
Bounds on the Length
of Functional PIR and Batch Codes

Yiwei Zhang
Dept. of Computer Science

Technion-Israel Inst. of Technology
Haifa 3200003, Israel

Email: ywzhang@cs.technion.ac.il

Eitan Yaakobi
Dept. of Computer Science

Technion-Israel Institute of Technology
Haifa 3200003, Israel

Email: yaakobi@cs.technion.ac.il

Tuvi Etzion
Dept. of Computer Science

Technion-Israel Inst. of Technology
Haifa 3200003, Israel

Email: etzion@cs.technion.ac.il

Abstract—A functional k-PIR code of dimension s consists

of n servers storing linear combinations of s linearly inde-

pendent information symbols. Any linear combination of the

s information symbols can be recovered by k disjoint subsets

of servers (the reason for this somehow abused definition will

be explained in the sequel). The goal is to find the smallest

number of servers for given k and s. We provide lower bounds

on the number of servers and constructions which yield upper

bounds. For k  4 we provide exact bounds on the number

of servers. Furthermore, we provide some asymptotic bounds.

The problem coincides with the well known private information

retrieval problem based on a coded database to reduce the

storage overhead.

If any multiset of size k of linear combinations from the

linearly independent information symbols can be recovered by

k disjoint subset of servers, then the servers form a functional
k-batch code. A functional k-batch code is also a functional

k-PIR, where all the k linear combinations in the multiset are

equal. We provide some bounds on the number of servers for

functional k-batch codes. In particular we present a random

construction and a construction based on simplex codes, WOM

codes, and RIO codes.

I. INTRODUCTION

A. General Background
A Private Information Retrieval (PIR) protocol allows a

user to retrieve a data item from a database, in such a way
that the servers storing the data will get no information about
which data item was retrieved. The problem was introduced
in [3]. For a set of k servers, the goal is to design an efficient
k-server PIR protocol, where efficiency is measured by the
total number of bits transmitted by all parties involved.
The classical model of PIR assumes that each server stores

a copy of an s-bit database, so the storage overhead, namely
the ratio between the total number of bits stored by all servers
and the size of the database, is k. However, recent work
combines PIR protocols with techniques from distributed
storage (where each server stores only a coded fraction of the
database) to reduce the storage overhead. This approach was
first considered in [12], and several papers have developed
this direction further. Our discussion on PIR will follow the
breakthrough approach presented in [7], which shows that
n servers (for some n > k) may emulate a k-server PIR
protocol with storage overhead significantly lower than k.
The scheme used for this purpose is called a k-PIR and will
be discussed in the next paragraph.
The s-bit database S is considered as the information bits

of a linear code of length n and dimension s. This code
has an s ⇥ n generator matrix G. The linear combinations
related to the codeword S · G are stored in the n servers.
In other words, the i-th server stores the linear combination

generated when the s-bit information word is multiplied by
the i-th column of G. The generator matrix G represents
a k-PIR scheme if there are k pairwise disjoint subsets of
[n] , {1, 2, . . . , n}, R1, R2, . . . , Rk, such that the sum of
the columns of G related to each such subset is the data
item which the user wants to retrieve. Using these k subsets
any known k-PIR protocol can be emulated with the given n
servers. The advantage of this scheme is in reduced amount
of storage used for a k-PIR protocol. The goal in the design
of such a PIR scheme is to find the smallest n, given s and k.
This problem was considered in several papers, e.g. [1], [7]
and references therein.
In all the PIR protocols in the literature, the user wants to

retrieve one out of the s information bits of the database. But,
at least theoretically, it is quite natural that the user will want
to retrieve a linear combination of the s bits of information
symbols. This is not applicable in the PIR application, but it
is applicable in related applications such as batch codes [9]
or availability codes [10]. Hence, such a scheme will be
called (with some abuse of the name) a k-functional PIR
code.
A k-PIR code is a special case of a k-batch code. Batch

