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Abstract—Private information retrieval has been reformulated
in an information-theoretic perspective in recent years. The
two most important parameters considered for a PIR scheme
in a distributed storage system are the storage overhead and
PIR rate. The complexity of the computations done by the
servers for the various tasks of the distributed storage system
is an important parameter in such systems which didn’t get
enough attention in PIR schemes. As a consequence, we take
into consideration a third parameter, the access complexity of a
PIR scheme, which characterizes the total amount of data to be
accessed by the servers for responding to the queries throughout
a PIR scheme. We use a general covering codes approach as
the main tool for improving the access complexity. With a
given amount of storage overhead, the ultimate objective is to
characterize the tradeoff between the rate and access complexity
of a PIR scheme. This covering codes approach raises a new
interesting coding problem of generalized coverings similarly to
the well-known generalized Hamming weights.

I. INTRODUCTION

Private information retrieval (PIR) protocols, first intro-
duced by Chor, Goldreich, Kushilevitz, and Sudan in [5],
allow a user to retrieve a data item from a database without
revealing any information about the identity of the item
to any single server. The original formulation of the PIR
problem considers replicating a binary string on several non-
communicating servers. The objective is to optimize the
communication cost, including both the upload cost and the
download cost, for privately retrieving one single bit. In
recent years, the information-theoretic reformulation of the
PIR problem assumes the more practical scenario in which
the files are of arbitrarily large size. Under this setup, the
number of uploaded bits can be neglected with respect to the
corresponding number of downloaded bits since the upload
does not depend on the size of the file [4]. This reformulation
introduces the rate of a PIR scheme to be the ratio between the
size of the retrieved file and the total number of downloaded
bits from all servers. The supremum of achievable rates over
all PIR schemes is defined as the PIR capacity. In their
pioneering work [13] Sun and Jafar determine the exact PIR
capacity of the classical PIR model of replication.

Starting from [12], the research of PIR has been combined
with distributed storage system instead of the replication-
based system. This brings in the other important parameter,
i.e., the storage overhead of the distributed storage system,
defined as the ratio between the total number of bits stored
on all the servers and the number of bits of the database.
Several papers have been studying the relation between the
storage overhead and the rate of a PIR scheme. Chan et al. [4]
offer a tradeoff between the storage overhead and rate for
linear PIR schemes. They show that when each server stores
a fraction 0 < ✏  1 of the database, then the rate of a
linear PIR scheme should be at most N�1/✏

N
, where N is

the number of server. Tajeddine et al. [16] propose a PIR
scheme achieving this upper bound when the storage code is
an arbitrary (N,K)-MDS code, so ✏ = 1

K
and the PIR rate

is N�K

N
. Banawan and Ulukus [2] show that the exact PIR

capacity when using an arbitrary (N,K)-MDS storage code
is (1+ K

N
+ · · ·+ K

M�1

NM�1 )�1, a value dependent on the number
of files M and tends to N�K

N
when M approaches infinity.

However, similar to the scheme of Sun and Jafar [13], this
optimal scheme can be implemented only if the file size L is
an exponential function of M [14], [18]. For a more practical
setting we are more interested in the case when L is at most a
polynomial value in terms of M and the scheme of Tajeddine
et al. [16] works for this setup.

Recall the development of the research on distributed
storage systems: Besides optimizing repair bandwidth or
storage for distributed storage systems, access complexity is
also a concern since the time of reading data may cause
a bottleneck. The research of optimal-access MDS codes
started in [15]. A similar idea in locally repairable codes
was introduced in [9] for the sake of reducing the nodes to
be accessed. The complexity of the computations done by
the servers for the various tasks of the distributed storage
system is an important parameter in such systems which
didn’t get enough attention in PIR schemes. The only work
which took the computational complexity of the servers, in the
new PIR model, into account, was done by Lavauzelle [11].
Our approach is completely different. For practical use of
PIR protocols in distributed storage systems, we should also
consider the access complexity in the scheme. However, to
the best of our knowledge, the access complexity of PIR has
not been studied in previous works so far. In fact, most known
PIR schemes require accessing almost all of the data stored on
each server in the worst case. The next example demonstrates
the concepts and improvements for the access complexity that
we study in this work. We will consider the worst case in
this paper, but the average case is also very interesting from
a theoretical and practical points of view.

