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Abstract—A semi-quantum key distribution (SQKD) protocol
allows two users A and B to establish a shared secret key that
is secure against an all-powerful adversary E even when one
of the users (e.g., B) is semi-quantum or classical in nature
while the other is fully-quantum. A mediated SQKD protocol
allows two semi-quantum users to establish a key with the help
of an adversarial quantum server. We introduce the concept of a
multi-mediated SQKD protocol where two (or more) adversarial
quantum servers are used. We construct a new protocol in this
model and show how it can withstand high levels of quantum
noise, though at a cost to efficiency. We perform an information
theoretic security analysis and, along the way, prove a general
security result applicable to arbitrary MM-SQKD protocols.
Finally, a comparison is made to previous (S)QKD protocols.

I. INTRODUCTION

Semi-quantum key distribution (SQKD), originally intro-

duced in 2007 by Boyer et al., [1] allows for the establishment

of a secret key between two parties A and B such that security

is guaranteed against an all-powerful adversary E (something

impossible to achieve through classical communication alone)

and where one party, typically B, is severely restricted in his

quantum capabilities and is, in a way, “classical” in nature.

Studying SQKD protocols allows us to investigate the question

“how quantum does a protocol need to be to gain an advantage

over its classical counterpart?” Beyond theoretical interests,

there may also be practical benefits to such systems. Indeed,

one may envision a future quantum communication network

utilizing fully-quantum devices; however if some device mal-

functions, one may be able to switch to a “semi-quantum”

mode of operation to continue secure communication. We

stress, however, that in this paper we are only interested in the

theoretical advantages to SQKD, namely, to study the “gap”

between quantum and classical protocols.

Normally, SQKD protocols operate with A being a “fully-

quantum user” and B being a “classical user.” A two-way

quantum channel allows A to send qubits, prepared in any

state to the classical user B. This user, then, can either

Measure and Resend - that is, take the qubit, measure

it in the Z basis (spanned by {|0〉 , |1〉}) and resend a Z
basis qubit to A; or he can Reflect - that is, disconnect

from the quantum channel and “bounce” the qubit back to

A undisturbed. Note that the classical user can only directly

operate in the Z basis or he can simply disconnect from the

channel. Clearly if both A and B were restricted to these

two operations, the entire protocol would be mathematically

Fig. 1. Diagram showing parties involved. Two “classical” users A and B are
connected to two fully-quantum servers M1 and M2. These servers may be
adversarial, however honest mediators need not collaborate and can be, e.g.,
competing companies. E is a third-party adversary.

equivalent to classical communication (and hence not perfectly

secure). When a qubit returns to the fully-quantum user A, she

may measure in any basis of her choice.

In [2], the idea of a mediated SQKD (M-SQKD) protocol

was introduced where both A and B are “classical” in this

sense, but, by utilizing the services of a fully-quantum server

to prepare and measure in alternative bases, allowed A and

B to establish a shared secret key. Security was proven in

an information theoretic sense, even when this fully-quantum

server was an all-powerful adversary. Since then, other me-

diated SQKD protocols have been proposed [3], [4] though

without noise tolerance analyses.

In this paper, we revisit the idea of M-SQKD and introduce

the idea of multi-mediated SQKD (MM-SQKD) where, as

before, both A and B will be classical according to semi-

quantum cryptographic definitions in [1], but they will now

utilize the services of two (or more) adversarial quantum

servers. Our goal will be to create a protocol that has a high

tolerance to noise. Unlike M-SQKD, MM-SQKD protocols

should take advantage of both servers to attain some quantum-

level advantage (i.e., they should not simply use two servers

in parallel). We achieve this goal in this paper. We make the

assumption in this work that these adversarial servers may

collaborate after the protocol is complete, but during the pro-

tocol’s operation, they act independently of one another, except

with regards to any classical messages sent (we formally define

our attack model later in this work). This seems to be a safe

assumption as attacking collaboratively during the quantum

978-1-7281-0960-2/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on September 08,2020 at 21:21:42 UTC from IEEE Xplore.  Restrictions apply. 



communication stage of our protocol would require them to

somehow combine their quantum memories rapidly. If we

assume that the two servers are spatially dislocated, this would

be difficult or impossible to do without being detected (e.g.,

by monitoring the time between qubits sent by the server).