schemes were introduced by Ishai et al. [9], motivated by
different applications for load-balancing in storage and cryp-
tographic protocols. Originally, batch codes were defined
in a very general form, i.e., s information symbols are
encoded into n-tuples of strings where each string is called
a bucket. Each bucket contains a few linear combinations of
the information symbols. A single user wants to retrieve a
batch of k distinct data items (out of the s data items) by
reading at most t symbols from each bucket. The goal in the
design of a batch scheme is to find the smallest total length
of all the buckets, given s, k, t and n.
A stronger variant of batch codes [9] is intended for a

multi-user application instead of a single-user setting, known
as the multiset batch codes. In this variant we have k different
users each requesting a data item, where some of the requests
are allowed to be the same. Therefore, all the k requests
constitute a multiset of data items (each being one out of the
s data items, replications allowed). Moreover, each bucket is
allowed to be accessed by at most one user. A special case
of multiset batch code is when each bucket contains only
one symbol. This model is called a primitive multiset batch
code [9] (or k-batch code). This family of batch codes is the
most studied in the literature. In this setup a k-PIR code is
a special case of a k-batch code. We restrict our definition
only to this family of batch codes. They are represented by

��������������������������������������,(((,6,7�����

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 08,2020 at 21:02:11 UTC from IEEE Xplore. Restrictions apply.

an s ⇥ n generator matrix G. Such a matrix represents a
k-batch scheme if there are k pairwise disjoint subsets of
[n], R1, R2, . . . , Rk, such that the k sums from each subset
of the columns inG constitute a multiset of data items which
some k users want to retrieve. Hence, the requests in a k-
PIR are a special case of the requests in a k-batch when the
multiset contains only one specific item k times. Therefore,
a k-batch code can always work as a k-PIR code but not
vice versa. The goal in the design of a batch scheme is
to find the smallest n, given s and k. This problem was
considered in several papers, e.g. [1], [9], [11]. Similarly as
our generalization of PIR into functional PIR, a batch code
is generalized into a functional batch code.
A related family of codes to functional batch codes are

random I/O (RIO) codes. This family of codes was recently
introduced in [13] and provides a coding scheme to improve
the random input/output performance of flash memories. An
(n,M, t) RIO code stores t pages in n cells with t + 1
levels such that it is enough to sense a single read threshold
in order to read any of the t pages. In [13] it was shown
that the design of RIO codes is equivalent to the design
of write-once memory (WOM) codes [4], [8]. However,
while in WOM codes, the messages are received one after
the other and thus are not known all in advance, in RIO
codes the information of all logical pages can be known in
advance when programming the cells. This variant of RIO
codes, called parallel RIO codes, was introduced in [14]. A
recent construction of parallel RIO codes [15] used the coset
coding scheme [4] with Hamming codes. This construction
is equivalent to the requirements of functional batch codes.
Hence, any functional batch code is also a parallel RIO code,
but the other direction does not necessarily hold.

B. General Description of the Problem

Assume there are n servers, each storing a linear com-
bination of s linearly independent items. Each of these s
items will be called an information symbol. Each linear
combination which consists of at least one of these infor-
mation symbols will be called a coded symbol. There are
k users who want to retrieve k linear combinations of items
from these servers. Each such linear combination which a
user wants to retrieve will be called a request. Each user
has exactly one such request and he should approach a set
of servers to obtain his request. The set of servers which
are approached by two different users must be disjoint. We
would like to know the smallest number of servers that is
required to satisfy any k requests of the k users. This scheme
will be called a functional k-batch (code). If each request
contains exactly one information symbol, then the scheme
will be called a k-batch code.
If the k requests are the same (linear combination) then

