
6136 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 10, OCTOBER 2019

PIR Array Codes With Optimal
Virtual Server Rate

Simon R. Blackburn , Senior Member, IEEE, and Tuvi Etzion , Fellow, IEEE

Abstract—There has been much recent interest in private
information retrieval (PIR) in models where a database is stored
across several servers using coding techniques from distributed
storage, rather than being a simply replicated. In particular,
a recent breakthrough result of Fazelli, Vardy, and Yaakobi
introduces the notion of a PIR code and a PIR array code, and
uses this notion to produce efficient PIR protocols. In this paper,
we are interested in designing PIR array codes. We consider
the case when we have m servers, with each server storing a
fraction (1/s) of the bits of the database; here s is a fixed
rational number with s > 1. A PIR array code with the k-PIR
property enables a k-server PIR protocol (with k ≤ m) to be
emulated on m servers, with the overall storage requirements of
the protocol being reduced. The communication complexity of a
PIR protocol reduces as k grows, so the virtual server rate, defined
to be k/m, is an important parameter. We study the maximum
virtual server rate of a PIR array code with the k-PIR property.
We present upper bounds on the achievable virtual server rate,
some constructions, and ideas how to obtain the PIR array
codes with the highest possible virtual server rate. In particular,
we present constructions that asymptotically meet our upper
bounds and the exact largest virtual server rate is obtained when
1 < s ≤ 2. A k-PIR code (and similarly a k-PIR array code) is
also a locally repairable code with symbol availability k−1. Such
a code ensures k parallel reads for each information symbol.
So the virtual server rate is very closely related to the symbol
availability of the code when used as a locally repairable code.
The results of this paper are discussed also in this context where
subspace codes also have an important role.

Index Terms—Availability, distributed storage codes, private
information retrieval, PIR array codes, virtual server rate.

I. INTRODUCTION

APrivate Information Retrieval (PIR) protocol allows a
user to retrieve a data item from a database, in such a way

that the servers storing the data will get no information about
which data item was retrieved. The problem was introduced
in [6]. The protocol to achieve this goal assumes that the
servers are curious but honest, so they don’t collude. It is also
assumed that the database is error-free and synchronized all the
time. For a set of k servers, the goal is to design an efficient
k-server PIR protocol, where efficiency is measured by the

Manuscript received March 2, 2017; revised February 6, 2018; accepted
February 19, 2019. Date of publication June 6, 2019; date of current version
September 13, 2019. This work was supported in part by the BSF-NSF under
Grant 2016692. T. Etzion was supported in part by the Royal Holloway
University of London under EPSRC Grant EP/N022114/1. This paper was
presented at the 2017 IEEE International Symposium on Information Theory.
S. R. Blackburn is with the Department of Mathematics, Royal

Holloway University of London, Egham TW20 0EX, U.K. (e-mail:
s.blackburn@rhul.ac.uk).
T. Etzion is with the Department of Computer Science, Technion, Haifa

3200003, Israel (e-mail: etzion@cs.technion.ac.il).
Communicated by A. G. Dimakis, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2019.2920975

total number of bits transmitted by all parties involved; the
efficiency of the best known k-server PIR protocols increases
as k increases. This model is called information-theoretic PIR.
There is also computational PIR, in which the privacy is
defined in terms of the inability of a server to compute which
item was retrieved in reasonable time [26]. In this paper we
will be concerned only with information-theoretic PIR.
The classical model of PIR assumes that each server stores a

copy of an n-bit database, so the storage overhead, namely the
ratio between the total number of bits stored by all servers and
the size of the database, is k. However, recent work combines
PIR protocols with techniques from distributed storage (where
each server stores only some of the database) to reduce the
storage overhead. This approach was first considered in [33],
and several papers have developed this direction further:
[1]–[5], [13]–[15], [32], [36]–[39], [43], [45]. Our discus-
sion will follow the breakthrough approach presented by
Fazeli et al. [13], [14]. They use a suitable array code, called
a k-PIR array code, to enable m servers (for some m > k)
to emulate a k-server PIR protocol with storage overhead
significantly lower than k. We give more details of this
approach below.
It is desirable to emulate a k-server PIR protocol where k

is as large as possible given the other parameters are fixed,
since the communication complexity of the best known k-
server PIR protocols reduces as k increases. We define the
virtual server rate of a k-PIR array code to be k/m, and aim
of this paper is to design code which maximize this rate, and
provide corresponding upper bounds on this rate.
There has been a great deal of recent work designing codes

for distributed storage across m servers. Key concepts in this
application are locality [16], [23], [24], [29], which is useful
when we wish to restoring a server after data loss by using
a small number of other servers and symbol availability [20],
[30], [31], [34], [35], [40], [44], which enables data to be read
in parallel using disjoint groups of servers. Fazeli et al. [13],
[14] observed that a k-PIR array code is also a code with
symbol availability k − 1. Thus the virtual server rate of the
k-PIR array code is closely related to the availability rate
(defined below) of the code when used in distributed storage.
We now define the key notions discussed above more

precisely.
Fazeli et al. define a [t×m, p] k-PIR array code as follows.

Let x1, x2, . . . , xp be a basis of a vector space of dimension
p (over some finite field F). A [t×m, p] array code is simply
a t × m array, each entry containing a linear combination of
the basis elements xi . A [t × m, p] array code satisfies the
k-PIR property (or is a [t × m, p] k-PIR array code) if for

0018-9448 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 08,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0762-031X
https://orcid.org/0000-0002-4315-4400

BLACKBURN AND ETZION: PIR ARRAY CODES WITH OPTIMAL VIRTUAL SERVER RATE 6137

every i ∈ {1, 2, . . . , p} there exist k pairwise disjoint subsets
S1, S2, . . . , Sk of columns so that for all j ∈ {1, 2, . . . , k} the
element xi is contained in the linear span of the entries of the
columns Sj . The following example of a (binary) [7 × 4, 12]
3-PIR array code is taken from [14]:

x1 x2 x3 x1 + x2 + x3
x2 x3 x1 x6
x4 x5 x4 + x5 + x6 x4
x5 x6 x8 x9
x7 x7 + x8 + x9 x9 x7
x8 x10 x11 x12

x10 + x11 + x12 x11 x12 x10

The 3-PIR property means that for all i ∈ {1, 2, . . . , 12} we
can find 3 disjoint subsets of columns whose entries span a
subspace containing xi . For example, x5 is in the span of the
entries in the subsets {1}, {2} and {3, 4} of columns; x11 is
in the span of the entries in the subsets {1, 4}, {2} and {3} of
columns.
In the example above, many of the entries in the array con-

sist of a single basis element; we call such entries singletons.
Fazeli et al use a [t × m, p] k-PIR array code as follows.

