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PIR Schemes With Small Download Complexity
and Low Storage Requirements

Simon R. Blackburn

Abstract—In the classical model for (information theoreti-
cally secure) Private Information Retrieval (PIR) due to Chor,
Goldreich, Kushilevitz and Sudan, a user wishes to retrieve one
bit of a database that is stored on a set of n servers, in such a way
that no individual server gains information about which bit the
user is interested in. The aim is to design schemes that minimise
the total communication between the user and the servers. More
recently, there have been moves to consider more realistic models
where the total storage of the set of servers, or the per server
storage, should be minimised (possibly using techniques from
distributed storage), and where the database is divided into
R-bit records with R > 1, and the user wishes to retrieve one
record rather than one bit. When R is large, downloads from
the servers to the user dominate the communication complexity
and so the aim is to minimise the total number of downloaded
bits. Work of Shah, Rashmi and Ramchandran shows that at
least R 4+ 1 bits must be downloaded from servers in the worst
case, and provides PIR schemes meeting this bound. Sun and
Jafar have considered the download cost of a scheme, defined as
the ratio of the message length R and the total number of bits
downloaded. They determine the best asymptotic download cost
of a PIR scheme (as R — oo) when a database of k& messages
is stored by n servers. This paper provides various bounds on
the download complexity of a PIR scheme, generalising those
of Shah et al. to the case when the number n of servers is
bounded, and providing links with classical techniques due to
Chor et al. The paper also provides a range of constructions
for PIR schemes that are either simpler or perform better than
previously known schemes. These constructions include explicit
schemes that achieve the best asymptotic download complexity
of Sun and Jafar with significantly lower upload complexity, and
general techniques for constructing a scheme with good worst
case download complexity from a scheme with good download
complexity on average.

Index Terms—Private information retrieval, PIR schemes,
distributed storage.
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I. INTRODUCTION
A. The PIR Model

N THE classical model for private information retrieval

(PIR) due to Chor et al. [14], a database X is replicated
across n servers Si, S2, ..., S,. A user wishes to retrieve one
bit of the database, so sends a query to each server and
downloads their reply. The user should be able to deduce the
bit from the servers’ replies. Moreover, no single server should
gain any information on which bit the user wishes to retrieve
(without collusion). The resulting protocol is known as an
(information-theoretic) PIR scheme; there are also computa-
tional variants of the security model [30]. The goal of PIR is
to minimise the total communication between the user and the
servers.

In practice, the assumption that the user only wishes to
retrieve one bit of the database, and the assumption that there
is no shortage of server storage seem unrealistic. Because of
this, many recent papers assume that the database X consists of
k records, each of which is R bits in length, so that the number
of possible databases is 25%. We denote the value of Record
i by X;, and we write X;; for the jth bit of X;. The aim of
the protocol is for the user to retrieve the whole of X;, rather
than a single bit. We also, following Shah et al. [38], drop
the assumption that the whole database is replicated across
the n servers S, Sz, ..., S, and so, for example, there is the
possibility of using techniques from coding theory in general
and from distributed storage codes in particular to reduce the
total storage of the scheme. No restrictions are made on
the particular encoding used to distribute the database across
the servers other than to assume it is deterministic, i.e. that
there is a unique way to encode each database. This important
generalisation of the model has led to very interesting recent
work which we discuss in Subsection I-C below. Our work is a
follow-up to [38] with modifications, improvements, comple-
mentary results, simplifications, constructions, and additional
aspects which were not considered in their paper.

More combinatorially, we define a private information
retrieval scheme as follows.

Definition 1.1 (PIR scheme). Suppose a database X is
distributed across n servers Si, S»,...,S,. A user who
wishes to learn the value X, of Record ¢ submits a query
(91,92, ---,qn). Foreachr € {1,2,...,n}, server S, receives
qr and responds with a value ¢, that depends on ¢, and on
the information stored by S,. The user receives the response
(c1,¢2,...,cp). This system is a private information retrieval
(PIR) scheme if the following two properties are satisfied:
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o (Privacy) For r = 1,2, ...,n the value g, received by
server S, reveals no information about which record is
being sought.

o (Correctness) Given a response (ci,c¢2,...,¢p) to a
query (q1, 42, ---,qn) for Record ¢, the user is unam-
biguously able to recover the value X, of this record.

Note that while the query is drawn randomly according
a pre-specified distribution on a set of potential queries,
the response is assumed to be deterministic.

Example I.1. In the case of a single server, a trivial method
for achieving PIR is for the user to download the entire k R-bit
database.

Chor, Goldreich, Kushilevitz and Sudan showed that in the
case of single-bit records (R = 1), if there is a single server
then PIR is only possible if the total communication is at
least k bits (i.e. the size of the entire database) [14], and
so the solution above is best possible. We are interested in
finding solutions such as the scheme below, which transmit
significantly fewer than kR bits.

Example 1.2. [14] Suppose there are two servers, each storing
the entire database. Suppose R = 1.
o A user who requires Record ¢ chooses a k-bit string
(a1, 02, ..., 0r) uniformly at random.
o Server 1 is requested to return the value ¢; = @?:1 a; X,

and Server 2 is requested to return c; = (@le piX i),

where
{ai @1 wheni=¢,

hi= o otherwise.
o The user computes c¢; @ ¢ to recover the value X, of
Record ¢.

The strings (a1, a2, ...,ar) and (B1, f2, ..., fx) are both
uniformly distributed, and are independent of the choice of
¢, hence neither server receives any information as to which
record is being recovered by the user.

We note that the scheme above works unchanged when the
records are R-bit strings rather than single bits. The download
complexity of the scheme, in other words the total number
of bits downloaded from the servers, is 2R. The upload
complexity is 2k, since each server receives a k-bit string
from the user. Thus the total communication of the scheme
is 2R + 2k bits, which is significantly less than kR bits for
most parameters.

Note that the upload complexity of this scheme does not
depend on R, and so is an insignificant proportion of the
total communication when R is large. This is a general phe-
nomenon: Chan et al. [13, Remark 2] observe the following.
Let m > 1 be an integer. Suppose we have an n-server PIR
scheme for a database of k records, each R bits long. Suppose
the scheme requires u upload bits and d download bits. Then
we can construct an n-server PIR scheme for a database of
k records, each mR bits long, which requires md bits of
download but still needs just u# bits to be uploaded. Note
that when m is large (so records are long) the communication
complexity of the new scheme is dominated by the download
complexity of the given scheme.

Because of the observation of Chan et al., it is vital to find
PIR schemes with low download complexity. We formalise the
download complexity as follows.

Definition I.2. A PIR scheme uses binary channels if the
response c; sent by server §; is a binary string of length
dj, where d; depends only on the query ¢; it receives. The
download complexity is the maximum of the sum Z?:l dj
over all possible queries (g1, g2, ..., qn)-

So the download complexity is the number of bits down-
loaded in the worst case. We emphasise that the length d; in
the definition above does not depend on the database X, but
could depend on the query ¢; received by server S;. We note
that we allow for the possibility that d; = 0, so the server
does not reply to the query. Finally, we note that if we know
that there are more than 2% distinct possibilities for ¢; as the
database varies, we may deduce that d; > x + 1. Although
it is possible to use non-binary channels for PIR as was
done recently (see Subsection I-C), we restrict our exposition
to PIR schemes using binary channels in this paper. Most
schemes in the literature before the work of [38] implicitly
use this model, as they use fields of characteristic 2 and
transmit strings of bits. This restricted model is implicit also
in Shah et al. [38] when a lower bound on the download
complexity is proved. This model is only required for those
results in Section II paper that are used to generalise their
bound. Although most results in the other sections can be
generalised for the non-binary case we prefer not to do so for
simplicity.