the scheme will be called a functional k-PIR code and
furthermore if these k requests contain the same information
symbol, then the scheme will be called a k-PIR code.
This definition for k-PIR coincides with the definition for
k-PIR given in [7] for a single user. Let FB(s, k) (B(s, k),
FP (s, k), P (s, k), respectively) be the minimum number of
servers required for s items and k requests for functional
k-batch (k-batch, functional k-PIR, k-PIR, respectively).
A functional k-batch code of length n and dimen-

sion s consists of n servers and s information symbols
{x1, x2, . . . , xs}. Each server stores a nontrivial linear com-
bination of the information symbols (which are the coded
symbols), i.e. the j-th server stores a linear combination
Yj , 1  j  n. For any request of k linear combi-
nations v1,v2, . . . ,vk (not necessarily distinct) of the in-
formation symbols, there are k pairwise disjoint subsets
R1, R2, . . . , Rk of [n] such that the sum of the linear
combinations in the related servers of Rj , 1  j  k, is vj ,
i.e.

P
`2Rj

Y` = vj . Each such vi will be called a requested
symbol and each such subset Rj will be called a recovery
set. The functional k-batch code can be also represented by
an s ⇥ n matrix G in which the j-th column has ones in
positions i1, i2, . . . , i` if and only if the j-th server stores
the linear combination xi1 + xi2 + · · ·+ xi` .
To summarize, a k-batch code is functional k-batch code,

where each one of the requests v1, . . . ,vk is an information
symbol. A functional k-PIR code is a functional k-batch
code, where all the vi’s equal to one linear combination v.
A k-PIR code is functional k-PIR code, where the linear
combination v contains exactly one information symbol.

C. Basic Results

Our goal is to obtain lower and upper bounds on FB(s, k)
and FP (s, k). Some related bounds on B(s, k) and P (s, k)
were derived or summarized in [1], [7], [11].

Lemma 1.

1) For each s � 1, P (s, 2s�1) = B(s, 2s�1) = 2s � 1.
2) When k is a fixed integer, P (s, k) = s+⇥(

p
s).

3) B(s, k) = s+⇥(
p
s) for k = 3, 4, 5.

4) B(s, k) = s+O(
p
s log s) for k � 6.

5) B(s, s")  s+ s7/8 for 7/32  "  1/4.
6) B(s, s")  s+ s4" for 1/5 < "  7/32.
7) B(s, s)  2s1.5.
8) P (s,

p
s) = s+O(s(log 3/2)).

9) P (s, s") = s+O(s0.5+"), 0 < ✏ < 1/2.
10) B(s, k = ⇥(s")) = s+ o(s), 0 < ✏ < 1.
11) P (s, k = ⇥(s")) = s+ o(s), 0 < ✏ < 1.

We continue in the rest of the paper to derive lower
and upper bounds on FP (s, k) and FB(s, k). For lack
of space some constructions and proofs are omitted. They
appear in the full version of this paper [16]. Simple bounds
on FB(s, k) and FP (s, k) are given in the following two
theorems.

Theorem 1. If s and k are positive integers, then
1) For k > 1, FB(s, k) > FB(s, k � 1).
2) For k > 1, FP (s, k) > FP (s, k � 1).
3) For s � 1, FP (s, 1) = FB(s, 1) = s.
4) For s � 1, FP (s, 2) = s+ 1.
5) For s � 1 and k � 1, FP (s, 2k) = FP (s, 2k�1)+1.
6) For s � 1 and k � 1, FP (s, k)  FB(s, k).

Theorem 2. If s, t, s1, s2, k1, k2 are positive integers, then
(1) FP (s, 2s�1) = 2s � 1.
(2) FP (s, k1 + k2)  FP (s, k1) + FP (s, k2).
(3) FP (s1 + s2, k)  FP (s1, k) + FP (s2, k).
(4) FP (rt, 2r)  2t(2r � 1).

����

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 08,2020 at 21:02:11 UTC from IEEE Xplore. Restrictions apply.

