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Abstract—In this work we introduce a novel QKD protocol
capable of smoothly transitioning, via a user-tuneable parameter,
from classical to semi-quantum in order to help understand
the effect of quantum communication resources on secure key
distribution. We perform an information theoretic security anal-
ysis of this protocol to determine what level of “quantumness”
is sufficient to achieve security, and we discover some rather
interesting properties of this protocol along the way.

For the full version of this paper, see arXiv:1901.01611

I. INTRODUCTION

A semi-quantum key distribution (SQKD) protocol’s goal is

similar to that of a quantum key distribution (QKD) protocol,

namely the establishment of a secret key between two parties,

Alice (A) and Bob (B), secure against an all-powerful ad-

versary Eve (E). Semi-quantum cryptography, first introduced

in 2007 by Boyer et al., in [1] with numerous protocols

and results following (see our full paper [2] for additional

references), imposes the restriction, however, that one of the

users (typically B), is limited to being “classical” or “semi-

quantum.” This restriction implies B is limited to working

only in the computational Z basis (spanned by states |0〉 and

|1〉). He may not measure or prepare states in any other basis

(we will discuss the exact capabilities of B later in this paper).

The primary interest of these protocols is to help answer

the question “how quantum must a protocol be to gain an

advantage over a classical one?” We know that, if both parties

are classical, key distribution is impossible unless computa-

tional assumptions are made. Thus, the question semi-quantum

protocols seek to help answer is: what quantum resources are

required to attain unconditional security? However, besides

removing certain key quantum capabilities from the two users,

there has not been a semi-quantum protocol that can smoothly

transition from classical to quantum allowing us to study the

effects of quantum communication on secure key distribution.

In this paper, we propose such a protocol and analyze

its properties. We introduce a novel SQKD protocol with a

user-tuneable parameter α allowing one to, in a way, set the

level of “quantumness” of the entire protocol. Indeed, when

α = 0, the protocol collapses to a classical one (which is

insecure). As α increases, the protocol, in a way, becomes

more quantum (in that Alice, the quantum user, is allowed to

send and receive states which are less orthogonal). However,

Bob’s capabilities, being classical in nature, are not affected

by this α parameter. In fact, as the protocol becomes “more

quantum” Bob has more trouble determining A’s key bit since

B is always restricted to the computational {|0〉 , |1〉} basis.

Our protocol is purely of theoretical interest. We are in-

terested in devising a way to measure the effect of quantum

state generation and measurement on the security properties

of a key-distribution system where one user is forced to be

classical and as the other user varies in quantum capabilities.

We perform an information theoretic security analysis of our

protocol and look at how α affects the noise tolerance of

the protocol (i.e., how does the secure communication rate

change as A becomes more or less quantum, even when

an all-powerful adversary is attacking). Naturally, when α is

too small, the protocol is “too classical” to be secure - as

α increases the protocol can attain security for some noise

levels; however once α increases too much, then Alice is “too

quantum” for Bob to understand completely (i.e., he is unable

to correctly guess what key-bit A is trying to send to him). Of

course, our protocol may also be used “unintentionally” due

to hardware faults.

We make several contributions in this work. We introduce

a novel SQKD protocol which is interesting theoretically as

it is the first such protocol, that we are aware of, to allow

researchers to gauge the effect of quantum state preparation

and measurement on a key-distribution protocol where one

user remains classical in nature. This protocol is also highly

restrictive in nature as A and B both have severe restrictions

placed on them, yet we are still able to prove security. Second,

we perform an information theoretic security analysis of this

protocol and our proof technique (which extends that of [3] but

to the highly restricted case where fewer noise statistics may

be observed) may be of independent interest and applicable to

other (S)QKD protocols (note that SQKD protocols require

two-way quantum channels - this, in addition to the fact

that A and B cannot observe all noise statistics due to their

restrictions, greatly increases the complexity of the security

analysis). Finally, we evaluate our protocol, examining the

effect of the α parameter for various channels and noise

scenarios, discovering interesting properties along the way.

Notation and (S)QKD Security: We assume basic knowl-

edge of quantum information; some additional background

may be found in the full version online [2]. We use Z to

denote the basis {|0〉 , |1〉}. We use H(X) to be the Shannon
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entropy of random variable X and H(x), for x ∈ [0, 1],
to mean the binary entropy. We use S(ρ) to mean the von

Neumann entropy of density operator ρ. If ρ acts on HA⊗HB

we often write ρAB . Then, ρB is defined as the partial trace

ρB = trAρAB . To simplify notation, given |v〉 in some Hilbert

space, we will write [v] to mean |v〉 〈v|. If ρAB acts on

HA ⊗HB , then we write S(AB)ρ to mean S(ρAB). We also

write S(A|B)ρ to mean the conditional von Neumann entropy

defined to be S(A|B)ρ = S(ρAB) − S(ρB). We will forgo

writing the subscript “ρ” if the context is clear.

