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Abstract

In this paper, we show an interesting connection between a quantum sampling tech-
nique and quantum uncertainty. Namely, we use the quantum sampling technique,
introduced by Bouman and Fehr, to derive a novel entropic uncertainty relation based
on smooth min- entropy, the binary Shannon entropy of an observed outcome, and the
probability of failure of a classical sampling strategy. We then show two applications
of our new relation. First, we use it to develop a simple proof of a version of the
Maassen and Uffink uncertainty relation. Second, we show how it may be applied to
quantum random number generation.

Keywords Quantum information - Entropic uncertainty - Quantum sampling -
Quantum cryptography

1 Introduction

In this paper, we revisit a famous entropic uncertainty relation proven by Maassen and
Uffink [1] (which followed a conjecture by Kraus [2] and was also an improvement of
an entropic uncertainty relation first proposed by Deutsch [3]). Given a quantum system
p and two projective measurements (PMs) {M,} and {N,} (where M, = |u,){ity]
and Ny = |vy){vy| for some orthonormal bases {|u,)} and {|vy)}), then one cannot
necessarily be certain of the outcome of both measurements. More specifically, the
relation states:

H(M)+ H(N) = —log, c, ()

where c is a function of the two measurements, namely:

¢ =max | (uilvy) 1% )
X,y
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This relation, and numerous others like it ([4—7] just to list a very few), is not only
interesting in and of themselves, but also has numerous other applications throughout
quantum information science and quantum cryptography. For a general survey of
entropic uncertainty relations, the reader is referred to [8—10].

In this paper, using a quantum sampling technique introduced in [11], we derive
a novel entropic uncertainty relation based on smooth quantum min-entropy with a
direct connection to classical sampling strategies. We use this to derive a novel, and in
our opinion simpler, proof of Eq. 1 for projective measurements over two-dimensional
systems. We also show how our new bound can be applied to cryptographic appli-
cations. To our knowledge, this sampling technique has not seen application to more
broad areas of quantum information before our paper.

Our new entropic uncertainty bound utilizes smooth min-entropy and has a direct
connection to sampling strategies. It is also applicable for states which are not nec-
essarily i.i.d.; that is, our result is applicable to arbitrary states and we do not need
to assume the given state is i.i.d. This is very useful for cryptographic applications as
non-i.i.d. states arise when an adversary has the ability to perform an arbitrary general
attack on a quantum state; thus, the ability for our bound to handle such arbitrary
systems means it can be used to prove security for some protocols against general
coherent attacks. This new relation, informally, states that, except with small proba-
bility (determined by the user and the dimension of the system), measuring a portion
of a system in one basis resulting in outcome ¢ implies the smooth min-entropy in
the remaining portion, after measuring in a second basis, can be lower-bounded by
the binary Shannon entropy of the Hamming weight of ¢ and the maximal overlap
of the two basis measurements, up to some error induced by the sampling technique.
This new relation, which to our knowledge has not been discovered before, may hold
interesting applications in quantum cryptography as we discuss later. Furthermore,
the techniques we used to derive and prove this new relation may be useful in further
extending the quantum sampling technique to other application domains.

There are several contributions in this work. First, we discover a novel entropic
uncertainty bound (involving smooth min-entropy and applicable to arbitrary, non-
i.i.d. states) directly related to sampling strategies and which may have interesting
applications to quantum cryptography and information theory. We show a rather inter-
esting connection between quantum sampling and quantum uncertainty and use this
to derive a much simpler proof of a particular case of Eq. 1. We also discuss how our
methods can be used to analyze certain cryptographic protocols, in particular, quan-
tum random number generators. Finally, the techniques we use in this paper may find
application to other areas of quantum information science and may eventually lead to
better bounds for quantum cryptography in the finite-key setting.

1.1 Notation and definitions
Let A be a finite alphabet of size d. Thenifg € A" andt = {t1, ..., %} C {l,...,n},

we write g to mean the sub-string of ¢ indexed by 7, namely g = (g7, ..., qy)-
We write g_; to mean the sub-string of ¢ indexed by the complement of 7.