We should comment that, despite the observation of Chan
et al., we should not ignore upload complexity completely,
as there are scenarios (for example, when R is not so large)
when it might be dominant. Moreover, we cannot compare
the difficulty of uploading 2k bits with downloading 2R bits
just by comparing k and R, since we know (at least currently)
that in practice it takes much more time to upload a bit than
to download one. Of course, we don’t know how the speed
of downloading and uploading will change over time. But
the obvious consequence of the current situation and future
developments is to consider both upload and download com-
plexities separately, and not to ignore one of them completely.
This is something that will be done in this paper, although the
download complexity will be the main target for optimisation
since we generally assume that the size of the database is
(considerably) larger than the one bit of the classical PIR
model.

We continue to another important measure that has moti-
vated many papers in the last three years, after being
introduced by Shah et al. [38]:

Definition 1.3. Suppose server S, stores s, bits of information
about the database X.

o The per-server storage of the scheme is max{s, | r =
1,2,...,n}.

o The total storage of the scheme is Y _ sy

o The storage overhead of the scheme is the ratio between
the total storage and the total size of the records in the
database, i.e. kR.
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The classical model of PIR ignored storage issues: it was
assumed that there is enough storage to allow the replication
of the database at each server. But, with the quantity of
information stored today in data centres, storage is an issue
today and might be an important barrier in the future. Thus,
it is important to reduce the storage overhead as much as
possible, while keeping reliability, fast access, fast upload and
fast download at reasonable levels. This is the perspective of
the current paper, which is concerned with schemes whose
download complexity is as small as possible whilst keeping
the total storage at reasonable levels.

Finally, it should be noted that although most of the work in
this area is theoretical, there have been notable recent advances
in bridging the gap between theory and practice, e.g. [24], [54]
as we highlight in Subsection I-C.

B. Our Contributions

In Section II, we provide combinatorial results on the
structure of a PIR scheme with small download complexity:

o We generalise (Theorem II.2) a key theorem in the
foundational paper of Chor et al. [14], and use this result
to generalise the lower bound of R + 1 on download
complexity in [38]. The results imply (Theorem IL.5) that
an n-server PIR scheme must have download complexity
at least n”TlR when k& > [R/(n — 1)]. (This last result
can also be obtained as a corollary of a recent bound
due to Sun and Jafar [39].) These results provide a
bridge between classical PIR and the new models that
are assuming the retrieval of long records. Moreover
(as often happens with a combinatorial approach), some
extra structural information on schemes is provided: see
Theorem I1.3.

o We provide (Corollary I1.6, Theorem II.7) information
on the structure of a PIR scheme with minimal download
complexity R + 1. In particular, Theorem II.7 provides a
rigorous statement of [38, Theorem 1].

In Section III, we provide various constructions for PIR
schemes with low download complexity:

o In Subsection III-A, we provide two simple (R + 1)-
server PIR schemes with download complexity R + 1.
Both schemes have total storage which is quadratic in R.
The first scheme is a natural generalisation of the scheme
of Chor et al. given above. The second scheme is a close
variant of the quadratic total storage PIR scheme in [38],
which avoids having to design slightly different schemes
depending on the parity of R. This second scheme is to be
preferred due to its lower upload complexity. (Another,
more complex, PIR scheme with download complexity
R + 1 is considered in detail in [38]. This scheme
has small per-server storage, but requires an exponential
(in R) number of servers, and so has exponential total
storage.)

o In Subsection III-B, we describe an n-server PIR scheme
with download complexity -*5 R. The total storage of the
scheme is linear in R. This shows that for any € > 0 there
exists a PIR scheme with linear total storage and down-
load complexity at most (1 + €)R. (Schemes with linear

total storage, but with download complexity between 2R
and 4R, are given in [38].)

o We describe (Subsection III-C) schemes that provide
trade-offs between increasing the number of servers
and reducing the per-server storage of the scheme in
Subsection III-B.

o In Subsection III-D, we provide explicit schemes that
achieve optimal asymptotic download cost. The perfor-
mance of these schemes is equal to the inductively defined
schemes in Sun and Jafar [39], but the description of
these schemes is more concise, and the proof that they
are indeed PIR schemes is much more straightforward.

o Finally, in Subsection III-E, we explain an averaging
technique that allows a PIR scheme with good average
download complexity to be transformed into a scheme
with good download complexity in the worst case.

C. Context

We end this introduction with a discussion of some of the
related literature. (Many of these papers appeared after the
conference version of our paper [11] was posted. We omit
results submitted after our submission of this paper.)

Private information retrieval was introduced in [14], and has
been an active area ever since. See, for example, Yekhanin [55]
for a fairly recent survey.

The papers by Shah et al. [38] and (independently) by Augot
et al. [3] are the first to consider PIR models where the infor-
mation stored in the servers could be coded using techniques
from distributed storage. Whereas [38] is mainly concerned
with download complexity, and also with total storage (with
per-server storage, and query size also relevant parameters),
the authors of [3] emphasise measures of robustness against
malicious servers, namely decoder locality and PIR locality.

More recently, the literature has addressed several parallel
and related issues, which can be categorised as follows:

1) Papers dealing with the download complexity, rate, and
capacity of PIR schemes.

2) Research which attempts to reduce the storage overhead
of PIR schemes.

3) Papers which present coding techniques, based on vari-
ous error-correcting codes, e.g. MDS codes, to store the
database in a distributed fashion.

4) Papers which consider PIR schemes in the presence
of unreliable servers. Servers might be colluding (so
they have access to more than one query g,), they
might fail (and so do not reply with a value c¢,), they
might be adversarial (replying with incorrect values ¢;),
they might be unsynchronised (storing slightly different
copies of the database) and so on.

5) Research which aims to build PIR schemes into previ-
ously known architectures for distributed storage.

6) Papers dealing with other PIR models, for example
allowing broadcasting of some information, or allowing
the user to possess side information such as the value
of some records.

Clearly, these issues are related, and a given paper might
address aspects of more than one of these topics.
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In early papers, Fanti and Ramchandran [17], [18] consid-
ered unsynchronized databases; the results are the same as
for synchronized PIR at the expense of probabilistic success
for information retrieval, and the use of two rounds of com-
munication. We are not aware of recent work in this model,
but we mention in this context the work of Tajeddine and EI
Rouayheb [47] which considers PIR schemes in the presence
of some servers which do not respond to a query.

In a sequence of papers, Sun and Jafar [39], [41], [43]-[45]
consider the capacity of the channels related to PIR codes in
various models. (The rate of a PIR scheme is the ratio of R and
the download complexity, and the capacity is the supremum
of achievable rates.) In the model for PIR we consider, they
use information theoretic techniques to show [39] that an
n-server PIR scheme on a k message database has rate at

T )

Their model is restricted to the special case of replication.
They also provide a scheme that attains this rate. The messages
in their scheme are extremely long for most values of n and &:
the message length must be a multiple of n¥. Because of this,
the scheme can be thought of as being tailored for the situation
when R — oo. Their results show that when R — oo with
n and k fixed, there are schemes whose download complexity
(and so whose communication complexity) has a leading term

of the form
k
n 1
1—( - R,
n—1 n

and that this term is best possible. (We give an explicit scheme
with the same download complexity in Subsection III-D.)

The results in [39] have been generalised to the case when
some of the servers collude. Sun and Jafar [43] find the
capacity of the channel in this more general case. (The results
in [39] can be thought of as the special case where each server
can collude only with itself.) The capacity for the symmetric
PIR model, where the user who retrieves a message will get
no information about the other messages in the database, is
determined in [45]. The optimal download complexity in the
situation when the messages in the database might be of an
arbitrary length (subject to a certain divisibility condition with
all messages having the same length) is considered in [41].
The most recent in this sequence of papers considers an
interactive model, where a user can have several rounds of
queries, the queries in a given round are allowed to depend
on answers from previous rounds. Moreover, colluding servers
are considered in this model. It is proved [44] that for this case
there is no change in the capacity, but that the storage overhead
can sometimes be improved.