Alternatively, the two servers could be competing companies

and so would not be willing to collaborate to attack anyway.

See Figure 1 for a diagram of the scenario we envision.

We make several contributions in this paper. First we

introduce the idea of multi-mediated SQKD and design a

new protocol for this scenario. Note that, as we wish to use

both mediators to provide an advantage to noise tolerance, the

trivial protocol of running two copies of a standard M-SQKD

protocol will only result in an increase in overall efficiency

but will not result in an increase in noise tolerance! Thus

our protocol must take advantage of these two servers in a

non-trivial manner. After presenting our protocol, we prove

a very general security result, applicable to arbitrary MM-

SQKD protocols using two or more servers thus providing

an important theoretical result applicable to future work in

this area (not just our specific protocol). Using this security

result, we preform an information theoretic security analysis of

our protocol using our attack model described earlier and dis-

cussed in more depth later. Finally, we evaluate our protocol’s

performance on a realistic channel scenario, comparing with

prior work and commenting on future improvements that could

be made. In particular we show our protocol’s noise tolerance

is as high as 18.7% (higher than the 13.04% tolerance from the

M-SQKD protocol in [2], [5] and comparing very favorably

with other (S)QKD protocols).

II. THE PROTOCOL

We present our protocol assuming both mediators are

honest. Later, when we prove security, we will assume the

mediators are adversarial. Our protocol operates as follows:

Quantum Communication Stage: The following process

repeats until a sufficiently large raw-key has been established:

1. Mediator M1 and M2 each prepare, independently, Bell

states of the form: |Φ+〉 = 1√
2
|0, 0〉AB+

1√
2
|1, 1〉AB , sending

the A particle to Alice and the B particle to Bob. Note that

each mediator prepares their own two-qubit state. Thus, the

joint state, assuming the mediators are honest, should be:

|Φ+〉 ⊗ |Φ+〉. Both A and B receive two qubits each, one

from each Mi.

2. A (resp. B), on receiving a qubit from each mediator, will

choose with probability p to Measure and Resend both

qubits (resending back to the respective mediator from which

it was received) or with probability 1 − p to Reflect both

qubits back to their respective mediators. Both parties choose

independently. If A chooses Measure and Resend, she

saves her measurement results in a bit-string mA ∈ {0, 1}2;

similarly, B will save his measurement results in mB .

3. On receiving their qubits back from Alice and Bob, each

mediator will, independently, perform a Bell measurement.

If the outcome is |Φ−〉 = 1√
2
(|0, 0〉 − |1, 1〉), that mediator

will send the classical message “-′′ while, for any other

measurement result (the three other options), that mediator will

send the message “+′′ Note that this communication need not

be done in an authenticated manner (thus an adversary may

tamper with this message).

4. A and B, on receiving a classical message from both

mediators, will disclose to one-another, using the authenticated

classical channel connecting them, the following information:

(1) The messages they received from both mediators. This

is done to ensure that a mediator (or an adversary) does

not send different classical messages to each user (if this

is detected, users immediately abort); (2) Their choice of

Measure and Resend or Reflect; and (3) the parity

of their measurement bits if applicable.

5. If both parties chose Measure and Resend, if both

mediators send “-′′, and if both party’s parity bit is 0, they will

keep their measurement result to contribute a single raw-key

bit. (Note that two qubits are needed for a single raw-key bit,

thus we lose efficiency, though as we will see in our security

analysis, we gain noise tolerance.) All other iterations, along

with a randomly chosen sample of these raw-key bit iterations,

will be used for parameter estimation to determine the channel

noise.

Once a sufficient raw-key has been established, standard

error correction and privacy amplification are run resulting

in a secret key (see [6] for a description of these standard

processes). The size of the secret key depends on the observed

noise in the channel. Note that, as we are considering the

asymptotic scenario, we may set p to be arbitrarily close to 1
to improve performance as was done in [2].

