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Abstract

A new probabilistic technique for establishing the existence of certain regular combinatorial structures has
been introduced by Kuperberg, Lovett, and Peled (STOC 2012). Using this technique, it can be shown that
under certain conditions, a randomly chosen structure has the required properties of a t-(1,k, A) combina-
torial design with tiny, yet positive, probability.

The proof method of KLP is adapted to show the existence of large sets of designs and similar combi-
natorial structures as follows. We modify the random choice and the analysis to show that, under the same
conditions, not only does a #-(1,k, A) design exist but, in fact, with positive probability there exists a large
set of such designs — that is, a partition of the set of k-subsets of [n] into t-(11,k, A) designs. Specifi-
cally, using the probabilistic approach derived herein, we prove that for all sufficiently large n, large sets
of t-(n,k, A) designs exist whenever k > 12t and the necessary divisibility conditions are satisfied. This
resolves the existence conjecture for large sets of designs for all k > 12¢.
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1. Introduction

Let [n] = {1,2,...,n}. A k-setis a subset of [n] of size k. A t-(n,k, A) combinatorial design is a col-
lection D of distinct k-sets of [n], called blocks, such that every t-set of [n] is contained in exactly A blocks.
A large set of designs of size I, denoted LS(I; t, k, 1), is a set of [ disjoint ¢-(1,k, A) designs Dy, Ds, ..., D,
such that Dy U Dy U - - - U Dy is the set of all k-sets of [n]. That is, LS(I; t,k, n) is a partition of the set of
k-sets of [n] into t-(11,k, \) designs, where necessarily A = (}_}) /L.

The existence problem for large sets of designs can be phrased as follows: for which values of [, t,k, n
do LS(; t,k,n) large sets exist? The existence conjecture for large sets, formulated for example in [23,
Conjecture 1.4], asserts that for every fixed [, ¢, k with k > t + 1, a large set LS(I; t,k, n) exists for all suffi-
ciently large n that satisfy the obvious divisibility constraints (see Section 1.2). However, according to [23,
p. 564] as well as more recent surveys, “not many results about LS(/; t,k,n) with k > t + 1 are known.”
One of our main results herein is a proof of the foregoing existence conjecture for all k > 12¢.

1.1. Large sets of designs

Combinatorial design theory can be traced back to the work of Euler, who introduced the famous *“36 officers
problem” in 1782. Euler’s ideas were further developed in the mid-19th century by Cayley, Kirkman, and

Email addresses: slovett@ucsd.edu (Shachar Lovett), sankeerthl1729@gmail . com (Sankeerth Rao),
avardy@ucsd.edu (Alexander Vardy)

Preprint submitted to Elsevier July 2, 2020


http://arxiv.org/abs/1704.07964v2

Steiner. In particular, the existence problem for large sets of designs was first considered in 1850 by Cay-
ley [1], who found two disjoint 2-(7,3, 1) designs and showed that no more exist. The first nontrivial large
set, namely LS(7; 2,3,9), was constructed by Kirkman [8] in the same year. Following these results, the
existence problem for large sets of type LS(n—2; 2,3, n) — that is, large sets of Steiner triple systems —
attracted considerable research attention. Nevertheless, this problem remained open until the 1980s, when it
was settled by Lu [10, 11] and Teirlinck [22]. Specifically, it is shown in [10, 11, 22] that LS(n—2; 2,3, 1)
exist forall n > 9 withn = 1,3 (mod 6). In 1987 came the celebrated work of Teirlinck [20], who proved
that nontrivial ¢-(n, k, A) designs exist for all values of ¢. In fact, Teirlinck’s proof of this theorem in [20] pro-
ceeds by constructing for all t > 1, a large set LS(I; t,t +1,1), where I = (n — t)/(t + 1)!2*1)_ His re-
sults in [20, 21] further imply that for all fixed ¢, k with k > t+1, nontrivial large sets LS(I; t,k, n) exist
for infinitely many values of n. However, as mentioned earlier, it is unknown whether such large sets exist
for all sufficiently large values of n that satisfy the necessary divisibility constraints. For much more on the
history of the problem and the current state of knowledge, see the surveys [23, 6, 7] and references therein.

There are numerous applications of large sets of designs in discrete mathematics and computer science.
For example, large sets of Steiner systems were used to construct perfect secret-sharing schemes by Stinson
and Vanstone [19] and follow up works [18, 4]. An application of general large sets of designs to thresh-
old secret-sharing schemes was proposed by Chee [2]. As another example, Chee and Ling [3] showed how
large sets can be used to construct infinite families of optimal constant weight codes. As yet another exam-
ple, large sets of 1-designs (also known as one-factorizations) have been used extensively in various kinds
of scheduling problems — see [15, pp. 51-53] and references therein.

