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Abstract—Programmable data planes, PDPs, enable an un-
precedented level of flexibility and have emerged as a promising
alternative to existing data planes. Despite the rapid develop-
ment and prototyping cycles that PDPs promote, the existing
PDP ecosystem lacks appropriate abstractions and algorithms
to support these rapid testing and deployment life-cycles. In
this paper, we propose P4Visor, a lightweight virtualization
abstraction that provides testing primitives as a first-order citizen
of the PDP ecosystem. P4Visor can efficiently support multiple
PDP programs through a combination of compiler optimizations
and program analysis-based algorithms. P4Visor’s algorithm im-
proves over state-of-the-art techniques by significantly reducing
the resource overheads associated with embedding numerous
versions of a PDP program into hardware. To demonstrate the
efficiency and viability of P4Visor, we implemented and evaluated
P4Visor on both a software switch and an FPGA-based hardware
switch using fourteen of different PDP programs. Our results
demonstrate that P4Visor introduces minimal overheads and
is one order of magnitude more efficient than existing PDPs
primitives for concurrently supporting multiple programs.

Index Terms—Programmable Data Plane, Code Merge, Test-
ing, Fault Tolerance

I. INTRODUCTION

ROGRAMMABLE data planes [1]-[3] (PDPs), e.g.,

Tofino [2], have emerged as a promising alternative to
traditional data planes. These PDPs enable an unprecedented
level of flexibility: they provide abstractions and language
frameworks that simplify the development of stateful network
functionality that operates at line rate. This flexibility enables
rapid development and prototyping of novel functionality and
use cases.

Despite these rapid development and prototyping cycles,
the existing PDP ecosystem lacks appropriate primitives and
algorithms to support rapid testing and deployment life-cycles.
At a high level, many testing paradigms [4]-[6], e.g., canary
testing used in Google’s [7], [8] networks, require running new
versions of a program alongside stable versions. Traffic is split
across all versions and the output is compared. Orthogonally,
supporting agile development requires composing and merging
modular programs together. Furthermore, to enhance system
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reliability, the widely used techniques are dual-system hot
backups for both hardware and software [9]. The backup
version runs standby the master program, configured with the
latest stable states, being ready to take over once the master
program goes wrong. Yet today’s PDPs do not provide appro-
priate virtualization primitives to support multiple versions.

The key challenges to enable these techniques in today’s
PDP networks lie in efficiently supporting multiple PDP
programs and providing flexible operators for the broad range
of potential paradigms and state management. Hardware PDP
devices include limited physical resources which restrict the
size of the PDP programs that can be supported, and enabling
multiple versions of a PDP programs on a resource constraint
device requires effective algorithms for minimizing resource
footprints. Additionally, PDP language abstractions, e.g., P4,
provide a limited set of primitives, e.g., P4 does not support
loops, and the language restrictions complicate the process
of developing general primitives to support a broad range
of scenarios. Another challenge is how to provide efficiency
state management primitive between multiple PDP programs
to enable high network reliability and availability. Although
PDPs enable stateful programs, there are insufficient primitives
for managing the state. For example, updating the program
within a PDP requires rebooting and hence results in unwanted
downtime. Few techniques exist to support check-pointing and
restoring state or updating PDP state — both of which are
crucial components of the development cycles. Specifically, in
this paper, we focus on one of the most popular and promising
data plane programming languages — P4.!

In this paper, we present P4Visor, an abstraction layer and
composition primitives, which addresses the above challenges
to make testing and development primitives first-order citizens
of the PDP ecosystem. The key insight behind P4 Visor is that
the different versions of a P4 program will share significant
code fragments (i.e., tables, parse graph states and action
primitives) and thus we can reduce the resource overheads
by merging the P4 programs and thus eliminating redundancy.
In this way, an administrator can run multiple P4 programs
concurrently in the data plane. To further track the state
management problem, we provide well-defined primitives to
operators, which allow the system record its states periodically
to the backup version during the normal operation and also fast
rollback when the master program fails.

P4Visor achieves this through a combination of pro-
gram analysis to identify potential program overlaps and

I'The PDP Programs in the following sections refer to P4 programs unless
otherwise stated.
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compiler optimizations to merge the P4 programs and re-
duce resource footprints. To flexibly support different testing
paradigms, P4Visor includes domain-specific operators that
provide building blocks for composing new testing and de-
ployment paradigms.

Today, the prevalent approach for supporting multiple P4
programs is to virtualize the data plane [10]-[12], e.g., Hy-
perd [10], HyperVDP [11], [12], and host different pro-
grams atop the virtualization layer. Unfortunately, these ap-
proaches [10], [12] require significant resources and are
often slow or unscalable [10] because they provide Full-
Virtualization which uses software to emulate hardware.
Rather than providing virtualization and modularity primitives
at the software layer, we aim to provide these primitives at
the compilation layer which enables us to explore tradeoffs
between flexibility and efficiency. In particular, our design
choices allow us to trade off a modest amount of flexibility
for a significant increase in efficiency.

Logically, P4Visor operates between the PDP programs
and the PDP hardware devices, providing merge capabilities
to the PDP programs and resource management between
the programs. It provides virtualization primitives required
for supporting concurrent testing in production networks.
P4Visor’s goals include security isolation between the man-
agement functionality provided by P4Visor’s interfaces and
data plane functions running on the PDPs devices; efficient
resource utilization and management; and, flexible support
over arbitrary PDPs targets. To summarize, we make the
following contributions:

« Virtualization Abstractions: We provide an abstraction
for seamlessly merging multiple P4 programs to tackle the
resource management and indirection challenges that arise
from merging and composing programs (Sec. III).

o Merge Algorithm: We present a first look at the code-
merging problem for P4 programs. We build a model to
theoretically identify the key issues and complexity behind
merging P4 programs, and we propose a heuristic to solve
it effectively (Sec. IV & Sec. V).

« Composition Operators and State Managements: We in-
troduce several composition operators for merging P4 pro-
grams to support a range of testing paradigms (Sec. III-C).
We provide state management primitives allowing seam-
less network checkpoint and rollback among different P4
program versions (Sec. III-E).

« Prototype Implementation and Evaluation: We imple-
ment a prototype of P4Visor’s framework and merging
algorithms. Using this prototype, we demonstrate the flexi-
bility and efficiency of P4 Visor by testing it across multiple
P4 programs (Sec. VI & Sec. VII).

II. MOTIVATION

In this section, we describe several well-understood principles
used within production networks (e.g., Google and Facebook)
to ensure highly-available networks (Sec. II-A), and present a
new PDP primitive for effectively supporting these principles
in PDP devices (Sec. II-B and Sec. II-C).
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Fig. 1: Comparison of resource overheads for three PDP
virtualization approaches under different number of the stages
in pipeline.

A. Rapid Development in Large Networks

We briefly describe several techniques which large-scale net-
working infrastructures employ to ensure that their networks
remain highly-available in the face of changes.

Canary Testing (A-B Testing [5], [6], [13]). Canary testing,
well documented by Google’s [6]-[8] and Facebook’s [5]
networking and infrastructure teams, requires running multiple
versions of a program alongside each other. Canarying (or A-B
Testing) tests new code by sending a subset of traffic through
the code (e.g., 1% of traffic) and, if nothing “bad” happens,
slowly increases the subset of traffic using the test code until
all traffic is using the test code.

Fault Tolerance (Data-Diversity [4], [14]). To improve secu-
rity and availability, certain networks run multiple instances of
their control plane, perturb the instances with some random-
ness, and then compare the outputs from these versions. The
system uses the most popular output. This approach directly
tackles bugs and overcomes intruders. Facebook [14] runs four
control planes and compares the output between these control
planes.

High Availability (Network-Rollback [15], [16]). While
testing techniques exist to eliminate bugs, unfortunately, bugs
still occur in production networks [8], [17], [18]. To tackle
this, most companies, e.g., Google [7], [8], store checkpoints
of stable version and rollback to the previous version of the
code. This use case requires maintaining several versions (or
snapshots) and managing network states such as efficiently and
consistently swapping between them.

Modular Code. Extensive work in the software engineering
community [19] and recently validated by large software
engineering firms (e.g., Facebook [5], [17]) have demonstrated
that the key to successfully supporting rapid prototyping and
deployment of complex functionality is modularity (code-
reuse). Yet, today programmers are forced to write monolithic
P4 programs. Missing from the ecosystem is a framework
for effectively supporting multiple modular PDP Programs
(similar to processes in operating system) and composing them
together.