@ Springer



Quantum sampling and entropic uncertainty Page3of18 368

If A = {0, 1}, the Hamming weight of the string ¢ is defined to be the number of
nonzero elements in ¢. For arbitrary A and for any a € A, we define the relative a-
Hamming weight, which we denote by w,(q), to be the number of letters in g not equal
to a and that quantity divided by the length of ¢. Namely: w,(¢) = |{i | ¢i # a}|/lql,
where |g| denotes the length of the string g.

A density operator acting on Hilbert space H is a Hermitian positive semi-definite
operator of unit trace. Given |{) € H we write [] to mean |¥)(y|. We define a
Projective Measurement or PM over a d-dimensional Hilbert space H to be a set of
projectors N = {[¢1], ..., [¢al}, where {|¢i)};.1= | form an orthonormal basis of H. It
is not difficult to see that we may treat a measurement outcome of |[¢;,) ®- - -®|¢;, ) as
the classical string j = ji - - - j,. We often write H; to mean a d-dimensional Hilbert
space.

We denote H (X) to be the Shannon entropy of random variable X. If p is a density
operator acting on Hilbert space H and if N is a PM over H, we write H(N), to
mean the Shannon entropy of the random variable induced by measuring p using PM
N. Similarly, if [/) is a pure state in H, we write H(N)y to mean the entropy of
the result of measuring [¢] using PM N. For technical reasons later, we define an
extended binary entropy function, denoted H (x) which is defined to be H(x, 1 — x)
if x € [0, 1/2]; otherwise, if x < 0, H(x) = 0 and if x > 1/2, then H(x) = 1.

Given a density operator p4 g, acting on some Hilbert space H 4 ® H p, the condi-
tional quantum min- entropy [12], denoted Hoo(A|E),, is defined to be:

Ho(A|E), = supmax{r € R | 27*14 ® o — pag > O}. 3)
OE

Here, 14 is the identity operator on H 4 and the notation X > 0, for some operator X,
implies that X is positive semi-definite.

To attempt to gain some insight into what, exactly, the above definition means, first
consider the case where the E system is trivial. In this case, we may write Hyo(A),
and it holds that:

Hoo(A)p = — log Amax (0),

where Amax (p) is the maximal eigenvalue of p (note that all logarithms in this paper
are base 2 unless otherwise stated). For classical states, this has a very clear mean-
ing. Let pg = )_; p; [i] for some orthonormal basis {|i)}. Then, Hy(A), is simply
—log max; p;. A comparison to von Neumann entropy for the two-dimensional case
is shown in Fig. 1.

The more general, conditional min-entropy is more difficult to understand concep-
tually using only Eq. 3. Instead, it is more intuitive to think of min-entropy in terms
of guessing probabilities (at least, for classical-quantum (cq) states). If we have a

cqg-state of the form psr = Zi pi il ® pg), then it was shown in [13] that:

Hxo(A|E) )y = —10g Pguess(0AE)»
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Fig. 1T Comparing Shannon entropy (solid) with min-entropy of a classical state (dashed) in the two-
dimensional case

where:

Pouess(paE) = {IRZI?EZP#F(M;'PS)),
T

and the maximum is over all POVM operators on H . Thus, for cq-states at least, one
can think of min-entropy in terms of “guessing games.” This will not be important to
our discussion, however, it helps to give a clearer picture of what, exactly, min-entropy
is measuring.

Quantum min-entropy has many applications in quantum cryptography, especially
in finite-key scenarios. In particular, given a cq-state p4 g (perhaps derived from some
quantum cryptographic protocol), where the A register is correlated with the E register
in some way. One may apply privacy amplification to attempt to establish a uniform
random string independent of E’s quantum register. Let o g’ be the resulting cq-state
after processing p4 g through privacy amplification (essentially, publicly choosing a
random two-universal hash function, and applying it to the A register). The K register
is of size ¢ bits, and the E’ register contains E’s original information plus the hash
function used. In [12], it was shown that:

1
< 2—§(Hoo(A\E)p—L’)_ )

HUKE’ —Ix /2" @ op

Thus, deriving bounds on min-entropy is highly useful as they lead directly to bounds
on how large a random string may be distilled from a given cq-state (they also may be
used for quantum key distribution, though there one must also take into account the
information leaked during error correction). We will return to this in a later section.
For notation, if N is a PM on H and p is a density operator on H®", then we use
Hs(N), to mean the min-entropy of the resulting state following the measurement
of each of the n sub-spaces p acts on using PM N. If p(j) is the probability of
observing outcome j = ji---j, (i.e., after measuring, one observes the quantum
state |¢j,) ® - - ® |}, ), it is not difficult to see that: Hyo(N), = —logmax; p(j).
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Given a density operator p4c acting on H4 ® Hc, where the C portion is classical
(namely, we may write pac = ), pcaff) ®|[c], where {|c)} is an orthonormal basis of