The database is partitioned into p parts x1, x2, . . . , xp , each
part encoded as an element of the finite field F. Each of a
set of m servers stores t linear combinations of these parts;
the j th server stores linear combinations corresponding to the
j th column of the array code. We say that the j th server has
t cells, and stores one linear combination in each cell. They
show that the k-PIR property of the array code allows the
servers to emulate all known efficient k-server PIR protocols.
But the storage overhead is tm/p, and this can be significantly
smaller than k if a good array code is used. Define s = p/t ,
so s can be thought of as the reciprocal of the proportion of
the database stored on each server. For small storage overhead,
we would like the ratio

k
tm/p

= s
k
m

(1)

to be as large as possible. We define the virtual server rate
of a [t × m, p] k-PIR array code to be k/m. The virtual
server rate should not be confused with the rate of the code
and the PIR rate. The rate of the code is ratio between the
logarithm to base q (when the codewords are over the finite
field GF(q)) of the number of codewords and the logarithm to
base q of the number of words in the space. The PIR rate is
equal to the number of information bits which are obtained
in a PIR scheme, when the user is downloading one bit.
In applications, we would like the virtual server rate to be as
large as possible for several reasons: when s, which represents
the amount of storage required at each server, is fixed such
schemes give small storage overhead compared to k (see (1));
we wish to use a minimal number m of servers, so m should
be as small as possible; large values of k, compared to m, are
desirable, as they lead to protocols with lower communication
complexity. We will fix the number t of cells in a server, and
the proportion 1/s of the database stored per server and we
seek to maximize the virtual server rate. Hence, we define
g(s, t) to be the largest virtual server rate of a [t × m, p]
k-PIR array code when s and t (and so p) are fixed. We define
g(s) = limt→∞g(s, t).

Most of the analysis in [13], [14] was restricted to the case
t = 1. The following two results presented in [14] are the
most relevant for our discussion. The first result corresponds
to the case where each server holds a single cell, i.e. we have
a PIR code (not an array code with t > 1).

Theorem 1. For any given positive integer s, g(s, 1) =
(2s−1)/(2s − 1).

The second result is a consequence of the only construction
of PIR array codes given [14] which is not an immediate
consequence of the constructions for PIR codes.

Theorem 2. For any integer s ≥ 3, we have g(s, s − 1) ≥
s/(2s − 1).

The goal of this paper is first to generalize and improve
the results of Theorems 1 and 2 and to find codes with better
virtual server rates for a given s. We would like to find out
the behavior of g(s, t) as a function of t . This will be done by
providing new constructions for k-PIR array codes which will
imply lower bounds on g(s, t) for any given pair (s, t), where
s > 1 is any rational number, and t > 1 is an integer, such that
st is an integer. This will immediately imply a related bound
on g(s) for various values of s. Contrary to the construction
in [14], the value of s in our constructions is not necessarily
an integer (this possible feature was mentioned in [14]): each
rational number greater than one will be considered. We will
also provide various upper bounds on g(s, t), and related upper
bounds on g(s). It will be proved that some of the upper
bounds on g(s, t) are tight and also our main upper bound
on g(s) is tight.
We now relate these results to concepts in distributed storage

system (DSS) applications. Recall that code C is called locally
repairable code or locally recoverable code with locality r
if every symbol from its codewords can be recovered by at
most r other symbols of the codeword of a set R called a
recovering set. A code C is a locally repairable code with
(symbol) locality r and (symbol) availability κ if every symbol
has κ pairwise disjoint recovering sets, each one of size at
most r . An extra requirement from locally repairable code
is that it needs to be systematic which is not a requirement
for a PIR code. We define the availability rate of a code
of length m, locality r and availability κ as κ/m. This
is very similar to the virtual server rate which is defined
for the same code as (κ + 1)/m. When we generalize to
array codes, the notions of node and symbol locality and
availability become distinct: the definitions of symbol locality
and symbol availability generalize in a straightforward way,
with recovering sets possibly depending on the symbol stored
by a node rather than just the node itself. (For array codes,
node locality is often called the repair degree.)
So, how good are the codes in this paper in terms of

their availability? If we are interested in locality one, we are
interested in the singletons that appear in our array code.
Since each node can store t singletons it follows that symbol
availability κ satisfies κ ≤ mt/p. All our constructions have
symbol availability smaller than mt/p since most servers
have non-singleton cells. Hence, the codes are not optimal
in this respect. For locality two the situation is quite different.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 08,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

6138 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 10, OCTOBER 2019

The upper bounds on virtual server rate (and so on availability
rate) that we establish do not depend on locality. Our con-
structions below are all of locality two, so (see Corollary 3)
we already have optimal availability rate when 1 < s ≤ 2 and
optimal asymptotic availability rate when s ≥ 2. So, from the
perspective of this paper, there is no point to consider codes
of locality three or more. Of course, if we take other design
parameters from DSS into account we might need to amend
our constructions.
To summarize, our notation used in the remainder of the

paper is given by:
• n - the number of bits in the database.
• p - the number of parts the database is divided into. The
parts will be denoted by x1, x2, . . . , xp .

• 1
s - the fraction of the database stored on a server.

• m - the number of servers (i.e. the number of columns in
the array).

• t - the number of cells in a server (or the number of rows
in the array); so t = p/s.

• k - the array code allows the servers to emulate a k-PIR
protocol.

• g(s, t) - the largest virtual server rate of a [t × m, p]
k-PIR array code.

• g(s) = limt→∞g(s, t).

Though a PIR array code is formally an array of vectors,
we use terminology carried over from the application we have
in mind. So we refer to a column of this array as a server, and
an entry of this column as a cell.
The information in the t cells of a given server spans a

subspace V of Fp whose dimension is at most t . It is this
subspace, rather than the values in individual cells of the
server, which is important for the k-PIR property. Changing
the cells of a given server to produce a new spanning set for
V , or even to replace V by a larger subspace containing it,
cannot harm the k-PIR property. So, since the xi are linearly
independent, without loss of generality we can (and do) make
two assumptions in our analysis and constructions:

• if xi can be derived from information in certain server
alone, the singleton xi is stored as the value of one of
the cells of this server;

• the data stored in any server’s cells are linearly indepen-
dent, i.e. the subspace spanned by the information in the
t cells has dimension t .

Clearly, a PIR array code is characterized by the parameters,
s, t , k, and m (the integer n must be a multiple of p, does
not otherwise have any significant effect). In [14], where the
case t = 1 was considered, the goal was to find the smallest
m for given s and k. They write M(s, k) for this value of m.
The main aim in [14] was to find bounds on M(s, k), and to
analyze the redundancy M(s, k)− s and the storage overhead
M(s, k)/s. When considering PIR array codes, we have an
extra parameter t . When s, t , and k and given, the goal is to
find the smallest possible value of m. We write M(s, t, k) for
this value of m. Clearly, M(s, t, k) ≤ M(s, k), but the main
target is to find the range for which M(s, t, k) < M(s, k),
especially when the storage overhead is low. For this we

observe that

M(s, k) ≥ M(s, t, k) ≥ k/g(s, t) ,

which underlines the importance of the function g(s, t). Our
discussion answers some of the given questions, but unfor-
tunately not for low storage overhead (our storage overhead
is much smaller than k as required, but k is relatively large).
Hence, our results provide an indication of the target to be
achieved, and this target is left for future work. We will fix
two parameters, t and s, and examine the ratio k/m. A high
virtual server rate might require both k and m to be large.
This might give the best storage overhead for a given k, but
the storage overhead might well not be low: for a lower storage
overhead, we probably need to compromise on a lower ratio
of k/m.
The rest of this paper is organized as follows. In Section III

we present a simple upper bound on the value of g(s). Though
this bound is attained, we prove that g(s, t) < g(s) for any
fixed values of s and t . We will also state a more complex
upper bound on g(s, t) for various pairs (s, t), which will be
shown to be attainable for 1 < s ≤ 2. In Section II we present
a few constructions, all of which are asymptotically optimal
(in the sense of having the best virtual server rate as t → ∞).
We believe that they are also optimal for their specific para-
meters (s, t , and k). In Subsection II-A we consider the case
where 1 < s ≤ 2 and produce a construction which attains the
upper bound on g(s, t). This exact value of the virtual server
rate for 1 < s ≤ 2 and any admissible t is given in Corollary 3.
This construction is generalized and analyzed, for any rational
number s > 1, in Subsection II-B. For small s and t the results
are summarized in Table I. The asymptotic value of the virtual
server rate, g(s), for any rational number s > 1 is given in
Theorem 13. We provide a conclusion in Section IV, where
problems for future research are presented.
In this section we will be concerned first with a simple

general upper bound (Theorem 3) on the virtual server rate of
a k-PIR array code for a fixed value of s with s > 1. This
bound cannot be attained, but is asymptotically optimal (as
t → ∞). This will motivate us to give a stronger upper bound
(Theorem 4) on the virtual server rate g(s, t) of a [t ×m, st]
k-PIR array code for various values of t that can sometimes
be attained.