B. Novel PDP Primitives: Code Merge

Today, the most direct approach for supporting the aforemen-
tioned techniques is to use virtualization, e.g., HyperVDP
and Hyper4. Unfortunately, HyperVDP and Hyper4 incur
significant performance and resource overheads. In Fig. 1,
we present the memory overheads of using these different
virtualization techniques with an emphasis on the number of
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Fig. 2: P4Visor workflow: the key components and how they
work together.

tables used. The overheads grow linearly with the size of the
program because both techniques declare a fixed number of ad-
ditional tables to emulate each of the P4 program’s stages and
primitive actions — their hypervisors have to use these tables
to record the runtime states for each program. For example,
to run a P4 program with two pipeline stages, HyperVDP and
Hyper4 have to declare at least 53 and 191 tables respectively
which limits the number of primitive actions supported to 9
and prevents HyperVDP and Hyper4 from supporting more
sophisticated programs such as Switch.P4 [20] which has 19
primitive actions.

Motivated by the inefficiencies of existing virtualization
primitives, in this paper we aim to answer the following
question: Is it possible to have a framework for supporting
multiple versions without incurring the overheads of full
virtualization?

To answer this question, we investigate the design of a
lightweight virtualization based on a source code merging
primitive. The merge primitive takes as input N P4 programs
and creates as output one P4 program that combines all
input P4 programs but retains the functionality of each of the
original P4 programs. As an example shown in Fig. 3, our new
primitive takes, as input, the abstract representations of two P4
programs (the programs P; and P, in Fig. 3) and combines
them into one (Fig. 3 (a)). Central to providing this primitive
is ensuring that during the merge, P4-specific correctness
constraints (e.g., table dependencies) are maintained while
efficiency is maximized through resource reuse.

The merged P4 program should give each P4 program the
illusion of sole occupancy on the hardware. Our approach
differs from full virtualization in several ways: first, while
full virtualization provides virtualization through a special P4
program, we provide virtualization through the P4 program
compiler. Our approach offers one key benefit: whereas full
virtualization needs to allocate resources to support any po-
tential P4 program, we only need to allocate resources to
support the P4 programs being compiled. This specialization
minimizes the number of additional tables required to support
the combined program. Second, full virtualization does not
explicitly support modularity and composition of multiple P4
programs into one, whereas, we can directly support these use
cases.

C. P4Visor Workflow

Next, we present the workflow of P4Visor to illustrate
P4Visor’s components and how they work together. To support
the envisioned testing paradigms, the network operators must
provide P4Visor with (1) the different P4 programs to merge,
(2) the type of testing composition operators to implement
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Fig. 3: Illustrates various approaches for merging of two P4
programs. (a) demonstrates an intelligent merge with two share
tables; (b) and (c) are two possible merges with one shared
table; (d) is an invalid merge; and (e) demonstrates a simple

combination of two programs which doubles the resources.
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(e) Naive merge

(e.g., A-B testing or Differential testing) — the composition
operator determines the policy for splitting and comparing
traffic, (3) the amount of traffic used for testing, e.g., test
X% of the traffic, and (4) the traffic sampling granularity,
e.g., all packets of a flow should be consistently tested, test
any packet of any flow, or just test flows within a specific
subnet. Network administrators configure these settings using
either a simple command line or a configuration file. Given
such a testing specification, P4Visor installs code at edge
switches to consistently tag packets for testing and to remove
the tags before the packets exit the network. Tagging at the
edge enables P4Visor to ensure that the different switches
consistently test the same packets and that we can perform
end-to-end tests across the whole network. During the merge,
P4Visor adds tables to compare the output from the different
program and generate packets to the controller when these
results differ. These packets allow operators to reason about the
implications of the new code. In Fig. 2, we present P4 Visor’s
workflow.

To support this workflow, P4Visor requires (1) a domain-
specific configuration language for configuring the testing
paradigms (the P4Visor interface), (2) a merge algorithm
(discussed in Sec. IV and Sec. V), (3) a framework for imple-
menting the merge and supporting the indirection required to
support the merge (discussed in Sec. III), (4) techniques for
enabling comparisons and techniques for tagging/untagging
the packets.

III. DESIGN OF P4VISOR

In this section, we first provide an overview of P4Visor’s
architecture (Sec. III-A) and the detail of P4Visor’s compiler
design (Sec. III-B). Next we introduce the currently supported
composition operators (Sec. III-C & III-D) and state manage-
ments primitives (Sec. III-E).

A. Overview

In Fig. 4, we present the architecture for P4Visor. At a high-
level, P4Visor is composed of four components: the P4Visor
Interface (PVI), P4Visor Compiler (PVC), P4Visor controller
Application (PVA), and P4Visor Management agent (PVM).
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Fig. 4: P4Visor overview. The left part presents the procedures
of the compile phase while the right part outlines architecture
of P4Visor for runtime phase.

P4Visor Interface (PVI): PVI runs on a server and provides
the management interface for the network administrator (or
developers) to use to control the composition of different
P4 programs. In our current prototype, we implemented two
operators: A-B Testing and Differential Testing (described in
Sec. III-C).

P4Visor Compiler (PVC): PVC takes, as input the P4
programs, from the PVI, and returns, as output, a merged
P4 program and P4Visor-specific configuration files which
provide a mapping between the resources of each input P4
program and the merged P4 programs. The PVC analyzes the
parse graphs, tables and control flows of the input P4 programs
and merges them. The key to the PVC is the P4 program-merge
algorithm (Sec. IV & Sec. V), which identifies the data plane
resources within all input P4 programs that can be “safely”
merged while maintaining the semantics and dependencies of
each P4 program.

P4Visor controller Application (PVA): PVA runs on the
controller with a global view of the network, providing runtime
control over the testing operators. For example, in A-B Testing,
the PVA populates the testing traffic control tables (Sec. III-D)
for all the edge switches, identifies testing traffic.

P4Visor Management agent (PVM): PVM runs on the
PDP devices, i.e., programmable switch, intercepts messages
between the control plane (controllers) and the merged P4
Program and uses the P4Visor-specific configuration files pro-
duced by PVC to determine how to appropriately modify the
messages. Essentially, the agent multiplexes and demultiplexes
messages between the different controllers and the merged P4
program. What’s more, PVM also provides state management
to the different P4 programs running on the local switch, such
as the state checkpoint and rollback under the coordination of
the controllers (Sec. III-E).

B. P4Visor Compiler

P4Visor merges PDP programs by merging their parse graphs
and their control flow graphs.

Merging Parse Graphs: A naive approach for merging the
parse graphs of two programs is to emulate the merge process
by resubmitting packets into the pipeline multiple times; once
for each of the states in both parge graphs (this is the approach
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taken by Hyper4 [10]). Unfortunately, this incurs a significant
performance overhead — each time a packet is recirculated,
throughput is cut and packet processing latency is increased.

Instead, we merge the two parse graphs into one and use

a tag (i.e., TFlag) to disambiguate and break conflicts in the
merged parse graph. Fig. 5 presents an example of two parse
graphs being merged. Recall, each parse graph is a finite state
machine (FSM) with each state representing the bit offsets of
each header type. In merging these parse graphs, we align the
parse graphs’ FSMs and merge identical states.” In Fig. 5 (c),
the merged states are in orange with solid line. We observe that
Ethernet and IPv4 are both identical and thus can be merged.
There is ambiguity about when to parse the VLAN and the
IPv6 headers, and we break this ambiguity by introducing the
TFlag state: packets with the TFlag, i.e., test packets, should
parse the IPv6 header type, whereas only packets without the
TFlag, i.e., non-test packets, should parse the VLAN header
type. Note: we need only insert one such state for the TFlag,
and this state can disambiguate all potential ambiguities in all
merged states.
Merging Control Flow Graphs: P4Visor analyzes the
pipelines of all P4 programs to be merged and identifies the
tables to be merged using the algorithms presented in Sec. IV.
Given this information, P4Visor merges the P4 programs by:
1) rewriting the Table IDs — to avoid conflicting IDs 3, 2)
rewriting “GoTo” statements for all tables except the merged
tables to reflect the new Table IDs, 3) for merged tables,
P4Visor does one of two things: if the merged table leads to
one table, then rewriting is obviously just rewriting the existing
“GoTo” to use the appropriate ID; However, if a merged table
leads to more than one table, e.g., table “B” or “C” in Fig. 3
(a), then P4Visor will add multiple “GoTo” statements, one
for each branch.