1.2. Divisibility constraints and our existence theorem

Consider a t-(n,k, A) design with N blocks. It is very easy to see that every such design must satisfy certain
natural divisibility constraints. For instance, every k-set of [1] contains exactly (];) many t-sets, and since
every f-set is covered exactly A times by the N blocks, we have N ('t‘ ) = A(%). In particular, this implies that
(’;) should divide A(’}). Now let us fix a positive integer s < f — 1 and restrict our attention only to those N’
blocks that contain a specific s-set of [1]. Since the fixed s-set can be extended to a t-set in (; ;) ways and
each of these f-sets is covered A times by the N’ blocks, a similar argument yields N’ (’;:g) = A(}=). Thus

(]t‘::) should divide A(;”7). Altogether, this simple counting argument produces ¢ divisibility constraints:

(k_s> ‘ A(”_S> forall s=0,1...,t—1. (1
t—s t—s

The above leads to the following natural question. Are these ¢ divisibility conditions also sufficient for the
existence of t-(1,k, A) designs, at least when 7 is large enough? This is one of the central questions in com-
binatorial design theory. In a remarkable achievement, Keevash [5] was able to answer this question posi-
tively, thereby settling the existence conjecture for combinatorial designs. Specifically, Keevash proved that
forany k >t > 1and A > 1, there is a sufficiently large 1o = no(t,k, A) such that the following holds: for
all n > ng such that n, t, k, A satisfy the divisibility conditions in (1), there exists a t-(n,k, A) design.

Let us now consider the divisibility conditions for large sets. A large set LS(l; t,k, n) is a partition of

all k-sets of [n] into t-(n,k, A) designs. Clearly, each of these designs consists of N = () /1 = A(})/ (];)



blocks. This can be used to specify A in terms of 1, t, k, [ as follows:

Am1<”t> @

l<n> T I \k—t
t

With this, the divisibility constraints (1) for the / component designs of a large set LS(I; t,k, 1) can be re-
written in terms of 7, t,k,I. Altogether, we conclude that the parameters of a large set LS(I; t,k, n) must
satisfy the following t + 1 divisibility constraints:

k—s n—t\/n—s
l<t_s> (k—t><t—s> forall s =0,1...,¢ 3)

Note that the constraint for s = f simply refers to the condition that / must divide (Z:tt)’ which is clearly
necessary in view of (2). Once again, this leads to the following natural question. Are these t 4 1 divisibility
conditions also sufficient for the existence of LS(I; t,k, n) large sets, at least when 7 is large enough?

One of our main results in this paper is a positive answer to this question for all k > 12¢, which settles the
existence conjecture for large sets for such values of k. We formulate this result as the following theorem.

Theorem 1. Foranyt > 1,k > 12t and | > 1, there is an ng = ny(t, k, 1) such that the following holds: for
all n > ng such that n, t,k, 1 satisfy the divisibility conditions in (3), there exists an LS(I; t, k, n) large set.

In fact, Theorem 1 follows as a special case of a more general statement — namely, Theorem 9 of Sec-
tion 1.4. Theorem 9 itself follows by adapting the probabilistic argument of Kuperberg, Lovett, and Peled [9]
to show the existence of large sets of designs and similar combinatorial structures. We begin by describing
the general framework for this probabilistic argument below.

1.3. General framework

Throughout this work, we will use the notation of the Kuperberg, Lovett, and Peled paper [9], which we
shorthand as KLP. Let A, B be finite sets and let ¢ : B — Z* be a vector valued function. One can think of
¢ as described by a |B| x |A| matrix where the rows correspond to the evaluation of the function ¢ on the
elements in B. In this setting [9] gives sufficient conditions for the existence of a small set T C B such that

1 1
77 L 0 = 57 L o(0). @)
’T| teT ’B ’ beB
In the context of designs we can think of B as all the k-sets of [1] and A as all the t-sets of [n]. ¢ denotes
the inclusion function, that is ¢(b), = 1, where b is a k-set of [1n] and a is a t-set of [n]. Equation (4) is
then equivalent to T being a t-(11,k, A) design for an appropriate A.

Next, we present the conditions under which KLP showed that there is a solution for (4). We start with

a few useful notations. For a € A we denote by ¢, € ZB the a-column of the matrix described by ¢,

namely (¢,), = ¢(b),. Let V. C QP be the vector space over Q spanned by the columns of this matrix

{¢s : a € A}. Observe that (4) depends only on V and not on {¢, : a € A}, which is a specific choice of
basis for V. We identify f € V with a function f : B — Q. Thus, we may reformulate (4) as

%,Zf(t)z%{)f(b) Vfev. (5)

teT beB



In particular, we may assume without loss of generality that dim(V') = |A].

The conditions and results outlined below will depend only on the subspace V. However, it will be easier
to present some of them with a specific choice of basis. We may assume this to be an integer basis (A basis
of the subspace V made up of vectors with only integer coordinates). Thus, we assume throughout that
¢:B— Z4 is a map whose coordinate projections ¢q : B — Z are a basis for V.

1.3.1. Divisibility conditions
For T to be a valid set for (5) with |T| = N, we must have

N
Y f(t) = Bl Y f(b) VfeV.
teT | |heB
In particular there must exist v € ZB such that
N
Y 1f(b) = TB] Y f(b) VfeV. (©)

beB beB

The set of integers N satisfying (6) for some 7y € Z5 consists of all integer multiples of some minimal
positive integer c1. This is because if Ny and N are solutions then so is N; — Np. Thus it follows that | T|
must be an integer multiple of ¢;. This is the divisibility condition and c; is the divisibility parameter of V.

We can rephrase (6) as ‘%" Y pep ¢(b) belongs to the lattice spanned by {¢(b) : b € B}.

Definition 2 (Lattice spanned by ¢). We define L(¢p) to be the lattice spanned by {¢(b) : b € B}.
L@)={ L m-¢b):mez}czt
beB
Note that since we assume that dim (V') = | A| we have that £(¢) is a full rank lattice.