Theorem 3. For each rational number s > 1 we have that
g(s) ≤ (s + 1)/(2s). There is no t such that g(s, t) =
(s + 1)/(2s).

Proof. Suppose we have a [t × m, p] k-PIR array code with
p/t = s. To prove the theorem, it is sufficient to show that
k/m < (s + 1)/2s. Recall that we are assuming, without loss
of generality, that if xi can be derived from information on a
certain server, then the singleton xi is stored as the value of
one of the cells of this server.
Let αi be the number of servers which hold the singleton

xi in one of their cells. Since each server has t cells, we find
that

∑p
i=1 αi ≤ tm, and so the average value of the integers

αi is at most tm/p = m/s. So there exists u ∈ {1, 2, . . . p}
such that αu ≤ m/s (and we can only have αu = m/s when

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 08,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

BLACKBURN AND ETZION: PIR ARRAY CODES WITH OPTIMAL VIRTUAL SERVER RATE 6139

αi = m/s for all i ∈ {1, 2, . . . , p}). Let S(1), S(2), . . . , S(k) ⊆
{1, 2, . . . ,m} be disjoint sets of servers, chosen so the span of
the cells in each subset of servers contains xu . Such subsets
exist, by the definition of a k-PIR array code. If no server
in a subset S(j) contains the singleton xu , the subset S(j)

must contain at least two elements (because we are assuming,
without loss of generality, that if xi can be derived from
information on a certain server, then the singleton xi is stored
as the value of one of the cells of this server.). So at most
αu of the subsets S(j) are of cardinality 1. In particular, this
implies that k ≤ αu + (m − αu)/2. Hence

k
m

≤ αu + (m − αu)/2
m

= 1
2
+ αu

2m

≤ 1
2
+ m/s

2m
= 1

2
+ 1

2s
= s + 1

2s
. (2)

We can only have equality in (2) when αi = m/s for all
i ∈ {1, 2, . . . , p}, which implies that all cells in every server
are singletons. But then the span of a subset of servers contains
xi if and only if it contains server with a cell xi , and so k ≤
αi = m/s. But this implies that the virtual server rate k/m
of the array code is at most 1/s = 2/2s. This contradicts
the assumption that the virtual server rate of the array code
is k/m = (s + 1)/2s, since s > 1. So k/m < (s + 1)/2s,
as required.

For non-trivial schemes we require that p > t , so p = t+d
for some positive integer d . Since p = st , we see that s =
1+ d/t . We now provide a bound on g(s, t) in terms of this
integer d:

Theorem 4. For any integer t ≥ 2 and any positive integer
d, we have

g(1+ d
t
, t) ≤ (2d + 1)t + d2

(t + d)(2d + 1)
= 1 − d2 + d

(t + d)(2d + 1)
.

Proof. Suppose we have a [t × m, p] k-PIR array code with
p = t + d . We aim to provide an upper bound on the virtual
server rate k/m of this code.
For each i ∈ {1, 2, . . . , p}, let S(1)i , . . . , S(ki)i ⊆

{1, 2, . . . ,m} be disjoint sets of servers, chosen so that the
cells in each subset of servers span a subspace containing xi .
We choose these subsets so that ki is as large as possible
subject to this condition; so k = min{k1, k2, . . . , kp} ≤
(
∑p

i=1 ki)/p = (
∑p

i=1 ki)/(t + d). To prove the theorem,
which asks for an upper bound on k/m, it suffices to show
that

p∑

i=1

ki ≤ (2d + 1)t + d2

2d + 1
m.

Without loss of generality, we may assume that when server
j contains a singleton entry xi then { j} is one of the subsets
S(1)i , . . . , S(ki)i .
We say that a server is singleton if all its cells are singletons;

otherwise we say that a server is non-singleton. Let # be the
number of singleton servers, and let r be the number of non-
singleton servers. So # + r = m.

For i ∈ {1, 2, . . . , p}, let #i be the number of singleton
servers with a cell equal to xi , and let ri be the number
of non-singleton servers with a cell equal to xi . Since every

singleton server contains t distinct singleton cells, and every
non-singleton server contains at most t − 1 singleton cells,
we see that

∑p
i=1 #i = t# and

∑p
i=1 ri ≤ (t − 1)r .

Let fi be the number of sets in the list S(1)i , . . . , S(ki)i that
are of cardinality 2 or more, but contain at least one singleton
server. None of the sets counted by fi contain a server with a
cell xi , since the sets have cardinality at least 2. Hence fi ≤
− #i . Every set counted by fi must involve a non-singleton
server, as cells of the form xu for u)= i can never span a space
containing xi . Moreover, the non-singleton servers involved
cannot contain xi as an entry, so fi ≤ r − ri .

When i ∈ {1, 2, . . . , p} is fixed, there are exactly #i + ri
sets S(j)i of size 1, and (by definition) there are fi sets S(j)i
that involve singleton servers. Every remaining set of the form
S(j)i must involve at least 2 non-singleton servers, and so there
are at most (r − ri − fi)/2 sets that remain. Hence

ki ≤ #i+ri + fi+(r − ri − fi)/2 = #i + r/2 + ri/2 + fi/2.

(3)

Since fi ≤ r − ri , we see that (3) implies

ki ≤ #i + r. (4)

Moreover, since fi ≤ # − #i , we see that (3) implies

ki ≤ (# + #i)/2+ (r + ri)/2 = m/2+ #i/2 + ri/2. (5)

Our proof now splits into two cases. First suppose that
r ≤ dm/(2d + 1). The bound (4) implies that

p∑

i=1

ki ≤
p∑

i=1

#i + pr = t# + pr = t# + (t + d)r = tm + dr.

The right hand side is maximized when r is as large as
possible, in other words when r = dm/(2d + 1), and so

p∑

i=1

ki ≤ tm + d2m/(2d + 1) = t (2d + 1)+ d2

2d + 1
m,

as required.
Now suppose that r ≥ dm/(2d + 1). Then (5) implies that

p∑

i=1

ki ≤ pm/2+
p∑

i=1

#i/2+
p∑

i=1

ri/2

≤ pm/2+ t#/2+ (t − 1)r/2

= ((p + t)m − r)/2.