III. SECURITY ANALYSIS

We now turn to the security analysis of our protocol. We

will assume the following security model: (1) All noise is

the cause of the adversary (who we assume, in the worst

case, are the servers). This is a standard assumption in QKD

research [6]. (2) Both servers prepare states individually and

later attack their returned qubits individually, resulting in a

private quantum system for each server, however they can send

secret classical information to each other during the protocol.

We also assume they use collective attacks [6], that is each

iteration is attacked identically and individually (possibly in a

probabilistic manner), however they may keep their quantum

memories and measure them at any future point in time

coherently. (3) After the protocol has completed, however, the

two servers may take their (unmeasured) quantum memory

systems, resulting from their attacks, and collaboratively at-

tempt to extract maximal information from both. (4) There

may exist third-party adversaries (as depicted in Figure 1),

however, in this preliminary work, a single adversary cannot

attack the M1 and M2 regions simultaneously. This allows us

to “absorb” any third-party attacks into one of the respective

mediators. The more general case we leave as future work.

Collective attacks are a common assumption in QKD secu-

rity proofs [6]; usually security against general attacks then

follows [7], though we leave a complete proof of that as

future work. In this case, we may use the Devetak-Winter
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keyrate equation [8]. Let N be the size of the raw-key

and ℓ(N) the size of the resulting secret key after privacy

amplification. Then, the key-rate ℓ(N)/N as N approaches

infinity is inf(S(A|E) − H(A|B)) where the infimum is

over all collective attacks which induce the observed channel

statistics and where E is the quantum memory of the adversary

(in our case E = M1M2) [8]. S(A|E) is the conditional

von Neumann entropy while H(A|B) is the Shannon entropy.

Computing S(A|E) is the challenge in any (S)QKD security

proof since H(A|B) is a simple function of observed statistics.

A. State Preparation

We first prove a general result, applicable to any MM-SQKD

protocol, concerning the form of the state that mediators may

prepare. This result generalizes a result in [2] to the n-server

case (prior work only considered n = 1).

Theorem 1. Consider an MM-SQKD protocol with classical

A and B and with n ≥ 1 (adversarial) quantum servers

performing a (potentially collaborative) collective attack. If

the protocol is such that the servers must prepare a quantum

system, sending one qubit per server to A and B each, and if

A and B either Reflect or Measure and Resend each

qubit back to the originating server, then it is sufficient to

analyze the case where the servers simply prepare the state:

|ψ0〉 =
∑

i∈{0,1}2n

αi |i〉 , (1)

where αi ∈ R≥0 and
∑

i |αi|2 = 1. That is, there is no

advantage to the servers in creating a state which is entangled

with their private quantum memory at the initial stage of

the protocol. Furthermore, if the n servers act independently,

then it suffices to consider a state of the form: |ψ0〉 =
⊗n

i=1

(

∑

j,k∈{0,1} α
(i)
j,k |j, k〉

)

, where α
(i)
j,k ∈ R≥0 with the

obvious normalization constraint.

Proof. Consider an arbitrary collective attack that the servers

may perform. The state they prepare, then, may be written,

without loss of generality, as: |φ0〉 =
∑

i∈{0,1}2n αi |i〉⊗ |ci〉 ,
where |ci〉 are arbitrary normalized, but not necessarily or-

thogonal, states in some ancilla HC owned jointly by the n
adversarial servers. By absorbing any alternative phase into

the vectors |ci〉 we may, furthermore, assume each αi is real

and non-negative. Half the qubits are sent to A while the other

half are sent to B.

Let Θ ∈ {0, 1}2n be A and B’s choice of operation;

namely if Θi = 1 then whoever owns the i’th qubit performs

the Measure and Resend operation on it; otherwise the

Reflect operation is preformed. Using standard arguments

(see [1] for the semi-quantum case), it is equivalent to consider

the Measure and Resend operation as applying a CNOT

gate to some local, private, ancilla register (that party may

measure the ancilla later in the Z basis and this is equivalent

to measuring the qubit immediately). Thus, in this case,

following A and B’s operation, the joint state is found to be:

|φ1〉 =
∑

i∈{0,1}2n αi |i〉T ⊗ |i ∧Θ〉AB ⊗ |ci〉C , where i ∧Θ
is bit-wise “and” and where the AB register is held privately

by A and B (separately depending on an irrelevant ordering

of the qubits sent). At this point the T portion returns to the

n servers who will then perform some further operations on

it.

