2.58 (0.99) 1.89 (0.63) 2.42 (0.76)
MWBB 0.01 27.96 (14.41) 42.75 (25.48) 31.02 (15.76) 43.65 (26.98)
Kmax = 20 0.09 3.85 (1.51) 6.30 (2.62) 431 (1.70) 6.04 (2.43)
0.25 1.67 (0.56) 2.58 (0.99) 1.89 (0.63) 2.42 (0.76)
FWBB 0.01 27.92 (14.37) 42.68 (25.25) 30.96 (15.69) 43.55 (26.76)
0.09 3.85 (1.51) 6.30 (2.62) 4.31 (1.70) 6.04 (2.43)
0.25 1.67 (0.56) 2.58 (0.99) 1.89 (0.63) 2.42 (0.76)
LRT 0.01 75.97 (67.72) 78.38 (70.90) 76.96 (69.27) 78.58 (73.04)
0.09 15.31 (12.30) 45.49 (42.07) 22.40 (18.50) 27.91 (22.55)
0.25 2.15 (1.30) 6.32 (5.04) 2.98 (2.03) 5.70 (4.18)
Window 10 0.01 52.02 (36.33) 73.24 (53.50) 56.12 (41.17) 71.25 (51.46)
0.09 3.94 (1.50) 6.60 (2.78) 4.50 (1.75) 6.38 (2.50)
0.25 1.72 (0.56) 2.69 (0.98) 1.95 (0.64) 2.49 (0.78)

their location on the y-axis, we center each profile to
have mean 0 as a preprocessing step.

To determine an appropriate UCL, we calibrated
each method under consideration by generating in
control profiles by bootstrapping appropriately scaled
errors from the assumed in control profiles. The boot-
strapped errors were randomly selected deviations of
the defined in control profiles from the estimated jo,
taken at each point within the profile length. The ran-
domly selected error is then scaled by the standard
deviation of the errors at each of the 256 points in the
profiles. A more detailed description of this bootstrap-
ping procedure can be found in McGinnity, Chicken,
and Pignatiello (2015). Selection of hyperparameters is

described in Section 2.4. In the results in Table 8, the
UCL for the FWBB and the MWBB procedures are
nearly identical, with MWBB accurately approximat-
ing FWBB. Hence, for the VDP data, FWBB and
MWBB perform essentially the same when running
in-control.

To illustrate the MWBB procedure’s ability to run
online in control for a long stretch of time, as well as
quickly detect a change, we generated a sequence of
100 in control profiles from the defined in control
profiles using the bootstrapping procedure described
above, followed by profiles from shifts A, B and C.
Results are given in Figure 7 for Kpy.x = 5,10,20
and FWBB.
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Figure 6. VDPs obtained during Shift A, B, and C, as well as the estimated in-control profile obtained from the three differ-
ent shifts.

Table 8. Calibration summary and L, difference of MWBB from FWBB of the VDP data using 3 different sets of in control data.

Profiles in control Method UcL ARL, SDRL, Average L, Difference
Shift A Knax = 5 0.17 100.06 68.46 0.000534
Kmax = 10 0.17 100.47 69.57 0.000181
Knax = 20 0.16 100.14 69.57 0.000055
Full 0.16 100.14 69.57 —
LRT 0.02 100.43 67.49 —
Shift B Kmnax = 5 0.14 100.41 67.06 0.000607
Knax = 10 0.14 100.02 66.74 0.000181
Knax = 20 0.14 100.02 66.74 0.000053
Full 0.14 100.02 66.74 —
LRT 0.01 100.12 69.96 —
Shift C Knax = 5 0.07 100.27 66.37 0.000283
Kmnax = 10 0.07 101.29 67.47 0.000083
Knax = 20 0.07 101.29 67.47 0.000022
Full 0.07 101.29 67.47 —

LRT 0.002 100.70 74.19 —
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Figure 7. Probability of change of 100 bootstrapped in control profiles generated from the in control datasets. The vertical line
reflects the time point at which profiles the VDP data are introduced. The horizontal line reflects the calibrated UCL for each in

control set.