Example 1. Consider the following 2-server PIR scheme
where each server stores the whole database x =
(x1,x2, . . . ,xM ). A user chooses an arbitrary binary vector
a = (a1, . . . , aM ) 2 FM

2 and then sends a and a+ef to the
two servers respectively. From the responses

P
M

i=1 aix
i andP

M

i=1 aix
i + xf the user successfully retrieves the desired

file xf privately. While the main advantage of this solution
is its low download complexity, it suffers from extremely
large access complexity since in the worst case almost all
M files are accessed on each server. Hence, in this scheme
the bottleneck will no longer be the upload or download time,
but the access time to read all files. The access complexity can
be improved at the cost of increasing the storage overhead.
That is, when storing more information in the servers the
computation a · x will require to access a fewer number of
files. For example, assume we also store in each server the
file x⌃ given by x⌃ =

P
M

i=1 x
i. Then, in the worst case,

the server will read only M/2 files. Thus we save half of the
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access complexity in the tradeoff of storing one additional file
on each server.

Intuitively for a PIR scheme in a distributed storage system
there will be a relationship among the three parameters: stor-
age overhead, PIR rate, and access complexity. The ultimate
objective is to characterize the tradeoff of any two parameters
when fixing the third. In this paper, we make a first step
towards solving this problem. Given the number of servers N ,
the number of files M , we fix the size of the storage space for
each server (and thus fix the storage overhead) and analyze
the rate and access complexity of several PIR schemes.

The rest of the paper is organized as follows. In Section II,
we give a formal statement of the PIR problem studied in the
paper. In Section III, we discuss how to improve the access
complexity using covering codes. In Section IV, we analyze
the rate and access complexity for several PIR schemes.
Finally, Section V concludes the paper.

II. PROBLEM STATEMENT

A PIR scheme for a distributed storage system consists of
the following parameters:

• The system has N servers. A database consists of M
files x1,x2, . . . ,xM of equal length L. The size of the
database is then ML.

• Each server stores ✏ML bits, ✏ > 0. Thus the total
storage is ✏NML.

• The storage overhead is defined as the ratio between the
total storage and the size of the database, i.e., ✏N .

• The storage code of the system is an encoding mapping
(x1,x2, . . . ,xM ) 2 FML

2 �! (y1, . . . ,yN
), y

n
2

F✏ML

2 .
• To retrieve a file, a user downloads ⇢n bits from the nth

server. The total download cost is then
P

N

n=1 ⇢n.
• The rate ⌦ of a PIR scheme is defined as the ratio of

the size of a desired file and the number of downloaded
bits, i.e. ⌦ = LPN

n=1 ⇢n
.

• The ⇢n downloaded bits from the nth server are functions
of the data yn it stores. The calculation of these down-
loaded bits requires the server to access �nML bits in
yn. �n is called the access complexity of the nth server.
The total access complexity is defined as � =

P
N

n=1 �n.
We call a 6-tuple (N,M,L,⌦,�, ✏) achievable, if for a

distributed storage system with parameters N , M and L, we
have a PIR scheme with rate ⌦, total access complexity �,
and each server stores a fraction ✏ > 0 of the whole database
(and thus the storage overhead is ✏N ). When N , M and
L are clear from the context or not relevant, we abbreviate
the 6-tuple as a 3-tuple (⌦,�, ✏). The ultimate objective is
to characterize the exact tradeoff between any two of the
parameters ⌦, � and ✏ when fixing the third. In this paper
we make a first step towards solving this problem by finding
some achievable 3-tuples of (⌦,�, ✏) with a predetermined
✏.

Intuitively the storage space can be divided into two parts.
One part represents the indispensable storage for a particular
PIR scheme and is referred to as the storage for PIR. This
part represents the independent symbols stored on each server.
The remaining part is jointly designed with the former part for
improving the access complexity on each server. We illustrate
this idea via the following example.