II. A CONSTRUCTION OF FUNCTIONAL PIR CODES

In this section an explicit construction of functional k-PIR
codes, when k is a power of 2, is presented. The code
which has tr information symbols will be represented by
two (t + 1) ⇥ 2r arrays. One array will be defined in the
construction and the second array will be defined in the proof
for the correctness of the construction. In the first array, each
entry, except for the entries of the last column, represents
the content of different servers. The last column of the array
contains zeroes. In the second array, each column represents
a recovery set. The second array is obtained from the first
array by a permutation defined via a translation induced from
the requested symbol. By puncturing p times this code of
length 2r, a functional k-PIR codes for k = 2r � 2p will be
obtained.

Construction 1. Let {xi

j
: 1  i  t, 1  j  r} be the

set of s = rt information symbols. Let T be a (t+ 1)⇥ 2r

array whose last column consists of zeroes. The columns of
T are indexed by the elements of the power set 2[r]. The i-th
row, 1  i  t, contains the 2r linear combinations of the
symbols {xi

j
: 1  j  r}. In particular, the entry on the

column indexed by A 2 2[r] contains the linear combination
xi

A
=

P
j2A

xi

j
(note that xi

? = 0). Finally, the (t + 1)-th
row is a parity row, where the entry in the column indexed by
A is XA =

P
t

i=1 x
i

A
=

P
t

i=1

P
j2A

xi

j
. This entry will be

called the leader of the column. Note that only the entries of
the column indexed by ? do not correspond to information
stored in a server. The parity of this column which is zero
is stored in the (t+1)-th row and it is also called a leader.
Each other symbol in the array T is stored in a different
server. The array T contains all the n = (2r � 1)(t + 1)
symbols and hence it will be called the stored symbols array.

By Theorem 2, FP (rt, 2r)  2t(2r � 1). In the next
theorem this upper bound is improved.

Theorem 3. The code of Construction 1 is a functional 2r-
PIR code. Therefore, FP (rt, 2r)  (2r � 1)(t+ 1).

Proof: Let v be the requested symbol, i.e., v is a linear
combination

v = v1 +v2 + · · ·+vt,

where each vi is a linear combination of the information
symbols {xi

j
: 1  j  r}, 1  i  t. We also define

vt+1 = 0.
Given the (t+1)⇥2r stored symbols array T , we construct

a new (t + 1) ⇥ 2r array Rv as follows. The rows and the
columns of Rv are indexed exactly in the same way as the
rows and columns of T are indexed. To the symbol in T in
the entry on the i-th row, 1  i  t + 1, and the column
indexed by any subset A of 2[r], we add vi to obtain the
corresponding symbol in Rv in the same entry. The array Rv

will be called the recovery array for v since each column
contains the content of the servers which form one of the
recovery sets. Note, that the i-th row of Rv , 1  i  t+ 1,
is a permutation of the i-th row of T and hence the symbols
contained in Rv are exactly the same symbols contained
in T , which implies that the information of each server is
contained in exactly one entry of Rv , but usually not in the
same entry as in T . The exceptions are the (t + 1)-th row

and each row i for which vi = 0. It implies that the array Rv

represents the content of the servers, but in different entries
from those of T . We claim now that each column of Rv

contains a set of servers which form a recovery set.
Hence, to complete the proof it is sufficient to show that

the sum of the symbols in each column of Rv is v. For a
subset A of [r] let TA be the column of T indexed by A
and let Rv

A
be the column of Rv indexed by A. The sum

of the symbols in Rv
A
is computed from the symbols of TA

and the request v as follows

tX

i=1

(xi

A
+vi) +XA =

tX

i=1

xi

A
+XA +

tX

i=1

vi =
tX

i=1

vi = v.

Therefore, each column of Rv can serve as a recovery set
for the requested symbol v. Thus, the proof of the theorem
is completed.

Construction 1 was further amended to obtain the follow-
ing theorem

Theorem 4. FP (rt, 2r �2p)  (2r �p�1)t+2r �2p�1,
for 0  p < 2r�2.