(S)QKD protocols utilize a quantum communication chan-

nel and an authenticated classical channel and operate in

two stages. First, the quantum communication stage, produces

an n-bit raw-key which is partially correlated and partially

secret. Following this, classical error correction and privacy

amplification processes are run to produce an ℓ(n)-bit secret

key. For collective attacks, where Eve attacks the channel in

an i.i.d. manner, but is free to postpone the measurement

of her ancilla to any future time, the Devetak-Winter key-

rate equation [4] states: r = limn→∞
ℓ(n)

n
= inf[S(A|E) −

H(A|B)], where the infimum is over all collective attacks

which induce the observed statistics (e.g., the observed error

rate, and also statistics from mismatched measurements which

can improve the key-rate bound [5], [6]). Computing a bound

on r as a function of observable statistics, is the main goal of

any (S)QKD security proof [7]. As with almost all (S)QKD

security proofs, we consider collective attacks in this paper.

Normally security against collective attacks implies security

against general attacks [8]; we suspect this result also holds

for our protocol, however due to its highly restrictive nature,

a rigorous proof of this is left as future work.

An SQKD protocol requires a two-way quantum channel,

allowing a qubit to travel from A to B (the forward direction)

and return from B to A (the reverse direction). A, the fully

quantum user, is allowed to prepare any arbitrary quantum

state and send it to the “classical” user B, who is allowed

only to directly work with the Z basis. In more detail, on

receiving a qubit, B may choose to do one of two operations:

1. Measure and Resend: If he chooses this option, he

performs a Z basis measurement on the qubit, resulting in

outcome |r〉, for r ∈ {0, 1}. He then resends the same state

|r〉 to A. Note that he can only measure and prepare qubits in

this single basis.

2. Reflect: In this case, B disconnects from the quantum

channel and reflects all qubits back to A. If this is chosen, A
is, essentially, communicating with herself.

II. OUR PROTOCOL AND SECURITY ANALYSIS

Besides B being classical in nature, we also place additional

restrictions on the quantum user A. On each iteration of the

quantum communication stage, A is only allowed to send one

of two possible states: either |0〉 or |a〉 = α |0〉+ β |1〉, where

α ≥ 0 is a public, user-specified, parameter and β =
√

1 − α2.

When a qubit returns to A (following B’s operation), she

will perform a measurement using the three-outcome POVM

Λ = {Λ0,Λa,Λ?} defined: Λ0 = p |0〉 〈0| , Λa = p |a〉 〈a| ,
and where Λ? = I − Λ0 − Λ1 where p = 1

1+α
.

Notice that, when α = 0, the protocol “collapses” to a

purely classical communication system where A sends |0〉 and

|1〉 only and where she is always measuring in the Z basis

(since p approaches 1 as α decreases and so Λ0 = |0〉 〈0|,
Λa = |1〉 〈1| , and Λ? ≡ 0). Of course, B is classical regardless

of the choice of α since he is only able to measure and send

in the Z basis (or disconnect from the quantum channel, thus

causing A to simply “talk to herself”). For α > 0, the protocol

is inherently quantum - but the question is, how far from

classical (α = 0) must the communication be before we start

attaining secure communication? The quantum communication

stage of our protocol is described below:

Protocol:

1. A chooses a bit kA uniformly at random. If kA = 0, she

sends |0〉 to B; otherwise she sends |a〉 = α |0〉 + β |1〉.
2. B chooses a random operation: Measure and Resend

(with probability q) or Reflect (with probability 1 − q).

If he chooses Measure and Resend, he will save his

measurement result as kB ∈ {0, 1}.

3. Finally, with probability q, A will simply discard the qubit;

otherwise, she will measure using POVM Λ, as discussed in

the text, saving the outcome (which is one of “0,” “a,” or “?”).

4. Using the authenticated classical channel, B will disclose

his choice of operation and A will disclose whether she chose

to measure or not. For all iterations where A chose to measure

the returning qubit, A will send to B her preparation and

measurement outcomes (these iterations will be used only

to test the quantum channel and not for key distillation).