Consider, now, the restricted case shown in Equation 1. If

the servers had sent this instead, the state, following A and

B’s operation would have been: |ψ1〉 =
∑

i∈{0,1}2n αi |i〉 ⊗
|i ∧Θ〉AB . Let V be the operator from HT → HT ⊗ HC

defined on basis states as V |i〉 = |i〉 ⊗ |ci〉. Clearly V is

an isometry (and can thus be extended to a unitary operator)

and is therefore something the servers could apply. Notice

that V |ψ1〉 = |φ1〉. Thus, there is no advantage to sending

the entangled initial state, instead they could prepare the

simpler state shown in Equation 1, then when the qubits return,

apply V before further attacking. The resulting states will be

identical.

Of course, the above assumed the servers were col-

laborating. However if each server acts individually then

the general state is actually of the form |φ0〉 =
⊗n

i=1(
∑

j,k α
(i)
j,k |j, k, c

(i)
j,k〉). In this case it is not difficult to

see, by repeating the above steps, that the operator V may be

written as V = V1 ⊗ · · · ⊗ Vn where Vi |j, k〉 = |j, k, c(i)j,k〉.
The same arguments can be used if some servers act alone

while others collaborate thus completing the proof.

Note that the above implies also that even a strategy where

servers prepare unentangled states, it is sufficient to consider,

instead, they send a state of the form in Equation 1. This is

seen simply by first purifying the initial state and then applying

the above theorem.

We add one further comment in the two-server case, namely

that if A and B enforce a symmetry in their received states,

(an assumption commonly made in most proofs of (S)QKD

security), then the state the two servers send may be written:

|ψ0〉 = (
√
c0 |Φ+〉+√

c1 |Ψ+〉)⊗ (
√

d0 |Φ+〉+
√

d1 |Ψ+〉).
(2)

where |Φ±〉 = 1√
2
(|00〉 ± |11〉) and |Ψ±〉 = 1√

2
(|01〉 ± |10〉).

B. Modeling the Second Attack

When qubits return to each server, the server must perform

some operation on it. Normally it should be a Bell measure-

ment followed by a classical message reporting the outcome.

However, an adversarial server should be allowed to perform

any quantum operation on the returning qubits. Nonetheless,

a single classical message should be sent to both parties.

Furthermore, since we do not assume a broadcast channel,

one server must act first - for simplicity we always assume

this is M1, however our analysis is identical if it is M2; note

that there would be no advantage to server’s alternating turns

randomly since they may collaborate at the end.

For single servers, it was shown in [2] that the return attack

is modeled as a quantum instrument which, through standard

techniques, may be dilated to an isometry U1 mapping HT

to Hcl ⊗ Hsecret ⊗ HM1
. Here HT is the four-dimensional

qubit space (modeling the two qubits returning to M1 from

A and B); Hcl is a two dimensional Hilbert space spanned by
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orthonormal basis {|“+′′〉 , |“-′′〉} which we use to denote the

classical message sent to A and B (since the server cannot

send different messages, as discussed, this two-dimensional

space is sufficient); Hsecret is a Hilbert space modeling the

secret classical message sent to M2; finally HM1
is M1’s

quantum memory (note that the HT portion may be absorbed

into this space after U1 is applied. The exact attack consists

of M1 applying U1, then measuring the cl space in the

given basis. This determines the message actually sent and the

post measurement state determines the state of the quantum

memory in this event and the secret message to be sent. For

greater details on how one may model a single server’s attack

using a quantum instrument and dilating to an isometry, see

[2] which proved this for the single server case. Since our

servers act individually (the secret message sent will not affect

the proof), that result also applies here. The case for M2 is

similar, though there U2 is an isometry mapping HT ⊗Hsecret

to Hcl2 ⊗HM2
. Note that the “secret” message sent becomes

absorbed into HM2
. The subspace Hcl2 is spanned by the same

basis as Hcl and is used to model M2’s message.