III. LOWER BOUNDS ON THE LENGTH OF PIR CODES

This section is devoted to lower bounds on the length of
functional PIR codes. When the number of requests k is a
fixed constant (more precisely k = o(s)), P (s, k) = s+o(s)
(see Lemma 1) and hence the research objective is to analyze
the redundancy part o(s). However, for functional PIR codes
this is not the case. By using a counting argument it will be
proved in this section that FP (s, k) grows linearly in s for
k � 3, i.e., lims!1 FP (s, k)/s � c for some constant c
to be determined. Using another approach in this section, a
better lower bound on FP (s, 3) and FP (s, 4) is derived.
Codes for k = 4 in Construction 1 attain this bound and
hence the bound is exact.

Theorem 5. For a fixed even integer k � 4,

lim
s!1

FP (s, k)

s
� 1

H(1/k)
,

where H(·) is the binary entropy function defined by H(p) =
�p log p� (1� p) log (1� p).

Proof: Suppose there exists a functional k-PIR code of
dimension s and length n. For each request v, we have k
disjoint recovery sets of [n]. The sum of the sizes of all
these k(2s � 1) recovery sets is at most n(2s � 1). Hence,
the average size of a recovery set should be at most n

k
.

Consider all the subsets of [n] of size at most dn

k
e+1. If

each such subset is used as a recovery set for some request,
then the average size of a recovery set is at least

Pdn
k e+1

i=1 i
�
n

i

�

Pdn
k e+1

i=1

�
n

i

� . (1)

By manipulation on the binomial coefficients we have

✓
n

dn

k
e+ 1

◆
>

dn
k e�1X

i=1

(
ln
k

m
� i)

✓
n

i

◆
. (2)

����

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 08,2020 at 21:02:11 UTC from IEEE Xplore. Restrictions apply.

By developing the numerator in (1) and plugging (2) in the
process we obtain

dn
k e+1X

i=1

i

✓
n

i

◆
>

ln
k

m dn
k e+1X

i=1

✓
n

i

◆
.

Now, we can evaluate the average in (1) as
Pdn

k e+1
i=1 i

�
n

i

�

Pdn
k e+1

i=1

�
n

i

� >

⌃
n

k

⌥Pdn
k e+1

i=1

�
n

i

�

Pdn
k e+1

i=1

�
n

i

� =
ln
k

m
� n

k
,

which contradicts our proof that the average size of a
recovery set is at most n

k
.

Therefore, not all the subsets of [n] of size at most dn

k
e+1

are used as recovery sets, which implies that
Pdn

k e+1
i=1

�
n

i

�
>

k(2s � 1). The left hand side tends to 2nH(1/k) as n tends
to infinity. Hence, if n = c · s, then

2csH(1/k) > k(2s � 1),

which implies that cH(1/k) > 1 and the claim of the
theorem follows.

The technique used in the proof of Theorem 5 can
be applied slightly differently to obtain lower bounds on
FP (s, k) for specific parameters s and k.
Suppose we have a functional k-PIR code with dimension

s and length n. For each requestv, we have k disjoint subsets
of [n], R1, . . . , Rk, where each one of them is a recovery set
for v. For each such request v we choose arbitrarily such k
recovery sets. Therefore, k(2s�1) distinct recovery sets are
chosen. Let ⇤(s) be the sum of the size of all these recovery
sets. The k recovery sets R1, . . . , Rk for any request v are
pairwise disjoint, and hence

kX

i=1

|Ri|  n ,

which implies that

⇤(s)  n(2s � 1) . (3)

On the other hand, a lower bound on ⇤(s) can be obtained
by choosing the recovery sets with smallest size as possible.
Let d be the largest integer such that

dX

i=1

✓
n

i

◆
 k(2s � 1) . (4)

