
Analysis of Q-learning with Adaptation and Momentum Restart
for Gradient Descent

Bowen Weng∗1 , Huaqing Xiong∗1 , Yingbin Liang1 and Wei Zhang†2
1Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA.

2Mechanical and Energy Engineering, Southern University of Science and Technology, China.
{weng.172, xiong.309, liang.889}@osu.edu, zhangw3@sustech.edu.cn

Abstract
Existing convergence analyses of Q-learning mostly
focus on the vanilla stochastic gradient descent
(SGD) type of updates. Despite the Adaptive Mo-
ment Estimation (Adam) has been commonly used
for practical Q-learning algorithms, there has not
been any convergence guarantee provided for Q-
learning with such type of updates. In this paper,
we first characterize the convergence rate for Q-
AMSGrad, which is the Q-learning algorithm with
AMSGrad update (a commonly adopted alternative
of Adam for theoretical analysis). To further im-
prove the performance, we propose to incorporate
the momentum restart scheme to Q-AMSGrad, re-
sulting in the so-called Q-AMSGradR algorithm.
The convergence rate of Q-AMSGradR is also estab-
lished. Our experiments on a linear quadratic regula-
tor problem show that the two proposed Q-learning
algorithms outperform the vanilla Q-learning with
SGD updates. The two algorithms also exhibit sig-
nificantly better performance than the DQN learning
method over a batch of Atari 2600 games.

1 Introduction
Q-learning [Watkins and Dayan, 1992], as one of the most
important model-free reinforcement learning (RL) algorithms,
has received considerable attention in recent years [Bert-
sekas and Tsitsiklis, 1996; Even-Dar and Mansour, 2003;
Lu et al., 2018]. The vanilla Q-learning algorithm runs a
step of empirical Bellman operator update of the Q-function
and a step of stochastic gradient descent (SGD) in an alter-
nating fashion. The convergence guarantee of Q-learning
has been studied for the tabular case in [Bertsekas, 1995;
Even-Dar and Mansour, 2003], for the case with linear
function approximation in [Bertsekas and Tsitsiklis, 1996;
Zou et al., 2019; Chen et al., 2019b], and also for neural
network parameterization in [Xu and Gu, 2019].

However, all the existing theoretical analyses focus on Q-
learning algorithms that take simple SGD iterations. Such
theory is not applicable to practical Q-learning algorithms that
∗Equal contribution
†Corresponding author

implement the Adaptive Moment Estimation (Adam) type of
updates. In this paper, we study the Q-learning algorithm with
Adam-type updates in terms of its theoretical convergence and
the performance in benchmark experiments. It is known in
optimization that Adam does not always converge, and instead,
and a slightly modified variant AMSGrad proposed in [Reddi
et al., 2018] has been widely accepted as an alternative to
justify the theoretical performance of Adam-type methods.
This motivates the first question that we aim to address.
• Q1: Can we provide the convergence guarantee for Q-

learning under AMSGrad updates (i.e., Q-AMSGrad)?
In conventional optimization problems, restart has been

incorporated into the gradient descent algorithm with momen-
tum as a simple yet effective scheme to facilitate the accelera-
tion performance [O’donoghue and Candes, 2015]. Hence, it is
natural to incorporate such a restart technique into Q-learning
and ask the following question about its performance.
• Q2: Does Q-AMSGrad with momentum restart (i.e., Q-

AMSGradR) still converge?
As aforementioned, both Q-AMSGrad and Q-AMSGradR

update alternatingly between one step of Bellman operator
update of the Q-function and one step of adaptive momentum
update. This is in contrast to the well-known deep Q-Network
(DQN) learning [Mnih et al., 2015], which runs in a nested-
loop manner with the outer loop consisting of an one-step
update of the Q-function and the inner loop consisting of many
iterations of supervised learning to fit a target Q-function. It
is conventionally known that taking just one gradient step to-
ward the target Q-function results in the instability of original
Q-learning update. Thus the simple alternating update manner
mainly aroused interest in theory instead of practice. We are
interested in whether the adaptive momentum updates can im-
prove the stability of Q-learning without using the supervised
learning process for target network fitting. Therefore, the third
question we want to address is to compare these two types of
Q-learning algorithms from the experimental perspective.
• Q3: Do Q-AMSGrad and Q-AMSGradR perform compet-

itively or even better than DQN in experiment?
This paper addresses the above theoretical and experimental

questions with affirmative answers.

1.1 Main Contributions
Theoretically, we show that with linear function approxima-
tion (which is almost the only structure that the current tools

for analysis of Q-learning can handle), both Q-AMSGrad
and Q-AMSGradR converge to the global optimal solution
under standard assumptions for Q-learning. To the best of
our knowledge, this is the first non-asymptotic convergence
guarantee on Q-learning that incorporates Adam-type update.
Furthermore, a slight adaptation of our proof provides the
convergence rate for the AMSGrad for conventional strongly
convex optimization which has not been studied before and
can be of independent interest.

Experimentally, we demonstrate that the practical versions
of Q-AMSGrad and Q-AMSGradR (referred to as Q-Adam
and Q-AdamR) exhibit appealing experimental performance.
In a batch of 23 Atari 2600 games, our experiments show that
both Q-Adam and Q-AdamR outperform DQN by 50% on
average. Furthermore, Q-AdamR effectively reduces the per-
formance variance and achieves a much more stable learning
process. In our experiments for the linear quadratic regulator
(LQR) problems, Q-AdamR converges even faster than the
model-based value iteration (VI) solution. This is a rather sur-
prising result given that the model-based VI has been treated
as the performance upper bound for the Q-learning (including
DQN) algorithms with target update [Lewis and Vrabie, 2009;
Yang et al., 2019].

1.2 Related Work
We briefly review the related work as follows.

Theoretical analysis of Q-learning: Since proposed
in [Watkins and Dayan, 1992], the convergence of Q-learning
has been extensively studied, particularly for the case with
linear function approximation such as [Bertsekas and Tsit-
siklis, 1996; Zou et al., 2019; Chen et al., 2019b; Du et al.,
2019], to name a few, and more recently for the case with
neural networks in [Xu and Gu, 2019], where the analysis
exploits the approximate linear structure of neural networks in
the overparamterized regime. All these existing analysis of Q-
learning considers the vanilla SGD update, whereas our study
is the first to analyze the more involved case with Adam-type
updates.

Convergence analysis of Adam-type algorithms in con-
ventional optimization: Adam was proposed in [Kingma
and Ba, 2014] for speeding up the training of deep neu-
ral networks, and the regret bounds were characterized for
Adam/AMSGrad in [Kingma and Ba, 2014; Reddi et al., 2018;
Tran and others, 2019] for online convex optimization. Re-
cently, convergence analysis of Adam/AMSGrad was pro-
vided for nonconvex optimization in [Zou et al., 2018;
Zhou et al., 2018; Chen et al., 2019a] and policy gradi-
ent [Xiong et al., 2020], in which such Adam-type algorithms
were guaranteed to converge to a stationary point. To the best
of our knowledge, our study provides the first convergence
analysis of the Adam-type algorithms for Q-learning.