Example 2. Consider a distributed storage system storing a
database containing M files x1,x2, . . . ,xM of equal size L.
Assume we have N = 3 servers with ✏ = 1, i.e., each server
can store ML bits. A user wants to retrieve a specific file xf .

One way is to allocate all the storage space to be used for
PIR, so each server stores the whole database. Divide each
file into two equal parts xm = (xm

1 ,xm

2 ). A user chooses
two independent random vectors a and b in FM

2 . He asks
for

P
M

i=1 aix
i

1 +
P

M

i=1 bix
i

2,
P

M

i=1 aix
i

1 +
P

M

i=1 bix
i

2 + xf

1

and
P

M

i=1 aix
i

1 +
P

M

i=1 bix
i

2 + xf

2 from the three servers
respectively. Therefore he downloads 3L

2 bits, so the rate of
the scheme will be ⌦ = 2/3. Each server will access almost
all the data in the worst case. Altogether almost 3ML bits
should be accessed throughout the scheme. Then the total
access complexity will be � = 3. So we have an achievable
3-tuple (⌦ = 2/3,� = 3, ✏ = 1).

Yet another way is to only use half of the storage for PIR
and the other half for improving the access complexity. Let
each server store only half of the database. Say we have {xm

1 :
1  m  M} on the first server, {xm

2 : 1  m  M} on the
second server and a coded form {xm

1 + xm

2 : 1  m  M}

on the third server. Again a user chooses two independent
random vectors a and b in FM

2 . He makes two queries from
each server and gets the responses as follows:

Server I Server II Server IIIPM
i=1 aix

i
1 + xf

1

PM
i=1 aix

i
2

PM
i=1 ai(x

i
1 + xi

2)PM
i=1 bix

i
1

PM
i=1 bix

i
2 + xf

2

PM
i=1 bi(x

i
1 + xi

2)

This is exactly the scheme of Tajeddine et al. in [16] when
using a (3, 2)-MDS storage code. In this scheme the download
will be 3L bits so the rate will be ⌦ = 1/3. To improve the
access complexity, each server stores a coded form of the data
using a covering code approach instead of storing {xm

1 : 1 

m  M}, {xm

2 : 1  m  M} or {xm

1 +xm

2 : 1  m  M}

in their original form. For each query a server will only need
to read about 0.22ML bits (to be explained in Section III). So
altogether at most 1.32ML bits are accessed in the scheme,
resulting in the total access complexity � = 1.32. So we have
an achievable 3-tuple (⌦ = 1/3,� = 1.32, ✏ = 1).

III. ACCESS COMPLEXITY USING COVERING CODES

A (binary) covering code C of length ` with covering
radius R is a set of vectors in {0, 1}` such that for every
vector u 2 {0, 1}` there exists a codeword c 2 C with
Hamming distance dH(c,u)  R. Covering codes were
extensively studied and comprehensive information on them
can be found in [7]. For linear covering codes this property
can be translated as follows.

Proposition 3. [8] Let C be a linear code of length `,
dimension k, redundancy r = ` � k, and a parity check
matrix H of size r ⇥ `. Then, C is a covering code with
covering radius R if and only if for every column vector
s 2 {0, 1}r there exists a row vector y 2 {0, 1}` of Hamming
weight at most R, such that H · yT = s.

The other way to explain the covering radius of a linear
code is as follows. A column vector s 2 {0, 1}r is actually
a syndrome corresponding to a particular coset of the code C

in F`

2. In this coset one can find a vector y 2 F`

2 (not
necessarily unique) with minimum Hamming weight. The
vector y is known as a coset leader and its weight is known as
the coset weight. Then one can get the vector s by summing
up the columns of H indexed by the support set of y. Thus
the covering radius of a linear code is exactly the maximum
of all its coset weights. Linear covering codes can be used to
improve the access complexity as follows.