It implies that in the chosen k(2s � 1) recovery sets all the
subsets of size at most d are included for the lower bound,
and also k(2s � 1)�

P
d

i=1

�
n

i

�
subsets of size d+ 1. Thus,

dX

i=1

i

✓
n

i

◆
+ (d+ 1)

✓
k(2s � 1)�

dX

i=1

✓
n

i

◆◆
 ⇤(s). (5)

The lower bound on FP (s, k) is obtained by comparing
(3) and (5), i.e., finding the minimum n for which
dX

i=1

i

✓
n

i

◆
+ (d+ 1)

✓
k(2s � 1)�

dX

i=1

✓
n

i

◆◆
 n(2s � 1).

Example 1. When k is even we have FP (2, k)  3k
2 (encode

the two information symbols x1 and x2 into x1, x2, and

x1+x2; each one of these three encoded symbol will appear
k

2 times in the code.)
Assume now that n = FP (2, k)  3k

2 � 1 and apply (5)
for s = 2, k and n = 3k

2 �1. For each request, three recovery
sets are required for a total of 3k recovery sets. There are
at most n = 3k

2 � 1 recovery sets of size 1. Therefore, there
are at least 3k

2 + 1 recovery sets whose size is at least two.
Hence, by (5),

(
3k

2
� 1) + 2 · (3k

2
+ 1) = 3 · 3k

2
+ 1  ⇤(2) .

By (3), ⇤(2)  n · (22 � 1) = 3 · 3k
2 � 3, a contradiction.

Therefore, FP (2, k) > 3k
2 � 1 and thus FP (2, k) = 3k

2
when k is even.

In a different approach of analyzing the number of ways
to choose the recovery sets leads to the following theorem.

Theorem 6. For any given s � 3 and i = 0, 1, we have that

FP (s, 3 + i) �
(

3
2s+ 2 + i if s is even
3
2 (s+ 1) + i if s is odd

.

By Theorem 6, Theorem 3, and Theorem 1, we have

Corollary 1. For any t � 2, FP (2t, 3) = 3t + 2,
FP (2t, 4) = 3t + 3, 3t + 3  FP (2t + 1, 3)  3t + 4
and 3t+ 4  FP (2t+ 1, 4)  3t+ 5.

IV. A RANDOM CONSTRUCTION FOR BATCH CODES

In this section a random construction of functional batch
codes is presented. This relies on a random construction for
linear covering codes.

Definition 1. For a binary code C of length n, the covering
radius is the smallest integer R such that for any v 2 Fn

2 ,
there exists u 2 C such that d(v,u)  R.

Proposition 1. [5] If C is a binary linear code of length n,
and dimension k, with a parity check matrix H, then C has
covering radius R if and only if every column vector Fn�k

2

is the sum of at most R columns of H.

Let V (n,R) be the size of the Hamming ball of radius R.
A code with covering radius R has at least 2n

V (n,R) codewords
and thus a linear code with covering radius R has dimension
k � n � log V (n,R). Blinovskii [2] proved that almost all
linear codes attain this sphere covering bound.

Theorem 7. Let 0  ⇢ < 1/2, Ck,n be the ensemble of 2kn
linear codes generated by all possible binary k⇥n matrices,
and Rn = b⇢nc. There exists a sequence kn for which

kn/n  1�H(⇢) +O(n�1 log n),

such that the fraction of codes Cn 2 Ckn,n which have
covering radius Rn tends to 1, when n tends to infinity.

In other words, Theorem 7 implies that if a random binary
matrix H of size s⇥n is considered as a parity check matrix
of a linear code, then the covering radius R = ⇢n of the code
satisfies H(⇢) ⇠ s

n
with probability tending to 1, when n

tends to infinity, i.e., any column vector of length s is the
sum of at most R columns of H.
This is combined with a result of Cooper [6] on the invert-

ibility of random binary matrices, to a random construction
of functional batch codes.

