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Abstract—In this work we introduce a novel QKD protocol
capable of smoothly transitioning, via a user-tuneable parameter,
from classical to semi-quantum in order to help understand
the effect of quantum communication resources on secure key
distribution. We perform an information theoretic security anal-
ysis of this protocol to determine what level of ‘“quantumness”
is sufficient to achieve security, and we discover some rather
interesting properties of this protocol along the way.

For the full version of this paper, see arXiv:1901.01611

1. INTRODUCTION

A semi-quantum key distribution (SQKD) protocol’s goal is
similar to that of a quantum key distribution (QKD) protocol,
namely the establishment of a secret key between two parties,
Alice (A) and Bob (B), secure against an all-powerful ad-
versary Eve (F). Semi-quantum cryptography, first introduced
in 2007 by Boyer et al., in [1] with numerous protocols
and results following (see our full paper [2] for additional
references), imposes the restriction, however, that one of the
users (typically B), is limited to being “classical” or “semi-
quantum.” This restriction implies B is limited to working
only in the computational Z basis (spanned by states |0) and
|1)). He may not measure or prepare states in any other basis
(we will discuss the exact capabilities of B later in this paper).

The primary interest of these protocols is to help answer
the question “how quantum must a protocol be to gain an
advantage over a classical one?” We know that, if both parties
are classical, key distribution is impossible unless computa-
tional assumptions are made. Thus, the question semi-quantum
protocols seek to help answer is: what quantum resources are
required to attain unconditional security? However, besides
removing certain key quantum capabilities from the two users,
there has not been a semi-quantum protocol that can smoothly
transition from classical to quantum allowing us to study the
effects of quantum communication on secure key distribution.

In this paper, we propose such a protocol and analyze
its properties. We introduce a novel SQKD protocol with a
user-tuneable parameter o allowing one to, in a way, set the
level of “quantumness” of the entire protocol. Indeed, when
a = 0, the protocol collapses to a classical one (which is
insecure). As « increases, the protocol, in a way, becomes
more quantum (in that Alice, the quantum user, is allowed to
send and receive states which are less orthogonal). However,
Bob’s capabilities, being classical in nature, are not affected
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by this « parameter. In fact, as the protocol becomes “more
quantum” Bob has more trouble determining A’s key bit since
B is always restricted to the computational {|0),|1)} basis.

Our protocol is purely of theoretical interest. We are in-
terested in devising a way to measure the effect of quantum
state generation and measurement on the security properties
of a key-distribution system where one user is forced to be
classical and as the other user varies in quantum capabilities.
We perform an information theoretic security analysis of our
protocol and look at how « affects the noise tolerance of
the protocol (i.e., how does the secure communication rate
change as A becomes more or less quantum, even when
an all-powerful adversary is attacking). Naturally, when « is
too small, the protocol is “too classical” to be secure - as
« increases the protocol can attain security for some noise
levels; however once « increases too much, then Alice is “too
quantum” for Bob to understand completely (i.e., he is unable
to correctly guess what key-bit A is trying to send to him). Of
course, our protocol may also be used “unintentionally” due
to hardware faults.

We make several contributions in this work. We introduce
a novel SQKD protocol which is interesting theoretically as
it is the first such protocol, that we are aware of, to allow
researchers to gauge the effect of quantum state preparation
and measurement on a key-distribution protocol where one
user remains classical in nature. This protocol is also highly
restrictive in nature as A and B both have severe restrictions
placed on them, yet we are still able to prove security. Second,
we perform an information theoretic security analysis of this
protocol and our proof technique (which extends that of [3] but
to the highly restricted case where fewer noise statistics may
be observed) may be of independent interest and applicable to
other (S)QKD protocols (note that SQKD protocols require
two-way quantum channels - this, in addition to the fact
that A and B cannot observe all noise statistics due to their
restrictions, greatly increases the complexity of the security
analysis). Finally, we evaluate our protocol, examining the
effect of the o parameter for various channels and noise
scenarios, discovering interesting properties along the way.