Empirical performance of Q-learning: DQN learning
and its improved variants of dueling network structure [Wang
et al., 2016], double Q-learning [Van Hasselt et al., 2016]
and variance exploration and sampling schemes [Schaul et
al., 2015] have achieved significant success due to their su-
perb performance in practice. In contrast to such nested-
loop algorithms (which involves the fitting of a target Q-

function periodically), the Q-learning algorithms that strictly
follow the alternating updates are much less explored in prac-
tice. [Mnih et al., 2016] proposed the asynchronous alternat-
ing Q-learning with competitive performance against DQN.
However, the algorithm still relies on a slowly moving tar-
get network similar to DQN, and the multi-thread learning
also complicates the computational setup. [Lu et al., 2018]
studied the problem of value overestimation and proposed
the non-delusional Q-learning algorithm that employs the
so-called pre-conditioned Q-networks, which is also com-
putationally complex. [Knight and Lerner, 2018] proposed
a natural gradient propagation to improve the performance,
where the gradient implementation is complex. Our exper-
iments in this paper demonstrate that simple alternating Q-
learning algorithms Q-AMSGrad and Q-AMSGradR without
the complex designs as in [Mnih et al., 2016; Lu et al., 2018;
Knight and Lerner, 2018] have competitive and sometimes
better performance than DQN.
Notations We use ‖x‖ := ‖x‖2 to denote the `2 norm of a
vector x, and use ‖x‖∞ to denote the infinity norm. When
x, y are both vectors, x/y, xy, x2,

√
x are all calculated in

the element-wise manner, which will be used in the update
of Adam and AMSGrad. We denote [n] = 1, 2, . . . , n, and
bxc ∈ Z as the integer such that bxc ≤ x < bxc+ 1.

2 Preliminaries

We consider a Markov decision process with a considerably
large or continuous state space S ⊂ RM and action spaceA ⊂
RN , a non-negative bounded reward function R : S × A →
[0, Rmax], and a transition kernel P (s′|s, a) that indicates the
probability from a state-action pair (s, a) to a state s′. We
define U(s) ⊂ A as the admissible set of actions at state s,
and π : S → A as a feasible stationary policy. We seek to
solve a discrete-time sequential decision problem as follows:

maximize
π

Jπ(s0) = EP

[∞∑
t=0

γtR(st, π(st))

]
,

subject to st+1 ∼ P (·|st, at), (1)

where γ ∈ (0, 1) is the discount factor. Let J?(s) := Jπ?(s)
be the optimal value function when applying the optimal policy
π?. The corresponding optimal Q-function can be defined as

Q?(s, a) := R(s, a) + γEPJ?(s′), (2)

where s′ ∼ P (·|s, a) and we use the same notation hereafter
when no confusion arises. In other words, Q?(s, a) represents
the reward of an agent who starts from state s and takes ac-
tion a at the first step and then follows the optimal policy π?
thereafter.

2.1 Q-learning Algorithm

This paper focuses on the Q-learning algorithm that uses a
parametric function Q̂(s, a; θ) to approximate the Q-function
with a parameter θ having finite and relatively small dimen-

sions. The update rule of Q-learning is given by

TQ̂(s, a; θt) = R(s, a) + γ max
a′∈U(s′)

Q̂(s′, a′; θt); (3)

θt+1 = θt − αt
(
Q̂t(s, a; θt)− TQ̂(s, a; θt)

)
ĝt, (4)

ĝt := ĝ(θt; s, a) =
∂

∂θt
Q̂t(s, a; θt), (5)

where αt is the step size at time t. It is clear that Q-learning
performs the update by taking one step of temporal target
update and one step of parameter learning in an alternating
fashion.

2.2 Linear Function Approximation
Like most of the related work, we focus on the convergence
analysis under the linear function approximation. A linear
approximation of the Q-function Q̂(s, a; θ) can be written as

Q̂(s, a; θ) = φ(s, a)T θ, (6)

where θ ∈ Rd, and φ : S × A → Rd is a vector function of
size d, and the elements of Φ represent the nonlinear kernel
(feature) functions.
Remark 1. We note that recent work [Xu and Gu, 2019] estab-
lished the convergence rate of Q-learning with neural network
approximation, which exploits the approximate linear struc-
ture of the neural network in the overparameterized regime.
Thus, our analysis under the linear function approximation
can be generalized to the function class of overparameter-
ized neural networks by applying the techniques developed in
recent work [Xu and Gu, 2019].

3 Convergence Analysis of Q-AMSGrad
In this section, we characterize the convergence guarantee for
Q-learning under Adam-type updates.

3.1 Q-AMSGrad Algorithm
Although Adam has obtained great success as an optimizer in
deep learning, it is well known that Adam by nature is non-
convergent even for simple convex loss functions [Reddi et
al., 2018]. Instead, a slightly modified version called AMS-
Grad [Reddi et al., 2018] is widely used to study the con-
vergence property of Adam-type algorithms in conventional
optimization. Here, we apply the update rule of AMSGrad
to the Q-learning algorithm and refer to such an algorithm as
Q-AMSGrad. Algorithm 1 describes Q-AMSGrad in detail.

More specifically, the iterations of Q-AMSGrad evolve by
updating the exponentially decaying average of historical gra-
dients (mt) and squared historical gradients (vt). The hyper-
parameters β1, β2 are used to exponentially decrease the rate
of the moving averages. The difference between AMSGrad
and Adam lies in the fact that AMSGrad makes the sequence
v̂t,i increasing along the time step t for each entry i ∈ [d],
whereas Adam does not guarantee such a property.

3.2 Convergence Result
Before stating the main theorem, we first introduce some
technical assumptions and lemmas for our analysis.

Algorithm 1 Q-AMSGrad

1: Input: α, λ, θ1, β1, β2,m0 = 0, v̂0 = 0.
2: for t = 1, 2, . . . , T do
3: αt = α√

t
, β1t = β1λ

t

4: Observe data (st, at, st+1) from policy π and transition
probability P

5: bt = R(st, at) + γmax
a′
φT (st+1, a

′)θt

6: gt =
(
φT (st, at)θt − bt

)
φ(st, at)

7: mt = (1− β1t)mt−1 + β1tgt
8: vt = (1− β2)v̂t−1 + β2g

2
t

9: v̂t = max(v̂t−1, vt), V̂t = diag(v̂1, . . . , v̂d)

10: θt+1 = ΠD,V̂ 1/4
t

(θt − αtV̂
− 1

2
t mt)

where ΠD,V̂ 1/4
t

(θ′) = min
θ∈D

∥∥∥V̂ 1/4
t (θ′ − θ)

∥∥∥.