We see that the process is classified as in control
for the first 100 profiles, and out of control when the
profiles from the shifts are introduced. We also see
that, when shift B is considered in control, the prob-
ability of a change jumps down when shift B profiles
are introduced. We note that our assumption that
each shift consists entirely of in-control profiles is
contradicted by this experiment, as the second profile
in shift A leads to the process being classified as out
of control; we make the working assumption that
each shift is in control with respect to itself, but a
proper Phase I method is required in practice. To
assess the impact of this assumption, we performed a
permutation study to determine which profiles signal
a change with high frequency.

Intuitively, profiles which deviate from in con-
trol behavior will have a high probability of signal-
ing out of control, while profiles which behave
similar to an in control process will rarely signal
out of control.

Results are displayed in Figure 8. We see that
which shift is in control has an effect on which pro-
files signal a change, with the in control shift having
fewer out of control profiles.

In Figure 9, we repeated the simulation of Figure 7,
but with the profiles classified as out of control in
Shift A removed. In this study, the in control Shift A
profiles no longer detect a change, while the out of
control profiles from Shift A do (as do profiles from
Shift B and Shift C).

The propensity for the wavelet-based approach to
classify profiles as out of control is related to both (i) its
ability to detect even subtle changes in profiles from the
estimated in control behavior and (ii) the fact that we
assume that the noise terms within each profile are inde-
pendent, while auto-correlation is apparent in the VDP
data. The independence assumption is used in works
such as Kang and Albin (2000), Kim, Mahmoud, and
Woodall (2003), and Williams, Woodall, and Birch
(2007), but is dubious in this case; for wavelet based
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methods, this assumption makes the methodology highly
sensitive. A promising avenue for future work is
accounting for auto-correlation in the data.

While our procedure is strictly a Phase II method,
it is informative to compare the results of the permu-
tation study with the results of other Phase I analyses
to determine what features of a profile lead to it being
classified as out of control. Figure 10 displays three
profiles that signal a change with high frequency
under the three different control settings, while Figure
11 displays three different profiles that do not signal a
change. We see that in control behavior is associated
with deviating from the in control profile by a fixed
amount (due to the centering), whereas out of control
behavior deviates from the overall shape of the in
control profile. For instance, we find profile A2 to be
out of control, and we see that this is because the

A Profiles in Control

B Profiles in Control
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Figure 9. Probability of change of 100 bootstrapped in control
profiles generated from the in control datasets. The vertical
line reflects the time point at which profiles outside of our in
control set are introduced. The horizontal line reflects the UCL.

VDP “bends” further toward the middle of the profile.
By contrast, results from Williams, Woodall, and
Birch (2007), which are given in Table 9, A2 is found
to be in control.

5. Discussion and possible future work

Bayesian approaches to quickest change detection
have a long history, but are difficult to apply with
complex models due to the computational complexity
of computing the posterior distribution. In this paper
we addressed the problem of performing quickest
change detection with a functional response by devel-
oping an accurate approximation to a Bayesian ana-
lysis. Our approach incurs a fixed computational cost
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Figure 10. Example of profiles determined to be out of control by the permutation study under three different in control settings.
The difference between the profile from the in-control mean is given in gray.
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Figure 11. Example of profiles determined to be in control by the permutation study under three different in control settings. The
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Table 9. Classification of in control (IC) and out of control (OOC) using the method of Williams, Woodall, and Birch (2007).

Al A2 A3 A4 A5 A6 A7 A8 A9 B1 B2 B3

B5 B6 B7 B8 B9 B1o B11 G CQ G C4

IC 1IC IC ooC IC IC 1€ IC ooC IC IC IC

IC  00C IC IC o00C IC IC IC 1IC IC 00C

at each time while still allowing for complex func-
tional deviations from in control to be detected.

There are several interesting areas for future
research. Throughout, we have assumed that there is a
single shift from in control to out of control, with the
profiles being homogeneous within each condition. A
related problem is to consider a profile which
migrates out of control slowly, or allow for the pro-
cess to return to in control after a certain amount
of time.

Additionally, our methods are derived under the
assumption of iid Gaussian errors or known non-nor-
mal errors, with the error level constant across pro-
files. For the VDP data, this assumption was seen to
be suspect. Further work might consider unknown
error distribution, or allow for the incorporation of
dependent errors within a profile.
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