C. Key-Rate Computation

In light of our security assumption that both mediators are

allowed to collaborate after the protocol’s conclusion, our main

goal in this section is to bound S(A|M1M2), the entropy of

A’s raw-key register conditioned on both mediators’ quantum

memory systems; of course the entropy computation is only

on iterations where a raw-key is distilled (not on iterations

where parameter estimation is performed since these do not

contribute to the final secret key). To do this, we must first

construct a density operator modeling one iteration of the

protocol, conditioning on that iteration being used to distill

a raw-key.

In light of Theorem 1, and enforcing a symmetric attack,

the joint state prepared by the mediators is shown in Equation

2. Note that, in our analysis, we will assume both systems

are received by A and B simultaneously and, later, M1 and

M2 receive their qubits back simultaneously. However this

assumption is only made to ensure clarity in the presentation

of our proof - if the systems are received at alternative times,

since both mediators act independently and since A and B may

postpone their classical “accept/reject” decisions until after

both systems arrive and are processed, our security analysis

holds in the more practical setting where this simultaneous

arrival assumption is not made.

When A and B receive their qubits from both mediators,

they will perform the Measure and Resend operation

(again, we are conditioning on this iteration being used for

raw-key distillation). Furthermore, we must condition on A
(resp. B) receiving the same measurement outcome on their

two qubits. Let’s first consider A’s measurement. If she

measures and observes a |0〉 on both qubits, the joint state

(before B’s measurement) collapses to: c0d0 |0000〉ABAB +
c0d1 |0001〉 + c1d0 |0100〉 + c1d1 |0101〉 . Alternatively, if

she observes a |1〉 on both qubits: c0d0 |1111〉ABAB +

c0d1 |1110〉 + c1d0 |1011〉 + c1d1 |1010〉 . Note that both of

these are the normalized post-measurement states.

Next, B measures. Conditioned on A’s raw key bit being

0, B will observe |0〉 in both his qubits with probability c0d0
and the post-measurement state will simply be |0000〉ABAB .

He will observe |1〉 in both qubits with probability c1d1
(again, conditioned on A’s raw key-bit being 0) and the post-

measurement state is simply |0101〉. Other cases are similar.

Note that, since we are assuming all noise comes from the

adversary’s attack, if the state leaving A and B is, |i, j, i, j〉
then the state arriving at the two mediators will remain

|i, j, i, j〉; noise will be modeled, to the adversary’s advantage,

by the attack operator.

Now, as discussed earlier, the attack operator of server M1

may be modeled as an isometry U1. Without loss of generality,

we may write the action of this operator as follows: U1 |a, b〉 =
|“+′′〉 |m+〉 |e1a,b〉+ |“-′′〉 |m−〉 |f1

a,b〉 . where |m±〉 are states

in Hsecret which is the secret message sent by M1 to M2. The

action of U2, we write as follows: U2 |mcl,msecret, a, b〉 =
|“+′′〉 |gmcl,msecret,a,b〉+ |“-′′〉 |hmcl,msecret,a,b〉 .

Each server applies their Ui operator, performs a measure-

ment of the “cl” register, and sends the result to A and B
(with M1 acting first). Conditioning on both servers sending

“-′′ and both A and B accepting, the final density operator

describing the joint A,B,M1, and M2 system, denoted

ρABM1M2
is (note the “cl” space is no longer needed as, in

this case, it is always “-′′):

c0d0
N

[00]AB ⊗ [f1
0,0, f

2

0,0] +
c0d0
N

[11]AB ⊗ [f1
1,1, f

2

1,1] (3)

+
c1d1
N

[01]AB ⊗ [f1
0,1, f

2

0,1] +
c1d1
N

[10]AB ⊗ [f1
1,0, f

2

1,0],

where [x,y] = |x〉 〈x| ⊗ |y〉 〈y|; |f2
a,b〉 = |h“-′′,m−,a,b〉; and

N is the normalization term:

N = c0d0(〈f1
0,0|f1

0,0〉 〈f2
0,0|f2

0,0〉+ 〈f1
1,1|f1

1,1〉 〈f2
1,1|f2

1,1〉)
+ c1d1(〈f1

0,1|f1
0,1〉 〈f2

0,1|f2
0,1〉+ 〈f1

1,0|f1
1,0〉 〈f2

1,0|f2
1,0〉)