The right hand side is maximized when r is as small as
possible, in other words when r = dm/(2d + 1). So, since
p = d + t ,

p∑

i=1

ki ≤ (p + t)m/2 − (d/(2d + 1))m/2

= (d + 2t)(2d + 1) − d
2(2d + 1)

m

= t (2d + 1)+ d2

2d + 1
m,

as required.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 08,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

6140 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 10, OCTOBER 2019

Corollary 1. For any positive integers δ and τ , such that
gcd(δ, τ) = 1 and for every integer # ≥ 1 we have

g(1+ δ

τ
, t) ≤ #δ2 + τ + 2#t

2#δ2 + δ + τ + 2#t
,

where t = #τ .

II. LOWER BOUNDS ON THE VIRTUAL SERVER RATE

In the following subsections we will present some construc-
tions for PIR array codes. All of the constructions will be of a
similar flavor: servers will be divided into two or more types,
and much of the work will be to show how the servers that
do not store a part xi may be paired up so that each pair can
together recover xi . In order to accomplish this, we will use
Hall’s marriage Theorem [19] on a suitably defined graph:

Theorem 5. A finite bipartite graph G = (V1 ∪ V2, E) has a
perfect matching if for each subset X of V1, the neighborhood
of X in V2 has size at least |X |.
Corollary 2. A finite regular bipartite graph has a perfect
matching.

A. Codes With Optimal Virtual Server Rates When 1 < s ≤ 2

The only integer value of s which is not covered by the
PIR array codes in [14] is s = 2. Non-integer values for
s were not considered at all. In this subsection we present
constructions for PIR array codes when s is a rational number
with 1 < s ≤ 2. The construction will be generalized in
Subsection II-B, where s is any rational number greater than
1, but the special case considered here deserves separate
attention for three reasons: its description is simpler than
its generalization; the constructed PIR array code attains the
bound of Theorem 4, while we do not have a proof of similar
result for the generalization; and finally the analysis is slightly
different and much simpler.
Note that the number p = st of parts of the database must

be an integer. In particular, if we write p = t + d for some
positive integer d , we have that s = p/t = 1 + d/t , and so
1 ≤ d ≤ t .

Construction 1. (s = 1 + d/t and p = t + d for t > 1, d a
positive integer, 1 ≤ d ≤ t).
Let ϑ be the least common multiple of d and t . There are

two types of servers. Servers of Type A store t singletons.
Each possible t-subset of the p parts occurs ϑ/d times as the
set of singleton cells of a server, so there are

(p
t

)
ϑ/d servers

of Type A. Each server of Type B has t−1 singleton cells; the
remaining cell stores the sum of the remaining p − (t − 1) =
d+1 parts. Each possible (t −1)-set of singletons occurs ϑ/t
times in the set of servers of Type B, so there are

(p
t−1

)
ϑ/t

servers of Type B.

Theorem 6. For any given t > 1 and 1 ≤ d ≤ t ,

g(1+ d/t, t) ≥ (2d + 1)t + d2

(t + d)(2d + 1)
.

Proof. The total number of servers in Construction 1 is
m =

(t+d
t

)
ϑ/d +

(t+d
d+1

)
ϑ/t . We now calculate k such that

Construction 1 has the k-PIR property. To do this, we compute

for each i , 1 ≤ i ≤ p, a collection of pairwise disjoint sets of
servers, each of which can recover the part xi .

There are
(t+d−1

t−1

)
ϑ/d servers of Type A containing xi as

a singleton cell. Let V1 be the set of
(t+d−1

t

)
ϑ/d remaining

servers of Type A. There are
(t+d−1

t−2

)
ϑ/t servers of Type

B containing xi as a singleton cell. Let V2 be the set of(t+d−1
t−1

)
ϑ/t remaining servers of Type B.

We define a bipartite graph G = (V1 ∪ V2, E) as follows.
Let v1 ∈ V1 and v2 ∈ V2. Let X1 ⊆ {x1, x2, . . . , xp} be the set
of t singleton cells of the server v1. Let X2 ⊆ {x1, x2, . . . , xp}
be the parts involved in the non-singleton cell of the server v2.
(So X2 is the set of d + 1 parts that are not singleton cells
of v2.) Since each part appears in each server of Type B,
either as a singleton or in the cells which stores a sum of
d + 1 parts, it follows that that xi ∈ X2. We draw an edge
between v1 and v2 exactly when X2 \ {xi } ⊆ X1. Note that v1
and v2 are joined by an edge if and only if the servers v1 and
v2 can together recover xi .
The degrees of the vertices in V1 are all equal; the same is

true for the vertices in V2. Moreover, |V1| =
(t+d−1

t

)
ϑ/d =(t+d−1

t−1

)
ϑ/t = |V2|. So G is a regular graph, and hence by

Corollary 2 there exists a perfect matching in G. The edges
of this perfect matching form |V1| disjoint sets of servers, each
of which can recover xi . Thus we may take

k =
(
t + d − 1
t − 1

)
ϑ/d +

(
t + d − 1
t − 2

)
ϑ/t

+
(
t + d − 1

t

)
ϑ/d

= m −
(
t + d − 1

t

)
ϑ/d.

Finally, some simple algebraic manipulation shows us that

g(1+ d/t, t) ≥ k
m

= (2d + 1)t + d2

(t + d)(2d + 1)
.

Combining Theorems 4 and 6, we find the following.

Corollary 3.

(i) For any given t and d, 1 ≤ d ≤ t , when s = 1 + d/t
we have

g(s, t) =1 − d2 + d
(t + d)(2d + 1)

= t
t + d

+ d2

(t + d)(2d + 1)

= s + 1+ 1/d
(2+ 1/d)s

.

(ii) For any rational number 1 < s ≤ 2, we have g(s) =
(s + 1)/(2 s).

(iii) g(2, t) = (3t + 1)/(4t + 2).

Proof. Theorems 4 and Theorem 6 directly establish the first
two equalities in Part (i) of the corollary. The final equality in

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 08,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

BLACKBURN AND ETZION: PIR ARRAY CODES WITH OPTIMAL VIRTUAL SERVER RATE 6141

Part (i) follows from the substitution s = 1+ d/t = (d + t)/t :

g(s, t) = 1
s
+ d2

st (2d + 1)
= 1

s
+

d
t

s(2 + 1
d)

= 1
s
+ s − 1

s(2 + 1
d)

= s + 1+ 1
d

(2+ 1
d)s

.

As t and d tend to infinity with d/t fixed, the value of s
does not change but we see that g(s, t) → (s+ 1)/(2 s). This
establishes Part (ii) of the corollary. The last part (iii) can be
readily verified.

Corollary 3 shows that the Construction 1 has optimal
virtual server rate. However, we note that the number of
servers used for this code is large. PIR array codes with a
smaller number of servers are more interesting for applica-
tions. We now present two constructions when d = 1 that
require a smaller, and so more practical, number of servers.

Construction 2. (s = 1+ 1/t , p = t + 1, where t is odd)
There are two types of servers. There are t + 1 servers of

Type A, with t singleton cells. (So exactly one part is not
stored in each Type A server.) There are (t + 1)/2 servers of
Type B. The j th server of Type B stores the sum x2 j−1+ x2 j
in one cell, and the remaining t − 1 parts (those not equal to
x2 j−1 or x2 j) as singleton cells.