Definition 3 (Divisibility parameter c1). The divisibility parameter of V is the minimal integer c1 > 1 that
satisfies % Yuep P (b) € L(p). Note that it does not depend on the choice of basis for V which defines ¢.

1.3.2. Boundedness conditions

The second condition is about boundedness conditions for integer vectors which span V and its orthog-
onal dual. We start with some general definitions. Let 1 < p < co. The £, norm of a vector 7y € 78 is
I7llp = (Zoes [7617)!/7. Below we restrict our attention to [|7[|1 = Eyep 75| and [|7]le = maxpes [75].

Definition 4 (Bounded integer basis). Let W C QP be a vector space. For 1 < p < oo, we say that W has
a c-bounded integer basis in £, if W is spanned by integer vectors whose £, norm is at most c. That is, if

Span({y € WNZP:||y]l, < c}) = W.

Recall that V' C QP is the vector space over Q spanned by {¢, : a € A}. We denote by V- the
orthogonal complement of V in Q& that is,

Vii={geQP: Y f(b)g(b) =0 Vfe V).

beB

Definition S (Boundedness parameters ¢y, c3). We impose two boundedness conditions:
e Letcy > 1 be such that V has a cp-bounded integer basis in {o.

e Let csy > 1 be such that V+ has a cs3-bounded integer basis in 1.



1.3.3. Symmetry conditions

Next we require some symmetry conditions from the space V. Given a permutation 7t € Sp and a vector
fe Q38, we denote by n(f) € Q2 the vector obtained by permuting the coordinates of f,namely 7t(f), =

fr(v)-
Definition 6 (Symmetry group of V). The symmetry group of V, denoted Sym(V'), is the set of all permuta-
tions 7t € Sp which satisfy that t(f) € V forall f € V.

It is easy to verify that Sym (V) is a subgroup of Sg, the symmetric group of permutations on B. Note that
the condition 71 € Sym(V) can be equivalently cast as the existence of an invertible linear map 7 : Q% —
QA such that

o((b)) =t(p(b)) VDbeB.

Definition 7 (Transitive symmetry group). The symmetry group of V' is said to be transitive if it acts transi-
tively on B. That is, for every by, by € B there is = € Sym(V') such that 1t(by) = ba.

1.3.4. Constant functions condition

The last condition is very simple: we require that the constant functions belong to V.

1.3.5. Main theorem of KLP

We are now at a position to state the main theorem of KLP [9].

Theorem 8 (KLP Theorem). Let B be a finite set and let V. C QP be the subspace of functions. Assume
that the following holds for some integers c1,c,c3 = 1:

e Divisibility: c is the divisibility parameter of V.

Boundedness of V: V has a cy-bounded integer basis in lq.

Boundedness of V*=: V- has a c3-bounded integer basis in 1.

Symmetry: V has a transitive symmetry group.

Constant functions: The constant functions belong to V.
Let N be an integer multiple of cq satisfying
min(N, |B| — N) > C - cac3dim(V)® log(2c3dim(V))®,
where C > 0 is an absolute constant. Then there exists a subset T C B of size |T| = N satisfying

T
Tl

Y () = % Y g (b).

teT beB



1.4. Our main theorem

Our main result is an extension of the KLP theorem (Theorem 8) to large sets. It will have many of the
same conditions, except that we need to update the divisibility condition to require the size of each design
tobe N = |B|/¢. Thus the new divisibility condition is

LY g0 € £(9).
beB

Note that as before, this condition depends only on V; it does not depend on the choice of basis for V which
defines ¢.

Theorem 9 (Main theorem). Let B be a finite set and let V. C QP be the subspace of functions. Let also
I > 1 be an integer. Assume that the following holds for some integers c3,c3 > 1:

e Divisibility: 1 Yycp(b) € L(¢).

e Boundedness of V: V has a cp-bounded integer basis in {w.

e Boundedness of V*: VL has a c3-bounded integer basis in (7.
o Symmetry: The symmetry group of V is transitive.

e Constant functions: The constant functions belong to V.

Assume furthermore that
|B| > Cdim(V)®" 3 log®(dim(V)cacsl),

for some absolute constant C > 0. Then there exists a partition of Bto Ty, ..., T, each of size |T;| = |B|/1
such that

Y o) = % Y ¢(b) forall i=1,...,1.

teT; beB

Theorem 1 follows as a special case of Theorem 9.

Proof of Theorem 1. To recall, in this setting we have B the set of all k-sets of [1], A the set of all ¢-sets of
[n], ¢ : B — {0,1} given by inclusion ¢(b), = 1,c, fora € A,b € B and V the subspace spanned by
{pa:a € A}.