For all other iterations (where A did not measure) and if B
chose Measure and Resend, then A and B will use their

respective kA and kB values to contribute towards their raw

key.

(Note that in the asymptotic scenario, which we consider in

this work, q may be set arbitrarily close to 1 as is done for

other (S)QKD protocols to improve efficiency [9], [10].)

The reader will observe that, for α > 0, our protocol always

has some noise in the raw key, even when no adversary is

present! Indeed, unless the protocol is purely classical (α = 0),

the classical user B will be unable to determine exactly the

information that A is trying to send. The issue is exacerbated

when an adversary comes into play (adding additional noise).

As mentioned in the introduction, the protocol is purely a

theoretical one studied for its theoretical interest to help study

the “gap” between classical and quantum communication. We

do not expect this protocol to ever be implemented in practice

(unless some faulty hardware forces this protocol to be used).

Note that we are also not concerned with practical attacks such

as photon loss or multi-photon states [7]; though interesting,

these issues are outside the scope of this theoretical analysis.

We are interested in two questions: Given an observed noise

level Q, for what α is the protocol secure? Of course when

α = 0, the protocol will never be secure. Secondly, what is an

optimal choice of α? That is, how “far” from the classical case

of α = 0 must the communication be to optimize the secure
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transfer of information between quantum A and classical B
when faced with a quantum adversary E.

Security Analysis: Our goal in this section is to compute

our protocol’s key-rate (specifically S(A|E)) as a function

of α and those observable parameters that A and B may

measure in the channel (which are very few). To do so, we

derive a density operator description of a single “successful”

iteration of the protocol (where by “successful” we mean

an iteration leading to the distillation of a raw key bit).

For now we assume collective attacks as discussed earlier.

Using a result in [11], for any SQKD protocol, it suffices

to show security against so-called restricted collective attacks

consisting of an isometry F : HT → HT ⊗ HE applied

in the forward channel (connecting A to B) and a unitary

operator UR applied in the reverse channel and acting on

HT ⊗ HE . Here we use HT to denote the two-dimensional

space modeling the qubit in transit and HE is Eve’s ancilla.

The action of F is simply: F |0〉T = q0 |0, 0〉TE +q1 |1, e〉TE ,
and F |1〉T = q2 |0, f〉TE + q3 |1, 0〉TE , where qi ∈ R≥0

subject to q2
0 + q2

1 = q2
2 + q2

3 = 1 and where |e〉 and |f〉 are

arbitrary, normalized, vectors in HE . In the reverse channel,

Eve applies an arbitrary unitary operator, the action of which

we may write as:

UR |0, 0〉TE = |0, e0〉 + |1, e1〉 UR |1, 0〉 = |0, e2〉 + |1, e3〉
UR |1, e〉TE = |0, f0〉 + |1, f1〉 UR |0, f〉 = |0, f2〉 + |1, f3〉 .

Above, the states |ei〉 and |fi〉 are arbitrary states in HE

(though, unitarity of UR imposes some restrictions on them

which will be important momentarily).

Tracing the execution of the protocol, we may build the

desired density operator which is found to be (see full paper

for details on this derivation [2]):

ρABE =
1

2
[0]A ⊗ ([0]B ⊗ q2

0([e0] + [e1])) (1)

+
1

2
[0]A ⊗ ([1]B ⊗ q2

1([f0] + [f1]))

+
1

2
[1]A ⊗ ([0]B ⊗ ([g3] + [g2]))

+
1

2
[1]A ⊗ ([1]B ⊗ ([g1] + [g0]))

where [v] = |v〉 〈v| for any v, and:

|g0〉 = q1α |f1〉 + q3β |e3〉 |g1〉 = q1α |f0〉 + q3β |e2〉
|g2〉 = q0α |e1〉 + q2β |f3〉 |g3〉 = q0α |e0〉 + q2β |f2〉

From this, we may then use a Theorem from [3] to derive the

following (see full paper for details on the use of this theorem

in this work):

S(A|E)ρ ≥ q2
0 〈e0|e0〉 + 〈g0|g0〉

2
(2)

×
(

H

[

q2
0 〈e0|e0〉

q2
0 〈e0|e0〉 + 〈g0|g0〉

]

− H [λ(q0 |e0〉 , |g0〉)]
)

.

where

λ(|x〉 , |y〉) =
1

2

(

1 +

√

(〈x|x〉 − 〈y|y〉)2 + 4Re2 〈x|y〉
〈x|x〉 + 〈y|y〉

)

.