11: end for
12: Output: 1

T

∑T
t=1 θt

Assumption 1. For any state-action pair (s, a) ∈ S ×A, the
kernel function φ is uniformly bounded and we have

‖φ(s, a)‖ ≤ 1, ∀(s, a). (7)

This assumption is mild since we can normalize the kernel
function if the kernel function is uniformly bounded. It is
widely applied in the literature to simplify the analysis of RL
algorithms with linear function approximation [Bhandari et
al., 2018; Chen et al., 2019b].

Assumption 2. [Chen et al., 2019b, Lemma 6.7] At each
iteration t, the noisy gradient is unbiased, i.e. gt = ḡt + ξt
with Eξt = 0 where ḡt = E[gt]. The equation ḡ(θ) = 0 has a
unique solution θ?, and there exists a c > 0, such that for any
θ ∈ Rd we have

(θ − θ?)T ḡ(θ) ≥ c ‖θ − θ?‖2 . (8)

Assumption 2 has been proved as a key technical lemma
in [Chen et al., 2019b] under certain assumptions, which
appears to be the weakest among the existing studies for
establishing the convergence guarantee for Q-learning with
linear function approximation. It is the standard assump-
tion in the related literature to analyze the convergence Q-
learning with linear function approximation [Zou et al., 2019;
Chen et al., 2019b; Xu and Gu, 2019].

Assumption 3. The domain D ⊂ Rd of approximation pa-
rameters is a ball originating at θ = 0 with bounded di-
ameter containing θ?. That is, there exists D∞, such that
‖θm − θn‖ < D∞, ∀θm, θn ∈ D, and θ? ∈ D.

This Assumption can be easily satisfied when we apply a
projected algorithm, and is standard in the theoretical analysis
of Adam-type algorithms [Chen et al., 2019a; Zhou et al.,
2018].

Based on the above assumptions, we can immediately obtain
the bounded property of the gradient, which is stated in the
following lemma.

Lemma 1. Under Assumptions 1 and 3, at each iteration t,
the gradient estimator gt in Q-AMSGrad is uniformly bounded.

That is,

‖gt‖∞ ≤ ‖gt‖ ≤ Rmax + (1 + γ)D∞, ∀t. (9)

In addition, we denote G∞ = Rmax + (1 + γ)D∞ and let
{mt, v̂t} for t = 1, 2, . . . be sequences generated by Algo-
rithm 2. Then we have

‖ḡt‖ ≤ G∞, ‖mt‖ ≤ G∞, ‖v̂t‖ ≤ G2
∞.

We next provide the non-asymptotic convergence of Q-
AMSGrad in the following theorem.
Theorem 1. (Convergence of Q-AMSGrad) Suppose αt =
α√
t
, β1t = β1λ

t and δ = β1/β2 with δ, λ ∈ (0, 1) for t =

1, 2, . . . in Algorithm 1. Given Assumptions 1 ∼ 3, the output
of Q-AMSGrad satisfies:

E ‖θout − θ?‖

≤ B1

T
+
B2√
T

+
B3

√
1 + log T

T

d∑
i=1

E ‖g1:T,i‖ ,
(10)

where B1 =
G∞D

2
∞

2α2c(1−β1)
+

β1G∞D
2
∞

2αc(1−β1)(1−λ)2 + ‖θ1 − θ?‖2,

B2 =
dG∞D

2
∞

2αc(1−β1)
, and B3 = α(1+β1)

2c(1−β1)2(1−δ)
√
1−β2

.

In Theorem 1, B1, B2, B3 in the bound in Equation (10)
are constants and independent of time. Therefore, under the
choice of the stepsize and hyper-parameters in Algorithm 1,
Q-AMSGrad achieves a convergence rate of O

(
1√
T

)
when∑d

i=1 ‖g1:T,i‖ <<
√
T [Reddi et al., 2018].

Remark 2. Our proof of convergence here has two major
differences from that for AMSGrad in [Reddi et al., 2018] in
conventional optimization: (a) The two algorithms are quite
different. Q-AMSGrad is a Q-learning algorithm alternatively
finding the best policy with a moving target, whereas AMS-
Grad is an optimizer for conventional optimization and does
not have alternating nature. (b) Our analysis is on the conver-
gence rate whereas [Reddi et al., 2018] provides regret bound.
In fact, a slight modification of our proof also provides the con-
vergence rate of AMSGrad for conventional strongly convex
optimization, which can be of independent interest. Moreover,
our proof avoids the theoretical error in the proof in [Reddi et
al., 2018] as pointed out by [Tran and others, 2019].

4 Convergence Analysis of Q-AMSGradR
In this section, we propose to incorporate a momentum restart
technique to Q-AMSGrad in order to improve its performance.
We first introduce the algorithm and then provide the con-
vergence analysis for such an algorithm. We demonstrate its
desired experimental performance in Section 5.

4.1 Q-AMSGrad Algorithm with Momentum
Restart

We introduce the restart technique to Q-AMSGrad and pro-
pose Q-AMSGradR as shown in Algorithm 2. Q-AMSGradR
applies the same update rule as Algorithm 1, but periodically
resets mt, v̂t with a period of r, i.e., mt = 0, v̂t = 0, ∀t =
kr, k = 1, 2, · · · . We explain such an idea further as follows.

Algorithm 2 Q-AMSGradR

1: Input: α, λ, θ1, β1, β2,m0 = 0, v̂0 = 0.
2: for t = 1, 2, . . . , T do
3: if mod(t, r) = 0 then
4: mt = 0, v̂t = 0
5: end if
6: αt = α√

t
, β1t = β1λ

t

7: Observe data (st, at, st+1) from policy π and transition
probability P

8: bt = R(st, at) + γmax
a′
φT (st+1, a

′)θt

9: gt =
(
φT (st, at)θt − bt

)
φ(st, at)

10: mt = (1− β1t)mt−1 + β1tgt
11: vt = (1− β2)v̂t−1 + β2g

2
t

12: v̂t = max(v̂t−1, vt), V̂t = diag(v̂1, . . . , v̂d)

13: θt+1 = ΠD,V̂ 1/4
t

(
θt − αtV̂

− 1
2

t mt

)
14: end for
15: Output: 1

T

∑T
t=1 θt

Traditional momentum-based algorithms largely depend on
the historical gradient direction. When part of the historical
information is incorrect, the estimation error tends to accumu-
late. The restart technique can be employed to deal with such
an issue. One way to restart the momentum-based methods
is to initialize the momentum at some restart iteration. That
is, at restart iteration r, we reset mr, vr, i.e., mr = 0, vr = 0,
which yields θr+1 = θr. It is an intuitive implementation
technique to adjust the trajectory from time to time, and can
usually help mitigate the aforementioned problem while keep-
ing fast convergence property. For the implementation, we
execute the restart periodically with a period r. It turns out that
the restart technique can significantly improve the numerical
performance, which can be seen in Section 5.