KLP [9] showed (see Section 3.3 in the arxiv version) that in this setting, the subspace V has a transi-
tive symmetry group, it contains the constant functions, and it has boundedness parameters c; = 1,c3 <
(4en/t)?. Furthermore, the condition that the vector A = (A,...,A) € L(¢) is equivalent to the set of

conditions
<k—s> A(n _S> forall s=0,...,t
t—s t—s

(see Theorem 3.7 in [9]). In particular in our case A = (’,Z:tt) /1 and hence the divisibility conditions in
Theorem 9 are equivalent to the necessary divisibility conditions given in (3). To obtain the lower bound on
|BJ, fix k, t,1 and let n be large enough. Then |B| = @(n¥), dim(V) = @(n!) and c3 = ©(n?). Then if
k > 12t and n is large enough the lower bound on B holds. O




We conclude this section with a few remarks. First, Theorem 1 is stated for fixed ¢, ¢, k and large enough
n. However, one can allow /, t, k to grow as small polynomials in 7 and Theorem 1 still holds and follows
from Theorem 9. Second, the proof of Theorem 1 implies an analogous counting result similar to KLP, as
it estimates the probability for the relevant event to hold. We do not include these calculations explicitly
in the paper, but they can be readily derived from the proof of Theorem 9. Last, in this paper we focus
on the application of Theorem 9 to large sets. However, Theorem 9 readily applies for other applications
mentioned in KLP, as the assumptions are the same, except for the added divisibility assumption for £.

1.5. Proof overview

The high level idea, similar to [9], is to analyze the natural random process and show that with positive
(yet exponentially small) probability a desired event occurs.

Say that a subset T' C B is “uniformly random” if

Y 9(b) = = Y 9(b).
’B’ beB

beT

T
Tl

Equivalently, the “tests” defined by V cannot distinguish the uniform distribution over T from the uniform
distribution over B.

Let T : B — [I] be a uniform partition of B into [ sets. Let T; = 7~ '(i) be the induced partition for
i=1,...,1. We would like to analyze the event that each part is uniformly random. That is, we would like
to show that

Pr[Ty, ..., T; are uniformly random| > 0. (7)

Notice that under the same notations, the main result of [9] can be formulated as

Pr[T; is uniformly random| > 0.

The random process can be modeled as a random walk on a lattice. Fori = 1,...,1let X; = Y cr. (D)

be random variables taking values in Z4. Let A = E[X;] = ... = E[X;] € Q4|. Note thatif X; = ... =
X1 =Athenalso X; = A. Let X = (Xy,...,X;_1) € ZU=DIAl Thus we can reformulate (7) as

Pr[X = E[X]] > 0. ()

Recall that each random variable X; takes values in a full-dimensional sub-lattice of Z4 which we denoted
L(¢). One can show that X takes values in the lattice £(¢)®(~1), which is a full dimensional lattice in
QU=DIAl In order to study the distribution of X, we apply a local central limit theorem. The same approach
was applied in [9] in order to analyze the individual distribution of each X;. Here, we extend the method to
analyze their joint distribution, namely the distribution of X. This is accomplished by a careful analysis of
the Fourier coefficients of X, which in turn relies on “coding theoretic” properties of the space V. Given this
coding theoretic properties, we show that Pr[X = [E[X]] can be approximated by the density of a Gaussian
process with the same first and second moment as X at the point IE[X]. In particular, it is positive, which
establishes the existence result.

1.6. Broader perspective

The current work falls into the regime of “rare events” in probabilistic analysis. It is very common that
the probabilistic method, when applied to show that certain combinatorial objects exist (such as expander



graphs, error correcting codes, etc) shows that a random sample succeeds with high probability. The chal-
lenge then shifts to obtaining explicit constructions of such objects, with efficient algorithmic procedures
whenever relevant (e.g. efficient decoding algorithms for codes).

However, there are several scenarios where the “vanilla” probabilistic method fails, and one is forced
to develop much more fine tuned techniques to prove existence of the desired combinatorial objects. The
current work falls into the regime where the random process is the natural one, but the analysis is much
more delicate. Other examples of similar instances are the constructive proof of the Lovasz local lemma
(see e.g. [16, 17]), the works on interlacing families of polynomials (see e.g. [13, 14]), and the entire field
of discrepancy theory (see e.g. the book [12]). In each such instance, new methods were developed to prove
existence of the relevant objects, that go beyond simple probabilistic analysis.

There are several families of problems in combinatorics, for which the only known constructions are ex-
plicit and of algebraic or combinatorial nature. For example, this is the case for all types of local codes
(such as locally testable, decodable, or correctable codes; PIR schemes; batch codes, and so on). It is also
the case for Zarenkiewicz-type Ramsey problems in graph theory, about maximal bipartite graphs without
certain induced subgraphs. Another well known example is the existence of Hadamard matrices. The lack
of a probabilistic model for a solution may be seen as the reason why the existential results known for these
problems are very sparse and ad-hoc.

In the current work, we show that for the problem of existence of large sets, one can move beyond explicit
ad-hoc constructions, such as the one of Teirlinck [22], to a more rigorous understanding of when existence
of large sets is possible. Of course, the next step in this line of research, after existence has been established,
is to find explicit constructions. We leave this question for future research. Another question is whether the
existence result can be established for the full spectrum of parameters, namely k > t 4+ 1 and any ¢ > 1
(recall that our result requires that k > 12t). This seems to be possible by replacing the Gaussian estimate
by an estimate which uses higher moments of the distribution of the random variable being analyzed. We
leave this also for future research.

2. Preliminaries

Recall that ¢ : B — Z* is a map, whose coordinate projections are ¢q : B — Z. We defined V to be the
subspace of QF spanned by {¢ : a € A}. We may assume that that these form a basis for V, and hence
dim(V) = |A]|.