Notation and (S)QKD Security: We assume basic knowl-
edge of quantum information; some additional background
may be found in the full version online [2]. We use Z to
denote the basis {]|0),]1)}. We use H(X) to be the Shannon
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entropy of random variable X and H(z), for z € [0,1],
to mean the binary entropy. We use S(p) to mean the von
Neumann entropy of density operator p. If p acts on Ho®@Hp
we often write pap. Then, pp is defined as the partial trace
pB = trapap. To simplify notation, given |v) in some Hilbert
space, we will write [v] to mean |v) (v|. If pap acts on
Ha ® Hp, then we write S(AB), to mean S(pap). We also
write S(A|B), to mean the conditional von Neumann entropy
defined to be S(A|B), = S(pa) — S(ps). We will forgo
writing the subscript “p” if the context is clear.

(S)QKD protocols utilize a quantum communication chan-
nel and an authenticated classical channel and operate in
two stages. First, the quantum communication stage, produces
an n-bit raw-key which is partially correlated and partially
secret. Following this, classical error correction and privacy
amplification processes are run to produce an ¢(n)-bit secret
key. For collective attacks, where Eve attacks the channel in
an ii.d. manner, but is free to postpone the measurement
of her ancilla to any future time, the Devetak-Winter key-
rate equation [4] states: r = lim, . %’) = inf[S(A|E) —
H(A|B)], where the infimum is over all collective attacks
which induce the observed statistics (e.g., the observed error
rate, and also statistics from mismatched measurements which
can improve the key-rate bound [5], [6]). Computing a bound
on 7 as a function of observable statistics, is the main goal of
any (S)QKD security proof [7]. As with almost all (S)QKD
security proofs, we consider collective attacks in this paper.
Normally security against collective attacks implies security
against general attacks [8]; we suspect this result also holds
for our protocol, however due to its highly restrictive nature,
a rigorous proof of this is left as future work.

An SQKD protocol requires a two-way quantum channel,
allowing a qubit to travel from A to B (the forward direction)
and return from B to A (the reverse direction). A, the fully
quantum user, is allowed to prepare any arbitrary quantum
state and send it to the “classical” user B, who is allowed
only to directly work with the Z basis. In more detail, on
receiving a qubit, B may choose to do one of two operations:
1. Measure and Resend: If he chooses this option, he
performs a Z basis measurement on the qubit, resulting in
outcome |r), for r € {0,1}. He then resends the same state
|r) to A. Note that he can only measure and prepare qubits in
this single basis.

2. Reflect: In this case, B disconnects from the quantum
channel and reflects all qubits back to A. If this is chosen, A
is, essentially, communicating with herself.

II. OUR PROTOCOL AND SECURITY ANALYSIS

Besides B being classical in nature, we also place additional
restrictions on the quantum user A. On each iteration of the
quantum communication stage, A is only allowed to send one
of two possible states: either |0) or |a) = «|0) 4 5 |1), where
a > 0 is a public, user-specified, parameter and 8 = /1 — 2.

When a qubit returns to A (following B’s operation), she
will perform a measurement using the three-outcome POVM

A = {Ag, Ay, A2} defined: Ag = p|0) (0], Ay = pla) (al,
and where Ay =T — Ag — Ay where p = e

Notice that, when o = 0, the protocol “collapses” to a
purely classical communication system where A sends |0) and
|1} only and where she is always measuring in the Z basis
(since p approaches 1 as « decreases and so Ay = |0) (0],
A, =11) (1], and A» = 0). Of course, B is classical regardless
of the choice of « since he is only able to measure and send
in the Z basis (or disconnect from the quantum channel, thus
causing A to simply “talk to herself”). For az > 0, the protocol
is inherently quantum - but the question is, how far from
classical (a« = 0) must the communication be before we start
attaining secure communication? The quantum communication
stage of our protocol is described below:

Protocol:

1. A chooses a bit k4 uniformly at random. If k4 = 0, she
sends |0) to B; otherwise she sends |a) = a|0) + (|1).

2. B chooses a random operation: Measure and Resend
(with probability q) or Reflect (with probability 1 — q).
If he chooses Measure and Resend, he will save his
measurement result as kg € {0,1}.