To recover xi in Construction 2, we see that there are there
are t servers of Type A which store xi in one of their cells as
a singleton, and (t − 1)/2 servers of Type B which store xi
as a singleton. The only server of Type B that does not store
xi as a singleton stores either xi−1 + xi or xi + xi+1. But this
server can be paired with the server of Type A that does not
store xi : the Type A server stores xi−1 or xi+1 as appropriate,
so this pair of servers can together recover xi . Thus, in this
case m = t + 1+ (t + 1)/2 = (3t + 3)/2, and k = (3t + 1)/2.
Thus, k/m = (3t + 1)/(3t + 3).

Construction 3. (s = 1+ 1/t , p = t + 1, where t is even)
There are two types of servers. There are 2(t+1) servers of

Type A, each storing t singletons, with one part not stored in
each server. Each part fails to be stored on exactly two servers
of Type A. There are t + 1 servers of Type B, where the j th
server stores x j + x j+1 (subscripts taken modulo t+1) in one
cell, and the remaining t − 1 parts as singleton cells.

To reconstruct xi using the PIR array code of Construc-
tion 3, we first note that there are 2t servers of Type A and
t − 1 servers of Type B which store xi as a singleton cell.
The two servers of Type B which do not store xi , store either
xi−1 + xi or xi + xi+1: they can each be paired with one
of the two servers of Type A that does not store xi as a
singleton, so both pairs can compute xi . Hence, we can take
k = 2t + (t − 1)+ 2 = 3t + 1. Since m = 3t + 3, we find that
k/m = (3t + 1)/(3t + 3).
To summarize, the virtual server rates of the PIR array codes

of Constructions 2 and 3 attain the upper bound of Theorem 4
with a small number of servers. (In fact, it can be proved that
in these constructions we have the smallest possible number
of servers.) In a recent paper [45] which is based on the ideas

presented in this paper, the authors present some constructions
with smaller number of server and optimal virtual server rate,
where t > d2 − d .

B. A General Construction

Construction 1 can be generalized in a way that will work
for any rational number s > 1 and any integer t such that p =
st is an integer. This generalized construction is presented in
this subsection. For simplicity we will define and demonstrate
it first for integer values of s and later explain the modification
needed for non-integer values of s.
1) The Construction When s Is an Integer: Let s and t

be integers with s > 1 and t > 1, and let p = st . Let
ξ1, ξ2, . . . , ξs be positive integers such that

(
p − t

(r − 1)t + 1

)
ξr =

(
p − t
r t

)
ξr+1 for 2 ≤ r ≤ s − 1,

(6)

(s − 1)ξ1 =
(
p − t
t

)
ξ2. (7)

Note that such integers certainly exist. (Indeed, in greater
generality, given s − 1 equations of the form σrξr = ρrξr+1
where r = 1, 2, . . . , s − 1 and where σr and ρr are positive
integers, setting ξr =

∏r−1
j=1 σ j

∏s−1
j=r ρ j gives a solution to (6)

and (7).) In most situations we would like the integers ξr to be
as small as possible. So if the ξr have a non-trivial common
factor d , we may divide all the integers ξr by d to produce
another, smaller, solution.

Construction 4. (s an integer, s > 1)
Let ξ1, ξ2, . . . , ξs be the integers chosen above. There are s

types of servers: types T1,T2, . . . ,Ts . Servers of Type T1 have
only singleton cells. Each subset of t parts occurs ξ1 times
as the cells of a Type T1 server, so there are ξ1

(p
t

)
servers of

Type T1. Servers of Type Tr with r ≥ 2 store t − 1 singleton
cells together with a cell containing a sum of (r − 1)t + 1
of the remaining parts. Each possible subset of t − 1 parts
and sum of (r − 1)t + 1 parts occurs ξr times, so there are
ξr

(p
t−1

)(p−t+1
(r−1)t+1

)
servers of Type Tr .

Theorem 7. For any i ∈ {1, 2, . . . , p}, the servers in Con-
struction 4 that do not contain xi as a singleton may be paired
in such a way that each pair may recover xi .

Proof. For r ∈ {1, 2, . . . , s − 1}, let V r
1 be the set of Type Tr

servers whose storage does not depend on xi in any way. (So
for servers in V r

1 , the part xi does not occur as a singleton,
nor as a term in any sum.) For r ∈ {1, 2, . . . , s − 1}, let Vr

2
be the set of Type Tr+1 servers that do not store xi as a
singleton, but do contain xi as a term in their non-singleton
cell. These sets of servers are pairwise disjoint, and the union
of these sets is exactly the set of all servers not containing
xi as a singleton. (To check this, note that servers of Type
Ts involve all parts either as a singleton or as a summand in
their non-singleton cell.)
To prove the theorem, we will show that for r ∈

{1, 2, . . . , s − 1} the servers in V r
1 ∪ Vr

2 may be paired in
such a way that each pair may recover xi .

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 08,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

6142 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 10, OCTOBER 2019

Let r ∈ {1, 2, . . . , s − 1} be fixed. Define a bipartite
graph Gr with parts V r

1 ∪ V r
2 and edges defined as follows.

Let v1 ∈ V r
1 and v2 ∈ V r

2 . Let X1 ⊆ {x1, x2, . . . , xp} be
the set of r t parts that occur either as a singleton cell of
v1 or as a summand in any non-singleton cell of v1. Let
X2 ⊆ {x1, x2, . . . , xp} be the r t + 1 parts that are summands
of the non-singleton cell of v2. We draw an edge from v1 to
v2 exactly when X1 ∪ {xi } = X2.
Note that when v1 ∈ V r

1 and v2 ∈ V r
2 are joined by an edge,

then v1 and v2 can together recover xi . So to prove the theo-
rem, it suffices to show that the bipartite graph Gr has a perfect
matching. By Corollary 2, to show that Gr has a perfect match-
ing it is sufficient to prove that Gr is regular. Now, by symme-
try, the degrees of all vertices in V r

1 are equal; the same is true
for the vertices in V r

2 . So the theorem will follow if we can
show that |V r

1 | = |V r
2 | for r ∈ {1, 2, . . . , s − 1}. When r ≥ 2,

|V r
1 | = ξr

(
p − 1
t − 1

)(
p − t

(r − 1)t + 1

)

= ξr+1

(
p − 1
t − 1

)(
p − t
r t

)
by (6)

= |V r
2 |.

Moreover,

|V 1
1 | = ξ1

(
p − 1
t

)

= ξ1
p − 1 − (t − 1)

t

(
p − 1
t − 1

)

= ξ1(s − 1)
(
p − 1
t − 1

)
(since p = st)

= ξ2

(
p − 1
t − 1

)(
p − t
t

)
by (7)

= |V 1
2 |.

Hence |Vr
1 | = |V r

2 | for r ∈ {1, 2, . . . , s − 1}, and so the
theorem follows.

We now turn to finding the virtual server rate of this
construction. Let b be the number of servers containing xi as a
singleton. (Note that b does not depend on i .) Let c be half the
number of the remaining servers (in other words, the number
of pairs of remaining servers). So c = (m − b)/2. We may
take k = b+c, and so the virtual server rate of Construction 4
is k/m = (b + c)/(b + 2c). More explicitly, we have

b = ξ1

(
p − 1
t − 1

)
+

s∑

r=2

ξr

(
p − 1
t − 2

)(
p − t + 1

(r − 1)t + 1

)

=
(
p − 1
t − 2

) (

ξ1
p − t + 1
t − 1

+
s∑

r=2

ξr

(
p − t + 1

(r − 1)t + 1

))

and, using the notation of the proof of Theorem 7,

c =
s−1∑

r=1

|Vr
2 |

=
s−1∑

r=1

ξr+1

(
p − 1
t − 1

)(
p − t
r t

)

=
(
p − 1
t − 2

) (
s−1∑

r=1

ξr+1
p − t + 1
t − 1

(
p − t
r t

))

.