Let T : B — [I] be a mapping that partitions B into [ bins. Let T; := {b € B : T(b) = i} fori € [{] be
the induced partition of B. In order to prove Theorem 9 we are looking for a T for which

ZMMz%ZMMimmi:LML ©)

beT; beB

Note that it suffices to require that (9) holds fori = 1,...,] — 1, as then it automatically also holds for i = .
So from now on we only require that (9) holds for the first / — 1 bins. We will choose a uniformly random
mapping T, and show that (9) holds with a positive probability. Note that T has independent coordinates
which are each uniform on [¢], and this makes X a sum of independent random vectors.

We start with some definitions. Let ® : B x [I] — Z(~VI4l be defined as follows. ®(b,i) = (x1,...,x_1),
where x1,...,x_1 € Z* are given by x; = ¢(b) - 1,_;. Note that in particular ®(b,!) = 0. Next, define a
random variable X € Z(~DIAl as

X:=)Y ®(b,1(b)).

beB



The mean of X is

E[X] = G 5 ¢(b),...,% 5 ¢(b)> e Q14

beB beB
Thus, proving Theorem 9 is equivalent to showing that

Pr[X = E[X]] > 0. (10)
T
We start by computing the covariance matrix of X.
Claim 10. The covariance matrix of X is the (I — 1)|A| x (I — 1)|A| positive definite matrix
S[X] = Re M
where R is the | A| x |A| positive definite matrix

Rpow = Z‘P(b)a()b(b)ﬂ’

beB
and M is the (I — 1) x (I — 1) matrix
i-1) -1 ... -1
TR S T (A ) T |
MEr| I
O ()

Proof. The random variables {®(b, (b)) : b € B} are independent, thus their contribution to the covari-
ance matrix of X is additive. Fix b € B. We compute the contribution of ®(b, T(b)) to the (a,i), (a’,1")
entry of X[X], where a,a’ € A andi,i’ € [l —1]. The second moment is

E[®(b, T(D))ai - P(b, T(b))ar,i] = %¢(b)a¢(b)w iz

The expectation product is

1
Ec[(b, (D))o - Ec[P(b, T(D))ar,i] = 154(0)adp (D)
Thus
1 1
Z[X] (a,i) () = hgﬂb)afl’(b)a' (7 Ly — l_2> = Rpa - My = (R® M) (4i) (a,1)-

O

Similar to the proof in KLP we would be interested in the lattice in which X resides. Recall that £(¢) is
the lattice in Z4! spanned by the image of ¢. We similarly define £(P).

Definition 11 (Lattice spanned by ®). We define L(®) to be the laitice spanned by {®(b,i) : b € B,i €
[1]}. Namely,

ﬁ(q)) = Z Ny, - ¢(b1),.., Z Ny, - ¢(b]),, Z Ny, | (P(bl—l) s M €Z,jc [l - 1]

b,€B bJEB b,_1€B



Note that since dim (V) = |A| then £(¢) is a full rank lattice in Z!4|. Hence £(®) = L(¢)®!Visa
full rank lattice in Z(~1IAl,

Similar to KLP we use Fourier analysis to study the distribution of X. The Fourier transform of X is the
function X : RU-VIAl — C defined by

X(©) = Ex[e2™X0)],
Note that X is periodic. Concretely, let L(®) denote the dual lattice to £ (D),

L(®) = {@c RV (A 0) cZ VA€ L(@)}.

Note that if @ € L(®) then X(© 4+ ©') = X(@) for all @ € RI-VIAl and X(©) = 1iff © € L(P).
As L(®) is a full rank lattice it follows that L(®) is also a full rank lattice and det(L(®P)) det(L(P)) = 1.
Thus studying X on any fundamental domain of L(®) would be sufficient to study the behavior of X on
RU=DIAl Similar to KLP we work with a natural fundamental domain defined by a norm related to the
covariance matrix of X.

Definition 12 (R-norm). For ® = (0y,...,6,_1) € RU="D4 we define the norm || - ||x as

. 12 . 1/2
|®]|r := max <W9;R9j> = max ( Z<‘P(b)/9j>2> .

jeli=1] jeli—1 \ IB] =%

We define two related notions. Balls around zero in the R-norm are defined as
Br(e) == {® e RV ||O|g < e}

The Voronoi cell of 0 in the R-norm, with respect to the dual lattice L(®), is
D:= {@ eRIVA Oz < |© —alx Yac L(®)\ {0}}.

Observe that D is a fundamental domain of L(®) up to a set of measure zero (its boundary), which we can
ignore in our calculations. Then we have the following Fourier inversion formula over lattices: for every
I' € L(®) it holds that

~

PrX = T] = —1 / R(@)e 20 4@ = det(L(D)) / (@) O4e. (11
D

~ vol(D) D

Note that this formula holds true for any fundamental region of L(®) but we chose it to be the Voronoi cell
D arising from the norm || - || because it would help in the computations later on. In order to prove (10),
we specialize (11) to T = [E[X] and obtain

-~

Pr[X = E[X]] = det(L(D)) / X(@)e 2i{EXI0) 4@, (12)

D

In the next section, we approximate this by a Gaussian estimate.