Banawan and Ulukus [5] also generalise the results of
Sun and Jafar [39], finding the exact capacity of the PIR
scheme when the database is encoded with a linear code.
Another generalisation due to Banawan and Ulukus [4], [6]
is to the scenario that the user is allowed to request a
few records in one round of queries. They provide capacity
computations and schemes for this scenario. A similar case

was also discussed in [59]. Finally, Banawan and Ulukus [7]
consider the capacity of PIR schemes in the scenario where
servers might not be synchronised, there might be adversarial
errors, and some servers might collude. They compute the
capacity when some or all of these events might occur. Wang
and Skoglund [51] consider the capacity of a symmetric PIR
scheme when the database is stored in a distributed fashion
using an MDS code.

Chan et al. [12], [13] consider the trade-off between the
total storage and the download complexity when the size of a
record is large; the trade-off depends on the number of records
in the system. They also consider the case where the database
is encoded with an MDS code.

Fazeli et al. [19], [20] give a method to reduce the stor-
age overhead based on any known PIR scheme which uses
replication. Their method reduces the storage overhead consid-
erably, without affecting the order of the download complex-
ity or upload complexity of the overall scheme, by simulating
the original scheme on a larger number of servers. Their key
concept is an object they call a x-PIR code (more generally
a x-PIR array code), where x is the number of servers used
in the originally known PIR scheme, which controls how a
database can be divided into parts and encoded within servers
to allow a trade-off between the number of servers and the
storage overhead. In particular, for all ¢ > 0, they show
that there exist good schemes (in terms of communication
requirements) where the amount of information stored in a
server is bounded but the total storage is at most (1 + €)
times the database size. Rao and Vardy [32] study PIR codes
further, establishing the asymptotic behavior of x-PIR codes.
Vajha et al. [50] find the redundancy of such codes for
x = 3, 4 by using Reed-Muller codes. Lin and Rosnes [31]
show how to shorten and lengthen PIR codes, and find the
redundancy of such codes for x = 5, 6. Blackburn and
Etzion [9], [10] consider the optimal ratios between x-PIR
array codes and the actual number of servers used in the
system. Zhang et al. [58] consider these ratios further, and
improve some of the results from [9], [10]. We remark that
though it is possible to reduce the storage overhead using
the techniques of PIR array codes, it seems impossible to
reduce the download complexity of the resulting schemes
below (3/2)R (and most codes give download complexity
close to 2R) because of restrictions on the PIR rate of such
codes. It is interesting to note that Augot et al. [3] constructed
PIR schemes by partitioning the database into smaller parts,
as done later in [19], [20], to reduce the storage overhead.
But they applied this technique only to a certain family of
multiplicity codes, and the parts of the partition were not
encoded as in [19], [20].

Fazeli et al. [20] remark that the concept of a x-PIR code
is closely related to codes with locality and availability. Such
codes were studied first by Rawat er al. [33], [34] and later also
by others, for example [21], [25]. A new subspace approach
for such codes was given recently in [36], [37]. Another family
of related codes with similar properties are batch codes, which
were first defined by Ishai ef al. [26] and were recently studied
by many others, for example [1], [2], [35]. It is important
to note that all these codes are very important in the theory
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of distributed storage codes. This connection between the
concepts of locality and PIR codes are explored in [21].

Error-correcting codes, and in particular maximum distance
separable (MDS) codes, have been considered by many authors
in various PIR models. It is natural to consider MDS codes,
as they are very often used in various types of distributed
storage codes (especially for locally repairable codes [23] and
regenerating codes [15], [16]), and we expect that the servers
in our PIR scheme will be part of a distributed storage system.
We will now mention various examples.

Colluding or malicious servers in PIR have been much stud-
ied over the last two years. Tajeddine and El Rouayheb [46]
consider PIR schemes where the information is stored using
MDS codes. Their PIR scheme based on the coded MDS
achieves a retrieval rate 1 — R, where R is the code rate of
the storage system. They attain the bounds for linear schemes
in [12], [13], in the situation when one or two ‘spies’ (collud-
ing and/or malicious servers) are present. In the case of one
spy (no collusion) a generalisation to any linear code with rate
greater than half was given in [29]. Freij-Hollanti er al. [22]
give a PIR scheme coded with an MDS code which can be
adjusted (by varying the rate of the MDS code) to combat
against larger numbers of colluding servers. This scheme also
attains the asymptotic bound on the related capacity of such a
PIR scheme in the extreme cases, where there are no colluding
servers or when the database is replicated, i.e. no coding is
applied. This idea is generalised in [48]. The results in the
latter paper are analysed (and one conjecture disproved) by
Sun and Jafar [40], [42]. Another scheme based on MDS
codes which can combat large number of colluding servers
is given by Zhang and Ge [56]. A generalisation to the case
where the user wants to retrieve several files is given by the
same authors in [57]. Wang and Skoglund [52] consider a
symmetric PIR scheme using an MDS code, in which the user
can retrieve the information about the file he wants, but can
gain no information about the other files. This scheme attains
the bound on the capacity which they derive earlier in [51].
They have extended their work to accommodate colluding
servers in [53].

PIR can be combined with other applications in storage
and communication in many ways. One example is a related
broadcasting scheme in [28]. Another example is cache-aided
PIR, considered by Tandon [49]. In this setup the user is
equipped with a local cache which is formed from an arbitrary
function on the whole set of messages, and this local cache
is known to the servers. The situation when this cache is not
known to the servers is considered by Kadhe et al. [27]. Since
the user has side information in these models, the problem is
closely related to index coding [8] a topic which is also of
great interest.

While most of the work in this area is theoretical, there
have been notable recent advances in bridging the gap between
theory and practice. For example, the recent paper [24] reports
on the design and implementation of a scalable and private
media delivery system — called Popcorn — that explicitly
targets Netflix-like content distribution. Another practical sys-
tem for private queries on public datasets — called Splinter
— 1is currently in development [54]. This system has been

reported to achieve latencies below 1.20 seconds for realistic
workloads including a Yelp clone, flight search, and map
routing.

II. OPTIMAL DOWNLOAD COMPLEXITY

In this section, we give structural results for PIR schemes
with optimal download complexity, given that the database
consists of k records of length R. For some of the results,
we also assume that the PIR scheme involves n servers, where
n is fixed.

In Subsection II-A we generalise a classical result in Private
Information Retrieval due to Chor et al. We use this result to
provide an alternative proof of the theorem of Shah ef al. [38]
that a PIR scheme must have download complexity at least
R + 1 when k > 2, and to prove a lower bound of n”TlR for
the download complexity of an n-server PIR scheme whenever
k is sufficiently large. In Section II-B we present more precise
structural results when the download complexity of a PIR
scheme attains the optimal value of R + 1 bits.

Definition II.1. We say that a response (ci,c2,...,cpn)
is possible for a query (q1,q2,...,q,) if there exists a
database X for which (c1,c¢2,...,¢,) is returned as the
response to the query (¢1, g2, - . ., ¢n) When X is stored by the
servers.

A. Lower Bounds on the Download Complexity

We aim to generalise the following theorem, which was
proved by Chor et al. in the very first paper on PIR
[14, Theorem 5.1]:

Theorem IL.1. A PIR scheme that uses a single server for a
database with k records of size one bit is not possible unless
the number of possible responses from the server to any given
query is at least 2F.

Our generalisation shows a server must reply with at least
k(R — d) bits of download, if no more than a total of d
bits (where 0 < d < R) are downloaded from the other
servers. We state our generalisation as follows. Without loss of
generality we will focus on server Sp, so for ease of notation
we will denote the tuple (q1, g2, ...,qn) by (g1, other), and
(c1, €2, ..., cn) by (c1, Cother)-

Theorem I1.2. Suppose 0 < d < R. Let q| be fixed. Suppose
we have a PIR scheme with the property that for any query
of the form (q1, Gother), We have

{cother | et such that (c1, cother) is possible

for (q1, Gother)}| < 24,
Then for any query (q1, qpe) We have

[{c1 | Icother such that (ci, Cother) is possible
fOT (611, CI(/)ther)}I > 2k(R7d)-

We remark that Theorem II.1 is the case d =0 and R =1
of Theorem I1.2.
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Proof. Let g1 be fixed, and suppose we have a PIR scheme
with the property that for any query (q1, Gother)

[{cother | 3e1 such that (c1, cother) is possible
for (g1, qotner)}| < 27 (1)

Assume, for a contradiction, that there exists a query
(91> @iner) for which

[{c1 | Acother such that (c1, Cother) is possible
for (q1, ¢per)}| < 2KB=D),

Suppose this query is for Record i.