Recall the above example, shown in Fig. 3, in the control
flow graph of program P; the next-hop for “C” is “D”, in the
merged graph, table “C” will retain “D” as its default next-
hop table modulo rewriting IDs to reflect D’s new ID; however,
P4Visor will also add a “GoTo” that matches on the TFlag for
the other control program P, and uses “A” as the next-hop for
packets with the TFlag tag.

As a result of the merge process, P4Visor creates a new
P4 program, which is a normal P4 program that can be run
through a standard PDP compiler. Additionally, P4Visor cre-
ates a P4Visor-specific file, called the P4VisorConfiguration,
which provides a mapping between the resources of each input
P4 program and the merged P4 programs. Recall, each P4
program uses unique IDs to identify tables, and during the
merge, these IDs may be modified. The P4VisorConfiguration
provides a mapping between the original ID and the modified
IDs: this file allows P4Visor to transparently rewrite all calls
between the control and data plane that use these IDs. For
example, when the controller sends a flow entry installation
message to the switch to add a new entry to a resource-

2Since we focus on merging different versions of the same program, and we
anticipate a high degree of overlap between the parse graphs of the different
programs.

3While each program may have unique Table IDs, multiple programs may
reuse the same Table IDs which will create problems during compilations
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sharing table, PVM will modify the table IDs according to
the P4VisorConfiguration to ensure that the entry is installed
correctly.

Besides, P4Visor compiler also analysis the stateful objects

in both the production and testing programs and generate an-
other P4Visor-specific file file, called P4 VisorStatesConfigure.
This file contains the state size and map information in the
merged P4 programs. Note that when different P4 Program can
have the stateful objects of the same type or name, P4Visor
assigns unique identifies to each of the stateful objects in the
merged program.
Preserving Traffic Isolation: Our framework must be able
to offer isolation whenever it is required. Wherein, we define
isolation as the following property: if two PDP Programs, P,
and P,, are isolated, then traffic for P; is never processed
by resources exclusively dedicated to P,. Additionally, table
entries controlled by one are never modified by the other. To
enable isolation, we introduce an ACL-Bit (attached to tables)
that provides access control overflow entries in the resource-
sharing tables.

Observe that each table in the original P4 programs will
map to exactly one table in the merged P4 program, while
each table in the merged P4 program may correspond to
one or more tables. We label all tables in the merged P4
Program that correspond to multiple tables in the original
programs as resource-sharing tables. In Fig. 3 (a), nodes C
and B are both resource-sharing tables. For the resource-
sharing tables, the P4Visor compiler will add the ACL-Bit to
the table entries to provide traffic isolation for P4 programs.
Combined with the TFlag which identify the packet as test
packet, this ACL-Bit provides traffic isolation by allowing
packets to match entries in the shared table only when packets
match both the TFlag and the ACL-Bit. While the TFlag and
ACL-Bit ensure isolation within resource-sharing tables, the
TFlag alone ensures isolation between non-resource-sharing
tables.

In addition to isolating the packet processing, the ACL-Bit
also enables P4 Visor to separate control over entries in the flow
tables: The control plane for a P4 program can only modify the
entries with the appropriate ACL-Bit value. Given this ACL-
Bit, each P4 program can update the shared table correctly
without side effects to the other P4 programs.

C. Composition Operators

To illustrate the flexibility of our merge algorithm, we use it
to implement two distinct testing composition operators.

A-B Testing Operator: This operator allows multiple pro-
grams to run side by side in a production network with a subset
of traffic siphoned to the testing version, as shown in Fig. 6
(a). To support, our A-B Testing composition, P4Visor must
securely and flexibly manage traffic among multiple versions.
To ensure security, i.e., production traffic will not be processed
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by the testing programs, P4Visor adds/removes a special flag
(TFlag) to packets at edge switches when traffic enters and
leaves the network.

Differential Testing Operator: The key difference between
the A-B Testing and Differential Testing operators is that:
while the A-B Testing operator is mutually exclusive, i.e.,
traffic either goes to the production or the test P4 program,
for the Differential Testing operator, the test packets must
be copied and send through both programs, with outputs
compared at the end of the pipeline. The packet life-cycle
is shown in Fig. 6 (b).

D. Primitives for Composition Operators

To support these two operators, P4Visor must provide a
flexible primitive for controlling traffic and, specifically, for
Differential Testing, P4Visor must provide primitives for per-
forming comparisons.

Flexible Control: To ensure flexibility, a traffic management
module, called Testing Traffic Control (TTC in Fig. 6), is
developed and inserted into the merged pipeline to identify
a packet as either “test” or “production” traffic and guide the
packets along the appropriate pipeline. As shown in Fig. 6,
the TTC module is instantiated within the first table that all
packets encounter and affixes the TFlag header to the packet
once the packet is identified as the testing packet.

The TTC contains a set of stateful registers and flow tables,
which are configurable using the P4Visor Interface. Using the
P4Visor interface, network operators can configure the TTC
to configure how traffic is sampled for testing:

e Random sampling: Operators can specify which percentage
of traffic is randomly selected and piped through the testing
“pipeline” and which percentage of traffic goes through the
production “pipeline”, e.g., randomly sample 1% of the
total traffic for testing.

o Flow based sampling: Alternatively, operators can specify
the exact flows that should be sampled by specifying a
flowspect, e.g., traffic from subnet “10.10.10.0/24” should
be sampled.

The Comparison Primitive: To enable comparisons, a special
table, called an output record table, is added at the end of
each program’s pipelines. This table’s fields are configurable
through the P4Visor interface. Specifically, we need to clone
the packets and, in turn, compare their outputs at each switch.
To clone packets, we leverage the recirculate primitive,
which recirculates a packet and allows the packet to be
processed multiple times by the switch. We recirculate once
for each version we want to test — during recirculation, we
also recirculate the metadata fields. At the end of the pipeline,
the packet is processed by the Comparator Module (the CM in
Fig. 6), which compares the output of the different versions.
The comparator reports to the controller, via a message, when
the compared packets and metadata fields are different. *
Using the P4Visor Interface, a network administrator can
1) specify which outputs should be compared; 2) configure
how to process the differences detected by the Comparator. In

4To control the overheads associated with recirculating packets, the op-
erators can fine-tune the number of packets sampled to ensure the system
provides acceptable performance.
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Fig. 6: Life-cycle of a packet in P4Visor (under our two
composition operators).

general, the Comparator can support two kinds of comparisons
either on packet header fields or on metadata fields.

E. Primitives for State Management

To further take advantage of P4Visor’s merge algorithm, we
next present the design of state management for multiple PDP
programs.

Recall that the widely used technique is running multiple
instances of the program to enable high reliability and avail-
ability, which is now directly supported within programmable
networks by P4Visor. In this case, with dual versions of the
PDP program running side by side, one is the master version,
and the other is standby version. The key to achieve high fault
tolerance is providing the agile state migration among multiple
PDP programs versions to minimize state migration time
upon failures. While many existing works provide algorithms
to ensure consistency of checkpoint [16] and updates [21],
[22], our goal is to provide performance guarantee for state
operation within each data plane device, which is crucial yet
missing in the PDP system. To this end, we implemented two
state management primitives, i.e., the checkpoint and rollback
for P4Visor.

Checkpoint: Checkpoint primitive migrate the states from
the master version to standby version according to the
P4VisorStatesConfigure file, as shown in Fig. 7. So that
the standby version stores the latest correct checkpoint of
the master, which is ready to take over the master version
whenever the master failures are detected. Note that in this
paper, we focus on the network states that are configured by
the controllers, which can be divided into two types in PDP
programs: the first is the rules in tables; the second one is the
stateful resisters configured to control the traffic processing,
such as the proportion of random sampling in some programs
or the meter states to limit the rate.