‘Hc and each of(f) is an arbitrary density operator acting on H 4 ) then the conditional
min-entropy Heo (A|C), is:

Hxo (A|IC), = irgf Hoo(A)y©, 5)

The above can be proven from Lemma 3.1.8 in [12] and the definition of conditional
min- entropy.
Finally, the e-smooth min-entropy, denoted HS_(p) is defined to be:

HS(p) = sup Huo(0), ©)
o€l (p)

where I'¢(p) is the set of all density operators € close to p as measured by the trace
distance; i.e.,
Ie(p) ={o | llo — pll <€}, (N

and || A||is the trace distance of A. We define HS (N ), similarly to Hx (N, described
earlier whenever N is a PM. The conditional smooth entropy, HS (A|B) is defined
similarly. Note that there is a version of privacy amplification (Eq.4) for smooth min-
entropy, proven in [12], which we will use later:

HUKE' — Ik /2t @ op|| < 272 HSAIEN=0 4 o (8)

An important result, which we will use later, was proven in [11] (based on a Lemma
in [12]) and allows one to compute the min-entropy of a superposition of states:

Lemma 1 (From [11]) Let H be a d-dimensional Hilbert space with orthonormal basis
(i, and let Hg be an arbitrary finite dimensional Hilbert space. Then, for any

i=1

pure state |Y) =Y ., a;ili) ® i) € HQ HE, if we define:

p=Y leil*li1® (il .

iel
it holds that for any PM N on H:
Hoo(N|E)y = Hoo(N|E), — log, |J]. )
The above lemma will allow us to bound the min-entropy of a superposition of states,
by computing, instead, the min- entropy in a suitable mixed state.
2 Quantum sampling

Since our proof relies on the quantum sampling technique introduced in [11], we now
review this subject here. All information in this section is derived from [11] (we make
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only a few changes in notation and some generality) and is meant only as a review of
this material for completeness.

Let A be a finite alphabet of size d, and leta € A, and k € N. We assume d, a, and
k are arbitrary, but fixed. A sampling strategy is a pair ¥ = (P¥, .7-"5 ) where P% isa
distribution over all subsets of {1, ..., n} of size k and ]-"5 is a function which, given
a subset of a sample g € A" (i.e., given g, ), will output a guess of the value w,(g—r).
That is, given a randomly chosen sample g, (where T was drawn according to P;),
]-'Zj will estimate the value of w, in the remaining portion of g. When it is clear, we
will often forgo writing the superscript, and simply write 7.

Define B‘E, 4 () to be the set of all words in A" such that the estimate provided by
Fq is & close to the actual value given a fixed subset T C {1, ..., n} of size k. That is,
let:

BS (2) ={q € A" | |Fu(qs) — walg—o)| < 8}

Informally, if we have a fixed subset t with |7| = k, then the set B‘E, +(X) defines the
set of all “good” strings; i.e., strings for which the sampling strategy X' provides an
accurate estimate of w,, up to an error of § assuming t was the chosen subset.

From this, the error probability of X' is defined to be:

es' = max Pr(q ¢ B} ,(2)). (10)
geAr

where the probability is over all subsets T chosen according to P’T‘ (i.e., we treat B‘ST a

as a random variable induced by choosing subsets t according to P’T‘). From this
definition, it is clear that for any word g € A", the estimated value of w,, given by
the sampling strategy X, is 6 close to the real value in the remainder of the string (i.e.,
in the portion of the string that was not used in the test set t), except with probability
egl. Note the superscript “cl” is used to show this is the error probability of a classical
sampling strategy.