We note that the virtual server rate depends only on the ratio
between b and c, not on the values of b and c individually.
In particular, since all possible solutions ξr to (6) and (7)
are equal up to a scalar multiple, the virtual server rate does
not depend on our choice of solution ξr to these equations.
Moreover, we may divide both b and c by 1

t−1

(p−1
t−2

)
to obtain

the following expression for the virtual server rate:

Theorem 8. Let s and t be integers such that s ≥ 2 and
t ≥ 2. Let p = st. Let ξ1, ξ2, . . . , ξs be integers satisfying (6)
and (7). Then the virtual server rate of Construction 4 is
(β + γ)/(β + 2γ) where

β = ξ1(p − t + 1)+
s∑

r=2

(t − 1)ξr

(
p − t + 1

(r − 1)t + 1

)
and

γ = (p − t + 1)
s−1∑

r=1

ξr+1

(
p − t
r t

)
.

Of course the formula in Theorem 8 is not particularly
simple, but it can easily be used to calculate the virtual server
rate in any specific case. (The comment after (6) and (7) gives
values for the integers ξr that can be used.)
In a few cases, we can derive a simpler formula for the

virtual server rate by an explicit (but messy) calculation. For
example, when s = 3 we can choose ξ1 =

(2t−1
t−1

)
, ξ2 = 1 and

ξ3 =
(2t
t−1

)
to find that the construction has virtual server rate

(16t2 + 7t + 1)/(24t2 + 15t + 3), and so

Theorem 9.

g(3, t) ≥ 16 t2 + 7t + 1
24t2 + 15t + 3

.

Similarly, when s = 4 we may choose ξ1 = (t + 1)
(3t−1
t−1

)
,

ξ2 = (t + 1), ξ3 = 2t and ξ4 = 2t
(3t
t−1

)
, and show that the

construction has virtual server rate (120t3 + 59t2 + 12t +
1)/(192t3 + 128t2 + 36t + 4). In particular, we have the
following theorem:

Theorem 10.

g(4, t) ≥ 120t3 + 59 t2 + 12t + 1
192t3 + 128t2 + 36t + 4

.

To conclude this subsubsection we present Table I, the
virtual server rates obtained by Construction 4 for integers
2 ≤ s ≤ 6 and 1 ≤ t ≤ 13, which provide lower bounds on
g(s, t).

III. UPPER BOUNDS

2) The Construction When s is Not an Integer: Let s > 2
be a rational number that is not an integer. Let t be an integer
such that t > 1 and p = st is an integer. We take the
construction above, and modify the definition of the final type
of server. So we proceed as follows. Let ξ1, ξ2, . . . , ξ+s, be

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 08,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

BLACKBURN AND ETZION: PIR ARRAY CODES WITH OPTIMAL VIRTUAL SERVER RATE 6143

TABLE I

LOWER BOUNDS ON g(s, t)

integers satisfying the following equations:

ξ+s,−1

(
p − t

(+s, − 2)t + 1

)
= ξ+s, (8)

(
p − t

(r − 1)t + 1

)
ξr =

(
p − t
r t

)
ξr+1, 2 ≤ r ≤ +s, − 1, (9)

(p − t)ξ1 = t
(
p − t
t

)
ξ2. (10)

As before, it is clear that such integers ξr exist, and can be
easily computed.

Construction 5. (s a rational number, s not an integer, s > 2)
Let ξ1, ξ2, . . . , ξ+s, be the integers chosen above. There are +s,
types of servers: types T1, T2, . . . ,T+s,. Servers of Type Tr
where 1 ≤ r ≤ +s, − 1 are defined as in Construction 4.
So servers of Type T1 have only singleton cells, and each
subset of t parts occurs ξ1 times as the cells of a Type T1
server. There are ξ1

(p
t

)
servers of Type T1. Servers of Type Tr

with 2 ≤ r ≤ +s, − 1 store t − 1 singleton cells together with
a cell containing a sum of (r −1)t+1 of the remaining parts.
Each possible subset of t − 1 parts and sum of (r − 1)t + 1
parts occurs ξr times, so there are ξr

(p
t−1

)(p−t+1
(r−1)t+1

)
servers

of Type Tr . The final type of servers, those of Type T+s,,
have a slightly different definition: they store t − 1 singleton
cells together with a cell containing the sum of the p− (t−1)
remaining parts. Each possible subset of t−1 parts occurs ξ+s,
times as the singleton cells in a server of Type T+s,, so there
are ξ+s,

(p
t−1

)
servers of Type T+s,.

Theorem 11. For any i ∈ {1, 2, . . . , p}, the servers in
Construction 5 that do not contain xi as a singleton may be
paired in such a way that each pair may recover xi .

Proof. The proof is very similar to the proof of Theorem 7.
We construct +s,−1 bipartite graphs, whose vertices together
form a partition of the servers not containing xi as a singleton.
The graphs G1,G2, . . . ,G+s,−2 are defined as in the proof of
Theorem 7. But we also have a bipartite graph G+s,−1 whose
parts consist of the set V +s,−1

1 of servers of Type T+s,−1 not
involving xi , and the set V +s,−1

2 of Type T+s, that do not store
xi as a singleton. The edges of this graph are defined so that
v1 ∈ V +s,−1

1 and v2 ∈ V +s,−1
2 can jointly recover xi if they

are joined by an edge. (More concretely, if X1 is the set of

parts involved in a singleton or the sum stored by v1, and
X2 is the set of parts involved in the sum stored by v2, then
we join v1 and v2 by an edge whenever X2 ⊆ X1 ∪ {xi }.)
The equality (8) shows that both parts of the graph contain
the same number of vertices, and so the graph has a perfect
matching. All other parts of the proof are essentially identical
to the proof of Theorem 7, and so we omit them.

The following theorem provides an expression for the virtual
server rate of Construction 5. It can be proved in the same way
as Thereom 8.

Theorem 12. Let s > 2 be a rational number, not an integer.
Let t be an integer such that p = st is an integer. Let
ξ1, ξ2, . . . , ξ+s, be integers satisfying (8), (9) and (10). Then
the virtual server rate of Construction 5 is (β + γ)/(β + 2γ)
where

β = ξ1(p − t + 1)

+
+s,−1∑

r=2

(t − 1)ξr

(
p − t + 1

(r − 1)t + 1

)
+ (t − 1)ξ+s, and

γ = (p − t + 1)




+s,−2∑

r=1

ξr+1

(
p − t
r t

)
+ ξ+s,



 .

Remark 1. We should like to remark that for most rational
numbers greater than 2 we can provide constructions with
the same virtual server rate having fewer servers. We did not
present these constructions as they are messy, the technique
is essentially the same, the improvement on the number of
servers is not dramatic, and we cannot prove the minimality
of the number of servers in these constructions.

A. The Asymptotic Virtual Server Rate

We believe that Constructions 4 and 5 have optimal virtual
server rates for their parameters s and t . We have not proved
this, but the theorem below shows that their virtual server
rates are asymptotically optimal as t → ∞. The proof of the
theorem uses a nice symmetry argument, which is an idea
from [45].