At this point, we may use a theorem from [9] to compute

S(A|M1M2). This theorem is for general classical-quantum

states and gives a worst-case bound. To simplify notation,

let Fa,b = 〈f1
a,b|f1

a,b〉 〈f2
a,b|f2

a,b〉. Then we have the following

lower-bound on S(A|M1M2):

c0d0(F0,0 + F1,1)

N

(

H

[

F0,0

F0,0 + F1,1

]

−H[λ1]

)

(4)

+
c1d1(F0,1 + F1,0)

N

(

H

[

F0,1

F0,1 + F1,0

]

−H[λ2]

)

,

where:

λ1 =
1

2
+

√

(F0,0 − F1,1)2 + 4| 〈f1
0,0|f1

1,1〉 |2| 〈f2
0,0|f2

1,1〉 |2

2(F0,0 + F1,1)

λ2 =
1

2
+

√

(F0,1 − F1,0)2 + 4| 〈f1
0,1|f1

1,0〉 |2| 〈f2
0,1|f2

1,0〉 |2

2(F0,1 + F1,0)

Note that we are using a stronger version of the Theorem in [9]

derived in their proof. Also note that we only need to bound the
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real part of the above inner-products since: | 〈x, y|z, w〉 |2 =
| 〈x|z〉 |2| 〈y|w〉 |2 ≥ Re2| 〈x|z〉 | · Re2| 〈y|w〉 | and the closer

to 1/2, λi is, the smaller S(A|E) (giving a worst-case bound).

Parameter Estimation: To evaluate our key-rate expres-

sion, we must determine which of the many parameters

appearing in the above equations, can be observed, or at

least bounded based on observations. Clearly ci and di are

observable parameters. Indeed, c0 is the probability that A
and B’s measurement results agree on the state sent by M1.

Similarly for d0 for the state sent by M2. Finally, it is not

difficult to show that 〈f1
a,b|f1

a,b〉 is the probability that M1

announces “-′′ given that both A and B observed |a〉 and

|b〉 respectively on the system received by M1. Similarly

for 〈f2
a,b|f2

a,b〉 (however, here, A and B must condition on

M1 sending the message “-′′ to determine this statistic)

thus allowing A and B to observe Fa,b needed above. The

only remaining quantities are Re 〈f i
0,0|f i

1,1〉 and Re 〈f i
0,1|f i

1,0〉
which we will bound by considering the case when A and B
both reflect.

Let us consider M1, the case for M2 will be similar. If

A and B choose Reflect, then the state arriving at M1

is simply
√
c0 |Φ+〉 + √

c1 |Ψ−〉 (any noise in the channel

is modeled, to the adversary’s advantage, using M1’s attack

operator). In this case, after applying U1, the state evolves

to |“-′′〉 ⊗ |g0〉 + |“+′′〉 ⊗ |h0〉, where |h0〉 is irrelevant and:

|g0〉 =
(√

c0√
2

(

|f1
0,0〉+ |f1

1,1〉
)

+
√
c1√
2

(

|f1
0,1〉+ |f1

1,0〉
)

)

. Thus

the probability that M1 sends the message |“-′′〉, in the event

A and B both Reflect, which we denote perr1 , is simply

〈g0|g0〉. Expanding this and solving for the two inner-products

appearing in λ1 and λ2, we find:

c0Re 〈f1
0,0|f1

1,1〉+ c1Re 〈f1
0,1|f1

1,0〉 (5)

= perr1 − c0
2
(〈f1

0,0|f1
0,0〉+ 〈f1

1,1|f1
1,1〉)

− c1
2
(〈f1

0,1|f1
0,1〉+ 〈f1

1,0|f1
1,0〉)

−√
c0c1Re(〈f1

0,0|f1
0,1〉+ 〈f1

0,0|f1
1,0〉)

−√
c0c1Re(〈f1

1,1|f1
0,1〉+ 〈f1

1,1|f1
1,0〉).

We show how the technique of mismatched measurements

[10], [11] can be applied here to directly observe those

inner products appearing on the right-hand-side of the above

equation.