One important sampling strategy we will make use of is the following: Let P% be
the uniform distribution over all subsets ¢ C {1, ..., N} with |t| = k; i.e., Pr(Pk =
1) = 1/(}). Then, given a string ¢ € A", the function F is defined simply to
be: F,(gr) = wa(q,). That is, the sampling strategy is to choose a random subset,
uniformly at random, evaluate w, on that subset, and output, as an estimate of the value
w,(g—7), the value w, (g ). The following Lemma was proven in [11] (see Appendix
B in the extended, online version, of that reference):

Lemma 2 (From [11]) Let § > 0 be given and X be as described above in the text. If
|| = k < N/2 then for any d and a, it holds that:

82kN )
) (11)

Cl<2 _
€s = exp( N—|—2

These notions can be extended to the quantum domain [11]. Consider an orthonor-
mal basis {|a) | a € A} and let H 4 be the d-dimensional Hilbert space spanned by this
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basis. Let U be a unitary operator acting on H 4. Then, we may define an orthonormal
basis:

B={U®"by---by) =Ulb1)) ®---®Ulb,) | bi € A},

of the Hilbert space H%”. Then, given a state |{) € Hf’" ® HE, it is said to have
relative a-Hamming weight 8 in A with respect to basis B, if we can write |{) =
U®by---b,) ® |p)g with wy(b) = B. Note that we are allowed an additional,
arbitrary, system in some Hilbert space H g (this may be the trivial space if it is not
needed). Also, notice that this definition is dependent on the choice of basis.

By abusing notation slightly, we may also define span(Bf’ 4) to be:

span ({U®"|q) | ¢ € A" and |wa(gr) — wa(g—-)| < 8))

Note that if ) € span(Bf) «) ® HE then, if sampling is done by measuring in the B
basis on subset 7, it is guaranteed that the state collapses to a superposition of states
which are § close to the observed a-Hamming weight (with respect to basis B). Also
note we will drop the § superscript when the context is clear.

Using the above definitions, the main result from [11] is as follows.

Theorem 1 (From [11], though reworded for our application in this paper and our
specific sampling strategy) Let k < n/2 be given and consider sampling strategy
X as described above. Then, for every pure state |) € H?n ® HE, there exists a
collection of “ideal states” {|¢pT)} where the index is over all subsets t of size k and
each |p*) € span (Bf’a) ® Hpg such that:

<esh,

where T = (Z) and the sum is over all subsets of size k. Note that we prepend an
auxiliary system spanned by orthonormal basis {|t)} for all appropriate subsets t.

1 1
7;M®M—FEM®W]

The above result states that, on average over the choice of subset 7, the real system
[¥) is e-close to an ideal state, where the ideal state is defined to be one where the
sampling strategy always works (i.e., where, after sampling, regardless of the subset
choice, the state collapses to one which is a superposition of states § close to the
estimate). Furthermore, € can be computed from the classical error probability.

3 Main result

We are now in a position to state, and prove, our new entropic uncertainty relation.

Theorem2 Let é > € > 0,a € {0,1}, 0 < B < 1/2, and p a density operator
acting on Hilbert space H?(Wr") with m < n be given. Also, let M = {[ol, [11]}
and N = {[vo], [v1]}, be two projective measurements. If a subset t of size m of p
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is measured using M resulting in outcome q, we denote by p(t, q) to be the post-
measurement state (this is well defined given p). Then, it holds that:

PrHE Ny + 1l (wa(q) +8) = —nloge)| = 1 - &7

where the probability is over all choice of subsets and resulting measurement outcomes.
Above, c is defined in Eq.2 and:

5 :\/(m+n+2)1n(2/62). 1)

m(m + n)

Proof We first consider the case when p is pure; that is, p = [v] for some |{) €
HS (m+1) Then, applying Theorem 1 to p, using the sampling strategy described in
the previous section for a sample subset size of m, it follows that there exists an “ideal”
state o of the form: 0 = % >, tI® [q&t] , where T is the number of possible subsets

(e, T = (";m)); the summation is over all possible subsets t of {1,...,n + m}
which are of size m (we expand the underlying Hilbert space to include this auxiliary
subspace Hr spanned by orthonormal basis {|¢) | C {1, ...,n + m}, |t| = m}; and,

finally, each |¢’) € span (B,‘S’a). This ideal state satisfies the following:

5,/6(?1.

1
o—?gjm@[w]

Given § as in Eq. 12, and also given Lemma 2, it holds that \/:gl =€.