Theorem 13. Let s be a rational number such that s > 1.
Then g(s) = (s + 1)/2s.

Proof. We may assume that s > 2, by Corollary 3(ii).
The upper bound on g(s) follows by Theorem 3. To show

the lower bound, let t be such that p = st is an integer.
We note that in Construction 4 and 5 every server stores at
least t − 1 singleton cells, and so there are at least (t − 1)m
singleton cells amongst the cells of the m servers. Since both
Construction 4 and 5 are symmetrical in i ∈ {1, 2, . . . , p}, this
means that there are at least (t − 1)m/p cells storing xi as a
singleton. Theorem 7 or Theorem 11 shows that for every i ∈
{1, 2, . . . , p} the servers not containing xi as a singleton may
be paired in such a way that each pair may recover xi . Thus

k ≥ (t − 1)m/p + 1
2
(m − (t − 1)m/p)

= m
2
(1+ (t − 1)/(st)).

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 08,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

6144 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 10, OCTOBER 2019

Hence the virtual server rate k/m of the construction satisfies

k/m ≥ 1
2
(1+ (t − 1)/(st)) → 1

2
(1+ (1/s) = (s + 1)/2s

as t → ∞ with s fixed. This provides the lower bound on
g(s), as required.

IV. CONCLUSIONS AND PROBLEMS FOR

FUTURE RESEARCH

We have constructed k-PIR array codes with good virtual
server rates for all admissible pairs (s, t), where the database
is divided into st parts, and each server stores t linear combi-
nations of parts in its cells. We have also proved upper bounds
on the virtual server rate of a PIR array code. These results
are strong enough to determine the best virtual server rate of a
PIR array code when 1 < s ≤ 2 for all admissible choices of t .
Moreover, the results determine the asymptotic value for the
virtual server rate for all rational values of s, when t is allowed
to tend to infinity. These results imply analogous results for
locally repairable codes with high availability.
The research on PIR array codes is far from being complete.

Two problems, in the direction taken in this paper, for future
research are enumerated below.
1) When s > 2 our upper bounds on the optimal virtual

server rate fall short of our lower bounds, although the
gap tends to zero as t grows. We would like to see
improved upper bounds on g(s, t) when s > 2.

2) For many pairs (s, t), our constructions that achieve
optimal virtual server rate have k and m impractically
large. Hence we ask: what is the smallest k for which
an optimal virtual server rate can be obtained? More
generally, we would like to have more detailed bounds
that explain the tradeoff between the parameters t , k,
and m, for a fixed value of s.

As a final comment, we formulate our problem and con-
structions in terms of subspaces. We can consider the linear
combination of parts in a cell as a vector in Fp

2 , with a one in
position i if and only if xi is part of the linear combination.
This is the characteristic vector of the linear combination.
Since we assumed without loss of generality that the t linear
combinations in the cells of any given server are linearly
independent, it follows that the related vectors form a basis
for a t-dimensional subspace of Fp

2 . A set M of m such
t-dimensional subspaces of Fp

2 form a k-PIR array code if
it satisfies the following requirement: There exists a basis B
of Fp

2 and a set S which consists of k subsets of disjoint
t-dimensional subspaces from M, such that each vector of
B is contained in the linear span derived from the subspaces
of each one of the elements of S. This formulation translates
our k-PIR array problems into a problem in the Grassmannian
G2(p, t). To our knowledge there is only one work [34], [35]
which considers constructions of locally repairable codes with
large availability based on subspace codes.
We have not used this framework to obtain new k-PIR array

codes, but this new perspective of the problem might have its
own interest as Grassmannian codes have gained lot of interest
due to applications related to error-correcting codes in random

network coding [7]–[10], [25] and in reducing the alphabet
size required for the solution of multicast networks [11], [12].
Moreover, there has been some interesting work done on codes
for distributed storage with subspaces [17], [18], [21], [22],
[27], [28], [41], [42]. We believe that this direction of research
has lot of potential.

ACKNOWLEDGEMENT

The authors are indebted to Eitan Yaakobi for many helpful
discussions and providing his drafts during this research. They
are also indebted to the two anonymous reviewers for their
insightful comments.

REFERENCES

[1] H. Asi and E. Yaakobi, “Nearly optimal constructions of PIR and batch
codes,” IEEE Trans. Inf. Theory, vol. 65, no. 2, pp. 947–964, Feb. 2019.

[2] D. Augot, F. Levy-Dit-Vehel, and A. Shikfa, “A storage-efficient and
robust private information retrieval scheme allowing few servers,” in
Cryptology and Network Security. Cham, Switzerland: Springer, 2014,
pp. 222–239.

[3] S. R. Blackburn and T. Etzion, “PIR array codes with optimal PIR rates,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 2658–2662.

[4] S. R. Blackburn, T. Etzion, and M. B. Paterson, “PIR schemes with
small download complexity and low storage requirements,” Sep. 2016,
arXiv:1609.07027. [Online]. Available: https://arxiv.org/abs/1609.07027

[5] T. H. Chan, S. Ho, and H. Yamamoto, “Private information retrieval for
coded storage,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2015,
pp. 2842–2846. [Online]. Available: https://arxiv.org/abs/1410.5489

[6] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981, 1998.

[7] T. Etzion and N. Silberstein, “Error-correcting codes in projective spaces
via rank-metric codes and Ferrers diagrams,” IEEE Trans. Inf. Theory,
vol. 55, no. 7, pp. 2909–2919, Jul. 2009.

[8] T. Etzion and N. Silberstein, “Codes and designs related to lifted
MRD codes,” IEEE Trans. Inf. Theory, vol. 59, no. 2, pp. 1004–1007,
Feb. 2013.

[9] T. Etzion and L. Storme, “Galois geometries and coding theory,” Des.,
Codes, Cryptogr., vol. 78, pp. 311–350, Jan. 2016.

[10] T. Etzion and A. Vardy, “Error-correcting codes in projective space,”
IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 1165–1173, Feb. 2011.

[11] T. Etzion and A. Wachter-Zeh, “Vector network coding based on
subspace codes outperforms scalar linear network coding,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jul. 2016, 1949–1953.

[12] T. Etzion and A. Wachter-Zeh, “Vector network coding based on
subspace codes outperforms scalar linear network coding,” IEEE Trans.
Inf. Theory, vol. 64, no. 4, pp. 2460–2473, Apr. 2018.

[13] A. Fazeli, A. Vardy, and E. Yaakobi, “Codes for distributed PIR with
low storage overhead,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2015, pp. 2852–2856.

[14] A. Fazeli, A. Vardy, and E. Yaakobi, “PIR with low storage overhead:
Coding instead of replication,” May 2015, arXiv:1505.06241. [Online].
Available: https://arxiv.org/abs/1505.06241

[15] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk, “Private
information retrieval from coded databases with colluding servers,”
SIAM J. Appl. Algebra Geometry, vol. 1, no. 1, pp. 647–664, 2012.

[16] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality
of codeword symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11,
pp. 6925–6934, Nov. 2012.

[17] S. Goparaju and R. Calderbank, “A new sub-packetization bound for
minimum storage regenerating codes,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2013, pp. 1616–1620.

[18] S. Goparaju, I. Tamo, and R. Calderbank, “An improved sub-
packetization bound for minimum storage regenerating codes,” IEEE
Trans. Inf. Theory, vol. 60, no. 5, pp. 2770–2779, May 2014.