4.2 Convergence Result
In the following theorem, we provide the non-asymptotic con-
vergence for Q-AMSGradR.
Theorem 2. (Convergence of Q-AMSGradR) Suppose αt =
α√
t
, β1t = β1λ

t and δ = β1/β2 with δ, λ ∈ (0, 1) for t =

1, 2, . . . in Algorithm 2. Given Assumptions 1 ∼ 3, the output
of Q-AMSGradR satisfies:

E ‖θout − θ?‖

≤ B1

T
+
B2

√
1 + log T

T

d∑
i=1

E ‖g1:T,i‖

+
B3

T

√T +

bT/rc∑
k=1

√
kr − 1


+

1

T

bT/rc∑
k=0

(
G∞D

2
∞

α

√
kr + 2 +B4E ‖θkr − θ?‖2

)
,

(11)
where B1 =

β1D
2
∞G∞

2αc(1−β1)(1−λ)2 , B2 = α(1+β1)

2c(1−β1)2(1−δ)
√
1−β2

,

B3 =
dG∞D

2
∞

2αc(1−β1)
, and B4 = 4c(1− β1).

Theorem 2 indicates that for Q-AMSGradR to enjoy a con-
vergence rate of O

(
1√
T

)
, the restart period r needs to be

sufficiently large and
∑d
i=1 ‖g1:T,i‖ <<

√
T . In practice as

demonstrated by the experiments in Section 5, Q-AMSGradR
typically performs well, not necessarily under the theoretical
conditions.

5 Experimental Performance
In this section, we empirically evaluate the Q-learning algo-
rithms studied in this paper. We first study the linear quadratic
regulator (LQR) problem, which serves as a direct numerical
demonstration of the convergence analysis under linear func-
tion approximation. We then use the Atari 2600 games [Brock-
man et al., 2016], a classic benchmark for DQN evaluations,
to demonstrate the effectiveness of the Q-learning algorithms
for complicated tasks. Note that our experiments test the
performance of Q-Adam and Q-AdamR, which serve as prac-
tical versions of Q-AMSGrad and Q-AMSGradR by adopting
Adam for Q-learning and keeping all major properties of Q-
AMSGrad and Q-AMSGradR including the alternating update
between Q-function update and parameter fitting.

Our main focus here lies in: (a) comparison between
vanilla Q-Adam and that with momemtum restart (Q-AdamR),
(b) comparison between Q-Adam/Q-AdamR and vanilla Q-
learning (through LQR), and (c) comparison between Q-
Adam/Q-AdamR and DQN (through Atari 2600 games). Both
of our experiments show that Q-AdamR outperforms Q-Adam,
vanilla Q-learning and DQN in terms of convergence speed
and variance reduction. Compared with DQN in the empirical
experiments of Atari games, under the same hyper-parameter
settings, Q-Adam and Q-AdamR improve the performance of
DQN by 50% on average.

5.1 DQN Algorithm
As DQN is also included in this work for performance compari-
son. We recall the update of DQN in the following as reference.
Differently from the vanilla Q-learning, DQN updates the pa-
rameters in a nested loop. Within the t-th inner loop, DQN
first obtains the target Q-function as in Equation (12), and then
uses a neural network to fit the target Q-function by running
Y steps of a certain optimization algorithm as Equation (13).
The update rule of DQN is given as follows.

TQ̂(s, a; θ0t) = R(s, a) + γ max
a′∈U(s′)

Q̂(s′, a′; θ0t), (12)

θYt = Optimizer(θ0t , T Q̂(s, a; θ0t)), (13)

where Optimizer can be SGD or Adam for example,
and Equation (13) is thus a supervised learning process with
TQ̂(s, a; θ0t)) as the ”supervisor”. At the t-th outer loop, DQN
performs the so-called target update as

θ0t+1 = (1− τ)θ0t + τθYt . (14)

In practice, when one of the momentum-based optimizers is
adopted for Equation (13), such as Adam, it is only initialized
once at the beginning of the first inner loop. The historical gra-
dient terms then accumulate throughout multiple inner loops
with different targets.

Table 1: Hyper-parameters for LQR experiments

Step size τ̃ Adam β1 Adam β2
0.0001 0.01 0.9 0.999

Restart period r Stop criterion γ
100 ‖Ki −K?‖2 ≤ 10−4 1

Generally speaking, the difference between Q-Adam/Q-
AdamR and DQN mainly lies in Q-Adam/Q-AdamR takes
one-step Q-function update and one-step model parameter
fitting alternatively, whereas DQN takes one-step Q-function
update followed by a sufficient large number of steps for model
parameter fitting (towards a target Q-function).

5.2 Linear Quadratic Regulator
We numerically validate the performance of Q-Adam and Q-
AdamR through an infinite-horizon discrete-time LQR prob-
lem. A typical model-based solution (with known dynamics),
known as the discrete-time algebraic Riccati equation (DARE),
is adopted to derive the optimal policy u?t = −K?xt. The per-
formance of the learning algorithm is then evaluated at each
step of iterate t with the Euclidean norm ‖Kt −K?‖. Given
the problem nature of LQR, we also re-scale the loss term
of L(θt) := Q̂t(s, a; θt) − TQ̂(s, a; θt) in Equation (4) as
L̃(θt) = τ̃2L(θt) with some scaling factor τ̃ ∈ (0, 1], which
is beneficial for stabilizing the learning process. The perfor-
mance result for each method is averaged over 10 trials with
different random seeds. All algorithms share the same set of
random seeds and are initialized with the same θ0. The hyper-
parameters of the learning settings are also consistent and
further details are shown in Table 1. Note that for all the imple-
mentations, we also adopt the double Q-update [Van Hasselt
et al., 2016] to help prevent over-estimations of the Q-value.
The performance results are provided in Figure 1. Here we
highlight the main observations from the LQR experiments.

• Q-AdamR outperforms DARE. In ideal cases where data
sampling perfectly emulates the system dynamics and the
target is accurately learned in each inner loop, DARE for
LQR would become equivalent to the DQN-like update if
the neural network is replaced with a parameterized linear
function. In practice, such ideal conditions are difficult to
satisfy, and hence the actual Q-learning with target update
is usually far slower (in terms of the number of steps of
target updates) than DARE. Note that Q-AdamR performs
significantly well and even converges faster than DARE,
and thus implies it is faster than the most well-performing
Q-learning with target update.