Suppose we have a database x which can viewed as a t⇥r
matrix, i.e. x = (x1, . . . ,xr), where each xi, 1  i  r, is a
column vector of length t. Let C be a linear code of length `,
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dimension k, redundancy r = ` � k, covering radius R and
an r ⇥ ` parity check matrix H = [h1, . . . ,h`]. Each server
stores the database x encoded by the columns of H. That
is, the server stores ` column vectors zi = x · hi for 1 

i  `. In other words, zi is a linear combination of the files
(column vectors) of the database x, with coefficients taken
from hi. The user who chooses an arbitrary binary column
vector s = (s1, . . . , sr)T , for the query, to the j-th server,
wants to retrieve from the j-th server the vector x · s. To
compute x · s, the server first finds the coset leader y such
that H · yT = s. Then computing x · s is equivalent to

x · s = x · (H · yT ) = x ·

0

@
X

i:yi=1

hi

1

A =
X

i:yi=1

zi.

Since the Hamming weight of the coset leader y is at most R,
it follows that we only need to access at most R columns ofH
to compute x·s. Moreover, H can be chosen in the form H =
[Ir | Ar⇥(`�r)] and thus we can always have a systematic
form of the original data. The asymptotic connection between
the length `, covering radius R, and the dimension k of the
linear covering code can be roughly estimated by the sphere-
covering bound

2k · 2H(R/`)`
⇡ 2`,

or
k

`
+H(R/`) = 1,

so H(R/`) = 1 � k

`
= r

`
, where H(·) is the binary entropy

function. By setting the covering radius to be R = ↵r and
the size of the storage ` = �r, we have

H

✓
↵

�

◆
=

1

�
. (1)

Solving this equation and the relation between ↵ and � can
be represented as a function ↵ = f(�), depicted in Fig. 1.

Fig. 1: Access vs. Storage

It is not an easy task to explicitly construct linear codes
achieving the above sphere-covering bound. However, the
existence of such codes has been proved:

Proposition 4. [6] Let 0  R  `/2. Then there exists an
infinite sequence of linear codes C` of growing length ` with
covering radius R(C`) ! R and the code rate is between
1�H(R/`) and 1�H(R/`) +O(`�1 log2 `).

In a PIR scheme which does not take access complexity
into consideration, the data stored on a server can be usually
represented as r independent strings of the same length and
a query asks for a linear combination of these strings. Using
the covering code approach above, we may store a coded

version of the data instead of only storing the original form.
The access complexity could be improved as follows.

Theorem 5. Suppose there exists a linear binary covering
code with redundancy r, code length �r and covering radius
↵r. Given a set of r independent strings {x1, . . . ,xr},
a server can store a coded form of these strings as
{z1, . . . , z�r}, such that computing any linear combination
of {x1, . . . ,xr} requires only accessing at most ↵r substrings
in {z1, . . . , z�r}. The asymptotic relation of ↵ and � is
H(↵

�
) = 1

�
.

A further remark is that adding redundancies in the storage
does not affect the privacy of the original scheme. In essence
the privacy is only related to the set of queries. Finally, we
note that the problem of reducing the access complexity when
replying to queries of the form mentioned in this section is not
relevant only for PIR schemes. The approach can be relevant
for other models which require this or similar computation.
An example for such a problem was studied in [10] for the
partial-sum problem where the authors also used covering
codes. However, since the computations involved integer num-
bers, the storage overhead was exponential with the number
of items.

IV. PIR RATE VS. ACCESS COMPLEXITY

Now, we analyze the PIR rate and access complexity for
two kinds of PIR schemes which provide good tradeoff be-
tween the rate, access complexity, and storage overhead. The
schemes by Tajeddine et al. [16] and a scheme of Blackburn,
Etzion and Paterson (B-E-P scheme) [3] are considered. Given
✏ indicating the size of the storage space of each server, we
first choose some 0  ⇡  ✏ indicating that the size of the
storage for PIR, i.e., the amount of storage of independent
symbols. Using this ⇡ fraction of storage we implement a
proper PIR scheme with high rate. Then we analyze the
total access complexity of this scheme by making use of the
remaining ✏� ⇡ fraction of the storage space.

A. The scheme of Tajeddine et al. [16]
When ⇡ = 1

K
, K < N , the rate of the scheme of Tajeddine

et al. [16] achieves the upper bound ⌦ = N�K

N
proposed by

Chan et al. in [4]. So we begin with analyzing how to improve
the access complexity of this scheme using the covering code
approach.