Rollback: Rollback primitive allows the network administrator
rollback the current state back to the last stable snapshot,
which is stored in another version running standby. To do
this, P4Visor simply guide the traffic from the master version
to the standby version. In this way, P4Visor allows network
rollback with minimal side effect, e.g., rebooting or unwanted
downtime. It requires tagging the packets to ensure the packet
level consistency during the network rollback or update [21],
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Fig. 7: State management primitives: checkpoint and rollback.

while our traffic isolation module, i.e. the TTC in Fig. 7,
directly ensure this consistency. P4Visor provide predictable
operation time because it doesn’t require any state operation
during the rollback, while existing works often have to anal-
ysis state to compute how to update the state which cause
unpredictable performance [16]. Instead, P4Visor has the last
correct configuration ready in standby program with minimal
delay for rollback operation.

IV. MERGING P4 PROGRAMS

In this section, we provide an overview of PDP-based resource
constraints (Sec. IV-A), present the design of P4Visor’s source
code merge model (Sec. IV-B), and conclude by theoretically
analyzing the complexity and hardness of the problem.

A. Background on P4 Compiler Constraints

In general, there are two kinds of constraints on a P4 program.
These constraints are either placed on the compiler by the
language (hardware target independent) or placed on the
compiler by the hardware architecture (target-dependent). An
example of a target-independent constraint is that there can
be no loops in the control flow graph; hence, it needs to be
a directed acyclic graph (DAG).This constraint is invariant
across all targets. However, the target-dependent constraints
vary dramatically from target to target and are especially hard
to enforce without intimate knowledge of the target hardware’s
proprietary details. For example, RMT [23] has 32 stages in its
pipeline while Intel’s FlexPipe [1] has 5 stages with different
memory constraints for each stage.

To tackle these two constraints, P4 compilers are split
into two components: a target-independent compiler (front-
end compiler) and a target-dependent compiler (back-end
compiler). In this paper, we focus on the design of target-
independent merge optimizations. We aim to, first, provide
a general optimization that benefits all hardware-targets. Our
target independent optimization builds on the insight that
merging different tables results in significant savings across all
hardware targets for multiple reasons: merging tables reduces
overheads associated with instantiating tables and merging
tables results in large tables which take advantage of various
hardware optimizations (we elaborate on this in Sec. VII).

B. Merging Optimization

Merging two P4 Programs is fundamentally equivalent to
merging two weighted DAGs into a single weighted DAG
with the added objective of minimizing space (i.e., the number
of nodes). To the best of our knowledge, no existing work
has explored this problem: specifically, merging two weighted
DAGs into one while maximizing overlap. The most closely
related works [24], [25] provide suboptimal results, we elab-
orate on them in Sec. VIII. Next, we more formally describe
the problem.

We model a program’s control flow using a Table De-
pendency Graph (TDG) [26] G = (T,E) where vertices
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T ={t1,t, ...t} ° and edges E = {(t;,1;) | t;,t; € T} map to
the tables and the table dependency, respectively. Each table
t; € T has three attributes:

1) the program id, #;.pid, reflects the P4 program in which
the table resides;

2) table ID, t;.tid, reflects the table’s ID and helps to
differentiate tables; and,

3) table size, t;.size, reflects the memory footprint of the
table (size is a function of width and number of entries
defined).

Given G, we can compute the dependency matrix, D, of the
graph as: D[t;, t;] = 1 if there is a dependency path from #; to
tj and D[t;,t;] = 0 otherwise 6,

For simplicity, we formalize the PDP-merge problem for
two P4 programs, but the problem formulation and analysis
generalizes to cases with more than two P4 programs.
Objective: Our goal is to merge two programs — a production
version denoted as G, = (T, E,) with the dependency matrix
D, and a testing version Gy = (T, E5) with the dependency
matrix Dy into a single program G,, = (Tj,, E,;) with the
dependency matrix D,,, while minimizing the total resources
required. In this paper, we only focus on table memory re-
sources. Restated, our object is maximizing sharing resources:

T |
max Z w; (1)
i=
where w; is the weighted contribution of reducing the re-
sources in Gy, used by table #; € T),.

We define the set of resource-sharing tables, T, as a subset
of tables in the merged TDG G,: these tables in T, are
merged from multiple tables in the original programs, which
satisfy the following constraints: equivalence, correctness, and
loop-freedom.

For each table v; € T,,s, w; captures both the memory type
and table size. Currently, the memory size is calculated as a
function of the number of entries and the width of each entry:

w; =c¢; - len; - width;

where len; and width; are the number of entries and width
of an entry in table #; respectively. ¢; is a configurable
weighted coefficient that allows an administrator to guide our
optimization algorithm to merge tables that the administrator
cares about. For example, if an administrator only cares about
the TCAM tables, she can set the table weights of all non-
TCAM types to 0. As a preprocessing step, P4 Visor sets w; = 0
for each table v; ¢ T, which shares no table resources with
other tables because these tables cannot be merged. Note that
when the weights for all tables 7, are equal, the objective
function (1) leads to a merged TDG that minimizes the total
number of tables.
Target-Independent Constraints: Two tables, ¢, € T, and
ts; € Ty, can be merged if and only if three constraints are
satisfied:
(1) Equivalence: The two tables are structurally equivalent
(same actions and match fields but they can vary in the

Sp is the total number of tables in the pipeline.

5D[t;, t;] = 0 because P4 programs are generally acyclic graphs.
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number of declared entries). Here the equivalent tables
are assigned the same id, that is ¢, .tid = tsj.tid.

(i) Correctness: the table dependencies of both tables are
maintained — correctness is preserved.

D[ty trj] = Dy [ty,, trj]» Vi, Iy; € T, ?)
Dm[tS{’tSj] = DS[tSi9tSj]’ Vts,"tSj € TS

(iii) Loop-free: the resulting graph is loop free, that is, the
dependency matrix of G,, satisfies Vt;,1; € Ty,

Dyt t;] - D[ty 1,1 =0 3)

Target-Dependent Constraints: While this work focuses on
target-independent constraints, here, we briefly sketch out
how target-dependent constraints can be introduced into our
problem formulation.

Abstractly, we can introduce target-dependent constraints
by introducing hardware information. One constraint placed
by hardware is the number of physical stages. For example,
RMT [23] has 32 stages, and thus RMT can only support P4
programs whose crucial dependency path length is no more
than 32. To overcome this limitation, we can add a constraint
that limits the merged TDG’s critical path length to less than
32. This may force our algorithm to explore solutions that
create merged programs that do not maximize overlaps, but
that ensure shorter critical dependency paths.

We proved that our TDG merging problem can be re-
duced to and from the Maximum Weighted Independent Set
(MWIS) problem: a problem which has been proven to be
NP-Complete [27]. Due to space limitation, more details on
complexity analysis and proof of the problem can be found in
Appendix A-C.

V. EFFICIENCY

Next, we design a heuristic to efficiently solve the problem
in real time (Sec. V-A) and discuss a systematic approach
for configuring resource sharing of entries within the merged
tables (Sec. V-B).

A. P4Visor Heuristic Merging

A naive approach for solving the “merge” problem is to per-
form a brute-force search through all potential combinations in
G, to find the solution which provides the maximum overlap:
the best-known optimal algorithm for solving the maximum
independent set problem is Bron-Kerbosch. We implemented
the extended Bron-Kerbosch [28] and observed that it can only
handle small graphs and was unable to scale to large graphs
(i.e., greater than 80 nodes): In particular, given a 7-day time
limit, we were unable to solve the Bron-Kerbosch algorithm
for graphs with over 80 nodes. Thus, Bron-Kerbosch was
unable to process the largest DAG in our dataset (Switch.P4
which has over 120 tables). Motivated by the inadequacies
with Bron-Kerbosch, we designed a new heuristic to solve the
merge problem.