Consider the following experiment: First, run the sampling strategy, choosing a
random subset ¢ (which is chosen by measuring the auxiliary H7 subspace) and per-
forming a measurement in the M basis resulting in outcome g (note that ¢ depends
on the subset chosen and the intrinsic randomness of the measurement itself). Let
p(t, q) be the post-measurement state if this experiment is performed on the true state
p = [¥]. Likewise, let o (¢, g) be the post-measurement state if this experiment is
performed on the ideal state o. Both post-measurement states are well defined given
both # and ¢ (though, of course, the post-measurement state may be a superposition,
they are, however, exactly defined pure states, conditioning on the outcome of ¢ and

q).
We first show:

Hoo(N)o(1,q) = —nloge —nH (wa(q) + 8). (13)

That is, with certainty, for any subset ¢ and observed value ¢, Eq. 13 holds in the ideal
case.

Let ¢ be the chosen subset, thus the measurement in basis M is performed on the
pure state |¢’). Since |¢') € span (B,S’ ), it follows that the post-measurement state,
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after observing value ¢, collapses to a superposition of the form:

6" =D ailuiy. .. i) (14)

ieJ
where J € I = {i € {0, 1}" | Jlwa(i) — wa(g)| < 8} and normalization requires

>, lai* = 1. Of course o (1, q) = [¢'].
Now, consider the mixed state:

X =l [y - iy -

iel
By applying Lemma 1, we have:
Hoo(N)o(1,9) = Hoo(N)g' = Hoo(N), —log | J]. 15)

We now compute Hyo(N),. Let xy be the result of measuring x using PM N. It is
not difficult to see that this state is simply:

v =y leal | D pGID [virs - via]
ie je{0,1}
= > PO [V Vi)
jef{0,1}

where we define p(jli) = p(ji1--- jnli1---in) to be the probability of observing
[vj, - -+ vj,)if givenaninputstate of |, - - - w;, ). Wedefine p(j) = >, lai |2 p(ili).
It is straight-forward to compute p(jli):

n
pGID = pGit -+ Jalit -+ iw) = [T 1 1) 12 (16)
=1
Since xy is a classical system, we have:

Hoo(N)y = —logmj@lx p(j) = —log max [Z |05i|2p(j|i):| :

ieJ

Let p* = max; ; p(j|i) (where the maximum s overalli € J and j € {0, 1}"). Then,
it is clear that:

max p(j) = max [Z |ai|2p<j|i)} <,

ieJ

@ Springer



368 Page100f18 W. O. Krawec

(recall that ) ; |o; |2 = 1) and thus:
Hs(N)y = —logmax p(j) > —log p*.
J

Finally, we compute a bound on p* as:

= max H| (ilpa) P < ¢
je{0,1
zEJ =1

where ¢ = maxy y | (vi|ity) |2. Thus:
Hy(N)y > —log p* > —nloge. (17)

It is clear that J C {i € {0, 1}" | w,(i) < wq(g) + 8} and so using the well-known
bound on the volume of a Hamming ball we have |J| < 2" ®a(@+8) (note we are
using our “extended” version H here to avoid the issue when wy, (g)+6 > 1/2;indeed,
if that is the case then H(-) = 1 and so the bound holds trivially), we may combine
this with Egs. 15 and 17 to derive:

Hoo(N)a(t,q) > —nlogc — nI:I(wa(Q) +9).

Of course, the above analysis only considered the ideal state from which we are
guaranteed that the sampling strategy was successful. We now consider the “real” state
p =1yl

Consider the real state % >, [t1® [¥]. The process of choosing a subset 7, measur-
ing, and observing ¢ (resulting in post-measurement state p (¢, ¢)) may be described,
entirely, by the mixed state: prqr = % > It Zq p(qlt) [q] ® p(t, q), where p(qlt)
is the probability of observing outcome g given subset r was sampled; here we use “R”
to denote the “remainder”—that is the portion of the state not yet measured. Likewise,
the ideal state, after performing this experiment, may be written as the mixed state:
OTQR = % 1D q p(glt) [q] ®o (t, q). Since quantum operations cannot increase
trace distance, we have || ptQr — oTQR|| < €. By basic properties of trace distance:

€>— ZZ lpqInp(, q) = plgino(t, ). (18)