Recall the framework of the scheme. Let each file xm
2 FL

2
be represented in the form of a matrix Xm = {xm

i,j
:

1  i  N �K, 1  j  K}, where each xm

i,j
represents

a binary substring of length L

K(N�K) . Let ⇤ = [�1, . . . ,�N ]
be aK⇥N generator matrix of the storage code. Then the nth
server stores Xm�n, which are N �K linearly independent
substrings as functions of xm. The whole storage on the
nth server is thus a concatenation of altogether M(N �K)
linearly independent substrings. Each server will receive K
queries, where each query asks for a certain linear combina-
tion of these M(N �K) substrings.

We make use of the additional storage of size (✏� 1
K
)ML

bits on each server. Select a covering code with redundancy
r = M(N �K) with code length �r where � = K✏. Instead
of storing the r substrings of y

n
in their original form, the

server stores �r substrings according to the covering code ap-
proach. Then by Theorem 5, to answer each query, the server
only needs to access at most ↵r = f(�)r substrings. Recall
that each server receives K queries. Thus each server will
access at most min{f(�)rK, r} substrings, since accessing
the r linearly independent substrings are already enough for

����
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computing any linear combination. Therefore, the total num-
ber of bits accessed by each server is min{f(K✏)ML, ML

K
}

and thus the total access complexity over all servers will be
� = min{Nf(K✏), N

K
}.

For example, select N = 10. Let ✏ = 1. We can take
arbitrary 1  K  9 and apply the scheme of Tajeddine
et al. The PIR rate and total access complexity are listed as
follows. �0 = N

K
corresponds to the total access complexity

when there is no redundancy in each server.

K ⌦ = N�K

N
� �0

1 0.9 5.000 10.000
2 0.8 2.201 5.000
3 0.7 1.845 3.333
4 0.6 1.668 2.500
5 0.5 1.556 2.000
6 0.4 1.477 1.667
7 0.3 1.418 1.429
8 0.2 1.250 1.250
9 0.1 1.111 1.111

The table above indicates the covering code approach does
improve the total access complexity for K 6= 8, 9. We further
note that Tajeddine et al. mention that their scheme could be
implemented with cutting each file into l.c.m.(K,N�K)

K
⇥ K

substrings instead of (N � K) ⇥ K, and correspondingly
the number of subqueries for each server is l.c.m(K,N�K)

N�K

instead of K. This modification allows us to further improve
the access complexity. Select a covering code with redun-
dancy r0 = M l.c.m.(K,N�K)

K
with code length �r0 where

� = K✏. Then by Theorem 5 each query will access at most
↵r0 = f(�)r0 substrings. Each server receives l.c.m(K,N�K)

N�K

queries and thus the number of bits to be accessed on each
server is at most f(�)r0 l.c.m(K,N�K)

N�K
⇥

L

K⇥ l.c.m.(K,N�K)
K

=

f(K✏)ML l.c.m.(K,N�K)
K(N�K) . Therefore when K and N � K

are not coprime, the total access complexity will be further
improved as � = Nf(K✏) l.c.m.(K,N�K)

K(N�K) = Nf(K✏)
gcd(K,N�K) .

Thus some of the results in the example above can be
improved as follows.

K ⌦ = N�K

N
�

2 0.8 1.100
4 0.6 0.834
5 0.5 0.311
6 0.4 0.739
8 0.2 0.685

In conclusion, applying the scheme of Tajeddine et al.
results in several achievable 3-tuples as follows.

Theorem 6. In a distributed storage system consisting of N
servers, for every 1  K < N , ✏ �

1
K
, the tuple (⌦ =

N�K

N
,� = min{ Nf(K✏)

gcd(K,N�K) , N/K}, ✏) is achievable.

We close this subsection by discussing the possibility of
further improving the access complexity for the scheme of
Tajeddine et al. Note that each server may receive multiple
queries. The data accessed by a server when responding
to different queries may have certain overlap. Reconsider
Example 1, if we have two queries, then the server may
read only 3M

4 files instead of reading M

2 files twice. Further
improving the access complexity for the scheme of Tajeddine
et al. (by taking advantage of possible overlap when reading
multiple queries) relies on a good solution to the coding
theoretic problem presented in the next subsection.