Denote by p10,R to be the probability that M1 sends the mes-

sage “-′′, conditioned on the event that B chooses Reflect

(the “R”) and that A chooses Measure and Resend and

actually observes outcome |0〉 on the state arriving from M1.

Tracing the evolution of the system after M1’s attack operator,

conditioning on these events, we easily find the state, as it

arrives to M1, to be:
√
c0 |00〉 +

√
c1 |01〉 , and so, after

applying operator U1, the probability p10,R is found to be:

p10,R = c0 〈f1
0,0|f1

0,0〉 + c1 〈f1
0,1|f1

0,1〉 + 2
√
c0c1Re 〈f1

0,0|f1
0,1〉

Generalizing to the other cases, we find for x = 0, 1 and

y = 1− x:

Re 〈f1
x,x|f1

x,y〉 =
p1x,R − c0 〈f1

x,x|f1
x,x〉 − c1 〈f1

x,y|f1
x,y〉

2
√
c0c1

(6)

Re 〈f1
x,x|f1

y,x〉 =
p1R,x − c0 〈f1

x,x|f1
x,x〉 − c1 〈f1

y,x|f1
y,x〉

2
√
c0c1

(7)

(Note that if c0 = 0 or c1 = 0, then these terms never

appear in 〈g0|g0〉 and so we do not need to resort to mis-

matched measurements here.) The various p1i,j values are

defined analogously to p10,R. Thus, Equation 5 has only

two unknowns, only one of which is free. Finally, the

above process may be repeated for M2. Thus, to compute

our lower-bound on S(A|M1M2), we minimize Equation 4

over two free parameters: Re| 〈f i
0,1|f i

1,0〉 | upper-bounded by
√

〈f i
0,1|f i

0,1〉 〈f i
1,0|f i

1,0〉 (due to the Cauchy-Schwarz inequal-

ity). We take the minimum over all such parameters as we

must assume the worst case in that each mediator chose an

optimal attack. Computing H(A|B) is trivial as we explain in

the next section.

D. Evaluation

Our above derivation is valid for any attack in the considered

security model. Based on observable parameters, A and B may

evaluate a lower-bound on S(A|M1M2) and then compute

H(A|B), thus giving a value for the key-rate r. To evaluate

our bound, however, and to compare with other protocols, we

must put numbers to these observable parameters. While in

practice this would be done through actual measurements, we

will, for this work, assume a standard depolarization channel

and use this to determine these values. We will also assume

that the adversarial servers act in a way so as to simulate

an honest server in that all statistics should conform to a Bell

measurement as prescribed by the protocol, even if the servers

are doing something else malicious. These are all enforceable

conditions.

First, we need ci and di. However, these are simply the Z-

basis noise in the channel connecting A and B to each server.

We assume a depolarization channel: Eq(ρ) = (1−2q)ρ+ q
2I.

We use 2q to remain consistent with work in [5] so as to

immediately compare; it also makes sense to use 2q for a

reason which will be clear momentarily. Note that I , above,

is the 4 × 4 identity operator as we are working with two

qubits. We will set q = Q1 for the M1 channel and q = Q2

for the M2 channel. Under this channel assumption, we have

c0 = 1−Q1, c1 = Q1, d0 = 1−Q2, and d1 = Q2.

Next, we determine 〈f1
a,b|f1

a,b〉 which, as described earlier,

is the probability that M1 sends the message “-′′ conditioned

on A and B observing |a〉 and |b〉 respectively, from the system

received from the first server. If we assume a depolarization

channel, then the state actually arriving to M1, conditioned

on this event, is: EQ1
([a,b]) = (1 − 2Q1)[a,b] +

Q1

2 I. An

honest server would then perform a Bell measurement and

send “-′′ only on receiving outcome |Φ−〉. Thus 〈f1
a,a|f1

a,a〉 =
(1 − Q1)/2 and 〈f1

a,1−a|f1
a,1−a〉 = Q1/2. Of course an

adversarial server could replace the noisy quantum channel

with a perfect one, and perform any operation, however in a

reasonable setting, A and B could expect, and enforce, that

whatever attack is done, the observable statistics conform to

this derivation. For M2, the process is identical and, in our
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noise scenario, the value is the same but parameterized with

Q2.