Let ¢f be a most common reply of Si to (¢1, Glper) a5
the database varies over all possibilities. So we choose ¢}
to maximise |7|, where T is the set of databases where S
replies with ¢} to the query (g1, qane)- If server Si receives
the query ¢y, it will thus return ¢ whenever a database in T is
being stored. There are 2kR databases, and less than 2k(R—d)
possibilities for the reply ¢ of S to the query (g1, ¢ier)-
So by the pigeonhole principle, |T'| > 2KR j2k(R=d) — okd

Since the databases consist of k& records, the fact that
|T| > 2k implies the existence of a record, say Record ¢,
for which the number of distinct values X, that appear among
the databases in T is greater than 2¢. Thus we can choose a
subset of 29 4+ 1 databases W C T such that the values X ¢ of
Record ¢ in the databases in W are all distinct.

The requirement for privacy against server Sy implies that
there exists a query for Record ¢ of the form (g, qgther), since
otherwise S could distinguish between queries for Record i
and Record £.

Suppose the query (g1, qgther) for Record ¢ is made, and
suppose that the database lies in W. Server S; receives qi,
and so (since W C T) replies with c}. But there are at most
2¢ possible replies ¢, from the remaining servers by (1),
and so there are at most 2¢ responses (c¥, ¢, .) to the query
(41> @lper)- Since |[W| = 279 + 1, there are two databases
X, Y € W such that the servers respond identically. But this is
our required contradiction, since X and Y have distinct values
for Record ¢ and the query was for this record. m|

The following theorem is
Theorem II.2.

a key consequence of

Theorem I1.3. Let x be non-negative, and suppose we have
a PIR scheme that has download complexity at most R + x.
If the database contains k records, where k > x + 2, then the
number of bits downloaded from any server is at most x.

Proof. Without loss of generality, consider the server Sj.
Suppose for a contradiction that there exists a query ¢; so
that at least x 4+ 1 bits are downloaded from S; (and so at
most (R+x) — (x+1) = R — 1 bits are downloaded from the
other servers). Suppose that a total of d bits are downloaded
from the other servers in the worst case when S| receives ¢;.
So d < R — 1. Theorem II.2 implies that at least k(R — d)
bits are downloaded from S;, and so at least k(R — d) + d
bits are downloaded from the servers in the worst case.

Butd <R—1and k > x + 2, so

K(R—d)+d=kR— (k— 1)d
>kR—(k—1)(R—1)
=R+k—-1>R+x+2)—1
=R+x+1,

which is impossible as the scheme has total download com-
plexity R + x. This contradiction establishes the theorem. O

We are now in a position to provide a new short proof of the
following corollary. The corollary is due to Shah et al. [38].

Corollary I1.4. Let the database contain k records with
k > 2. Any PIR scheme requires a total download of at least
R + 1 bits.

Proof. Suppose we have a scheme with total download of
R or fewer bits. Theorem II.3 with x = 0 implies that O bits
are downloaded from each server, and so the user receives no
information about the desired record. Hence such a scheme
cannot exist. ]

The following theorem (which can also be derived from the
results in [39]), improves the bound of Corollary 1.4 when
n < R+ 1 and k is sufficiently large.

Theorem ILS. Suppose a PIR scheme involves n servers,
where n > 2. Suppose the database contains k records, where
k > (ﬁ R1+ 1. Then the download complexity of the scheme
is at least "5 R bits.

Proof. Assume for a contradiction that the scheme has down-
load complexity R + x, where x is an integer such that
x < anlR. Since x < (nllRl — 1, we see that k > x +2 and
so Theorem II.3 implies that the number of bits downloaded
by any server is at most x. Since we have n servers, the total
number of bits of download is always at most xn. Since our
scheme has download complexity R+x, there is a query where
a total of R + x bits are downloaded from servers. Hence we
must have that nx > R + x, which implies that x > anlR'
This contradiction establishes the result. m|

B. Download Complexity R + 1

The final two results of this section concentrate on the
extreme case when the download complexity is exactly R+ 1.
Recall that the download complexity is a worst case measure:
every query results in at most R + 1 bits being downloaded,
and there exists a query where R + 1 bits are downloaded.

Corollary I1.6. Let the database contain k records with k > 3.
Any PIR scheme with a total download of exactly R + 1 bits
requires 1 bit to be downloaded from each of R or R + 1
different servers in response to any query.

Proof. The special case of Theorem II.3 when x = 1 shows
that no server replies with more than 1 bit. For the download
complexity to be R 4+ 1, no more than R + 1 servers can
respond non-trivially. Since the user deduces the value of an
R-bit record from the bits it has downloaded, at least R servers
must reply to any query. O
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One might hope that the Corollary II.6 could be strength-
ened to the statement that exactly R + 1 servers must respond
non-trivially. However, examples show that this is not always
the case: see the comments after Construction 1 below.

Shah et al. state [38, Theorem 1] that, in the situation
above, “for almost every PIR operation” R 4 1 servers must
respond, and they provide a heuristic argument to support this
statement. The following result makes this rigorous, with a
precise definition of ‘almost every’.

Theorem IL.7. Let the database contain k records with
k > 3. Suppose we have a PIR scheme with a total download
of exactly R + 1 bits (in the worst case). Suppose a user
chooses to retrieve a record chosen with a uniform probability
distribution on {1, 2, ..., k}. Let a be the probability that only
R bits are downloaded. Then

R+1
o =< .
“ kR +1

Proof. By Corollary I1.6, each server replies to any query with
at most one bit. We may assume, without loss of generality,
that if a server replies with one bit then this bit must depend on
the database in some way (since otherwise we may modify the
scheme so that this server does not reply and the probability
o will increase).

Let (1,42, ...,qn) be a query for the ¢th record where
only R servers reply non-trivially. Since only R servers reply,
there are at most 2% possible replies to the query (over all
databases). But the value X of the record is determined by the
reply, and there are 2R possible values of X;. So in fact there
must be exactly 2% possible replies, and there is a bijection
between possible replies and possible values X,. We claim
that the replies of each of these R servers can only depend
on X, not on the rest of the database. To see this, suppose a
server S, replies non-trivially, and let f : {0, 1} — {0, 1} be
the function mapping each possible value of the database to
the reply of S, to query g,. Suppose f is not a function of X,
alone, so there are two databases X and X’ whose ¢th records
are equal and such that f(X) # f(X'). Let p be the common
value of the £th record in both X and X’. When X; = p there
are at least two possible replies to the query, depending on the
value of the remainder of the database. But this contradicts
the fact that we have a bijection between possible replies and
possible values X,. So our claim follows.

Let A be the event that exactly R servers reply, and for
r=1,2,...,n let B, be the event that server S, replies non-
trivially. Let D, be the indicator random variable for the event
B,. So D, is equal to 1 when S, responds non-trivially and
0 otherwise. Note that D, is always equal to the number of
bits downloaded from S, thus the expected value of the sum
of these variables satisfies

E<ZD,> —aR+(0—a)R+1)=R+1—a. (2
r=1

Let D) be the indicator random variable for the event A A B,.
When A does not occur, all the variables D). are equal to 0.
When A occurs, D; is the number of bits downloaded from

server S, and a total of R bits are downloaded. So

n
E(ZD;> = —-a)0+aR =aR. 3)
r=1

Suppose a server S, uses the following strategy to guess
the value of ¢ from the query g, it receives. If the server
replies non-trivially using a function f that depends on only
one record, say Record ¢’, it guesses that £ = ¢’. Otherwise,
the server guesses a value uniformly at random. The server
guesses correctly with probability 1/k when it responds triv-
ially. The argument in the paragraph above shows the server
always guesses correctly if it responds non-trivially and only
R servers reply. Thus the server is correct with probability at
least (1/k)Pr(B,) + Pr(A A B,). The privacy requirement of
the PIR scheme implies that the server’s probability of success
can be at most 1/k, and so we must have that Pr(A A B,) <
(1/k)Pr(B,). Hence

E(D}) < (1/K)E(D,).