B. Generalized coset weights

Given a binary linear code, for every ⌧ cosets of the code,
choose one vector from each coset and find the size of the
union of their support sets. The minimum of this value is
called the ⌧ -coset weight of these ⌧ cosets. What is the
maximum value of all ⌧ -coset weights? When ⌧ = 1 this
is the covering radius R of the linear code. When ⌧ � 2, we
would like to see weights smaller than ⌧R.

The ⌧ -coset weights (for covering) are akin to the gener-
alized Hamming weights (for distance) defined in [17] which
were considered in hundreds of papers.

Let [n, k, d] code denote a binary linear code of length n,
dimension k, and minimum Hamming distance d.

Lemma 7. The ⌧ -coset weight of a code C is the minimum
number of columns ` in the parity check matrix H of C, such
that for each ⌧ syndromes of C, there exists a set of ` columns
of H which has ⌧ linear combinations of this set to form these
⌧ syndromes.

Theorem 8. The ⌧ -coset weight of an [n, k, d] code C is at
most n� k for each ⌧ � 1.

Proof. The parity check matrix H of C has n � k linearly
independent columns. A set of such n� k columns covers a
word in each coset of C.

Theorem 9. The ⌧ -coset weight of the [2m�1, 2m�1�m, 3]
Hamming weight is ⌧ for each 1  ⌧  m.

Theorem 10. The ⌧ -coset weight of the [2m, 2m � 1�m, 4]
extended Hamming weight is ⌧ + 1 for each 1  ⌧  m.

For many types of BCH codes with minimum distance d
and covering radius R we have proved that the 2-coset weight
is smaller than 2R. This was generalized in some cases for
⌧ -coset weights with ⌧ > 2. This and other related results
will be considered in the full version of this paper.

C. Using several parallel B-E-P schemes

Consider the scheme of Tajeddine et al. when K = 1, i.e.,
replicated databases. Each file xm

2 FL

2 is divided into N�1
substrings xm

1 , . . . ,xm

N�1 of length L

N�1 . Each server stores
y = {x1

1, . . . ,x
1
N�1,x

2
1, . . . ,x

2
N�1, . . . ,x

M

1 , . . . ,xM

N�1}, al-
together (N � 1)M substrings. A user chooses a random
binary vector v of length (N�1)M . The N th server receives
the query vector v and the nth server receives the query
vector v + e(f�1)(N�1)+n, 1  n  N � 1, where f is
the index of the desired file. Then from the response of the
nth server and the N th server, the user retrieves the string
xf

n
, 1  n  N � 1.
The B-E-P scheme recently proposed by Blackburn, Etzion

and Paterson suggests a different way, whose original motiva-
tion is to optimize the upload complexity of the query vectors.
A user who wants to retrieve the file xf chooses M elements
z1, . . . , zM 2 ZN uniformly and independently at random.
The nth server receives (b1n, . . . , bMn) where bfn = zf + n
(mod N) and bmn = zm for m 6= f and then responds withP

M

m=1 x
m

bmn
, where xm

0 represents the all-zero vector.
The main difference is that a query in the former scheme

asks for an arbitrary linear combination of all the (N � 1)M
substrings while a query in the latter scheme asks for a
linear combination with a restricted pattern, i.e., at most one
substring from each file is involved in the linear combination.
This restriction may allow for a better way to improve the
access complexity than the covering code approach.