To compute S(A|E), needed for the key-rate, we need to

compute, or bound, the inner-products appearing in the above

expression, based only on statistics we may observe and α.

Note that q0 and q1 are both observable parameters. Indeed,

let pA→B
0,i be the probability that B measures |i〉 (for i ∈

{0, 1}) if A initially sent |0〉. This is one of the few statistics A
and B actually can estimate and is, in fact, the only observable

noise statistic in the forward channel (they cannot measure, for

example, pA→B
1,i when α > 0). It is not difficult to see, from

the action of F , that q2
0 = pA→B

0,0 and q2
1 = pA→B

0,1 . Note that,

by definition of the restricted attack, it is sufficient to consider

non-negative qi [11].

As mentioned, the users cannot directly observe q2 and

q3. However, they can estimate it by considering pA→B
a,1 , the

probability that B measures |1〉 if A initially sent |a〉 (this is

something that may be observed). By tracing the evolution of

the qubit, we derive the following (please see the full paper

for details on this process [2]):

pA→B
a,1 = pA→B

0,1 α2 + q2
3β2 + 2

√

pA→B
0,1 q3αβRe 〈0|e〉 . (3)

Of course, | 〈0|e〉 | ≤ 1. We are constrained by the fact that

q3 ≥ 0 (since, for the restricted attack, each qi are non-negative

real numbers [11]). We therefore have the following lower-

bound for q3, assuming pA→B
a,1 ≥ α2pA→B

0,1 (which it will be

in our evaluations and one would expect this if the observable

noise is not too high):

1 ≥ q3 ≥ 1

β

(
√

pA→B
a,1 − α

√

pA→B
0,1

)

. (4)

We therefore have values, or bounds, for all qi (note

that q2 =
√

1 − q2
3). It is clear that we may observe

〈e0|e0〉 , 〈e1|e1〉 , 〈f0|f0〉, and 〈f1|f1〉. Indeed, let pA→A
i,j,k de-

note the probability that A’s measurement observes “k”

conditioned on the event A initially sent |i〉 and B chose

Measure and Resend and actually observed |j〉. Of

course, i ∈ {0, a}, j ∈ {0, 1} and k ∈ {0, a, ?}. It is not

difficult to see, then, that pA→A
0,0,0 = p · 〈e0|e0〉 where p > 0

is the POVM parameter as described earlier. By unitarity

we also have 〈e1|e1〉 = 1 − 〈e0|e0〉. Similarly, we have

pA→A
0,1,0 = p · 〈f0|f0〉 and 〈f1|f1〉 = 1 − 〈f0|f0〉. To simplify

notation, at this point we will assume a symmetric attack and

define the following: pA→A
0,0,0 = p·(1−QR) ⇒ 〈e0|e0〉 = 1−QR

and pA→A
0,1,0 = p · QR ⇒ 〈f0|f0〉 = QR. (Note we use QR to

denote the noise in the Reverse channel, from B to A.)

This assumption that the observable noise is symmetric

in this manner (which may be enforced by A and B and

is a common assumption in (S)QKD security proofs) is not

necessary, and our analysis below follows without it; we only

use this to simplify notation. Note that, if there is no noise

in the forward channel (in which case pA→A
0,1,0 is technically

undefined since we are conditioning on an event which never

occurs), then 〈f0|f0〉 and 〈f1|f1〉 never show up in any of our

computations and so we may define pA→A
0,1,0 arbitrarily; thus we

define pA→A
0,1,0 = p · QR in this case regardless.

It is also not difficult to see that each 〈gi|gi〉 may be

observed. For details, see the full paper, however we may
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derive the following (again, assuming a symmetric attack - for

the general case, the details are in the full paper): 〈g0|g0〉 =
pA→B

a,1 (1 − QR); 〈g1|g1〉 = pA→B
a,1 QR; 〈g2|g2〉 = pA→B

a,0 QR;

and 〈g3|g3〉 = pA→B
a,0 (1 − QR).