By linearity of expectation, we see that
n n
E (Z D;> =Y E(D))
r=1 r=1
1 ¢ 1 -
< z;E(D,) = E (ZD,) .

r=1

So, using (2) and (3), we see that
1
aR < ;(R+1—a).

Rearranging this inequality in terms of a, we see that the
theorem follows. |

III. CONSTRUCTIONS

Recall the notation from the introduction: we are assuming
that our database X consists of k records, each of R bits, and
we write X;; for the jth bit of the ith record.

A. Two Schemes With Download Complexity R + 1

This section describes two schemes with download com-
plexity R+ 1. Recall that this download complexity is optimal,
by Corollary I1.4. The first scheme is included because of its
simplicity; it can be thought of as a variation of the scheme
of Chor et al. described in Example 1.2, and achieves optimal
download complexity using only R + 1 servers. It has a total
storage requirement which is quadratic in R. But the scheme
has high upload complexity: kR(R + 1). The second scheme
is very closely related to a scheme mentioned in an aside in
Shah et al. [38, Section IV]. This scheme has the same
properties as the first scheme, except the upload complexity
is improved to just (R + 1)k[log(R + 1)].

We note that the main scheme described in Shah er al.
[38, Section IV] also has optimal download complexity of
R + 1. Each server stores just R bits, and so the storage
per server is low. However, their scheme uses an exponential
(in R) number of servers, and so has exponential total storage.
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Construction 1. Suppose there are R+1 servers, each storing
the whole database.

o A user who requires Record { creates a k x R array of bits
by drawing its entries a;j uniformly and independently at
random.

o Server Spi1 is requested to return the bit cry1 =

k R
Dimi By @ij Xij.
o Forr=1,2,..., R, server S, is requested to return the

. k R

bit ¢y = P;_, D;_1 Bij Xij, where

a;ij ®1 ifi=~Cand j =r,
Bij = .
otherwise.

ai, j

o To recover X¢r, namely bit r of record Xy, the user
computes ¢y © CR+1.

Theorem III.1. Construction I is a (R+1)-server PIR scheme
with download complexity R + 1. The scheme has upload
complexity kR(R + 1) and total storage (R + 1)Rk bits.

Proof. We note that

1 ifi=¢and j =r,
aijEBﬁij={ /

0 otherwise.

Hence

Kk R
cr B Ccpy1 = @ @(azj ® pij)Xij
i=1 j=1
= Xfr-

So the user recovers the bit X, correctly for any r with
1 <r < R. This proves correctness.

For privacy, we note that Sk receives a uniformly dis-
tributed vector gr+1 = (a;j) € {0, 1}kR in all circum-
stances. Since the distribution of gr41 does not depend on ¢,
no information about ¢ is received by Sg41. Similarly, for any
1 < r < R, the query ¢, = (fij) € {0, 1}*R is uniformly
distributed irrespective of the value of ¢, and so no information
about ¢ is received by S;.

We note that each query ¢, is kR bits long (for any r €
{1,2,..., R+1}) and so the upload complexity of the scheme
is kR(R 4 1). Each server replies with a single bit, and so the
download complexity is R + 1. The database is kR bits long,
and so (since each server stores the whole database) the total
storage is (R + 1) Rk bits. |

We note that there are situations where one of the servers
is asked for an all-zero linear combination of bits from the
database. In this case, that server need not reply. So the number
of bits of downloaded in Construction 1 is sometimes R
(though usually R + 1 bits are downloaded). See the comment
following Corollary II.6.

We now describe a second construction with improved
upload complexity. The construction can be thought of as a
variant of Construction 1 where the rows of the array a are
all taken from a restricted set {eg, ej, ..., eg} of size R + 1.
A similar idea is used in the constructions in [38].

Fori =1,2,..., R, let ¢; be the i™ unit vector of length
R. Let e be the all zero vector. For binary vectors x and y of
length R, write x-y be their inner product; so x-y = @lexjyj.

Construction 2. Suppose there are R+ 1 servers, each storing
the whole database.

o A user who requires Record { chooses k elements
ai,az,...,ax € Zgry1 uniformly and independently at
random. For r = 1,..., R + 1, server S, is sent the
vector qr = (b1y, b2y, ..., bx) € Z]I‘H_l, where

bir =

a; otherwise.

{ai—i-rmodR—i-l ifi =¢,

e Server S, returns the bit ¢, = @le ep, - Xi.

o To recover the j" bit of X, the user finds the integers
r and r' such that by = 0 and by = j. The user then
computes ¢y © Cp.

Theorem IIL2. Construction 2 is an (R + 1)-server PIR
scheme with download complexity R + 1. The scheme has
upload complexity k(R + 1)log(R + 1) and total storage
(R + 1)Rk bits.

Proof. For correctness, we first note that » and r’ exist since
ber € {0,1,2..., R} takes on each possible value once as
r €{0,1,..., R} varies. Also note that

ej ifi=¢,
ep;, Dep,, = .
eo otherwise.

So, since ¢y = 0,
k
cr®cy = @(Ebir &) ebir’) Xi=ej - X¢ = Xyj.
i=1
So the user recovers the bit X¢; correctly for any j with
1<j<R

For privacy, we note that S, receives a uniformly distributed
vector g, € (ZR+1)k in all circumstances. Since the distrib-
ution of ¢, does not depend on ¢, no information about ¢ is
received by S;.

The calculations of the total storage and download com-
plexity are identical to those in the proof of Theorem III.1.
For the upload complexity, note that it takes just log(R + 1)
bits to specify an element of Zg1. Since each server receives
k elements from Zg41, and since there are R + 1 servers,
the upload complexity of the scheme is k(R + 1) log(R + 1)
as claimed. |

B. Optimal Download Complexity for
a Small Number of Servers

For an integer n such that (n — 1) | R, we now describe an
n-server PIR scheme with download complexity “+ R bits.
By Theorem II.5, this construction provides schemes with
an optimal download complexity for n servers, provided the
number k of records is sufficiently large. This construction
is closely related to Construction 2 above. Indeed, the con-
struction below is a generalisation of Construction 2 where
we work with strings rather than single bits.
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We first define an analogue of the bits ¢, - X; computed by
servers in Construction 2. We divide an R-bit string X into
n—1 blocks, each of size R/(n—1). Forb € {1,2,...,n — 1}
we write 7p(X) for the bth block (so 7p(X) is an
R/(n — 1)-bit string). We write 7o(X) for the all-zero string
OR/(=1) of length R/(n — 1).

Construction 3. Let n be an integer such that (n — 1) | R.
Suppose there are n servers, each storing the entire database.
o A user who requires Record { chooses k elements
a,az,...,ar € Z, uniformly and independently at
random. For r = 1,...,n, server S, is sent the vector

qr = (bli’5 b2r5~-~,bkr) (S Zﬁ, Where
b — ai+rmodn ifi=2¢,
T ai otherwise.

o Server S, returns the R/(n — 1)-bit string ¢, =
@L] Th;, (Xi).

o To recover the j™ block of Xy, the user finds the integers
r and r' such that by, = 0 and by = j. The user then
computes ¢y D cp.

Theorem II1.3. Construction 3 is an n-server PIR scheme
with download complexity "5 R. The scheme has upload
complexity nklogn and total storage is nkR.