10



3. Gaussian estimate

In order to estimate (12), let Y be a Gaussian random variable in RU-DIAl with the same mean and
covariance as X. The density fy of Y is given by

_ exp(=3(x — E[X)'E[X] ! (x — E[X]))

frt) (27) 7 /de(T[X]) -
The Fourier transform of Y equals
17(@) - IE[ezm‘w,@)] _ ezm(m[x},@%z#@i[x}@_ (14)
The inverse Fourier transform applied to Y yields
fﬂ@:iAWM?KDKMW@M® vx e RU-DA, (15)

We show that Pr[X = [E[X]] can be approximated by an appropriate scaling of fy (IE[X]). By (12) we have

DX ey (Bix)) = [, R(@)e N0 [ F(@)e N0,

Note that by plugging x = [E[X] in (13) we obtain that

1
fr(E[X]) = = : (16)
(2r)" 2 /det(Z[X])
We will show that |% — fY(E[X])| < fy(E[X]). Fore > 0 to be chosen later, we will bound it by
Pr[X = E[X]]

oA = A <

der(z(@)) JEXD] <
X(©) - Y(0)|de / X(©)|de / 7(0)[de. 17
Jy K@ Y@+ [ X@lo+ [ V) a7

=l = =I3

At a high level, the upper bound is obtained by comparing X(®) and Y(©) in a small enough ball; and
upper bounding their absolute value outside this ball. Observe that we need € to be small enough so that
BR(S) C D.

3.1. Norms on R induced by ¢

The following key technical lemmas from [9] are very useful in bounding the integrals. We begin with
defining a few norms which are all functions of ¢.

Definition 13 (Norms on R4/ induced by ¢). For 6 € R4l define the following norms:

o [16ll4,0 = maxpep |[(P(D),0)]

1/2
o 0],z = (b Zocs | (9(0),0)12) .

11



Furthermore, for b € B let (¢(b),0) = ny + r, where ny, € Z and r, € [—1/2,1/2). Define

° H|9|H¢oo = maxpep |7y

1/2
o 10llg2 = (b Zoeslrs?)

Note that if 6" € L(¢) then (¢(b),6 +6') — (¢(b),0) € Z forall b € B. In particular, |6 + 0[], ., =
16]]],c0 and {16 + 6"[[[ > = ([0l The following lemmas from [9] relate the above norms.

Lemma 14 (Lemma 4.4 in [9]). For every 6 € R4 it holds that
1611400 < M6l

and
1611l g,00 < M][[6][],o-

Here, M := C (| A|log(2c,| A|))*'? for some absolute constant C > 0.
Lemma 15 (Claim 4.12 in [9]). Assume that for 6 € R4 it holds that

1
0 —.
6l <

Then there exists 0' € L(¢) such that (6 —6',¢(b)) € [-1/2,1/2) for all b € B. In particular
16— 0[] 52 = 11161ll,2-

3.2. Norms on RUVIAl induced by ®

We extend the previous definitions to norms on RU=DI4l induced by @, and prove related lemmas relating
the different norms.

Definition 16 (Generalizing the norms to R-"VI41), For® = (6y,...,6,_1) € RU"VIAl define the follow-
ing norms:

* [Ollg, 00 = maxjep—1 |6,
* [1llg, = maxjcy1 [[6jf],,,
* [1©lllg,00 = maxjep—ay (|61l
* [I1®lle = maxjep—a [|[6]l],
Observe that || - || 2 is the same as the R-norm || - |z we defined before. Similar to before, if @ € L(®)

then [[|© + ©[llg,oc = (O, a0 [|© + O[[[g, = [[Ollp o-

The following extends Lemma 14 and Lemma 15 to the norms induced by ®.

12



Lemma 17. For the same M defined in Lemma 14, for every ©® € RU=DIAl it holds that
10]lg,c0 < M@l 5

and
O]l g 00 < M]|O[| g 2-

Proof. Let® = (601,...,6,_1). Then using Lemma 14 we have

1l = max 16, < max Ml = MOl

and
[1®lllr0 = max 61, < max M6l = MlI@]l5.

Lemma 18. Assume that for © € RU=D4 it holds that

1
10g,0 < —
3

Then there exists @' € L(®) such that (® — @', ®(b,j)) € [-1/2,1/2) forallb € B,j € [l —1]. In
particular
|© = ©'|g, = I©lllg,-

Proof. Let ® = (6y,...,6;_1). We have |H9jm¢oo < % forall j € [I —1]. Then using Lemma 15 we get
that there exist 0, ...,6,_; € L(¢) such that (6; — 0;,¢(b)) € [-1/2,1/2) forall b € B. The lemma
follows for ' = (67,...,6/_;) € L(®). O

3.3. Estimates for balls in the Voronoi cell

To recall, we need ¢ > 0 to be small enough so that Bg(¢) is contained in the Voronoi cell D. The
following Lemma utilizes Lemma 17 to achieve that.

Lemma 19. If¢ < 5t; then Br(e) C D.

Proof. Let ® = (0y,...,0;_1) € L(®) \ {0}. By definition (¢(b),6;) € Z forallb € B,j € [l —1].
Since L£(¢) is of full rank and ® # 0, there exists some b € B,j € [l — 1] for which [(¢(b),0;)| > 1. Thus

1O, > 1

By Lemma 17 if follows that
1©llz = [|®llez > 1/M.

Thus, if @ € Bg(e) for e < 1/2M then
|© —@'|[r = 1Oz = [0r 2 1/M —&>1/2M > ||@.

Hence Bg(e) C D for any &£ < 5t O
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Let ® € D\ Bg(e). Clearly, its |||/, , norm is noticeable (at least €). We show that also its |[|-[[|g, , norm
is noticeable. This will later be useful in bounding X (@) in D \ Bg(e).