����

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 08,2020 at 21:02:11 UTC from IEEE Xplore. Restrictions apply.

Theorem 8. If c1 = 1
2 and ck+1 is the root of the equation

H(z) = H(ck)� zH(ck), then

lim
s!1

FB(s, k)

s
 1

H(ck)
.

A related lower bound on FB(s, k) is derived as follows.

Theorem 9.

lim
s!1

FB(s, k)

s
� k

log(k + 1)
.

Proof: Assume there is a functional k-batch code of
length n and dimension s, represented by an s⇥n matrix G.
For any recovery process of a request v = (v1, . . . ,vk) with
k vectors of length s, assign a label to each column of G.
The label is either 0 or some i, 1  i  k. A label 0
indicates that the column is not used in the recovery process
of v. A label i, indicates that the column is used in the
recovery set for vi. Then the labeling of G for the request v
is an element in {0, 1, . . . , k}n. For any two different ordered
k-tuples of request vectors (v1, . . . ,vk) and (u1, . . . ,uk),
where v1, . . . ,vk are distinct k vectors and u1, . . . ,uk are
also distinct k vectors, the labeling of G must be different.
Therefore, (k + 1)n �

�2s�1
k

�
k!.

Thus,
lim
s!1

n

s
� k

log(k + 1)
.

V. SIMPLEX CODES AS FUNCTIONAL BATCH CODES

Definition 2. A [2r � 1, r] simplex code is a linear code
whose r ⇥ n generator matrix G contains each nonzero
column vector of length r as a column.

Simplex codes were used as write-once memory (WOM)
codes and random I/O (RIO) codes. An [n, k, t] WOM code
is a coding scheme comprising of n binary cells such that it
is possible to write a k-bit message t times while on each
write the cell values can only change from zero to one.
In linear WOM codes [4] a binary matrix is used to

encode messages by the syndromes of parity check matrices
of error-correcting codes. Simplex codes were used by
Godlewski [8], to show the existence of [2r � 1, r, 2r�2 +
2r�4 + 1] WOM codes.

Similarly to the conjecture on RIO codes raised and
verified for r = 3, 4 in [15] we have the following conjecture
which we verified for r = 5. Recall, that a functional batch
code is a RIO code, but a RIO code might not be a functional
batch code.

Conjecture 1. The [2r � 1, r] simplex code is a functional
2r�1-batch code and therefore FB(r, 2r�1) = 2r � 1.

The main idea of the construction of [2r � 1, r, 2r�2 +
2r�4+1] WOM codes by Godlewski [8] with simplex codes
works as follows.
1) The first request v is simply satisfied by using v itself.
2) As long as there are at least 2r�1 nonzero available

vectors, each request v can always be satisfied by
finding a pair {u,u + v}. This process can satisfy
at least 2r�2 more requests and only stops when the
number of unused vectors is less than 2r�1.

3) The key part of Godlewski’s construction is that it is
still possible to find recovery sets of size four unless
the number of unused vectors is less than 2r�2. Thus,
2r�4 additional write requests can be satisfied.

To summarize, simplex codes can be used to satisfy roughly
any 5

162
r write requests, when considered as WOM codes.

Since in the functional batch setting (or in parallel RIO
codes) we know all the requests in advance, it is possible
to make use of this knowledge and improve upon the
2r�2 + 2r�4 + 1 result. This improvement comes either
from the choice of many recovery sets of size one, or from
a predetermined usage of the 2r�2 remaining vectors in
Godlewski’s method. Namely, we prove:

Theorem 10. The [2r � 1, r] simplex code is a functional
(2r�2 + 2r�4 + b 2r/2p

24
c)-batch code.

ACKNOWLEDGMENT

E. Yaakobi and Y. Zhang were supported by the ISF
grant 1817/18, T. Etzion and Y. Zhang by the BSF-NSF
grant 2016692, and Y. Zhang was also by a Technion
Fellowship. This research was partially supported by the
Technion Hiroshi Fujiwara cyber security research center and
the Israel cyber directorate.