Proof. Exactly as in the proof of Theorem III.2, we first note
that » and r’ exist since by € {0, 1,2...,n—1} takes on each
possible value once as r € {0, 1, ..., n} varies. Also note that
when i # ¢

oy (Xi) ® p,, (Xi) = 70, (X)) @ 7q, (X)) = OR/07D),
but when i = ¢

Ty, (Xi) @ mp,

ir’

(Xi) = mo(X;) ® mj(X;)
=m;j(Xi) = 7j(Xo).

Hence
k
crdep = @(”bi, (Xi) & mp,, (Xi)) = 7 (Xe).
i=1

So the user recovers the jth block of X, correctly for any j
with 1 <j<@m-—1).

For privacy, we note that S, receives a uniformly distributed
vector g, € (Zy)¥ in all circumstances. Since the distribution
of g, does not depend on ¢, no information about ¢ is received
by S;.

The total storage is nk R, since each of n servers stores the
entire k R-bit database. Each query ¢, is k logn bits long, since
an element of Z, may be specified using logn bits. Hence the
upload complexity is nklogn. Since each server returns an
R/(n — 1)- bit string, the download complexity is ;25 R. O

Shah et al. [38, Section V] provide PIR schemes with linear
(in R) total storage and with download complexity between
2R and 4R. Their scheme requires a number of servers which
is independent of R (but is linear in k). The construction above
shows that for any fixed positive € a PIR scheme with linear
total storage exists with download complexity of (1 + €)R

(as we just fix a value of n such that n/(n — 1) < 1+¢). This
is within an arbitrarily close factor of optimality. Moreover,
the number of servers in our construction is independent of
both k£ and R. However, note that in our scheme each server
stores the whole database, whereas the per server storage of
the scheme of Shah et al. is a fixed multiple of R. This issue
is addressed in Construction 4 below.

C. Schemes With Small Per-Server Storage

We make the observation that the last construction may be
used to give families of schemes with lower per-server storage;
see [38, Section V] for similar techniques. The point here is
that we never XOR the first bit (say) from one block with
the second bit (say) of any other block, so we can store these
bits in separate servers without causing problems.

More precisely, let s be a fixed integer such that s | R and let
t be a fixed integer such that (t —1) | s. We divide each record
X; into R/s blocks 71(X;), m2(X;), ..., wr/s(X;), each s bits
long. We then divide each block 7;(X;) into (r — 1) sub-
blocks 7 1(X;), mj2(X;), ..., mj;—1(X;), each s/(t — 1) bits
long. For any i € {1,2,...,k} and any j € {1,2,..., R/s},
we define 7 0(X;) to be the all zero string 0°/¢=1 of length

s/(t — 1).

Construction 4. Let s be a fixed integer such that s | R. Let
t be a fixed integer such that (t — 1) | s. Let n = t(R/s).
Suppose there are n servers. Each server will store just ks
bits.

o Index the t(R/s) servers by pairs (u,r), where 1 <r <t
and where 1 < u < R/s. Server Sy, stores the uth
sub-block of every block. So S, stores m, j(X;) where
l <i<kand 1 < j <t — 1. Note that each server
stores k(t — 1)s/(t — 1) = ks bits.

o A user who requires Record { chooses k elements
ai,az,...,ax € Z; uniformly and independently at
random. The server S ) is sent the query g, =
(b1, bars ..., biy) € ZK, where

{ai+rm0dn ifi==¢,
bir:

a; otherwise.

(Note that many servers receive the same query.)

o Server S, ) returns the s/(t — 1)-bit string ¢, =
B by, (Xi).

o To recover the jth sub-block of the uth block of Xg,
the user finds integers r and r’ such that by, = 0 and
beyr = j and computes c(yry ® C(u, ).

Theorem IIL.4. Construction 4 is a PIR scheme with down-
load complexity gt%ls = ﬁR. The scheme has upload
complexity nklogt = (tkR/s)logt and total storage nks =
tkR bits.

Proof. As in the proofs of Theorems III.2 and III.3, privacy
follows since S, , always receives a uniformly distributed
vector g, € Zﬂ‘ as a query. For correctness, observe that when
i £
Ty, b;, (Xl) S?) Tu,b;, (Xl) = Ty,a; (Xi) @ Tu,a; (Xl)
— 05‘/([—1),
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but when i = ¢

Tu by (Xi) @ mup,, (Xi) = mu,0(Xi) @ 7y, j(Xi)
= 7u,j(Xi) = mu,j (Xo).

Hence
k
Clu,r) @ Clu,r’y = @(”u,bir (Xi) @ Tu,b;,. (Xl))
i=1
= mu,j(Xe).

So the user can indeed compute the j-th sub-block of the u-th
block as claimed.

It is easy to calculate the upload complexity, download
complexity and total storage complexity as before, remem-
bering that each server stores ks bits rather than the entire
database. |

By fixing ¢ and s to be sufficiently large integers, we can
see that for all positive € we have a family of schemes with
download complexity at most (1 + €)R, with total storage
linear in the database size, with a linear (in R) number of
servers, and where the per server storage is independent of R.
So this family of schemes has a better download complexity
and per-server storage than Shah ef al. [38, Section V], and is
comparable in terms of both the number of servers and total
storage.

The servers may be divided into ¢ classes Si, S, ...
where

sSt»

Sy =1{81,m,52,r)s -

Since servers in the same class receive the same query,
the above construction still works if some of the servers within
a class are merged. If this is done, the storage requirements of
each merged server is increased, the download complexity and
total storage are unaffected, and the number of servers required
and upload complexity are reduced. So various trade-offs are
possible using this technique.

s S(R/S,r)}-

D. An Explicit Asymptotically Optimal Scheme

Sun and Jafar [45] describe a PIR scheme that has the best
possible asymptotic download complexity, as R — oo. Their
scheme is constructed in a recursive fashion. In this subsection,
we describe an explicit, non-recursive, scheme with the same
parameters as the Sun and Jafar scheme. Our scheme has the
advantages of a more compact description, and (we believe) a
proof that is significantly more transparent.

Our scheme is described in detail in Construction 5 below.
But, to aid understanding, we first provide an overview of the
scheme.

Suppose that n¥ divides R. We split an R-bit string X into
n¥ blocks, each of length R/nk. For j € {1,2,...,nk} we
write 7 ;(X) for the j-th block of X, and we write zo(X) for
the all zero block OR/™".

Let V be the set of all non-zero strings v = 010203 ...0 €
{0,1,2,...,n — 1}* such that >¥_, v; = 0 mod n — 1. (Note
that our sum is taken modulo n — 1, not modulo n.) Let W =
{1,2,...,n}xV. For each record, say Record ¢, we will define
a graph T'l‘] on the vertex set W (see below).

wi

(1,200)e
(3,121)
(2,211)
(2,121)

(1,211)

Fig. 1. Part of the graph Tl when n =k =3and £ = 1.

There are n servers in the scheme, each storing the whole
database. Server S, receives a query consisting of integers
bi(r,v) € {1,2,...,n%} where i € {1,2,...,k} and v € V.
The server replies with |V| strings, each of length R/n*.
Each string is a linear combination of blocks, at most one
block from each record (the choice of each block being
determined by an integer b;(r, v): see (4) below). From the
perspective of S, the distribution of the integers b; (r, v) does
not depend on ¢, enabling us to attain privacy. However,
the user chooses these integers so that b;(r, v) and b;(r’, v')
are constrained to be equal when (r, v) and (+/, v') lie in the
same component of the graph I'l‘l. This is done in such a
way that the user can reconstruct Record ¢ from the servers’
replies.