3. Finally, with probability g, A will simply discard the qubit;
otherwise, she will measure using POVM A, as discussed in
the text, saving the outcome (which is one of “0,” “a,” or “7”).
4. Using the authenticated classical channel, B will disclose
his choice of operation and A will disclose whether she chose
to measure or not. For all iterations where A chose to measure
the returning qubit, A will send to B her preparation and
measurement outcomes (these iterations will be used only
to test the quantum channel and not for key distillation).
For all other iterations (where A did not measure) and if B
chose Measure and Resend, then A and B will use their
respective k4 and kp values to contribute towards their raw
key.

(Note that in the asymptotic scenario, which we consider in
this work, ¢ may be set arbitrarily close to 1 as is done for
other (S)QKD protocols to improve efficiency [9], [10].)

The reader will observe that, for @ > 0, our protocol always
has some noise in the raw key, even when no adversary is
present! Indeed, unless the protocol is purely classical (o = 0),
the classical user B will be unable to determine exactly the
information that A is trying to send. The issue is exacerbated
when an adversary comes into play (adding additional noise).
As mentioned in the introduction, the protocol is purely a
theoretical one studied for its theoretical interest to help study
the “gap” between classical and quantum communication. We
do not expect this protocol to ever be implemented in practice
(unless some faulty hardware forces this protocol to be used).
Note that we are also not concerned with practical attacks such
as photon loss or multi-photon states [7]; though interesting,
these issues are outside the scope of this theoretical analysis.

We are interested in two questions: Given an observed noise
level @, for what « is the protocol secure? Of course when
« = 0, the protocol will never be secure. Secondly, what is an
optimal choice of a? That is, how “far” from the classical case
of a = 0 must the communication be to optimize the secure

1708

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 08,2020 at 21:12:34 UTC from IEEE Xplore. Restrictions apply.



transfer of information between quantum A and classical B
when faced with a quantum adversary F.

Security Analysis: Our goal in this section is to compute
our protocol’s key-rate (specifically S(A|E)) as a function
of o and those observable parameters that A and B may
measure in the channel (which are very few). To do so, we
derive a density operator description of a single “successful”
iteration of the protocol (where by “successful” we mean
an iteration leading to the distillation of a raw key bit).
For now we assume collective attacks as discussed earlier.
Using a result in [11], for any SQKD protocol, it suffices
to show security against so-called restricted collective attacks
consisting of an isometry F : Hr — Hr ® Hg applied
in the forward channel (connecting A to B) and a unitary
operator Ug applied in the reverse channel and acting on
Hr ® Hg. Here we use Hr to denote the two-dimensional
space modeling the qubit in transit and Hg is Eve’s ancilla.
The action of F is simply: F [0}, = qo [0,0) 7 +a1 |1, €)1,
and F|1); = 210, f)pg + ¢3]1,0)15, Where ¢; € Rxq
subject to g2 + ¢? = ¢3 + ¢3 = 1 and where |e) and |f) are
arbitrary, normalized, vectors in Hpg. In the reverse channel,
Eve applies an arbitrary unitary operator, the action of which
we may write as:

Ur|0,0)75 =10,e0) + |1,e1) Ugr|1,0) =|0,e2) + |1, e3)
UR |176>TE = |07f0> + |17f1> UR ‘07f> = |07f2> + |17f3> .

Above, the states |e;) and |f;) are arbitrary states in Hpg
(though, unitarity of Ur imposes some restrictions on them
which will be important momentarily).