Lemma 20. Assume that c3 > 2 ande < 1/c3M. Let @ € D\ Br(e). Then [|O|[s, > &

Proof. Note that the condition of Lemma 19 hold, and so Br(¢) C D. Assume towards contradiction that
[®lllp, < e Applying Lemma 17 gives [[|O|l|p, < eM < % Applying Lemma 18, this implies that
there exists @ € L(®) for which ||® — @[/, = [||®]||p, < & However, as © € D we have ||®]|4, <
|©® — @'l , < & which gives that © € Bx (¢), a contradiction. O

3.4. Bounding the integrals

The following lemmas provide the necessary bounds on the integrals Iy, I, I3, as defined in (17). The
proofs are deferred to Section 4.

Lemma 21. Assume that ¢ < (CM|B|l)~Y/3. Then

CBM|A|?/?
L < W fY(]E[X])

N

Here C > 0 is some large enough absolute constant.

Lemma 22. Assume that c3 > 2 and € < 1/c3M. Then

1 |B|e?
N — — .
S Ger(z(@) e"p< 2 )

Lemma 23. For any € > 0 it holds that

< Fr(BX) - (- 122 exp (TS

3.5. Putting it all together

Let Cq1,Cy, ... be unspecified absolute constants below. By choosing an appropriate basis for V which is
ca-bounded in /o, we may assume that ¢ : B — Z4 where |¢(b),| < cp foralla € A,b € B.

Set ¢ = (C;M|B|)~'/3 so that we may apply Lemma 21, and assume that ¢ < 1/c3M so that we may
apply Lemma 22. We thus have

PriX = E[X]] = det(L(®)) fy (E[X])(1 + a1 + a3) + a2,

where

C]l3M|A’3/2
B

|Ble? |B['/3
’0(2’ < eXp <_l—2 = eXp —C212]\472/3 ,

7%| B|e? B|'/3
las| < (1—1)242exp <—%> < 2 exp <_C31’2]\’/172/3> .

1| <

14



We would like that |aq |, |az| < 1/4, which requires that
|B| > C4| APM?1°c3
Thus 1
Pr[X = E[X]] > 5 det(L(®)) fy (E[X]) + az.

We assume that ¢ : B — Z4, so £(P) is an integer lattice and hence det(L£(®)) > 1. We next lower
bound fy (E[X]). We have by (16) that

1
fY(IE[X]) - (27_[) (- 1\A\ de t( [ ])

We assume that ¢ is spanned by integer vectors of maximum entry at most ¢, so we can bound each entry

of [X] by
21X (0,0, i) < Y 19(0)adp(b)or] < [Blc3.
beB

Thus using the Hadamard bound we have

(1-1)|A|
det(Z («/ (1-1)|A] |B|c2> .

In order to require |ap| < (1/4) fy (E[X]), say, we need to require that
IB| > C5|A]PM?1” log(|A|M1).

Putting it all together, and plugging in the value of M from Lemma 14, as long as
|B| > C|A[°17c31og (| Alcacsl),

we have that

Pr[X — E[X]] > idet(ﬁ(cb))fy(]E[X]) > 0.

4. Bounding the integrals

4.1. Bounding I

Recall that [; = |, Br(e) |X(®) — Y(®)|d®. We will bound it by bounding pointwise the difference
|X(®) — Y(©)] and integrating it.

We first compute an exact formula for X(@). Recall that X = ¥, ®(b, (b)) where T(b) € [I] are
independently and uniformly chosen. Thus

. l_l .
%(0) = Bx [#%9)] = [T [; (1 s emw(b)ﬂ»” | 1s)
=1

beB

Fix © = (04,...,0,_1). To simplify notations, let xb] = 27t(¢p(b),0;) and x, = (xp7,....Xp1—1) €
R/, Define the function f : R'~! — C given by f(x) = % ( l ! ”‘/) Then we can simplify (18)
as

=[1f(x). (19)
beB
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We next approximate log f(x). We use the shorthand O(z) to denote a (possibly complex) value, whose
absolute value is bounded by Cz for some unspecified absolute constant C > 0. For x = (x1,...,x;_1) we
denote |x| = max; |xj|.

Claim 24. Let x = (x1,...,x_1) € RI=Vwith |x| < 1. Then
1 2
f(x) —exp( Zx] <1—7> ij+2l22x]x] +0 (|xP? )>
j i#
Proof. Lety = %Zﬁ;% (e —1) so that f(x) = 1+ . The condition |x| < 1 guarantees that |y| < 1, so

the Taylor expansion for log(1 + y) converges and gives

log(£(x) =log(1+3) =y — &+ O(lyf*).

One can verify that |y| < O(]x|), that
y:ZTZx]_Zij + O (|x°)
) ]
and that
2
2 3
¥y ==n <ij> +0 (IxP)
]
Combining these gives the required result. O

Applying Claim 24 to (19) allows us to approximate )A((@) as

> 27t 272 1 272
X(©) =exp [ T ¥ (9(0),6) = T-(1—7) L (9(6),6)2+ - L (9(6),6,)(¢(b),6) +(®)
beB beB beB
jelr=1] jel=1] i
which can be rephrased as
X(@®) = exp (27ti(E[X],0) — 2*@'L[X]© + (@) . (20)

The error term 6(®) is bounded by

5(@) =0 (Z ]xb|3> = (Z max ,9]->]3>
beB peB€l— 1]
<0, max o) 0)1) (an]' .07 )

=0 (|®llow - [BIIOIl3,)
By Lemma 17 we have ||©O||¢,c0 < M||©| e, and hence as ||O]|ep2 = ||@]|r we conclude that

6(©)| < C1M|BJI||O||%, 1)
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where C; > 0 is some absolute constant.