Heuristic: Our heuristic is based on simulated annealing (SA)
which has proven effective in solving the MWIS problem [29].
In our heuristic, each state of the search space is defined as a
subset Vg, of the vertex set of graph V), and every vertex in
Vsup 1s nonadjacent to the other vertices. Motivated by prior
work [30], [31], our heuristic generates neighboring states to
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TABLE I: The parameters of the heuristic

Parameter Default  Range Description
The initial temperature. The larger means
INIT_T 200 100-1000 more diversification for the SA process.
FINAL T 01 0.1-1 The final temperature. The smaller means
- : o more intensification for the SA process.
COOLING 0.999 0.99-0.999 The cooling parameter. The lager means )
slower convergence rate and needs more time.
NO_CHANGE_CNT 250 25250000 The lqcal optima indicator. The larger means
more intensification to reach global optima.
SA_ITER_TIME 200 200-200000 The iteration time. The larger means more

randomness and possibility to global optima.

explore using one of the following two procedures: (1) adding
one vertex v; € V,\ Vi to Vi and deleting all the vertices,v;
in Vg, that are adjacent to v;. (2) adding two nonadjacent
vertices v;,v; € V, \ Viup to Vg, and deleting one vertex
from Vj,,, that is adjacent to both v; and v;. The energy
function, or evaluation function, of our heuristic is defined
as the total weight, E(V) = X, ey weight(v;), of the vertices
in current search state, V, where weight(v;) is the weight of
each vertex v; € Vg,p. A new state will be accepted if its
energy, i.e., E(V,11), is larger than the current state’s energy
E(V,); otherwise we accept the new state with probability of
e~" . The temperature, ¢ is initially set to INIT_T initial and
decreases linearly to FINAL_T at each iteration based on this
equation t(n + 1) = t(n) * COOLING. We terminate the search
when the temperature decreases to FINAL_T.

Optimizations: A well known problem of SA-based heuristics
is that they can often get stuck in a local optima. To avoid this
problem, we employed multiple optimization mechanisms over
the simulated annealing search process. First, we use a counter
threshold NO_CHANGE_CNT to signal the local optima. During
the search, if the heuristics performs a threshold number of
iterations without an improvement, then we end the search pro-
cess and start a new one. As the initial temperature is high in
each new SA process and is more likely to accept the solutions
worse than the local optimal solutions, more perturbation and
randomness are introduced to the following search process.
We run the simulated annealing process SA_ITER_TIME times
which increases coverage over the search space and introduces
more randomness. To provide a good trade-off between the
diversification and intensification during the whole search, we
dynamically adjust the cooling parameter so that COOLING
increases with the growing of the SA iteration times. In this
way, a newer SA process has better intensification to reach the
global optima during the search. To summarize, the increased
randomness and larger coverage over the search space, enables
our heuristics to avoid local optimas.

Parameters: Several key parameters help us to seek the right
trade-off between the running time overhead and solution
quality, as summarized in table I. The first two parameters
INIT_T and FINAL_T control the search diversification and
intensification for each annealing process. More diversification
and intensification is more likely to reach the global optima
however requires more running time. COOLING allows us to
control the convergence rate of the SA process. The following
two parameters NO_CHANGE_CNT and SA_ITER_TIME focus
on providing more randomness and possibility to get rid of
local optimas.
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B. Controlling Merge Space Savings

In general, merging the control flow graphs of two P4 pro-
grams consists of two major steps. The first is to identify
the tables to be merged in both P4 programs, G, and Gy,
that satisfy the “correctness” constraints. The second step is
to merge the control flow according to the identified tables.

In merging two tables, 7, and f;, the resulting table,
tm,, can vary in size, number of entries, ranging from
max(ty, .size, ts, .size) (the merged tables reuse 100% of their
resources) to 7, .size +1s; .size (the merged tables do not reuse
any resources and the logical size of the merged table is
equivalent to the sum of the original tables).

At both extremes, P4Visor provides benefits. At the extreme
where no table entries are shared, i.e., t,, .size = t,, .size +
Is;.size, the merge provides benefits because it enables G,
to fit within smaller memory by reducing the overheads
associated with instantiating individual tables in hardware,
e.g., in Xilinx’s Virtex-7 FPGAs [32] instantiating a TCAM
table with 64 bits width x 256 bits depth consumes 2 RAM
blocks but instantiating TCAM tables with 4 times (128 bits
width x 512 bits depth) or 16 times (256 bits width x 1024
bits depth ) more memory consumes only 3 or S RAM blocks
respectively. Thus, merging would save resources, even if the
merged table contains the same number of entries as the
original tables combined.

At the other extreme, where switch memory is reused, that
iS, ty,.size = max(t,, .size, tsj.size), then precious switch
memory is being saved by sharing resources across tables.
This savings is in addition to the savings of overheads de-
scribed earlier. At this extreme, the table resources are shared
proportionally between the different programs based on the
fraction of traffic allocated to each program.

To explore this trade-off, P4Visor exposes a parameter, k,
to the operator through the P4Visor Interface. This parameter
allows the operator to control the amount of sharing: k = 1
means no sharing while a k = 0 means proportional sharing.

VI. P4VISOR IMPLEMENTATION

We have implemented the P4Visor compiler in 3000+ lines
of Python code and 800+ lines of C++ code. The controller
application, P4Visor interface and P4Visor management agent
are all developed with Python in over 300+ LoCs. The output,
of which, can then be fed into a back-end compiler. The
state management module is built on the software switch
runtime API. The P4Visor compiler takes as input the high-
level intermediate representations of P4 programs (i.e., HLIR)
and merges them into one program. Merging the high-level
IR allows us to operate at a platform independent level while
maintaining the complete semantics of the P4 language. Cur-
rently, we only support merging of P44 programs. However,
our algorithms and framework are also applicable to P4 ¢
programs. P4Visor’s source code is online in our Github
repository [33].

A. Supporting Flexible Testing Operators

We now discuss, in detail, the implementation of several
interesting architectural components: specifically, the Differ-
ential Testing specific module. In this discussion, we also,

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

registers cnt, Rate

action sample_testing_pkt () {
register_write(cnt, 0, cnt+l);
modify_field(testing_meta.testingbit,

cnt%Rate) ; }

table testing_traffic_identify {

//fields are configurable using P4Visor
Interface

9 e v s W N e

reads {ipv4.dstAddr : lpm;}
9 actions {sample_testing_pkt;
10 set_testingbit; }}
11 table testing_traffic_control {
12 reads {testing_meta.testingbit : exact;}

13 actions {goto_test_pipe; goto_prod_pipe}}

Fig. 8: Code Excerpt from our TTC Implementation.

1 //compare the outputs

2 1f(testing_meta.meta_p!=testing_meta.meta_t) {
3 apply (diff_procedure);

4}

5 //an example procedure configuration

6 action diff_procedure (testing_meta,

7 mcast_group) {

8 update_fields (testing_tag, testing_meta);

9 set_output_mcg (mcast_group) ;

10 }

Fig. 9: Pseudocode for Comparator.

demonstrate the flexibility of the testing operators provided
by P4Visor.

Testing Traffic Control (TTC): In Fig. 8, we present an
excerpt for our implementation of the TTC component. Recall,
the key goal of the TTC is to provide flexible control over
the sampling and selecting of traffic for testing. P4Visor
provides both runtime and compile-time control which allows
the administrator to alter sampling configuration program: at
compile time the administrator can configure aspects of the
flow spec to match on and at runtime, the administrator can
configure the packets to sample.

The control flow of TTC in the system is implemented in
table testing_traffic_ control (Lines 11-13), the TTC
uses the metadata testingbit to determine if the traffic
should use the testing pipeline or the production pipeline.

Run Time Configuration: The administrator can control
the sampling rate (by changing the registers (Line 1))
and the subnets to be sampled (by modifying the en-
tries in testing_traffic_identify table (Line 6)). The
sampling frequency is implemented as a special action,
sample_testing_pkt (in Line 2), which uses two registers,
cnt and Rate, to determine the sampling rate, e.g., sample one
packet in every R packets. ’ The subnet sampling is performed
by comparing the addresses in the packet against the entries
in table testing_traffic_identify

Compile Time Configuration: Additionally, the structure of
table testing_traffic_identify can be altered, through
the PVI, to reconfigure the TTC and allow the TTC to match
packets for sampling based on other aspects of the FlowSpec
beyond subnet.

Comparator: In Fig. 9, we present an excerpt of our code
for the Comparator Module. The Comparator is implemented

"Due to limited arithmetic operations supported by P4, the TTC can only
support the sample ratio of 1/R (R =1,2,3...).
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using a set of flow tables with actions associated and condi-
tional nodes in the pipeline, providing a configurable interface
to the network operators. The outputs of each version of the
program are recorded to a set of metadata (i.e., meta_p) and
then compared by Comparator (Line 2) to determine if the
versions are different. If a difference is detected, the action
diff_procedure is used to create a packet to send to the
controller. To overcome a limitation of our target platforms,
we create a new packet by multicasting the original packet
and sending a version to the controller (Lines 6-10).