Tracing the execution of the protocol, we may build the
desired density operator which is found to be (see full paper
for details on this derivation [2]):

pape = 5100, ® (0] © E(leo] + fea)) (1)
+ 5101, @ (1), @ g2(1fo] + [£2])
+ 5104 ® (0], @ (8] + [ea)
+ 51048 (1@ (8] + [eo)
where [v] = [v) (v] for any v, and:

l90) = qrx | f1) +a3fBles)  |g1) = qu|fo) + g3 |e2)
l92) = qocr|er) + q28|f3)  |93) = qocx|eo) + g2 1f2)
From this, we may then use a Theorem from [3] to derive the

following (see full paper for details on the use of this theorem
in this work):

S(A|E), > <€0|€0> (90lg0) o
45 (eoleo) B .
( [ 6 {(eoleo) + golgo>] H[A(q0|o>,lgo>)]>-
where
1= (1 ST

To compute S(A|E), needed for the key-rate, we need to
compute, or bound, the inner-products appearing in the above
expression, based only on statistics we may observe and «.

Note that gy and g; are both observable parameters. Indeed,
let pAHB be the probability that B measures |i) (for i €
{0,1}) if A initially sent |0). This is one of the few statistics A
and B actually can estimate and is, in fact, the only observable
noise statistic in the forward channel (they cannot measure, for

example, pA_’B when a > 0). It is not difficult to see, from
the action of F, that ¢ = pi'g’? and ¢f = p{!T"?. Note that,

by definition of the restricted attack, it is sufficient to consider
non-negative g; [11].

As mentioned, the users cannot directly observe ¢» and
q3. However, they can estimate it by considering pAHB the
probability that B measures |1) if A initially sent |a > (this is
something that may be observed). By tracing the evolution of
the qubit, we derive the following (please see the full paper
for details on this process [2]):

=por Pa? + 387 + 24/pg T PazaBRe (Ole) . (3)

(0le) | < 1. We are constrained by the fact that
q3 > 0 (since, for the restricted attack, each ¢; are non-negative
real numbers [11]). We therefore have the following lower-
bound for g3, assuming pij > a2p6‘j3 (which it will be
in our evaluations and one would expect this if the observable
noise is not too high)'

2oz (VP —a ). @

We therefore have Values, or bounds, for all ¢; (note
that g5 = s/l—qg). It is clear that we may observe
<60|60> s <€1|€1> s <f0|f0>, and <f1|f1> Indeed, let Dij _>A de-
note the probability that A’s measurement observes “k”
conditioned on the event A initially sent |¢) and B chose
Measure and Resend and actually observed [j). Of
course, i € {0,a}, j € {0,1} and k£ € {0,a,?}. It is not
difficult to see, then, that pgos' = p - (eoleo) where p > 0
is the POVM parameter as described earlier. By unitarity
we also have (ejle;) = 1 — (egleg). Similarly, we have
porst = p- (folfo) and (filf1) = 1 = (fol fo). To simplify
notation, at this point we will assume a symmetric attack and
define the following: pil5s" = p-(1-Qr) = (eoleo) = 1-Qr
and pg'g = p- Qr = (folfo) = Qr. (Note we use Qg to
denote the noise in the Reverse channel, from B to A.)

This assumption that the observable noise is symmetric
in this manner (which may be enforced by A and B and
is a common assumption in (S)QKD security proofs) is not
necessary, and our analysis below follows without it; we only
use this to simplify notation. Note that, if there is no noise
in the forward channel (in which case péi}{‘ is technically
undefined since we are conditioning on an event which never
occurs), then (fo|fo) and (f1]f1) never show up in any of our
computations and so we may define p{)‘,foA arbitrarily; thus we
define p{j{fé“ = p- Qg in this case regardless.

It is also not difficult to see that each (g;|g;) may be
observed. For details, see the full paper, however we may

A—B
pa 1
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derive the following (again, assuming a symmetric attack - for
the general case, the details are in the full paper): (go|go) =
parP(L=Qr): (g1l91) = Py P Qs (92l92) = iy P Qs
and (gs]g3) = po ®(1 — Qr).