Finally, to compute our bound on S(A|E), we will also

need to compute the inner product appearing in the λ function,

namely we must lower-bound Re2 〈e0|g0〉 (a lower-bound on

this minimizes S(A|E)). It is not difficult (using the Cauchy-

Schwarz inequality) to derive the following bound:

Re2 〈e0|g0〉 ≥
[

max
(

0, q3β 〈e0|e3〉 − α
√

pA→B
0,1 (1 − QR)

)]2

, (5)

We thus reduced the problem to bounding 〈e0|e3〉. To attain

this, we must look at several more statistics. In particular, we

require bounds on the “hidden” noise (i.e., noise in the reverse

channel that cannot be directly observed). By expanding

〈g1|g1〉 = pA→B
a,1 QR and solving the resulting quadratic in

terms of
√

〈e2|e2〉, we find:

√

〈e2|e2〉 ≤
1

q3β

(

q1α
√

QR +
√

pA→B
a,1 QR

)

(6)

Similarly, we can bound 〈f3|f3〉 by considering 〈g2|g2〉 =
pA→B

a,0 QR. Solving the resulting quadratic, we find:

√

〈f3|f3〉 ≤
1

q2β

(

q0α
√

QR +
√

pA→B
a,0 QR

)

. (7)

We now have upper-bounds on the “hidden” noise of the

channel. (Complete details on these important derivations are

available in the full version [2].)

Next, let us consider the statistic pA→A
a,R,a which we use to

denote the probability that, conditioning on the event A sends

|a〉, B chooses to Reflect, and A chooses to measure using

POVM Λ (see protocol description), that the outcome of this

measurement is “a”. Tracing the qubit’s evolution (see the full

paper [2] for details on this computation) we find that:

pA→A
a,R,a = pA→B

a,0 pA→A
a,0,a + pA→B

a,1 pA→A
a,1,a (8)

+ 2p · Re(q0q1α
4 〈e0|f0〉 + q0q3α

3β 〈e0|e2〉)
+ 2p · Re(q0q1α

3β 〈e0|f1〉 + q0q3α
2β2 〈e0|e3〉)

+ 2p · Re(q1q2α
3β 〈f0|f2〉 + q2q3α

2β2 〈e2|f2〉)
+ 2p · Re(q1q2α

2β2 〈f1|f2〉 + q2q3αβ3 〈e3|f2〉)
+ 2p · Re(q0q1α

3β 〈e1|f0〉 + q0q3α
2β2 〈e1|e2〉)

+ 2p · Re(q0q1α
2β2 〈e1|f1〉 + q0q3αβ3 〈e1|e3〉)

+ 2p · Re(q1q2α
2β2 〈f0|f3〉 + q2q3αβ3 〈e2|f3〉)

+ 2p · Re(q1q2αβ3 〈f1|f3〉 + q2q3β
4 〈e3|f3〉).

(Note that, above, we used the fact that Re 〈x|y〉 = Re 〈y|x〉.)
By taking advantage of the unitarity of UR, and also solving

for the Re 〈e0|e3〉 term, we may simplify the above to (again,

full details on this simplification are explained in the full

version of this paper [2]):

q0q3α
2β2Re 〈e0|e3〉 (9)

=
1

2p
(pA→A

a,R,a − pA→B
a,0 pA→A

a,0,a − pA→B
a,1 pA→A

a,1,a )

− (α2 − β2)Re 〈g1|g3〉 − χ

where: χ = Re(q0q1α
3β[〈e0|f1〉 + 〈e1|f0〉])

+Re(q0q3α
2β2 〈e1|e2〉) +Re(q1q2α

2β2[〈f0|f3〉 + 〈f1|f2〉])
+Re(q2q3αβ3[〈e2|f3〉 + 〈e3|f2〉]). A and B do not have

sufficient quantum capabilities to fully compute χ; however

we can bound it based on what we already know and using

the Cauchy-Schwarz inequality, along with unitarity of UR:

|χ| ≤ q0q1α
3β[(1 − QR) + QR] (10)

+ q0q3α
2β2
√

QR 〈e2|e2〉
+ q1q2α

2β2
√

QR 〈f3|f3〉
+ q1q2α

2β2
√

(1 − QR)(1 − 〈f3|f3〉)
+ q2q3αβ3

√

〈e2|e2〉 〈f3|f3〉
+ q2q3αβ3

√

(1 − 〈e2|e2〉)(1 − 〈f3|f3〉).

Finally, it can be shown (see the full paper [2]) that:

Re 〈g1|g3〉 = 1
2

(

pA→A
a,R,0/p − 〈g1|g1〉 − 〈g3|g3〉

)

. Since 〈gi|gi〉
are all observable as discussed earlier, this completes our

bound. To summarize, given as input α along with those ob-

servable statistics as utilized above, one must simply minimize

Equation 2 over all q3, 〈e2|e2〉, and 〈f3|f3〉, as enforced by

Equations 4, 6, and 7. For any particular choice of these values,

one may compute a bound on χ from Equation 10; one may

also compute a bound on Re 〈e0|e3〉 using Equation 9. This

then allows one to bound Re2 〈e0|g0〉, using Equation 5 which

gives a possible value of S(A|E). Minimizing over 〈e2|e2〉,
〈f3|f3〉, and q3 gives a worst-case lower-bound on S(A|E)
over all attacks which induce the observed statistics. In our

evaluations, we perform this simple minimization numerically.