Next, we need p10,R which is the probability that M1 sends

“-′′ conditioned on B choosing Reflect and A observing

|0〉. To determine this in our noise model, we trace the evolu-

tion of the system. On arriving at A and B, the two qubits are

in a state (1−2Q1)[Φ
+]+Q1

2 I . Now, conditioning on B choos-

ing Reflect and A choosing Measure and Resend and

actually observing |0〉, the state collapses to (1 − Q1)[00] +
Q1[01]. This system then returns to M1 passing through the

depolarization channel again; thus, the state arriving at the

server is: (1 − 2Q1)((1 − Q1)[00] + Q1[01]) +
Q1

2 I. If the

server were honest, it would perform a Bell measurement

on this; the probability of observing |Φ−〉 is then: p10,R =
(1− 2Q1)(1−Q1)/2+Q1/2 = 1/2−Q1(1−Q1). Note that

we do not need to assume this behavior on the servers, but

users can enforce these observations. We find similar values

for p11,R, p
1
R,0 and p1R,1; similar values are found for M2.

Substituting this into Equations 6 and 7, we find those

eight (four for M1 and four for M2) are all zero in this

case. This simplifies Equation 5 to: (1−Qi)Re 〈f i
0,0|f i

1,1〉+
QiRe 〈f i

0,1|f i
1,0〉 = perri − (1−Qi)

2

2 − Q2

i

2 . One may bound

| 〈f i
0,1|f i

1,0〉 | ≤ Q1/2 using the Cauchy-Schwarz inequality.

Thus, to evaluate S(A|M1M2), we minimize Equation 4 over

two free parameters: Re 〈f i
0,1|f i

1,0〉 subject to the constraint

that they are within the range [−Qi/2, Qi/2]. The values of

Re 〈f i
0,0|f i

1,1〉 are then determined by the above equation.

The only thing remaining to compute the actual key-rate

is H(A|B). Let pkey
i,j be the probability that A’s raw-key bit

is i and B’s raw-key bit is j. From Equation 3, we have:

pkey
0,0 = pkey

1,1 = (1−Q1)
2(1−Q2)

2

4N , and pkey
0,1 = pkey

1,0 =
Q2

1
Q2

2

4N ,

where: N =
(1−Q1)

2(1−Q2)
2+Q2

1
Q2

2

2 . And so: H(A|B) =

H(pkey
0,0, · · · , p

key
1,1)−H(pkey

0,0 + pkey
1,0).

Evaluating our key-rate under this noise scenario reveals a

maximal noise tolerance of 18.7%. This is higher than the

13.04% allowed by the original M-SQKD protocol [5] (under

the same channel assumptions). It is also higher than the noise

tolerance of the original SQKD protocol which can tolerate up

to 11% noise [9]. Finally it is higher than many fully-quantum

protocols (though certain higher-dimensional QKD protocols

can tolerate up to 50% noise [12]).

What is lost, however, is efficiency. Consider effective key-

rate which multiplies the computed key-rate by the probability

of any particular iteration actually yielding a raw-key bit. We

compute our effective key-rate and compare with the effective

key-rate of the M-SQKD protocol from [5] in Figure 2. We

note that, for low noise levels, the M-SQKD protocol is more

efficient, however it cannot tolerate high levels of noise. One

may consider more complex strategies in practice, switching

from M-SQKD to MM-SQKD depending on the noise level.

IV. CLOSING REMARKS

We presented a new model of semi-quantum cryptography,

namely the multi mediator model and designed a new

protocol in this scenario. Along the way we proved a general

Fig. 2. Comparing the effective key rates of our new MM-SQKD protocol
with the M-SQKD protocol in [5]. The M-SQKD protocol is more efficient
but it cannot tolerate high noise levels.

security result applicable to arbitrary MM-SQKD protocols

which will help future researchers. Many interesting open

problems remain - of particular interest would be designing

a more efficient protocol in this model. Also, developing

strategies to swap between M and MM modes of operation

based on (perhaps changing) noise levels would also be very

interesting.
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