Finally, to compute our bound on S(A|E), we will also
need to compute the inner product appearing in the A function,
namely we must lower-bound Re? {eg|go) (a lower-bound on
this minimizes S(A|E)). It is not difficult (using the Cauchy-
Schwarz inequality) to derive the following bound:

Re? (eolgo) >
[max (04]36 (eoles) — ay /p()q?B(l — QR))}2 , (5

We thus reduced the problem to bounding (eq|es). To attain
this, we must look at several more statistics. In particular, we
require bounds on the “hidden” noise (i.e., noise in the reverse
channel that cannot be directly observed). By expanding

(91l91) = pi7PQr and solving the resulting quadratic in

terms of \/{ez|e2), we find:
Viede) < = (nov/Qe+\riQn)  ©)

Similarly, we can bound (f3|f3) by considering (g2]g2) =
A=B (k. Solving the resulting quadratic, we find:

Pao
VAfslfs) < (QOQ@+ \/pf(TTQR) )

We now have upper-bounds on the “hidden” noise of the
channel. (Complete details on these important derivations are
available in the full version [2].)

Next, let us consider the statistic pfﬁ‘;‘ which we use to
denote the probability that, conditioning on the event A sends
|a), B chooses to Reflect, and A chooses to measure using
POVM A (see protocol description), that the outcome of this
measurement is “a”. Tracing the qubit’s evolution (see the full
paper [2] for detalls on this computation) we find that:

A—A
paRa_pa()
+2p-

+2p-

A—B, A—A AHB A—A
pa0a+pa1 ala (8)

Re(qogre* (eo| fo) + qogse®B (eqlea))
Re(qoq1o” B (el f1) + qogza B° (eoles)
+2p - Re(q1q20° B (fo| f2) + qaq3a®B? (ea| f2)
+2p - Re(q1q20”B% (f1 f2) + q2q308° (3] fo)
+2p - Re(qoqi® B (e1| fo) + qogza® B (eq]ea)
+2p - Re(qoq10” B (ex| f1) + qogsaB® (e1]es)
+2p - Re(q1202B% (fol f3) + a2q308° (e2| f3)
+2p - Re(quqzaB° (f1| f3) + a2q3B* (e3] f3)).

)
)
)
)
)
)

(Note that, above, we used the fact that Re (z|y) = Re (y|z).)
By taking advantage of the unitarity of Ug, and also solving
for the Re (egles) term, we may simplify the above to (again,

full details on this simplification are explained in the full
version of this paper [2]):

qoqsc” B° Re (eg|es) )
1 A—A A—B, A—A A—B, A—A
2p(paRa Payo a,0,a — Pa,1 ala)

- (04 - ﬁQ)Re (91lg3) —

where:  x = Re(qoqa®Bl(eol f1)  +
+Re(qoqz0® 3 (e1lea)) +Re(qgea®B?[(folf3) + (filf2)])
+Re(gagsa33[{ea| f3) + (es|f2)]). A and B do not have
sufficient quantum capabilities to fully compute x; however
we can bound it based on what we already know and using
the Cauchy-Schwarz inequality, along with unitarity of Ug:

IX| € @a16®B[(1 — Qr) + QR
+ q0g30”3°\/Qr (e2le2)
+ (13202 3%/Qr (f3] f3)
+q1g20° 3%/ (1 = Qr) (1 — (fslf3))
+ q2q308°\/(eale2) (f3] f3)
+ q2g308° /(1 = {eale2)) (1 = (fs] f3)).

Finally, it can be shown (see the full paper [2]) that:
Re(g1lgs) = 5 (P w0 /P — (91l91) — {gslgs)) - Since (gi[gi)
are all observable as discussed earlier, this completes our
bound. To summarize, given as input « along with those ob-
servable statistics as utilized above, one must simply minimize
Equation 2 over all g3, (ez]e2), and (f3|f3), as enforced by
Equations 4, 6, and 7. For any particular choice of these values,
one may compute a bound on x from Equation 10; one may
also compute a bound on Re {(eg|es) using Equation 9. This
then allows one to bound Re? (eg|go), using Equation 5 which
gives a possible value of S(A|E). Minimizing over (es|ez),
(f3]f3), and ¢3 gives a worst-case lower-bound on S(A|E)
over all attacks which induce the observed statistics. In our
evaluations, we perform this simple minimization numerically.