It can be seen that if α = 0 (i.e., the protocol is classical),

Equation 9 becomes simply 0 = 0, regardless of the choice of

〈e0|e3〉. Thus, Eve may set 〈e0|e3〉 = 0 in this case 〈e0|g0〉 =
0 and so S(A|E) = 0 as expected. That is, in the classical

case, Eve has no uncertainty on A and B’s raw key and so the

protocol is insecure. The interesting question is what happens

when α > 0? To finish the key-rate computation (and answer

this question), we also need H(A|B), however computing this

is trivial and we omit the details here; the exact expression may

be found in the full version of this paper [2].

Evaluation: To evaluate our protocol, and more importantly

to see the effect of α on the secure key-rate, we must put values

to those observable statistics pA→B
·,· and pA→A

·,·,· . We assume the

channel is modeled as a depolarization channel (i.e., EQ(ρ) =
(1 − 2Q)ρ + Q · I) parameterized by noise values QF (in

the forward channel), QR (in the reverse), and QX (for the

“loop” channel when B reflects). From this, we find: pA→B
0,0 =

1 − QF ; pA→B
0,1 = QF ; pA→A

0,0,0 /p = 1 − QR; pA→A
0,1,0 /p = QR;

pA→A
a,0,0 /p = 1 − QR; pA→A

a,1,0 /p = QR; pA→A
a,R,a/p = 1 − QX .
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Fig. 1. Key-rate when the forward channel noise is very low (10−5) and the
reverse and loop noise levels are high. We see that the forward channel noise
is the most critical for this protocol.

We also derive: pA→B
a,0 = (1 − 2QF )α2 + QF ; pA→B

a,1 = (1 −
2QF )β2 + QF ; pA→A

a,0,a /p = (1 − 2QR)α2 + QR; pA→A
a,1,a /p =

(1 − 2QR)β2 + QR; and pA→A
a,R,0/p = (1 − 2QX)α2 + QX .

Note that the POVM parameter value p > 0 is not important

in this asymptotic scenario; though it would play a much larger

role in a finite key analysis. Analyzing this case we leave as

interesting future work.

As expected, the noise tolerance of this protocol is low,

however we are able to attain positive key-rates as shown in

Figures 1, and 2. Our evaluations show that our protocol is

most sensitive to forward channel noise. Indeed, as shown

in Figure 1, the protocol can tolerate a high level of reverse

and loop noise (approaching 10%). However as the forward

channel noise increases, there are only a few choices for α
where a positive key-rate can be attained. Optimal values of

α ranged between 0.13 and 0.2. Other comments, evaluations,

and noise scenarios are available in the full paper [2].

Despite the low noise tolerance, we still consider this a

positive, and interesting, result as this protocol was designed

specifically to smoothly transform from classical to quantum

communication and to allow research in investigating how this

affects secure communication. Of course, our key-rate is a

lower bound, so the actual security rate can only be higher.

Further studying this would make interesting future work.

III. CLOSING REMARKS

In this paper, we developed a new SQKD protocol with

a tuneable parameter α allowing one to gauge the effect

of the secure communication rate, based on “how quantum”

the protocol is. When α is set to zero, the communication

is purely classical and thus the protocol is insecure. As α
increases, security can be attained for certain optimal choices

and for certain channels. Studying the protocol further may

help to shed additional light on the “gap” between quantum

and classical secure communication. Furthermore, our proof

approach may be applicable to other (S)QKD protocols where

users are highly restricted in their quantum capabilities (either

intentionally or due, perhaps, to hardware faults).

Fig. 2. Key-rate when the forward channel noise is increased - only a small
window of α values exist in this case when the protocol attains a positive
key-rate.

Many interesting future problems remain open. Improving

our key-rate bound and performing a finite-key analysis can be

very interesting. Also, studying the effect of α against different

types of attacks could prove interesting (we have evidence that

the optimal α is different for intercept-resend attacks). Trying

to decrease the resource requirements even further could be

interesting; in the full paper [2], we comment more on this.
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