Next, we apply these estimates to bound the integral I;. Recall that by (14) we have
Y(0) := exp(27i(E[X], 0) — 220'L[X]O).
Thus we can bound I; by

h= [ IR@) - Y@)o < [ orOHNO©) e
Br(e) Br(e)

We assume that ¢ > 0 is small enough so that C; M|B|le> < 1, so that for all for © € Bg(e) we have
£©) — 1] < 26(®) < 2C;M|B|1|| O]
Thus

I, < 2C;M|B|I / ¢~ 27O'EIXI9| @13 4@ < 2C; M|B|! / ¢ 27OEIXI0| @13 4O.
Br(e) RO-1A

Next, we evaluate the integral on the right. Let Z be a Gaussian random variable in RU=DIAl with mean

zero and covariance matrix #Z[X]*l. Then the density of Z is

(-1)14] 26 1 .
O)=2r) 2 det(X)e 2O ZX]O _ o2 @Z[X}@I
f2(@) = 2m) = ydet®) f (EX])

where we have used (16). Hence

e OO 0] 340 = A (ELX]) - EIZIR)

Let G € RU=DIAl be a standard multivariate Gaussian with mean zero and identity covariance ma-
trix. Recall that by Claim 10 we have [X] = R ® M, where M has eigenvalues (1/1%,1/1,...,1/1).
In particular, [X] is positive definite, so its root exists and is equal to £[X]'/2 = R'/? @ M'/2. Hence
we have Z = 5= (R"Y2® M~1/2)G. Denoting G = (Gy,...,Gj_1) with G; € R/ and similarly
Z =(Zy,...,7Z;_1) with Z; € R4, we have

3 1 , 3/2
Ez (121 = Ez |max (52182 )

1 3/2
t
<Eyz <ZWZjRZ]->
J

_ <ﬁ2|3|> H(-2) (ﬁ) E [|GI3]

23

3
< Gayprppat UG-
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Note that by Jensen’s inequality E[||G|3] < E[||G|3]*/* < 43/4] A|*/2. Thus we can summarize that

4 3/2
L <O <M

e ) -y (E[X]).

4.2. Bounding I

Recall that I, = fD\BR(s) |X(©)|d®. We upper bound I by proving an upper bound on |X(®)] in
D\ Br(e).

Fix @ = (6y,...,0,-1) € D where we assume [|®||g, = ||®||r > &. Our goal is to upper bound X(0@).
Let (¢(b),0;) = nyj+ 1y, where ny; € Zand 1y € [—~1/2,1/2). By (19) we have

Ly emioeon ) | 7712 (14 e )| = TT 02
| v I (X R 1S P

j=1 beB j beB

X@©) =11

beB

where f(x) = % <1 + 2;;% eixi> and rp = (,1,...,7p,—1). Recall that |x| = max [x;].
Claim 25. Let x € R be with |x| < 7. Then |f(x)| < exp(—|x|?/8l).

Proof. Let xj = |x|. Then [f(x)| < 552 + %]#] If z € [—7, 7] then ]1+Telz| < e7%/8. One can verify
that
- [x|?

e A
log |f(x)| < log (1 l <e 1)> < s

Thus we have

- 47? ’ > |B| 2
log | X(®)| < TR Z |~ < 7 Z Ty = —l—2|||@|Hq>,2-
beB beB,je(l—-1]

Next, assume that ¢ < 1/c3M. By Lemma 20 we have that |[|®|||s, , = €. Thus
X(©)] < exp(—|Ble*/1?).

Thus we may bound

I < vol(D) exp(—|B|e?/1%) = exp(—|B|e?/1%).

1
det(L(®))

4.3. Bounding I3
Recall that

h- | @)do - [ o~ 2POlNO g,
RO-DA\ By (e) RU-DA\ B (e)

Similar to the calculation of the bound for I, let Z € RU-DIAl e a Gaussian random variable with mean
zero and covariance matrix 75 X[X] . Then

Iy = fy(E[X]) - Pr[[|Z]|r > ¢]

18



Recall that we showed that if we set Z = (Zy,...,Z;_1), then Z1,.. ZZ 1 E R are independent
Gaussian random variables with mean zero, where Z1 has covariance matrix —R L and Z]- has covariance
matrix —R 1 for j=2,...,1 —1. We may thus bound

Pr[HZHR>£]:I;r[max<|B|ZRZ> }ZPrK’B’ZRZ> ]

477%|B|é? 477%| B|é?
2 2
— e |63 > TP |+ -2y 167 > TR

4712 |B|e?

(2

<@-1p 1618 > TP

where G’ € R” is a Gaussian random variable with mean zero and identity covariance matrix.

In order to bound Pr¢: [||G||3 > p] we note that for any + < 1/2, it holds that E [etHG/H%] = (1-
Zt)_‘AV 2. Fixing t = 1/4 and applying Markov’s inequality gives

E [eI\G’H%M]

o/E 21120l
(4

Pr{IGIB > ] <

So

nz\B\sz

I < fy(E[X]) - (I —1)2141/2¢~
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