We now give details of the scheme. We begin by describing
the graph T'l‘l (see Figure 1) and by detailing some of its
structure. Let £ € {1, 2, ..., k}. The graph Il is defined on
the vertex set W, and is bipartite with parts W{g] and Wy]:
the set W{m consists of those elements (r, v) € ¥V such that
ve # 0, and Wy] consists of those elements such that v, = 0.
We draw at most one edge from each element (r,v) € W{m
into Wy] as follows. If v, is the only non-zero entry in v,
we draw no edge from (r, v¢), so we have an isolated vertex.
Suppose two or more entries of v are non-zero. We define
> € {1,2,...,k} to be the next entry in v after the {th that is
non-zero, taken cyclically. Let w € {1,2,...,n — 1} be such
that w = v¢ + vg, mod n — 1. Define v/ = vjv5 - - - v} by

v, ifiefl,2,....k}\{{, (2},

;=<0 ifi=~¢,
w ifi =45
Letr’ € {1,2,...,n} be such that ' = r + v, mod n. We join

(r,v) to (r', v').
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Let ClYl be the set of connected components of the
graph T}, We note that T'‘] has exactly n isolated vertices,
namely the vectors of the form (r, v) where r € {1,2,...,n}
and where v is the single vector defined by

v = 0
T n—1

The remaining components in Cl/) are stars consisting of a
central vertex in sz] and n — 1 other vertices all lying in
Wlm. Moreover, we note that if (r, v) and (+/, v') are distinct
vertices in the same component of I'l‘l then r # r’.

We claim that the number of vertices (r, V) € Wl[[] is n*.
To see this, we note that there are n choices for r, and then
nk=1 choices for 01,02, ...,00—1,00+1,...,0k. Once these
choices are made vy € {0, 1,...,n — 1} is determined, since
vy # 0 and Zi‘(:l v; = Omodn — 1. This establishes our
claim.

Since every component of T'l! contains a vertex in Wlm,
we see that |CI]] < IWF]I = nk. Indeed, the number of
components of T'l‘] is:

ifi £¢,
ifi =¢.

I =n+ (W = n)/(n - 1)
=n(l+ @ = 1)/(n—1)).

Construction 5. Suppose that n* | R. Suppose there are n
servers, each storing the whole database.

o A user who requires Record € proceeds as as follows.

In the notation defined above, for eachi € {1,2,...,k}\
{€} the user chooses (uniformly and independently) a
random injection f; : cl = q1,2,... ,nk}. The user

chooses (again uniformly and independently) a random
bijection y : W{m — {1,2,..., nk}.

Define integers bi(r,v) € {0,1,...,n*} for (r,v) e W
andi €{1,2,...,k} as follows. If i # ¢, define

0 if i =0,
fi(C) ifvi #0

and (r, v) lies in the

bi (r> V) =
component C € C.

Note that when i = € we have that v; # 0 if and only if
(r,v) € W{m. So when i = { we may define

0 ifvi =0,
bi(r,v) = .
y((r,v)) ifvi #0.
Forr = 1,2,...,n, server S, is sent the vector q, =

bi(r,v):veV,ie{l,2,...,k}).
o The server S, replies with the blocks

k

Sew) = D Th(rw) (X0) “4)
i=1

for all veV.

o To recover block j of Xy, the user finds (r,v) = w~'(j) €
W{g]. Let C € ClY) be the component containing (r, V).

If |IC| > 1, let (r',v) € CN Wy]. Then (see below for
Justification)

if1Cl =1, and
7 (Xe) = {S(r,v) ifICI =1, an

Sev) @ ser vy ICT> 1.

Theorem IIL.5. Construction 5 is an n-server PIR scheme
with download complexity (1 — 1/n*)(n/(n — 1))R. The total
storage of the scheme is nkR. The upload complexity of the
scheme is k*n*logn bits.

Proof. We begin by establishing correctness of the scheme.
Let (r,v) = y~'(j) and let C € C!! be the component
containing (r, v). When |C| = 1 we have v; # 0 if and only
if i = ¢ and so

k

S(rv) = Zﬂb,-(r,v)(xi) = Tp,(r,v)(Xe) = mj (Xp),

i=1
the last equality following since b¢(r, v) = j. Hence the user
recovers the jth block 7 ;(X,) of X, correctly in this case.
Suppose now that C contains two or more vertices, so there
exists (r',v) e CN Wgﬂ. When i # ¢, the values of b;(r, v)
and b; (r’, v') are equal, since (r, v) and (r', V') lie in the same
component C of I'“l and since v; = 0 if and only if v; =0.
Moreover, v¢ # 0 and v, = 0. Hence

k
S(rv) D S ,vy = Z (i vy (X)) @® Ty (v (X))

i—1
= nbi(r,v)(Xf) @ ﬂbg(r’,v’)(xf))
= Ty ((r,v)(X¢) @ mo(X¢))
=m;(X¢).

So the user recovers the jth block 7;(X¢) of X, correctly in
this case also. We have established correctness.

We now aim to establish the security of the scheme. Let
A be the set of integer vectors (a;(v) € {0,1,... ,nky i€
{1,2,...,k},v € V) with the restrictions that a;(v) = 0 if
and only if »; = 0, and that for any fixed i € {1, 2, ..., k} the
integers a;(v) with v; # 0 are distinct. Let r € {1,2,...,n}
be fixed. The query g, = (bi(r,v) : ve V,i € {1,2,...,k})
lies in A, since the functions f; and w are injective and
since (whether or not i = ¢) we have b;(r,v) = 0 if and
only if v; = 0. Indeed, the query is uniformly distributed in
A. To see this, first note that the functions f; (for i # ()
and y are chosen independently. The values b/(r,v) for
vy # 0 are uniform subject to being distinct since y is a
randomly chosen bijection. For i # ¢, the values b;(r, v) for
vy # 0 are uniform subject to being distinct, since f; is a
uniformly chosen injection from C!J, and since at most one
vertex in any component C € CI‘! has its first entry equal
to r. Hence the distribution of query ¢, is uniform on A as
claimed. Since this distribution does not depend on ¢, privacy
follows.

Each server replies with || strings, each string of length
R/n*. Since there are n servers, the download complexity is
nR|V|/nk. So it remains to determine |V|. For0 <s <k —1,
there are nf—~! elements viv2 -+ -0k € V that begin with
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exactly s zeros, since we may choose vs12, V543, ...,0r €
{0,1,...,n — 1} arbitrarily and then vy is determined by
the fact it is non-zero and 21;21 vj =0modn —1. So

k—1
VI=) "=k -1/ -1
s=0

and the download complexity is (1 — 1/n%)(n/(n — 1)R,
as required.

We may argue that the total upload complexity is k*n* logn
as follows. Consider Server S,. The integers b;(r,v) with
0 are zero, and so do not need to be sent. There
are exactly knk—1 integers b;(r,v) € {1,2,..., nk} with i €
{1,2,...,k} and v € V with v; # 0. (To see this, note that
there are k choices for i, and n choices for each component v
except the (th. But then v, is determined by the fact that it is
non-zero and 21;21 vj = 0 mod n — 1.) Each integer can be
specified using k log n bits, and so the query g, is k2n*~1 logn
bits long. Since there are n servers, the total upload complexity
is kZnk logn bits, as required. O

v =

E. An Averaging Technique

The download complexity of both the PIR scheme due to
Sun and Jafar [45] and the scheme in Construction 5 above is
(1 —1/n%)(n/(n — 1))R. This is only slightly smaller than the
more practical scheme in Construction 3, which has download
complexity (n/(n —1))R. In fact, the expected number of bits
downloaded in Construction 3 is (1 — 1/n%)(n/(n — 1)R,
since a server is asked for an all-zero linear combination
of blocks with probability 1/n¥ and need not reply in this
case. This section describes an ‘averaging’ technique which
transforms Construction 3 into a scheme with good (worst
case) download complexity, at the price of a much stronger
divisibility constraint on the length of blocks. This technique
will work for a wide range of PIR schemes, but in the case of
Construction 3 it produces a scheme with optimal download
complexity (1 — 1/nX)(n/(n — 1))R. Moreover, the upload
complexity is considerably smaller than the schemes described
in [45] and Construction 5.