����
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Example 11. N = 3, M = 3. Consider the necessary amount
of storage overhead for a PIR scheme with rate 2/3 and total
access complexity 1. The scheme of Tajeddine et al. gives
an achievable tuple (2/3, 1, 13/6), which applies a covering
code of length 13, redundancy 6 and covering radius 2 to store
the six substrings {x1

1,x
1
2,x

2
1,x

2
2,x

3
1,x

3
2}. ✏ = 13/6 cannot

be improved for the scheme of Tajeddine et al. since 13 is the
minimum length of a linear covering code with redundancy
6 and covering radius 2 [7, p. 202]. However, if we use the
B-E-P scheme, then each server can store the following 11
substrings: {x1

1,x
1
2,x

2
1,x

2
2,x

3
1,x

3
2,x

1
1 + x2

2,x
2
1 + x3

2,x
3
1 +

x1
2,x

1
1 + x2

1 + x3
1,x

1
2 + x2

2 + x3
2}. This already guarantees

that we only need to read at most two substrings for any
query in the B-E-P scheme. Thus the B-E-P scheme gives an
achievable tuple (2/3,1,11/6).

In the former two subsections, on each server 1
K
ML

bits are allocated as the storage for PIR and the remaining
(✏� 1

K
)ML bits are designed for improving the access

complexity. Now consider the case when p

q
ML bits are

allocated for the PIR scheme and the remaining (✏� p

q
)ML

bits are used for improving the access complexity, where
1
N


p

q
 ✏ cannot be simplified to the form 1

K
. Once we

have a proper PIR scheme with good rate in this setup, the
idea for improving the access complexity will be exactly the
same approach aforementioned.

As shown by [4], such a PIR scheme will have rate
at most

N� q
p

N
. This model was then named as the storage

constrained PIR and bounds on the capacity were considered
in [1]. Particularly, when further restricting the p

q
ML bits

of storage to be uncoded, [1] determined the exact capacity
which is achieved by a memory sharing method plus the
capacity-achieving schemes of [13]. Since the B-E-P scheme
has asymptotically optimal rate, it is natural to consider
the memory sharing method using several parallel B-E-P
schemes.

Suppose that the file size is L = t` and we divide each file
xm into t parts of equal size `, {xm

1 , . . . ,xm

t
}. We choose

some d parts from each file and consider them as a new
subdatabase, say {xm

j
: 1  m  M, 1  j  d}. Then

we may perform a B-E-P subscheme for this subdatabase on
some d + 1 servers. This subscheme occupies d

t
ML bits on

each of the d+1 servers involved and contributes d+1
t
L bits to

the download cost. A combined PIR scheme by the memory
sharing method, is done by just dividing the database into
several subdatabases and then implementing several parallel
B-E-P subschemes, each on a certain subset of servers. Note
that a sufficiently large t and a proper way to allocate servers
for each subscheme (say, by permutations) will guarantee that
each server stores exactly p

q
ML bits. Since in this scheme

each server has uncoded storage, then as suggested by [1],
to achieve the asymptotically optimal rate, each subscheme
should be implemented on either dNp

q
e or bNp

q
c servers.

The rate of this scheme can be calculated as follows.
Altogether a proportion ⌘ of the database is involved in
subschemes on d

Np

q
e servers and the rest proportion 1 � ⌘

is involved in subschemes on b
Np

q
c servers, where ⌘dNp

q
e+

(1� ⌘)bNp

q
c = Np/q. The total download is then

L ·
�
⌘

d
Np

q
e

d
Np

q
e � 1

+ (1� ⌘)
b
Np

q
c

b
Np

q
c � 1

�
.

Finally, the rest (✏ � p

q
)ML bits on each server are used

for improving the access complexity via the covering code
approach aforementioned.

Theorem 12. In a distributed storage system consisting of
N servers, for every rational number 1

N


p

q
 ✏, the tuple

(⌦, Np

q
f(✏ q

p
), ✏) is achievable, where

⌦ =
�
⌘

d
Np

q
e

d
Np

q
e � 1

+ (1� ⌘)
b
Np

q
c

b
Np

q
c � 1

��1
.

V. CONCLUSION

In this paper we took into consideration the access com-
plexity of a PIR scheme. PIR schemes with low access com-
plexity reduce the amount of data to be accessed throughout
a PIR scheme and are therefore suitable for practical use.
A few methods were considered, especially ones which use
covering codes. Some of these codes were applied on known
schemes. It should be noted that these methods are not useful
for all the known schemes, e.g. the one of Sun and Jafar [13].
Finally, the problem of generalized coset weights, which will
be helpful when there are multiple queries on each server, has
independent interest in coding theory.
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