It can be seen that if o = 0 (i.e., the protocol is classical),
Equation 9 becomes simply 0 = 0, regardless of the choice of
(eoles). Thus, Eve may set (eg|ez) = 0 in this case (eg|go) =
0 and so S(A|E) = 0 as expected. That is, in the classical
case, Eve has no uncertainty on A and B’s raw key and so the
protocol is insecure. The interesting question is what happens
when « > 0? To finish the key-rate computation (and answer
this question), we also need H (A|B), however computing this
is trivial and we omit the details here; the exact expression may
be found in the full version of this paper [2].

Evaluation: To evaluate our protocol, and more importantly
to see the effect of o on the secure key-rate, we must put values
to those observable statistics pAHB and pAHA We assume the
channel is modeled as a depolarization channel (i.c., Eq(p) =
(1 -2Q)p + Q - I) parameterized by noise values Qp (in
the forward channel), Qg (in the reverse), and QQx (for the
“loop” channel when B reflects). From this, we find: pA*B

1—Qr; pi7? = Qrs oo /p=1—-Qr: pii1'/p = Qr;
pé(TOA/p:I_QR’p;?T[?/p:QR’paRa/p_1_QX

(e1]f0)])

(10)
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Fig. 1. Key-rate when the forward channel noise is very low (10~°) and the
reverse and loop noise levels are high. We see that the forward channel noise
is the most critical for this protocol.

We also derive: pig'? = (1 —2Qr)a® + Qp; pi7? = (1 -
2Qr)0% + Qr; pio s /p = (1 — 2Qr)a® + Qr; iyt /p =
(1-2Qr)B* + Qr; and pi7o/p = (1 - 2Qx)a” + Qx.
Note that the POVM parameter value p > 0 is not important
in this asymptotic scenario; though it would play a much larger
role in a finite key analysis. Analyzing this case we leave as
interesting future work.

As expected, the noise tolerance of this protocol is low,
however we are able to attain positive key-rates as shown in
Figures 1, and 2. Our evaluations show that our protocol is
most sensitive to forward channel noise. Indeed, as shown
in Figure 1, the protocol can tolerate a high level of reverse
and loop noise (approaching 10%). However as the forward
channel noise increases, there are only a few choices for o
where a positive key-rate can be attained. Optimal values of
a ranged between 0.13 and 0.2. Other comments, evaluations,
and noise scenarios are available in the full paper [2].

Despite the low noise tolerance, we still consider this a
positive, and interesting, result as this protocol was designed
specifically to smoothly transform from classical to quantum
communication and to allow research in investigating how this
affects secure communication. Of course, our key-rate is a
lower bound, so the actual security rate can only be higher.
Further studying this would make interesting future work.

III. CLOSING REMARKS

In this paper, we developed a new SQKD protocol with
a tuneable parameter « allowing one to gauge the effect
of the secure communication rate, based on “how quantum”
the protocol is. When « is set to zero, the communication
is purely classical and thus the protocol is insecure. As «
increases, security can be attained for certain optimal choices
and for certain channels. Studying the protocol further may
help to shed additional light on the “gap” between quantum
and classical secure communication. Furthermore, our proof
approach may be applicable to other (S)QKD protocols where
users are highly restricted in their quantum capabilities (either
intentionally or due, perhaps, to hardware faults).

0.003 -
0.0025 - n QF = 0.0009; Qg = Qy = 0.001
0.002 -

0.0015

Key-Rate

0.001

0.0005 -

0.067
0.134
0.201
0.268
0.335
0.603

0.67
0.737
0.204
0.871
0.938

Fig. 2. Key-rate when the forward channel noise is increased - only a small
window of « values exist in this case when the protocol attains a positive
key-rate.

Many interesting future problems remain open. Improving
our key-rate bound and performing a finite-key analysis can be
very interesting. Also, studying the effect of « against different
types of attacks could prove interesting (we have evidence that
the optimal « is different for intercept-resend attacks). Trying
to decrease the resource requirements even further could be
interesting; in the full paper [2], we comment more on this.
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