Before giving the detail, we describe the general idea.
Chan et al. [12, Remark 3], [13, Remark 2] observed that a PIR
scheme with good upload complexity (but long record lengths)
can be constructed by dividing each record into blocks, then
using copies of a fixed PIR scheme for shorter records operat-
ing on each block in parallel. Crucially, the same randomness
(and so the same queries) can be used for each parallel copy of
the scheme, and so upload complexity is low. The ‘averaging’
construction operates in a similar way. However, rather than
using the same randomness we use different but predictably
varying randomness for each parallel copy. The server can
calculate queries for each copy of the scheme from just one
query, so upload complexity remains low. But (because queries
vary over all possibilities) the resulting scheme has (worst
case) download complexity equal to the average number of
bits of download in the Chan, Ho and Yamamoto construction.

In more detail, we modify Construction 3 as follows.
Suppose that n¥(n — 1) | R. We divide an R-bit string X

into n¥(n — 1) blocks, each of size R/(n*(n — 1)). We index
these blocks by pairs (b, x) where b € {1,2,...,n—1} C Z,
and x € Zﬁ. We write 7 x)(X) for the block of X that is
indexed by (b, x). For any x € Z’,j, we write 7 (o,x)(X) for the
all-zero string OR/@"(1=1)) of length R/(n*(n — 1)).

Construction 6. Let n be an integer such that n*(n — 1) | R.
Suppose there are n servers, each storing the entire database.
o A user who requires Record { chooses k elements
ay,ar,...,ar € Z, uniformly and independently at
random. For r = 1,...,n, server S, is sent the vector

qr = (blr; b2r, ey bkr) (S Zﬁ, Where
b — ai+rmodn ifi =¢,
T a; otherwise.
° For re {13 29 e sn} and X € Zﬁ, deﬁl’le the String C(r,x)
of length R/(nk(n — 1)) by
k

Clrx) = @ T (i ;%) (X))
i=1

The server S, returns the string c(.x), for all x =
(x1,x2,...,X) € Zﬁ such that x+q, # 0. So S, returns
n* — 1 strings.

o To recover the block of X¢ indexed by a pair (j,X),
the user finds the integers r and r' such that bgy +xp = 0
and bey +x¢ = j. The user then computes c(;,x) @ ¢(' x)-

Theorem III.6. Construction 6 is an n-server PIR scheme
with download complexity (1 — 1/nk)#R. The scheme has
upload complexity nklogn and total storage is nkR.

Proof. We begin with the correctness of the scheme. Exactly
as in the proof of Theorem III.3, we note that r and r’ exist
since by + x¢ € {0,1,2...,n — 1} takes on each possible
value once as r € {0, 1, ..., n} varies. Moreover, we note that
the string c¢(.x) is all zero if x + g, = 0 (and similarly the
string ¢ xy is all zero if X + ¢,» = 0) and so the user always
receives enough information to calculate ¢ x) @ ¢( x).
Let x = (x1,x2,...,xr). Wheni # ¢,

T (biy+xi,x) (Xi) S (b1 +x,X) (Xl)
= ﬂ(a,-+x,-,x)(xi) D 7T(a,~+x,-,x)(Xi)
_ QR/(n=1).
Wheni = ¢,

T (biptx;,%) (Xi) D T (b, ) +x;.%) (Xi)
= m(0,x)(Xi) ® 7(j.x)(Xi)
= 7(jx)(Xi) = 7(j.xXo).
Hence

C(rx) D C( x)
k

= @(”(bi,+x,~,x) (Xi) & (b, +x;,%) (Xi)

i=1
= 7(jx)(X¢).

So the user recovers the block of X, indexed by (j,x)
correctly.
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Download Upload Restrictions Comments
[38] R+ 1 R(R+1) n=(R—1)F Algorithm 1 and 2 in [38]
[38] R+1 k(R +1)log(R + 1) n=R+1 End of [38, Sec. IV]
[38] 2A/(A = (k—1))R (A%/(A —(k—1)R n > 2A, A > 2k Algorithm 3 in [38]; linear storage
391 | (1—1/n*)(n/(n—-1R k2n* logn n®|R Optimal asymptotic download; recursive
1 R4+1 kR(R+1) n=R+1 Generalisation of [14]
2 R+1 kE(R+1)log(R+1) n=R+1 Similar to [38, Sect. IV]; improved expected download
3 R nklogn (n—1)|R Optimal download for n servers
4 R nklogt s|R, (t —1)|s,n =tR/s Each server stores only ks bits
5 (1—=1/2%)(n/(n — DR k2n* logn n*|R Optimal asymptotic download; non-recursive
6 (1-1/2%)(n/(n — 1R nklogn n*(n —1)|R Optimal asymptotic download; improved upload

Fig. 2.

Privacy follows from the privacy of Construction 3, as the
method for generating queries is identical.

The total storage is nkR, since each of n servers stores
the entire kR-bit database. Each query ¢, is k[logn] bits
long, since an element of 7Z, may be specified using
logn bits. Hence the upload complexity is nklogn. Since
there are n servers, and each server returns nk —1 strings
of length R/(n*(n — 1)), the download complexity is
(1—1/n%):-25R. O

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have used classical PIR techniques to
prove bounds on the download complexity of PIR schemes in
modern models, and we have presented various constructions
for PIR schemes which are either simpler or perform better
than previously known schemes. The characteristics of the
six constructions in this paper are summarised in Fig 2, and
parameters for the schemes in [38] and [39] are included for
comparison.

Various interesting problems remain in this area. We first
consider schemes with optimal download complexity:

Question 1. Are there PIR schemes with fewer than R + 1
bits of download complexity?

Our paper, like the rest of the literature, only considers PIR
schemes over binary channels, and in this model the answer
is ‘no’. But the proofs of this fact in this paper and in Shah
et al. [38] both use the fact that we are working over binary
channels: more than R bits of download implies that at least
R + 1 bits are downloaded. So this problem is still open if
we extend the model to schemes that do not necessarily use
binary channels.

We now return to the standard binary channel model.

Question 2. Are there PIR schemes with download complexity
R + 1 and total storage linear in R?

This result was claimed in Shah ef al. [38], but we believe
that a proof of this is still not known. A proof of this result
might depend on a more detailed structural analysis of PIR
schemes with R+-1 bits of download. As a first step, we believe
the following to be of interest:

Question 3. Theorem I1.7 bounds the probability that only
R bits are downloaded in a PIR scheme with (worst case)
download complexity R + 1. Is this bound tight?

We conjecture that the bound could be significantly
improved in some cases.

Summary of the six constructions in this paper and those in [38], [39].

We now consider families of schemes that have good
asymptotic complexity as R — oo.

Question 4. Does there exist a family of schemes with
download complexity (1 + o(R))R and linear total storage?

Note that an affirmative solution to Question 2 will imply
an affirmative solution to this question.

Question 5. Are there practical PIR schemes that approach
asymptotic capacity as R grows?

The schemes by Sun and Jafar [39] and the related schemes
presented in this paper have the strong restriction that n* must
divide R.

Question 6. Is there a combinatorial proof that provides a
tight upper bound on the asymptotic capacity as R — 00?

We comment that the proof in Sun and Jafar [39] uses
information theoretic techniques. A combinatorial proof might
give extra structural information for schemes meeting the
bound, and might improve the bound in non-asymptotic cases.

Finally, we turn to larger questions. It is clearly very impor-
tant to construct schemes with practical parameter sizes, which
can work in real-life distributed storage settings. In particular,
the following problems are key.

Question 7. Can we find better constructions for PIR
schemes?

Schemes are of interest if they improve per server storage,
total storage, upload or download complexity, if the number
of servers needed was reduced, or if the divisibility conditions
for parameters such as R are weakened.

Question 8. Can the techniques from this paper be applied to
establish bounds or give constructions in other models, such
as those discussed in Subsection I-C?

In particular, can these constructions be adapted to work
when the database is coded (in order to provide robustness
against server failure, for example)?
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