Of course, it holds that % > Zq |p(glt) — p(glt)| < e (this follows by tracing
out the unmeasured portion “R” of prgr and oTqr and again realizing that quantum
operations, such as partial trace, do not increase trace distance). Let p(q|t) = p(q|t)+
€4,: Where €, ; may be positive or negative. Then, the above inequality of course implies

% Z[ Zq |Eq,l| S €.
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Returning to Eq. 18 we then find:
1
€z =2 ) lIp@ne.q) = o, g) = ego gl
t g

pP@nD2- DNy —e, (19)
2.

r o q

v

where we define A, ; = %||p(t, q) —o(t,q)|| < 1. Note that, above, we made use
of the reverse triangle inequality and the fact that ||o (¢, ¢)|| = tro(t,q) = 1 since
o(t,q) is a positive operator of unit trace. We also used the fact that p(g A t) =
pqlt)yp) = p(qlt) - % (here, p(g A t) is the probability of sampling subset # and
observing ¢). Of course, the above implies:

> pl@AnAg <e. (20)
tq

Now, let us consider A, ; as a random variable over the choice of all subsets ¢
and measurement outcomes on that subset g. The expected value is easily seen to be
E(A4,1) = u < €. We also compute the variance V2

VE=D"plqAnAy -t <) plg ANy — 1
q.t q.t
=pul—p)=pn=<e

where, above, we used the fact that A, ; < 1 and so Aéy, <Ayt
Now, by Chebyshev’s inequality, we have:

& R
Prldg —pnlz ) = 5 < <&, @1

(the last inequality follows since 8 < 1/2); note that this probability is over all subsets
¢ and measurement outcomes ¢. Thus, except with probability at most &' =27 after
choosing ¢ and observing ¢, it holds that |[A, ; — u| < eP which, of course, implies:

1
SIpt @) =0l = Ay < p+e <etel
Since, in this case we have o (1, q) € I, 5.(0(t, g)), it holds:
ﬁ —
HEP (N pia.g) = Hoo(N)o(1,9) = —nloge — H(wa(q) +9),
completing the proof when the case p is pure.
Now consider the case when p is not pure. In this case, let |{/) g be a purification

of p, where the H portion is the original HE"" ™™ space and the C portion lives in
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an extra Hilbert space (H ) needed to purify p. As before, using quantum sampling,
there exists an ideal state o where, now, each of the |¢’) € span (B,‘S’ o) ®Hc.

Let us consider running the same experiment as before on this ideal state (where,
now, the experiment consists only of measuring the H portion, not the C portion).
Let ¢ be the chosen subset and g the observed value. Then, in the ideal case, the state
collapses to a pure state of the form:

e =Y il ... mi,) ® |Ci).

iel
where J is defined as before and the states |C;) are arbitrary (not necessarily orthogo-

nal) states in He. Let xpe = Y ;e leil? [y, -+ » iy ] ® [Ci]. From Lemma 1, we
have:

Hoo(N|C)g = Hoo(N|C)y — log | ]].

We add an additional system / spanned by orthonormal basis {|/;)};c; and define the
following state:

xuer =Yl [y, - .. i ] ® [Ci] @ []

ieJ

Measuring this state using PM N yields:

xver =Y 1P IR ICGTI® Y pGili) [y - vj ] -

ieJ je{0,1}?

where p(j|i) is defined as before in Eq. 16 (also, note that we permuted the ordering
of the sub-spaces above only for clarity). Define the states xy ; as:

avi= Y pGID [V v

Jel0, 13"

from which we may write xycr = D lo 1?0, Gil ® xw.i-
Thinking of the CI system jointly, the above state is classical on this joint C1
system; thus, from Eq. 5, we have:

Hoo(N|CI)y > 1115 Hoo(N)yn
i€ '
= inf(—log max p(j|i))
i J

> —log p* > —nlogec.
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Finally, from the strong subadditivity of min-entropy [12]:

Hyo(N)g = H(N|C)g = Hoo(N[C)y — log ||

= Hoo(N|C1)y —log|/J]|
> —nlogc —log|J|
> —nlogc —nH(wy(q) + 8),

The above analysis only utilized the ideal state from which sampling is guaranteed
to succeed. However, the analysis of the real state follows identically as earlier (when
we considered an initial pure state), thus completing the proof. O

4 Applications

Our Theorem 2 gives us an interesting entropic uncertainty bound in terms of smooth
entropy and also in terms of the success of a classical sampling strategy. Beyond its
independent interest, we show two applications of our new entropic uncertainty result.
First, it gives us a new proof of the Maassen and Uffink entropy relation. Second, we
can apply it to the analysis of source-independent quantum random number generation
protocols against adversarial, but memoryless, sources.