• Q-AdamR outperforms Q-Adam. Overall, under the
same batch sampling scheme and restart period, Q-AdamR
achieves a faster convergence and smaller variance than
Q-Adam.

5.3 Atari Games
We apply the Q-Adam and Q-AdamR algorithms to the more
challenging tasks of deep convolutional neural network play-
ing a group of Atari 2600 games. The particular DQN we train
to compare against adopts the dueling network structure [Wang

Figure 1: LQR experiments with performance evaluated in terms of
policy loss ‖Kt −K?‖2.

Figure 2: Atari game experiment with performance normalized and
averaged over 23 games.

et al., 2016], double Q-learning setup [Van Hasselt et al.,
2016], ε-greedy exploration and experience replay [Mnih et
al., 2015]. Adam is also adopted, without momentum restart,
as the optimizer for the inner-loop supervised learning process.
Q-Adam and Q-AdamR are implemented using the identi-
cal setup of network construction, exploration and sampling
strategies.

We test all three algorithms with a batch of 23 Atari games.
The choice of 10 million steps of iteration is a common setup
for benchmark experiments with Atari games. Although this
does not guarantee the best performance in comparison with
more time-consuming training with 50 million steps or more,
it is sufficient to illustrate different performances among the
selected methods. The software infrastructure is based on the
baseline implementation of OpenAI. Selections of the hyper-
parameters are listed in Table 2. We summarize the results in
Figure 2. The overall performance is illustrated by first nor-
malizing the return of each method with respect to the results
obtained from DQN, and then averaging the performance of
all 23 games to obtain the mean return and standard devia-

Table 2: Hyper-parameters for Atari games experiments of DQN,
Q-Adam and Q-AdamR

Step size Scale factor τ̃ Adam β1 Adam β2
0.0001 0.0001 0.9 0.999
r Buffer size γ Batch size B

104 105 0.99 32
Total training steps K Target update frequency

107 104

tion. Considering we use a smaller buffer size than common
practice, DQN is not consistently showing improved return
over all tested games. Therefore, the self-normalized average
return of DQN in Figure 2 is not strictly increasing from 0 to
100%.

Overall, both Q-Adam and Q-AdamR achieve significant
improvement in comparison with the DQN results. In par-
ticular, AltQ-Adam increases the performance by over 100%
in some of the tasks including Asterix, BeamRider, Enduro,
Gopher, etc. However, it also illustrates certain instability with
complete failure on Amidar and Assault. This is also capture
by the higher variance illustrated on Figure 2. Periodic restart
(Q-AdamR) resolves this issue efficiently with an on-par per-
formance on average and far smaller variance. In terms of the
maximum average return, Q-Adam and Q-AdamR perform
no worse then DQN on 17 and 20 games respectively out of
the 23 games being evaluated. Furthermore, if we consider
having a final score that is smaller or equal to the start score as
a learning failure, DQN fails the learning in 5 out of 23 games
(Asteroids, DoubleDunk, Gravitar, Pitfall, Tennis), Q-Adam
fails in 3 out of 23 games (Amidar, Assault, Asteroids) and
Q-AdamR does not fail in any of the tasks. That is, Q-AdamR
not only reduces the variance, but also provides a more con-
sistent performance across the task domain. This implies that
momentum restart effectively corrects the accumulated error
and stabilizes the training process.

6 Conclusion
We study two Q-learning algorithms with Adam-type updates,
and demonstrate their superior performance over the vanilla
Q-learning and DQN algorithms through a linear quadratic
regulator problem and a batch of 23 Atari 2600 games.

It is of considerable future interest to further investigate the
potential of the restart scheme. One possible direction is to
develop an adaptive restart mechanism with changing period
determined by an appropriately defined signal of restart. This
will potentially relieve the effort in hyper-parameter tuning of
finding a good fixed period.

Acknowledgements

The work was supported in part by the U.S. National
Science Foundation under Grants CCF-1761506, ECCS-
1818904, CCF-1909291 and CCF-1900145, and the startup
funding of the Southern University of Science and Technology
(SUSTech), China.

References
[Bertsekas and Tsitsiklis, 1996] Dimitri P. Bertsekas and

John N Tsitsiklis. Neuro-Dynamic Programming, volume 5.
Athena Scientific, 1996.

[Bertsekas, 1995] Dimitri P Bertsekas. Dynamic program-
ming and optimal control, volume 1. 1995.

[Bhandari et al., 2018] Jalaj Bhandari, Daniel Russo, and
Raghav Singal. A finite time analysis of temporal dif-
ference learning with linear function approximation. arXiv
preprint arXiv:1806.02450, 2018.

[Brockman et al., 2016] Greg Brockman, Vicki Cheung, Lud-
wig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[Chen et al., 2019a] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and
Mingyi Hong. On the convergence of a class of Adam-type
algorithms for non-convex optimization. In International
Conference on Learning Representations, 2019.

[Chen et al., 2019b] Zaiwei Chen, Sheng Zhang, Thinh T.
Doan, Siva Theja Maguluri, and John-Paul Clarke. Finite-
time analysis of Q-learning with linear function approxima-
tion. arXiv preprint arXiv:1905.11425, 2019.

[Du et al., 2019] Simon S Du, Yuping Luo, Ruosong Wang,
and Hanrui Zhang. Provably efficient Q-learning with func-
tion approximation via distribution shift error checking
oracle. arXiv preprint arXiv:1906.06321, 2019.

[Even-Dar and Mansour, 2003] Eyal Even-Dar and Yishay
Mansour. Learning rates for Q-learning. Journal of Ma-
chine Learning Research, 5:1–25, Dec 2003.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Knight and Lerner, 2018] Ethan Knight and Osher Lerner.
Natural gradient deep Q-learning. arXiv preprint
arXiv:1803.07482, 2018.

[Lewis and Vrabie, 2009] F. L. Lewis and D. Vrabie. Rein-
forcement learning and adaptive dynamic programming for
feedback control. IEEE Circuits and Systems Magazine,
9(3):32–50, Third 2009.

[Lu et al., 2018] Tyler Lu, Dale Schuurmans, and Craig
Boutilier. Non-delusional Q-learning and value-iteration.
In Proceedings of the Thirty-second Conference on Neu-
ral Information Processing Systems (NeurIPS-18), pages
9971–9981, Montreal, QC, 2018.

[Mavrin et al., 2019] Borislav Mavrin, Hengshuai Yao, and
Linglong Kong. Deep reinforcement learning with decorre-
lation. arXiv preprint arXiv:1903.07765, 2019.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep rein-
forcement learning. arXiv preprint arXiv:1312.5602, 2013.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie,

Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning.
Nature, 518(7540):529, 2015.

[Mnih et al., 2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In Pro-
ceedings of The 33rd International Conference on Machine
Learning, volume 48, pages 1928–1937. PMLR, 20–22 Jun
2016.