B. Limitation of Existing PDP Targets

PDPs are expected to provide a rich set of packet processing
features, e.g., the action primitives defined in P4. However,
current PDP targets, e.g., software switch Bmv2 [34] or FPGA-
based hardware from Xilinx SDNet [35], can only support a
limited set of P4’s features. Several of the key P4 features
required to enable P4Visor to include 1) stateful registers;
2) packet cloning, for creating multiple copies of a packet
to be processed by different programs; and 3) in-switch
packet generator, for generating a packet to the controller that
summarizes differences between the two P4 programs.

o While packet clone primitives are defined in the P4 spec-
ification, the clone feature is not supported by the Bmv2
target. We address this problem by attaching attributes of
the packet to the metadata and recirculating the packet
and metadata through the pipeline for processing by the
alternative programs. Thus, by recirculating the packet,
multiple versions of a PDP Program can independently
process the same packet.

« In-switch packet generator is not supported by either the
Bmv2 or FPGA targets (Xilinx SDNet). To send the testing
outcomes to the controller, P4Visor adds those fields to the
pre-configured TFlag and then sends the packet out to the
controller.

o Our hardware target is even less flexible than the Bmv2
due to the limitation of the current development toolchain
(SDNet). Specifically, SDNet does not support stateful reg-
ister which impacts our design of the comparator and limits
the set of programs we can deploy. To support P4Visor
on our FPGA-based hardware target, we have implemented
those primitives in low-level hardware (i.e., the Testing
Traffic Control module is implemented with 1000+ lines of
Verilog code). We believe these hardware limitations will
be addressed with the evolution of the SDNet toolchain.

VII. EVALUATION
A. Experiment Setup

We have evaluated P4Visor on both a software (Bmv2 [34])
and a hardware (ONetSwitch [36]) programmable data plane.
Software PDP: On the Bmv?2 target, we analyze the follow-
ing programs: Reference Switch.P4 [20], L2 switch, Simple
Router, NAT, VLAN and Arp-Proxy, Flowletting [37], and
Heavy Hitters [38]. The Bmv2 runs in mininet with a single
switch, two hosts for testing, and a third host for running the
controller. Before testing, we install flow entries into the tables
so that the two end hosts can ping each other. We use iPerf
with the default TCP window size to measure the throughput.

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

N
o

[ Optimal
P4Visor
Naive merge

On-chip Resource
Utilization (%)
=
o

o

LUT

LUTRAM FF BRAM

Fig. 10: Impact of program merging approaches on memory
utilization.

Hardware PDP: On the ONetSwitch target, we were only able
to evaluate the following programs: L2 Switch, Simple Router,
and VLAN. We were limited in the set of programs because
ONetSwitch builds on Xilinx’s Zynq SoC [36] which only
supports a subset of P4’s language features (see Sec. VI-B). To
test the performance of the switch, we connect two PCs with
10G NIC to the ONetSwitch45 switch, due to NIC limitations,
the maximum achievable throughput for our servers is SGbps.
We use iPerf to generate traffic between the hosts and similarly
crafted rules to force traffic through as many tables as possible.

B. Performance Benefits and Overheads

Here, we evaluate the overheads of P4Visor and analyze the
practical benefits of source code merging as a lightweight
virtualization primitive.

1) Benefits of Resource Sharing

To understand and quantify the benefits of resource sharing,
we have compared P4Visor’s merge algorithm against a Naive
merge algorithm [39], which is a greedy algorithm for MWIS
problem. When solving the problem, Naive merge selects a
vertex of minimum degree, removes it and its neighbors from
the graph until no vertex available.

Our results show that merging introduces significant benefits
for three distinct reasons: First, instantiating a table into
hardware incurs some overheads. Thus by having two pro-
grams sharing a table, we ameliorate the associated overheads
and this translates into memory savings. For example, while
multiple tables may use the same actions, these actions need to
be independently stored for each table and by merging tables,
we reduce the number of instances of these actions. Second, as
tables grow in size, several of the resources increase in a sub-
linear fashion due to hardware-specific optimizations, e.g., the
BRAM memory in Xilinx includes optimizations that result
in sub-linear growth. Third, when we modify the parameter
k which impacts the amount of sharing, we reduce the total
number of entries. This introduces yet more savings.

To illustrate the first two points, we analyze a simple P4
program (the router program [40]) consisting of two tables: a
TCAM IPv4 routing table (32 bits width, 256 entries) and an
exact match IPv6 routing table (128 bits width, 256 entries);
each table has two actions. For this analysis, we set k = 1
which means both the P4Visor-merged and the naive-merged
programs will have the same number of entries. We merge
two router programs into one and then compile the merged
programs to the ONetSwitch45. In our analysis, we focus on
the four different kinds of memory resources of the Xilinx
chipset: LUT, LUTRAM, FF, and BRAM.® Fig. 10 illustrates

8The LUT, LUTRAM, and BRAM are mainly used to store Table structures
— with BRAM used to store large TCAM tables. The FF, is however, mainly
used to store timing and control signals.
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Fig. 11: Runtime of program merging approaches.

our first point — our heuristic merging with P4Visor results
in a 32% to 49% savings in resources compared with the
naive merging algorithm. Note that our algorithm achieve the
same solution as the optimal algorithm in this case, and more
evaluation with the optimal algorithm lies in Sec. VII-C. To
illustrate the second point, we analyze the amount of resources
required to support tables of varying sizes. We observe that
while most resources grow linearly with the size of the tables,
the BRAM grows sub-linearly (figure omitted due to space
limitations).

Takeaway. Intelligently merging tables leads to tremendous
resource savings. We anticipate these savings to only grow as
P4 programs become even more complex.

2) Performance Overheads

To evaluate the performance overheads of P4Visor, we
randomly select two of the evaluated PDP programs, i.e.,
L2switch, Router, VLAN, NAT, and Flowleting (only the first
three for hardware switch), merge them with P4Visor, and
compare the throughput/latency of running traffic through the
merged program against that of running traffic through the un-
modified programs — we compare the merged program against
the better performing of the two original PDP programs. Our
experiments, not shown due to space constraints, demonstrate
that P4Visor introduces minimal overheads. Specifically, the
TTC and the Comparator modules which add tags to packets
and perform comparisons introduce minimal overheads. In the
software switch, the throughput decreases by less than 1.5%
and the delay penalty is less than 3%. For the hardware switch,
the overhead is much smaller, both the throughput and delay
overheads are less than 1%.

Takeaway. P4Visor introduces several tables and actions
to support the different testing paradigms; however, these
constructs introduce minimal performance overheads to the
network (less than 1% in hardware) making them highly
desirable for today’s networks.

C. Analytical Evaluation of the Heuristic

To evaluate the efficiency and accuracy of our heuristic,
we compare our heuristic with the optimal solution (Bron-
Kerbosch), a naive greedy merge [39], and a state-of-the-
art algorithm for MWIS problem called hybrid iterated local
search (ILS) heuristic [31]. Note: we were unable to evaluate
the optimal approach on programs with over 80 nodes because
the optimal algorithm failed to provide a solution. In these
evaluations, we focus on two kinds of P4 programs:

First, real P4 programs, is based on the reference Switch.P4
[20], which contain 82 tables in the ingress pipeline and
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Fig. 12: Accuracy of program merging approaches.

41 nodes in the egress pipeline. As Switch.P4 is built in a
configurable fashion, we create different versions by turning
on or off specific functionality. Specifically, we created the
following four versions: (1) Switch.P4-V1: by turning on the
OpenFlow processing module. It has 84 ingress nodes and
53 egress nodes. (2) Switch.P4-V2: by turning off the Tunnel
processing module. It has 66 ingress nodes and 30 egress
nodes. (3) Switch.P4-V3: by turning off the ACL processing
module (MAC, IPv4, IPv6, RACL/PBR). It has 76 ingress
nodes and 37 egress nodes. (4) Switch.P4-V4: by turning off
the Multicast processing module. It has 73 ingress nodes and
39 egress nodes.

Second, synthetic P4 programs, which enable us to system-
atically evaluate the accuracy and efficiency of our heuristic at
scale — larger than the largest known P4 program (Switch.P4).
We generate synthetic programs ranging in size from 30 to
1000 tables with randomly generated dependencies (edges) —
we generate the edges to ensure that the graph maintains a
graph density of 0.4.