4.1 Application one: Maassen and Uffink entropic uncertainty

As a simple corollary, our Theorem 2 gives us the usual Maassen and Uffink entropic
relation.

Corollary 1 Let M and N be two PMs and p a qubit density operator. Then, except
with arbitrarily small probability, it holds that:

H(M),+ H(N), > —logc.

Proof Let p be a density operator on H, and consider the state p’ = p®21 . Let
a = maxy tr([ux] - p); in particular, if measuring p using M the probability of
observing |u,) is no less than 1/2. Note that this “a” need not be known to users
making the measurement, however it clearly exists. Since p’ is i.i.d., for any subset ¢
of size n and any measurement outcome ¢ on that subset, the post-measurement state
is simply p®".

Fix € > 0and 0 < B < 1/2. Then, for any n and € < €, Theorem 2 implies that,
except with probability at most €' ~2#, the following inequality holds:

1

;Hgg“fﬁ (N)pon + H(wa(g) +8) = —loge, (22)
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where g is the observed value after measuring using M and:

(n+ 1) 1In2/€?)
§ = —_—
\ n

(We used m = n when applying the theorem.) By the asymptotic equipartition property
[14], we have lim_o1im, oo L H22€" (N) jon = H(N),. By the law of large
numbers, we have lim,_, - w,(¢) = pi1—q. Note that by definition of a, we have
P1—a < 1/2 thus allowing us to replace H (") with H(pi—a, pa) = H(M),. Finally,
8 — 0asn — oo. Given fixed € the above holds; of course € may be made arbitrarily
small, thus yielding the result. O

4.2 Second application: random number generation

We show in this section an interesting application of our new entropic uncertainty
relation derived in Theorem 2 to quantum random number generation in the source-
independent model. The goal of a quantum random number generator (QRNG) is
to utilize quantum physical properties (e.g., random measurement outcomes) to pro-
duce true randomness useful for numerous other tasks (including for cryptography).
Several security models exist ranging from the very weak fully-trusted scenario to
the very strong device independent (DI) model [15,16] (which, though having strong
security guarantees, is slow to implement in practice [17,18]). In between is the source-
independent (SI) model whereby only the source is untrusted, but the measurement
devices are characterized [19-22]. See [23] for a general survey of QRNGs and their
security models.

We show that our new entropic uncertainty relation, proven in Theorem 2, has
applications to this cryptographic protocol. This is only preliminary work to show the
potential usefulness of quantum sampling applied to broader quantum information
science and cryptography and, so, the model we consider is a memoryless adversarial
source. This source, controlled by an adversary, prepares a general N qubit state and
sends it to user A. An honest source should prepare the state |+)®" but an adversarial
source may prepare anything—we do not require any assumptions on the overall
structure of this state beyond that it consists of N qubits and it may even be non-
i.i.d. This user chooses a random sample of size m (this requires some initial private
randomness, thus the QRNG must actually extend this initial seed randomness and it’s
usage must be taken into account) and measures in a test basis (for our sake, we use
the X = {|+), |—)} basis) observing outcome ¢ (as a bitstring—if there is no noise
and the source is honest, ¢ = 0"). The remaining n = N — m qubits are measured in
the Z = {|0), |1)} basis. Following this, privacy amplification may be run to distill an
£-bit random string. Using privacy amplification (see Eq. 8 but the E system is trivial
here as we consider a memoryless adversary), we have:

HpR _ 1R/2‘3H <2/ 4273 HLD=0 — ¢ (23)
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Above, py4 is the state of the n measurement results in the Z basis before privacy
amplification and pg is the state after privacy amplification (transforming the A register
of size n to the R register of size £). Thus, if we want the trace distance to be no greater
than a given epa (giving us an epa-random string), we have:

/ 1
L=HS(AE), —21 — .
(A1) = 2loe <6PA - 26’)

(Note we require epy > 2¢’, where €’ is whatever smoothening parameter is used.)
Interestingly, while the choice of the random hash function used for privacy ampli-
fication must be random, it was proven in [24] that once chosen it can be fixed and
so we do not need to use additional randomness to choose a hash function (it could
be chosen randomly once and then hard-coded into A’s device—see [24] for more
details).