REFERENCES

[1] H. ASI AND E. YAAKOBI, Nearly optimal constructions of PIR and
batch codes, IEEE Trans. Inform. Theory, vol. 65, no. 2, pp. 947–964,
Feb. 2019.

[2] V. M. BLINOVSKII, Asymptotically exact uniform bounds for spectra
of cosets of linear codes, Problemy Peredachi Informatsii, vol. 26, No.
1, pp. 99–103, 1990. Translated in: Problems of Inform. Transm., vol.
26, no. 1, pp. 83–86.

[3] B. CHOR, O. GOLDREICH, E. KUSHILEVITZ, AND M. SUDAN,
Private information retrieval, J. ACM, vol. 45, pp. 965–981, 1998.

[4] G.D. COHEN, P. GODLEWSKI, AND F. MERKX, Linear binary code
for write-once memories, IEEE Trans. Inform. Theory, vol. 32, no. 5,
pp. 697–700, Oct. 1986.

[5] G. COHEN, M. KARPOVSKY, H. MATTSON, JR. AND J. SCHATZ,
Covering radius: Survey and recent results, IEEE Trans. on Inform.
Theory, vol. 31, no. 3, pp. 328–343, May 1985.

[6] C. COOPER, On the rank of random matrices, Random Structures
Algorithms, vol. 16, pp. 209–232, 2000.

[7] A. FAZELI, A. VARDY, AND E. YAAKOBI, Private information
retrieval without storage overhead: coding instead of replication,
arxiv.org/abs/1505.0624, May 2015.

[8] P. GODLEWSKI, WOM-codes construits à partir des codes de Ham-
ming, Discrete Math., vol. 65, no. 3, pp. 237–243, Jul. 1987.

[9] Y. ISHAI, E. KUSHILEVITZ, R. OSTROVSKY, AND A. SAHAI, Batch
codes and their applications, in Proc. of the 36-sixth Annual ACM
Symposium on Theory of Computing, pp. 262-271, Chicago, ACM
Press, 2004.

[10] A. S. RAWAT, D. S. PAPAILIOPOULOS, A. G. DIMAKIS, AND S.
VISHWANATH, Locality and availability in distributed storage, IEEE
Trans. Inform. Theory, vol. 62, no. 8, pp. 4481–4493, Aug. 2016.

[11] A. S. RAWAT, Z. SONG, A. G. DIMAKIS, AND A. GÁL, Batch
codes through dense graphs without short cycles, IEEE Trans. Inform.
Theory, vol. 62, no.4, pp. 1592–1604, Apr. 2016.

[12] N. SHAH, K. RASHMI, AND K. RAMCHANDRAN, One extra bit of
download ensures perfectly private information retrieval, IEEE Int.
Symp. Inf. Theory (ISIT), pp. 856–860, 2014.

[13] E. SHARON AND I. ALROD, Coding scheme for optimizing random
I/O performance, Non-Volatile Memories Workshop, San Diego, Apr.
2013.

[14] E. YAAKOBI AND R. MOTWANI, Construction of random input-output
codes with moderate block lengths, IEEE Trans. on Comm., vol. 64,
no. 5, pp. 1819–1828, May 2016.

[15] A. YAMAWAKI, H. KAMABE, AND S. LU, Construction of parallel
RIO codes using coset coding with Hamming code, IEEE Inf. Theory
Workshop (ITW), pp. 239–243, Kaohsiung, Taiwan, Nov. 2017.

[16] Y. ZHANG, E. YAAKOBI, AND T. ETZION, Bounds on the length of
functional PIR and batch codes, arxiv.org/abs/1901.01605, Jan. 2019.

����

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 08,2020 at 21:02:11 UTC from IEEE Xplore. Restrictions apply.