Efficiency: To evaluate the efficiency of our heuristic, we
measure the time it takes to merge two randomly selected
P4 programs. Fig. 11(a) presents the runtimes for merging
real P4 programs. We observe that our heuristic and the naive
algorithm consistently take a similar amount of time (~0.1
seconds) and both are considerably faster than the optimal al-
gorithm. Fig. 11(b) presents the runtimes for merging synthetic
P4 programs: this figure highlights the relationship between
the runtime of the three approaches and P4 programs size (in
number of nodes): the optimal algorithm shows an exponential
growth, while both our heuristic and the greedy approach
show a linear growth as a function of program size. With the
larger graphs, we observe that while our heuristic performs
slower than greedy, it’s performance is still acceptable. For
ILS heuristic, we focus on the accuracy of the algorithms as
the running time largely depend on the parameters such as the
iteration times of the search. We tuned the parameters so that
the ILS takes similar time with our heuristic.

Accuracy: Next, we analyze the accuracy of the different
approaches to understand the cost of the performance improve-
ments. To evaluate the accuracy, we compare the solutions
generated by the different approaches against the optimal
solution. Within the real programs, we observe that the greedy
approach, ILS and our heuristic achieved 100% accuracy;
however, for the synthetic programs, as shown in Fig. 12(a),
we observe that the greedy approach achieved an average
accuracy of 30% while our heuristic was able to achieve 100%
in all situations. With the further increase of the program size,
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our algorithm is able to produce the best solutions given by
ILS heuristic in all the cases.

Upon further analysis, we observe that the accuracy of
the greedy heuristic is a function of the ratio of overlap
between the different programs. Recall, the real programs
are all variants of Switch.P4 thus we expect there to be
significant overlaps. If the overlap is extremely high, as it
is common when minor changes are made, then the greedy
heuristic performs well; however if the overlap is low, e.g.,
when significant changes are made, then accuracy drops. To
illustrate this point, in Fig. 12(b) we explore the impact of
overlap ratio on accuracy. From this figure, we observe that
for the greedy approach, the amount of overlap has a large
impact on its accuracy.

Takeaway. While our heuristic is slower than the greedy
approach, our heuristic scales linearly and provides better
accuracy across a broader set of scenarios and is comparable
with the state-of-the-art algorithm. In short, our heuristic is
fast and accurate.

D. Use Case 1: Testing P4 Programs

In section VI-A, we have shown how to flexibly configure
the fields to be tested and actions to be performed using
P4Visor interface. In this section, we demonstrate the use of
P4Visor to perform testing and illustrate how these interfaces
may be configured. Specifically, we use P4Visor to perform
Differential Testing to test the behaviors of two versions of the
P4 Router program. Unlike the previous sections which focus
on overheads and accuracy, here we explore the operational
interactions involved with P4 Visor.

Testing Setup: To use P4Visor, we (1) configure P4Visor to
record and compare the 32-bits next-hop metadata fields of the
programs. To handle the detected differences, (2) configure the
Comparator to send the packets along with the outputs from
two programs to the controller (the same as the configuration
in Fig. 9), and (3) fed the configuration files and the two
P4 programs into P4Visor’s interface to produce the merged
program.

Testing results: We evaluate the merged program on the
Bmv2 target. At runtime, we control the routing tables of
the two programs with two different routing applications. We
observed that the P4Visor application can detect differences,
via the P4 Visor-generated messages, within milliseconds once
the control planes install different routing entries for the same
flow. With the help of the outputs stored in the messages, an
administrator can further debug and analyze the behavior of
the tested programs.
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E. Use case 2: Towards Fault-tolerance PDP

Given two versions of PDP programs merged by P4 Visor, we
run one version as the master program and configure another
as redundancy version on permanent standby to enhance the
reliability and availability. During the normal operation, PVMs
backup the latest correct checkpoint of the master versions
to the redundancy versions under the coordination of the
controller. Once the master version occurs failure, e.g., due
to the program bugs or misconfiguration, the network admin-
istrator will rollback to the latest stable as soon as possible.
In this case, the redundancy version allows seamless rollback
without interrupting the traffic. To evaluate the operation time
of our state management primitives, we merge two Flowletting
programs [37] and run the merged program on Bmv2 switch.
We send the checkpoint and rollback messages to the PMV to
trigger state migration between two program versions.

With various state number in programs, the evaluation
results show that the rollback operation keeps constant about
0.5ms because the rollback primitive only need to configure
the TTC module regardless of state number in programs. How-
ever, the checkpoint operation time grows linearly with the
number of state, as shown in Fig. 13. During the checkpoint,
PVM first read the states from the main version (marked as
backup in Fig. 13), and then write back to another version
(marked as restore in Fig. 13). We find that restore operation
dominates the operation time because the runtime API only
allows burst operation for read. While runtime API is built on
thrift lib, the agent can get multiple stateful registers in one
request for backup; however, for writing back, the agent is only
allowed to write one register upon each request. So writing
operation takes much more time than reading especially when
the state number increasing.

F. Use case 3: Towards end-to-end testing

With the merged program of different versions, P4Visor pro-
vides the ability to run testing traffic on one program without
side effect on another. Different from the static model or
emulate based approach, P4Visor allows us to perform holistic
testing scalable to large production topologies with real traffic
running on the testing versions.

In this use case, we demonstrate how to use P4Visor to
perform end-to-end testing across the network, e.g., the global
reachability. Given a testing network in P4Visor, the key to
enabling end-to-end testing is to generate appropriate traffic.
To do this, we take the network topology as input and generate
the packets for each pair of two edge ports. Then at runtime,
we send the generated packets to one side of each edge
ports pairs and check the output on the other port to test
the reachability. Here we also note that automatic test packet
generation tools, e.g. ATPG [41] can be integrated to improve
the efficiency of traffic generation.

VIII. RELATED WORKS

The most closely related work [42] explore source code
merging as a method for providing virtualization. We explore
a similar approach but in the P4 domain and tackle a host
of domain-specific issues. Moreover, we prove the complexity
of the merge problem. Below we explore related works on
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SDN composition, DAG-Merging, and other recent work on
programmable data planes.

PDP. Many have explored virtualization [43]-[45], up-
date [46]-[48], and state-management [15], [49] techniques
for traditional SDNs. These approaches assume a stateless
data plane, focus on the control plane and are thus operate
at software speeds, which are orders of magnitude slower
and less dynamic than the data plane. Despite the growing
emergence of PDP-based architectures and solutions, to-date,
there are few principled approaches for supporting testing P4
Programs. Most work focus on applications of PDPs [50]-
[53] or developing interfaces and primitives to enrich existing
PDPs environment [23], [54], [55]. Our work falls in the latter
class and argues for a principled extension of PDPs to include
interfaces, abstractions, and primitives to enable testing — in
short, to support rapid prototyping.

PDP Compiler. Work [26] is the first toward building a general
PDP compiler with a target-independent front-end and a target-
dependent back-end. They identified key issues, e.g. table size,
program control flow, and hardware memory restrictions faced
by all PDP compilers. Our framework contributes novel prim-
itives such as lightweight virtualization and modularization
to the ecosystem by adding more intelligence to the PDP
compiler. Several other works [35], [56], [57] have explored
challenges associated with compiling P4 programs to various
hardware targets, e.g. FPGA [35], [57] or RMT [56]. Our work
can benefit from these approaches by using these approaches
within the back-end compiler — note that in this paper, we
focus our emphasis on front-end optimizations.

PDP Virtualization. Related works [10]-[12] proposed a gen-
eral virtualization solution for PDP, using a large hypervisors
program to support multiple programs. Instead, P4Visor pro-
vides lighter weight virtualization primitive at compiler layer
based on code merging and achieves one order of magnitude
more efficiency than hypervisor based approaches. Another
approach called hard virtualization [58]-[60], presented an
conceptual hardware architecture to support virtualization for
P4-based switches. They are limited to the reconfigurable
hardware, e.g., FPGA, while our software based solution
is general to support different type of PDP targets without
changing the hardware architecture [61] [62].