If the adversary prepares N qubit states, unentangled with any quantum memory,
then we may immediately use our Theorem 2 to compute £. Indeed, let ¢ > 0 and
B € (0,1/2) be given. Let epp = 5¢ + 4¢P . Then, using the Z and X basis, where
¢ = 1/2, we have, except with a failure probability of | =2#  after privacy amplification
the size of the final random string is:

_ 1
LornG = n(1 — H(w(q) + 8))) — log .

where ¢ is the observed bit string on the m test qubits (measured in the X basis), and
where § is given in Eq. 12. Note that the choice of 8 factors into eps (which determines
how close the output is to uniform randomness) and the failure probability of the entire
protocol. Of course both terms may be made arbitrarily small, but note that, for fixed
€, as B decreases, the failure probability decreases, while epa increases. This choice
of B is something users may optimize over.

Of course, we must also take into account the randomness used to choose a random
subset of size m. This requires log (nN1) bits. Thus, the total size of the final random
string, after sacrificing these initial seed bits, is:

_ 1 N
LornG = n(l — H(w(g) +6))) — log P log (m> (24)

The random bit generation rate is simply £ornGg /N = LornG/(n + m).

We set € = 1073 and 8 = .33. (We did not optimize 8 and so a better choice can
lead to more optimistic settings for our bound.) With these settings, the protocol fails
with probability less than €' =28 = 1072 while epn < 5 x 10712 A graph of the
random generation rate of this protocol using our new entropic uncertainty bound is
shown in Fig.2.

Note that, in the original quantum sampling paper [11], their method was applied
to the security proof of BB84 [25]. However, their proof relied on many internal sym-
metries within BB84 which we did not need for our proof here—instead, our entropic
uncertainty bound applied immediately to the QRNG protocol without requiring any
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Theoretical Maximum

0.10 Our Bit Rate

0.05
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Random Bit Generation Rate

A  —1 A A A A A L A A A A A A r W—
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Number of Signals (N)

Fig. 2 Showing the random bit generation rate, we derived using our entropic uncertainty relation (solid
line), namely {QrNG/N as the number of signals N = n + m increases. We assume a high source noise
level of 20% here (namely, w(g) = .2). We use m = 0.07n in this graph and 8 = .33. Neither settings were
optimized, so the result could potentially be improved further. Also showing the theoretical, asymptotic
upper bound (dashed line) for this same noise level. We note that, as N increases beyond the plotted 100,
our lower-bound numerically tends to approach the theoretical maximum

additional reductions. We believe that with further refinements to our method, along
with an extension to adversaries with quantum memories, this technique of utilizing
quantum sampling, augmented with the analysis framework we introduced in our proof
of Theorem 2, can lead to a powerful mechanism for proving security of cryptographic
protocols in finite-key settings.

5 Closing remarks

In this paper, we showed an interesting connection between quantum sampling and
quantum uncertainty. We used the quantum sampling technique introduced in [11] to
derive and prove a new entropic uncertainty relation based on smooth min-entropy,
the Shannon entropy of an observed outcome, and the probability of failure of a
classical sampling strategy. Our result is applicable to arbitrary, finite, states that are
not necessarily i.i.d. From this, we were able to derive an alternative, and simple,
proof for the Maassen and Uffink bound first proven in [1]. We also showed how our
result can be used to derive bit generation rates for quantum random number generators
where the source is controlled by a memoryless adversary. To our knowledge, this is the
first time quantum sampling has been extended to general quantum information theory
and our method of proving Theorem 2 may hold broad application in future research.
Note that, though we only proved the qubit case of the Maassen and Uffink entropic
uncertainty relation, we strongly suspect this technique can be used to prove the higher
dimensional case also. It would also be interesting to see if quantum sampling can
yield a simple proof for the conditional version of the uncertainty relation, namely
H(M|B) + H(N|E) > —logc [8,26]. We are currently investigating this, also, as
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future work. Finally, investigating our method’s application to other cryptographic
protocols is another interesting line of investigation.
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