[O’donoghue and Candes, 2015] Brendan O’donoghue and
Emmanuel Candes. Adaptive restart for accelerated gradi-
ent schemes. Foundations of computational mathematics,
15(3):715–732, 2015.

[Reddi et al., 2018] Sashank J. Reddi, Satyen Kale, and San-
jiv Kumar. On the convergence of Adam and beyond. In In-
ternational Conference on Learning Representations, 2018.

[Schaul et al., 2015] Tom Schaul, John Quan, Ioannis
Antonoglou, and David Silver. Prioritized experience re-
play. arXiv preprint arXiv:1511.05952, 2015.

[Tran and others, 2019] Phuong Thi Tran et al. On the conver-
gence proof of AMSGrad and a new version. IEEE Access,
7:61706–61716, 2019.

[Vamvoudakis, 2017] Kyriakos G Vamvoudakis. Q-learning
for continuous-time linear systems: A model-free infinite
horizon optimal control approach. Systems & Control Let-
ters, 100:14–20, 2017.

[Van Hasselt et al., 2016] Hado Van Hasselt, Arthur Guez,
and David Silver. Deep reinforcement learning with dou-
ble Q-learning. In Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[Vrabie et al., 2009] Draguna Vrabie, O. Pastravanu, Murad
Abu-Khalaf, and Frank L. Lewis. Adaptive optimal control
for continuous-time linear systems based on policy iteration.
Automatica, 45(2):477–484, 2009.

[Wang et al., 2016] Ziyu Wang, Tom Schaul, Matteo Hessel,
Hado Van Hasselt, Marc Lanctot, and Nando De Freitas.
Dueling network architectures for deep reinforcement learn-
ing. In Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume
48, ICML’16, pages 1995–2003. JMLR.org, 2016.

[Watkins and Dayan, 1992] Christopher J.C.H. Watkins and
Peter Dayan. Q-learning. Machine Learning, 8(3-4):279–
292, 1992.

[Xiong et al., 2020] Huaqing Xiong, Tengyu Xu, Yingbin
Liang, and Wei Zhang. Non-asymptotic convergence of
Adam-type reinforcement learning algorithms under marko-
vian sampling. arXiv preprint arXiv:2002.06286, 2020.

[Xu and Gu, 2019] Pan Xu and Quanquan Gu. A finite-time
analysis of q-learning with neural network function approx-
imation. arXiv preprint arXiv:1912.04511, 2019.

[Yang et al., 2019] Zhuora Yang, Yuchen Xie, and Zhaoran
Wang. A theoretical analysis of deep Q-learning. arXiv
preprint arXiv:1901.00137, 2019.

[Zhou et al., 2018] Dongruo Zhou, Yiqi Tang, Ziyan Yang,
Yuan Cao, and Quanquan Gu. On the convergence of adap-
tive gradient methods for nonconvex optimization. arXiv
preprint arXiv:1808.05671, 2018.

[Zou et al., 2018] Fangyu Zou, Li Shen, Zequn Jie, Weizhong
Zhang, and Wei Liu. A sufficient condition for con-
vergences of Adam and RMSProp. arXiv preprint
arXiv:1811.09358, 2018.

[Zou et al., 2019] Shaofeng Zou, Tengyu Xu, and Ying-
bin Liang. Finite-sample analysis for SARSA and Q-
learning with linear function approximation. arXiv preprint
arXiv:1902.02234, 2019.

Supplementary Material

A Further Details and Results on Experiments

We discuss more details on the experiment setup and provide further results that are not included in Section 5.

A.1 Linear Quadratic Regulator

The linear quadratic regulator (LQR) problem is of great interest for control community where Lewis et al. applies PQL to both
discrete-time problems [Lewis and Vrabie, 2009] and continuous-time problems [Vamvoudakis, 2017; Vrabie et al., 2009].

We empirically validate the proposed algorithms through an infinite-horizon discrete-time LQR problem defined as

minimize
π

J =
∞∑
t=0

(
xTt Qxt + uTt Rut + 2xTt Nut

)
,

subject to xt+1 = Axt +But,

where ut = π(xt).
A typical model-based solution (with known A and B) considers the problem backwards in time and iterates a dynamic

equation known as the discrete-time algebraic Riccati equation (DARE):

P = ATPA− (ATPB +N)(R+BTPB)−1(BTPA+NT) +Q, (15)

with the cost-to-go P being positive definite. The optimal policy satisfies u?t = −K?xt with

K? = (R+BTPB)−1(NT +BTPA). (16)

For experiments, we parameterize a quadratic Q-function with a matrix parameter H in the form of

Q(x, u;H) =

[
x
u

]T [
Hxx Hxu

Hux Huu

] [
x
u

]
. (17)

The corresponding linear policy satisfies u = −Kx, and K = H−1uuHux. The performance of the learning algorithm is then
evaluated at each step of iterate i with the Euclidean norm ‖Ki −K?‖2.

A.2 Atari Games

We list detailed experiments of the 23 Atari games evaluated with the proposed algorithms in Figure 3. All experiments are
executed with the same set of two random seeds. Each task takes about 20-hour of wall-clock time on a GPU instance. All three
methods being evaluated share similar training time. AltQ-Adam and AltQ-AdamR can be further accelerated in practice with a
more memory-efficient implementation considering the target network is not required. We keep our implementation of proposed
algorithms consistent with the DQN we are comparing against. Other techniques that are not included in this experiment are
also compatible with AltQ-Adam and AltQ-AdamR, such like asynchronous exploration [Mnih et al., 2013] and training with
decorrelated loss [Mavrin et al., 2019].

Overall, AltQ-Adam significantly increases the performance by over 100% in some of the tasks including Asterix, BeamRider,
Enduro, Gopher, etc. However, it also illustrates certain instability with complete failure on Amidar and Assault. This is mostly
caused by the sampling where we are using a relevantly small buffer size with 10% of the common configured size in Atari
games with experience replay. Notice that those failures tend to appear when the ε-greedy exploration has evolved to a certain
level where the immediate policy is effectively contributing to the accumulated experience. This potentially amplifies the biased
exploration that essentially leads to the observed phenomenon.

Interstingly, AltQ-AdamR that incorporates the restart scheme resolves the problem of high variance of average return brought
by AltQ-Adam and provides a more consistent performance across the task domain. This implies that momentum restart
effectively corrects the accumulated error and stabilizes the training process.