SDN Composition. Orthogonal work on composition and
modularity in SDNs [45], [63]-[66] focus on SDN rules and
not on P4 program’s source code. Concurrent work on compo-
sition [67] aims to support orthogonal composition operators.
In this work, we present the first attempt to formalize the
problem and present a framework with supporting algorithms
and abstractions to enable composition within PDPs.
DAG-Merging. The problem of merging two DAGs has
been explored by several others [24], [25], [68]. Works [24],
[68] merge processing graphs for network functions with
the objective of minimizing the path length, i.e., reducing
packet processing latency in the merged processing graph. Our
goal differs from those works because we aim to maximize
the number of merged nodes, i.e., minimizing the resources
used by the merged graph. Saha et al. [25] provide a sub-
optimal heuristic for merging two unweighted DAGs into
one unweighted DAG with the objective of minimizing the
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number of vertices in the final DAG. Our objective varies as
we want to simultaneously decrease the number of vertices
while maximizing the magnitude of overlap since the vertices
in our problem are weighted. More importantly, unlike prior
work, we are the first to formalize and prove the complexity of
the DAG merge problem, which enables an efficient heuristics
based on simulated annealing.

IX. DISCUSSION

Control Plane Overheads. In addition to the data plane
overheads, P4 Visor introduces overheads to the control plane.
For example, the P4Visor agents running on the controller and
the switch PDP devices, have to multiplex and demultiplex
messages between the controller to the local P4 programs.
This translation introduces processing overheads and also
memory overheads because the agents need to maintain a
mapping and perform the translations. Additionally, re-using
the control channel between the controller and switches to
transfer packets summarizing the result of the tests reduces the
available bandwidth on the control channel. As part of future
work, we plan to explore approaches, e.g., SwitchVisor [69],
to effectively share and partition these control plane resources.
Target Dependent Optimizations. As discussed in Sec. IV,
our current efforts focus on target-independent optimizations
(i.e., front-end compiler), as part of future work we will extend
our formulation to tackle the back-end compiler by introducing
constraints and objectives specific to the hardware targets.
Seamless Reconfiguration. While full virtualization provides
support for headless updates (reconfiguring the data plane
without a reboot), our approach requires a reboot after every
reconfiguration. As part of future work, we plan to tackle
issues related to these reboots by intelligently migrating state,
e.g., with SwingState [54], and reconfiguring paths, e.g., with
zUpdates [70], during the reboot to eliminate disruption.
Composition Operators. This work has focused on support-
ing testing-specific composition operators; however, as part
of on-going work we are exploring composition operators
for enabling code modularity, e.g., parallel and sequential
composition [63]. Supporting these operators requires extend-
ing our current formulations to account for operator specific
constraints.

X. CONCLUSION

In this paper, we propose a lightweight virtualization primitive
for testing P4 programs through code merging. To support
this primitive, we present a framework, called P4Visor, which
uses compiler optimizations and program analysis to achieve
efficient source code merging. We evaluate the theoretical
complexity of the merging algorithm and present an efficient
greedy heuristic. Our work opens up space for implement-
ing a wide range of composition operators and frameworks
for PDP programs. We outline several avenues for future
exploration. The first is to conduct an extensive evaluation
on using P4Visor configuration for automating configuration
debugging and network diagnostics. Second, the target-specific
optimizations at the back-end of the PDP compiler will further
improve the efficiency of PDP programs. At last, we think
providing data plane virtualization primitives at the compiler
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layer is a promising direction considering the domain-specific
constraints of PDP.
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APPENDIX

A. Complexity Analysis and Proof of the merging problem

Our TDG merging problem can be reduced to and from
the Maximum Weighted Independent Set (MWIS) problem:
a problem which has been proven to be NP-Complete [27].
Here we provide a sketch of how to reduce our problem to
and from the MWIS problem.

We define a function v(m,i) which returns the table from
TDG Gy, whose table ID is i, thus, v(m, i) = t,,, and t,,, .tid =
i. To do this reduction, we define a merge candidate set, T),, as
the set of all tables in G, and G that satisfy the equivalence
requirement defined in constraint (i).

By definition of constraints (i) to (iii) in Sec. IV-B, all the
tables in production and testing programs follow the Lemma 1
(proved in the appendix B).

Lemma 1. V1;,t; € Ty, v(s,j) and v(s,i) have

Dr [V(r7 l)’ v(r, .])] : DS [V(S,j), V(S’ l)] =0 (4)

Next, let us construct a new undirected graph G, = (TI,, Ep)
where the vertex set of the graph is 7}, and the edge set of the
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graph is E,. Given this definition, we define V#;,t; € T),

1 Dr[v(r, l)’ v(r,j)] : DS[V(S’J.)’ V(S’ l)] =1
or Dr[v(r,j), v(r, l)] : DS[V(S’ l), V(S,j)] =1
0 Otherwise

Eplti,t;] =

&)

Taken together, formulas (4) and (5) provide us with a

way to formally reason about the relationship between T,

and G,. Lemma 2 (proved in the appendix C) provides this
relationship.

Lemma 2. The set of resource-sharing tables T, is a subset
of vertices in graph G, no two of which are adjacent, that
is, Vt;, 1 € Tins,

Ep[li, lj] =0 (6)

Reducing PDP-Merge to MWIS: Lemma 2 restated shows
that analyzing graph G, to identify the set of tables 7,,; can be
reduced to the independent set problem in polynomial time of
O(|T,|?). Essentially, in constructing G,, we only keep the
dependencies in both D, and D; that provide the forward
and reverse direction between two nodes. Take nodes A, D
in Figure 3 as an example, there is a dependency from node
A to D in one program as well as a dependency path from D
to A in another program. We keep these types of forward and
reverse dependencies when creating G, and delete all others
dependencies.

To satisfy our objective of maximizing the shared table

resources, we need to find the maximum weighted independent
set in graph G,, known as MWIS problem, an NP-Complete
problem [27].
Reducing MWIS to PDP-Merge: Next, we show how to
reduce a given MWIS problem to our merging problem. The
key lies in transforming a given weighted undirected graph
Gp = (T, E,) in the MWIS problem to two weighted DAGs,
G, and Gy, to be merged with the objective of maximizing the
weights of the final DAG. More specifically, we can construct
the dependencies matrix of two DAGs from G, as follows:

Epli,j] ifi>]j
D.[i.j] = 14 7
aly 0 Otherwise @

Eplij] if i<

D.[i. ] =
stiJl 0 Otherwise

®)

where i, j =0, 1,2, ...,|T,| are the indices of the nodes in graph
Gp,. We set T as a feasible independent set of G,. Similarly,
with lemma 2, we know that 7, is a feasible set of resource-
sharing tables when merging two constructed DAGs G, and
G. Further, as each node has a weight, solving the maximum
weighted independent set of G, is equal to the identification of
the set of tables with maximum shared resource when merging
G, and Gg.

Thus, the maximum weighted independent set (MWIS)
problem, an NP-Complete problem [27], can be reduced to our
problem in polynomial time O(|TP|2). That is to say, merging
two weighted DAGs into one weighted DAG with the objective
of maximizing weights is an NP-Complete problem.

http://dx.doi.org/10.1109/JSAC.2020.2986693

B. Proof of Lemma 1

We can proof lemma 1 by contradiction. Let us assume that
3,1t €T, so that

Dy [v(t, i), v(t, )] - Ds[v(s, j) v(s,D)] = 1

then we know D, [v(¢,i),v(t, j)] = 1 and Ds[v(s, j), v(s,i)] = 1.
As i,j are the ids of the merged tables satisfying the table
dependency consistency, according to Rulel we have

Dm[v(m, l), V(m9])] =D, [V(l, l)’ V(l,j)] =1
Dp[v(m, j), v(m,i)] = Ds[v(s, j), v(s,1)] = 1

which means the merging of tables v(t,i),v(s,i) and the
merging of v(t, j), v(s, j) introduce a dependency loop to the
merged graph D,,. By Rule2, D,, is loop free. This is a
contradiction. O

C. Proof of Lemma 2

We can proof lemma 2 by contradiction similar with the proof
of lemma 1. Assume that 3 #;,¢; € T, so that E,[1;,¢;] = 1,
then according to equation (5) we can get D, [v(t, i), v(t, j)] = 1
and Dg[v(s, j),v(s,i)] = 1. This will lead to the same con-
tradiction shown in the proof of lemma 1. Hence, we have
Vt;, 1 € T, Ep[l‘i, l‘j] =0. ]
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