[19] P. Hall, “On representatives of subsets,” J. London Math. Soc., vol. 10,
pp. 26–30, Jan. 1935.

[20] P. Huang, E. Yaakobi, H. Uchikawa, and P. H. Siegel, “Linear Locally
Repairable Codes with Availability,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2015, pp. 1871–1875.

[21] H. D. L. Hollmann, “Storage codes—Coding rate and repair local-
ity,” in Proc. Int. Conf. Comput., Netw. Commun. (ICNC), Jan. 2013,
pp. 830–834.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 08,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

BLACKBURN AND ETZION: PIR ARRAY CODES WITH OPTIMAL VIRTUAL SERVER RATE 6145

[22] H. D. L. Hollmann and W. Poh, “Characterizations and construction
methods for linear functional-repair storage codes,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jul. 2013, pp. 336–340.

[23] G. M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar, “Codes with
local regeneration and erasure correction,” IEEE Trans. Inf. Theory,
vol. 60, no. 8, pp. 4637–4660, Aug. 2014.

[24] G. Kamath et al., “Explicit MBR all-symbol locality codes,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2013, 504–508.

[25] R. Kötter and F. R. Kschischang, “Coding for errors and erasures in
random network coding,” IEEE Trans. Inf. Theory, vol. 54, no. 8,
pp. 3579–3591, Aug. 2008.

[26] E. Kushilevitz and R. Ostrovsky, “Replication is not needed: Single
database, computationally-private information retrieval,” in Proc. IEEE
38th Symp. Found. Comput. Sci. (FOCS), Oct. 1997, pp. 364–373.

[27] N. Raviv and T. Etzion, “Distributed storage systems based on inter-
secting subspace codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2015, pp. 1462–1466.

[28] N. Raviv, N. Silberstein, and T. Etzion, “Constructions of high-rate
minimum storage regenerating codes over small fields,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jul. 2016, pp. 61–65.

[29] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath, “Opti-
mal locally repairable and secure codes for distributed storage systems,”
IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 212–236, Jan. 2014.

[30] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath,
“Locality and availability in distributed storage,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jun./Jul. 2014, pp. 681–685.

[31] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath,
“Locality and availability in distributed storage,” IEEE Trans. Inf.
Theory, vol. 62, no. 8, pp. 4481–4493, Sep. 2016.

[32] S. Rao and A. Vardy, “Lower bound on the redundancy of
PIR codes,” May 2016, arXiv:1605.01869. [Online]. Available:
https://arxiv.org/abs/1605.01869

[33] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit of
download ensures perfectly private information retrieval,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jun./Jul. 2014, pp. 856–860.

[34] N. Silberstein, T. Etzion, and M. Schwartz, “Locality and availability of
array codes constructed from subspaces,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2017, pp. 829–833.

[35] N. Silberstein, T. Etzion, and M. Schwartz, “Locality and availability
of array codes constructed from subspaces,” IEEE Trans. Inf. Theory,
vol. 65, no. 5, pp. 2648–2660, May 2019.

[36] H. Sun and S. A. Jafar, “Private information retrieval from MDS coded
data with colluding servers: Settling a conjecture by Freij-Hollanti
et al.,” IEEE Trans. Inf. Theory, vol. 64, no. 2, pp. 1000–1022, Feb. 2018.

[37] R. Tajeddine and S. E. Rouayheb, “Private information retrieval from
MDS coded data in distributed storage systems,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jul. 2016, pp. 1411–1415.

[38] R. Tajeddine, O. W. Gnilke, and S. E. Rouayheb, “Private information
retrieval from MDS coded data in distributed storage systems,” IEEE
Trans. Inf. Theory, vol. 64, no. 11, pp. 7081–7093, Nov. 2018. [Online].
Available: https://arxiv.org/abs/1602.01458

[39] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, C. Hollanti,
and S. El Rouayheb, “Private information retrieval schemes for coded
data with arbitrary collusion patterns,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2017, pp. 1908–1912.

[40] I. Tamo and A. Barg, “Bounds on locally recoverable codes with
multiple recovering sets,” in Proc. IEEE Int. Symp. Inform. Theory
(ISIT), Jun. 2014, pp. 691–695.

[41] Z. Wang, I. Tamo, and J. Bruck, “Long MDS codes for optimal repair
bandwidth,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), Jul. 2012,
pp. 1182–1186.

[42] I. Tamo, Z. Wang, and J. Bruck, “Access versus bandwidth in codes
for storage,” IEEE Trans. Inf. Theory, vol. 60, no. 4, pp. 2026–2037,
Apr. 2014.

[43] M. Vajha, V. Ramkumar, and R. V. Kumar, “Binary, shortened projective
Reed Müller codes for coded private information retrieval,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 2648–2652.

[44] A. Wang, Z. Zhang, and M. Liu, “Achieving arbitrary locality and
availability in binary codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2015, pp. 1866–1870.

[45] Y. Zhang, X. Wang, N. Wei, and G. Ge, “On private information
retrieval array codes,” Sep. 2016, arXiv:1609.09167. [Online]. Available:
https://arxiv.org/abs/1609.09167

Simon R. Blackburn (SM’19) was born in Beverley, Yorkshire, England
in 1968. He received a BSc in Mathematics from Bristol in 1989, and a
DPhil in Mathematics from Oxford in 1992.

He has worked in the Mathematics Department at Royal Holloway Univer-
sity of London since 1992, and is currently a Professor of Pure Mathematics.
His research interests include algebra, combinatorics and associated applica-
tions in cryptography and communication theory.

Tuvi Etzion (M’89–SM’94–F’04) was born in Tel Aviv, Israel, in 1956.
He received the B.A., M.Sc., and D.Sc. degrees from the Technion–Israel
Institute of Technology, Haifa, Israel, in 1980, 1982, and 1984, respectively.
From 1984 he held a position in the Department of Computer Science at
the Technion, where he now holds the Bernard Elkin Chair in Computer
Science. During the years 1985–1987 he was Visiting Research Professor
with the Department of Electrical Engineering–Systems at the University
of Southern California, Los Angeles. During the summers of 1990 and
1991 he was visiting Bellcore in Morristown, New Jersey. During the years
1994–1996 he was a Visiting Research Fellow in the Computer Science
Department at Royal Holloway University of London, Egham, England. He
also had several visits to the Coordinated Science Laboratory at University
of Illinois in Urbana-Champaign during the years 1995–1998, two visits to
HP Bristol during the summers of 1996, 2000, a few visits to the Department
of Electrical Engineering, University of California at San Diego during the
years 2000–2017, several visits to the Mathematics Department at Royal
Holloway University of London, during the years 2007–2017, and a few
visits to the School of Physical and Mathematical Science (SPMS), Nanyang
Technological University, Singapore, during the years 2016–2019.

His research interests include applications of discrete mathematics to
problems in computer science and information theory, coding theory, network
coding, and combinatorial designs.

Dr. Etzion was an Associate Editor for Coding Theory for the IEEE
TRANSACTIONS ON INFORMATION THEORY from 2006 till 2009. From
2004 to 2009, he was an Editor for the Journal of Combinatorial Designs.
From 2011 he is an Editor for Designs, Codes, and Cryptography, and from
2013 an Editor for Advances of Mathematics in Communications.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 08,2020 at 20:17:31 UTC from IEEE Xplore. Restrictions apply.