Figure 3: Experiment results of 23 Atari games with DQN, AltQ-Adam and AltQ-AdamR

Task DQN AltQ-Adam AltQ-AdamR
Alien 1529 1125 1587

Amidar 269 313 551
Assault 1925 260 2097

Asteroids 1147 1394 1069
Asterix 11794 22413 17064

BeamRider 5728 10210 6458
Bowling 60 45 30

CrazyClimber 116422 102731 121770
Enduro 866 1671 1291

DemonAttack 5729 10485 9273
DoubleDunk -14 -12 -15
FishingDerby 29.01 -4 19

Gopher 6066 16863 9508
Gravitar 316 551 518

Jamesbond 663 899 756
Pitfall -76 -20 -7
Pong 20.68 20.79 20.74
Qbert 13453 12487 14352

Robotank 56 34 42
Seaquest 3652 6121 6624

Spaceinvaders 923 1528 1036
Tennis -17 20 -5

Tutankham 159 194 191

Table 3: Best empirical return of 23 Atari games with DQN, AltQ-Adam and AltQ-AdamR

B Proof of Lemma 1

The proof can be proceeded by the assumptions on the bounded kernel function and the bounded domains, which yields

gt =
(
φT (st, at)θt −R(st, at)− γmax

a′
φT (st+1, a

′)θt

)
φ(st, at)

(i)
≤
∥∥∥φT (st, at)θt −R(st, at)− γmax

a′
φT (st+1, a

′)θt

∥∥∥ ‖φ(st, at)‖

(ii)
≤
∥∥φT (st, at)θt

∥∥+ ‖R(st, at)‖+ γ
∥∥∥max

a′
φT (st+1, a

′)θt

∥∥∥
(iii)
≤ ‖gt‖ ≤ Rmax + (1 + γ)D∞,

where (i) follows from Cauchy-Schwarz inequality, (ii) follows from the triangle inequality and Assumption 1 and (iii) follows
from Assumptions 1 and 3.

Recall that

ḡt = E
µ

[(
φT (st, π(st))θt −R(st, π(st))− γmax

a′
φT (st+1, a

′)θt

)
φ(st, π(st))

]
,

where µ is the stationary distribution of the states. Then the bound of ḡt can be obtained by using the similar steps and techniques
as those of bounding gt.

The bounds of mt and v̂t can be obtained by induction. To this end, we first check that m0 = 0 and ‖m1‖ = ‖β11g1‖ ≤ G∞.
Assume that ‖mt−1‖ ≤ G∞, then we have

‖mt‖ = ‖(1− β1t)mt−1 + β1tgt‖
≤ (1− β1t) ‖mt−1‖+ β1t ‖gt‖
≤ (1− β1t)G∞ + β1tG∞
= G∞.

We next bound v̂t similarly. First check v̂0 = 0 and ‖v̂1‖ =
∥∥β2g21∥∥ ≤ G2

∞. Suppose that ‖v̂t−1‖ ≤ G2
∞. Then we have

‖vt‖ =
∥∥(1− β2)vt−1 + β2g

2
t

∥∥
≤ (1− β2) ‖vt−1‖+ β2

∥∥g2t ∥∥
≤ (1− β2) ‖v̂t−1‖+ β2

∥∥g2t ∥∥
≤ (1− β2)G2

∞ + β2G
2
∞

= G2
∞.

Thus we complete our proof by observing that ‖v̂t‖ ≤ max{‖v̂t−1‖ , ‖vt‖} ≤ G2
∞.

C Proof of Theorem 1
Different from the regret bound for AMSGrad obtained in [Reddi et al., 2018], our analysis is on the convergence rate. In fact, a
slight modification of our proof also provides the convergence rate for AMSGrad for conventional strongly convex optimization,
which can be of independent interest. Moreover, our proof avoids the theoretical error in the proof in [Reddi et al., 2018] pointed
out by [Tran and others, 2019]. Before proving the theorems, we first provide some useful lemmas.

Lemma 2. [Reddi et al., 2018, Lemma 2] Let {mt, V̂t} for t = 1, 2, . . . be sequences generated by Algorithm 1. Given
αt, β1t, β2 as specified in Theorem 1, we have

T∑
t=1

αt

∥∥∥V̂ − 1
4

t mt

∥∥∥2 ≤ α

(1− β1)(1− δ)
√

1− β2

d∑
i=1

‖g1:T,i‖

√√√√ T∑
t=1

1

t

≤ α
√

1 + log T

(1− β1)(1− δ)
√

1− β2

d∑
i=1

‖g1:T,i‖ .

Lemma 3. Let αt = α√
t

and β1t = β1λ
t for t = 1, 2, Then

T∑
t=1

β1t
αt
≤ β1
α(1− λ)2

. (18)

Proof. The proof is based on taking the standard sum of geometric sequences.
T∑
t=1

β1t
αt

=
T∑
t=1

β1t
√
t

α
≤

T∑
t=1

β1λ
t−1t

α
=
β1
α

(
1

(1− λ)

T∑
t=1

λt−1 − TλT
)
≤ β1
α(1− λ)2

. (19)

With the lemmas above, we are ready to prove Theorem 1. Observe that

θt+1 = ΠD,V̂ 1/4
t

(
θt − αtV̂

− 1
2

t mt

)
= min

θ∈D

∥∥∥V̂ 1/4
t

(
θt − αtV̂

− 1
2

t mt − θ
)∥∥∥ .

Clearly ΠD,V̂ 1/4
t

(θ?) = θ? due to Assumption 3. We start from the update of θt when t ≥ 2.∥∥∥V̂ 1/4
t (θt+1 − θ?)

∥∥∥2 =
∥∥∥ΠD,V̂ 1/4

t
V̂

1/4
t

(
θt − θ? − αtV̂

− 1
2

t mt

)∥∥∥2
≤
∥∥∥V̂ 1/4

t

(
θt − θ? − αtV̂

− 1
2

t mt

)∥∥∥2
=
∥∥∥V̂ 1/4

t (θt − θ?)
∥∥∥2 +

∥∥∥αtV̂ −1/4t mt

∥∥∥2 − 2αt(θt − θ?)Tmt

=
∥∥∥V̂ 1/4

t (θt − θ?)
∥∥∥2 +

∥∥∥αtV̂ −1/4t mt

∥∥∥2 − 2αt(θt − θ?)T (β1tmt−1 + (1− β1t)gt)
(i)
≤
∥∥∥V̂ 1/4

t (θt − θ?)
∥∥∥2 +

∥∥∥αtV̂ −1/4t mt

∥∥∥2 + αtβ1t

(
1

αt

∥∥∥V̂ 1/4
t (θt − θ?)

∥∥∥2 + αt

∥∥∥V̂ −1/4t mt−1

∥∥∥2)
− 2αt(1− β1t)(θt − θ?)T gt

(ii)
≤
∥∥∥V̂ 1/4

t (θt − θ?)
∥∥∥2 +

∥∥∥αtV̂ −1/4t mt

∥∥∥2 + β1t

∥∥∥V̂ 1/4
t (θt − θ?)

∥∥∥2 + α2
tβ1t

∥∥∥V̂ −1/4t−1 mt−1

∥∥∥2
− 2αt(1− β1t)(θt − θ?)T gt,

where (i) follows from Cauchy-Schwarz inequality, and (ii) holds because v̂t+1,i ≥ v̂t,i, ∀t, ∀i. Next, we take the expectation
over all samples used up to time step t on both sides, which still preserves the inequality. Since we consider i.i.d. sampling case,
by letting Ft be the filtration of all the sampling up to time t, we have

E
[
(θt − θ?)T gt

]
= E

[
E
[
(θt − θ?)T gt

]
|Ft−1

]
= E

[
(θt − θ?)T ḡt

]
. (20)

Thus we have

E
∥∥∥V̂ 1/4

t (θt+1 − θ?)
∥∥∥2 ≤ E

∥∥∥V̂ 1/4
t (θt − θ?)

∥∥∥2 + α2
tE
∥∥∥V̂ −1/4t mt

∥∥∥2 + β1tE
∥∥∥V̂ 1/4

t (θt − θ?)
∥∥∥2 + α2

tβ1tE
∥∥∥V̂ −1/4t−1 mt−1

∥∥∥2
− 2αt(1− β1t)E

[
(θt − θ?)T gt

]
(i)
= E

∥∥∥V̂ 1/4
t (θt − θ?)

∥∥∥2 + α2
tE
∥∥∥V̂ −1/4t mt

∥∥∥2 + β1tE
∥∥∥V̂ 1/4

t (θt − θ?)
∥∥∥2 + α2

tβ1tE
∥∥∥V̂ −1/4t−1 mt−1

∥∥∥2
− 2αt(1− β1t)E

[
(θt − θ?)T ḡt

]
(ii)
≤ E

∥∥∥V̂ 1/4
t (θt − θ?)

∥∥∥2 + α2
tE
∥∥∥V̂ −1/4t mt

∥∥∥2 + β1tE
∥∥∥V̂ 1/4

t (θt − θ?)
∥∥∥2 + α2

tβ1tE
∥∥∥V̂ −1/4t−1 mt−1

∥∥∥2
− 2αtc(1− β1t)E ‖θt − θ?‖2

(iii)
≤ E

∥∥∥V̂ 1/4
t (θt − θ?)

∥∥∥2 + α2
tE
∥∥∥V̂ −1/4t mt

∥∥∥2 + β1tE
∥∥∥V̂ 1/4

t (θt − θ?)
∥∥∥2 + α2

tβ1E
∥∥∥V̂ −1/4t−1 mt−1

∥∥∥2
− 2αtc(1− β1)E ‖θt − θ?‖2

(iv)
≤ E

∥∥∥V̂ 1/4
t (θt − θ?)

∥∥∥2 + α2
tE
∥∥∥V̂ −1/4t mt

∥∥∥2 +G∞D
2
∞β1t + α2

tβ1E
∥∥∥V̂ −1/4t−1 mt−1

∥∥∥2
− 2αtc(1− β1)E ‖θt − θ?‖2 ,

where (i) follows from Equation (20), (ii) follows due to Assumption 2 and 1− β1t > 0, (iii) follows from β1t < β1 < 1 and

E ‖θt − θ?‖2 > 0, and (iv) follows from
∥∥∥V̂ 1/4

t (θt − θ?)
∥∥∥2 ≤ ∥∥∥V̂ 1/4

t

∥∥∥2
2
‖θt − θ?‖2 ≤ G∞D2

∞ by Lemma 1 and Assumption 3.

We note that (iii) is the key step to avoid the error in the proof in [Reddi et al., 2018], where we can directly bound 1 − β1t,
which is impossible in [Reddi et al., 2018]. By rearranging the terms in the above inequality and taking the summation over time
steps, we have

2c(1− β1)
T∑
t=2

E ‖θt − θ?‖2

≤
T∑
t=2

1

αt

(
E
∥∥∥V̂ 1/4

t (θt − θ?)
∥∥∥2−E ∥∥∥V̂ 1/4

t (θt+1 − θ?)
∥∥∥2)+

T∑
t=2

β1tG∞D
2
∞

αt

+
T∑
t=2

αtE
∥∥∥V̂ −1/4t mt

∥∥∥2 +
T∑
t=2

αtβ1E
∥∥∥V̂ −1/4t−1 mt−1

∥∥∥2
(i)
≤

T∑
t=2

1

αt

(
E
∥∥∥V̂ 1/4

t (θt − θ?)
∥∥∥2−E ∥∥∥V̂ 1/4

t (θt+1 − θ?)
∥∥∥2)+

T∑
t=2

β1tG∞D
2
∞

αt

+
T∑
t=2

αtE
∥∥∥V̂ −1/4t mt

∥∥∥2 +
T∑
t=2

αt−1β1E
∥∥∥V̂ −1/4t−1 mt−1

∥∥∥2
≤

T∑
t=2

1

αt

(
E
∥∥∥V̂ 1/4

t (θt − θ?)
∥∥∥2−E ∥∥∥V̂ 1/4

t (θt+1 − θ?)
∥∥∥2)+

T∑
t=2

β1tG∞D
2
∞

αt

+ (1 + β1)
T∑
t=1

αtE
∥∥∥V̂ −1/4t mt

∥∥∥2 ,
where (i) follows from αt < αt−1. With further adjustment of the first term in the right hand side of the last inequality, we can

then bound the sum as

2c(1− β1)
T∑
t=2

E ‖θt − θ?‖2

≤
T∑
t=2

1

αt
E
(∥∥∥V̂ 1/4

t (θt − θ?)
∥∥∥2 − ∥∥∥V̂ 1/4

t (θt+1 − θ?)
∥∥∥2)+

T∑
t=2

β1tG∞D
2
∞

αt

+ (1 + β1)
T∑
t=1

αtE
∥∥∥V̂ −1/4t mt

∥∥∥2

=
E
∥∥∥V̂ 1/4

2 (θ2 − θ?)
∥∥∥2

α2
+

T∑
t=3

E


∥∥∥V̂ 1/4

t (θt − θ?)
∥∥∥2

αt
−

∥∥∥V̂ 1/4
t−1 (θt − θ?)

∥∥∥2
αt−1


−

E
∥∥∥V̂ 1/4

T (θT+1 − θ?)
∥∥∥2

αT
+

T∑
t=2

β1tG∞D
2
∞

αt
+ (1 + β1)

T∑
t=1

αtE
∥∥∥V̂ −1/4t mt

∥∥∥2

=
E
∥∥∥V̂ 1/4

2 (θ2 − θ?)
∥∥∥2

α2
+

T∑
t=3

E

(∑d
i=1 v̂

1/2
t,i (θt,i − θ?i)2

αt
−
∑d
i=1 v̂

1/2
t−1,i(θt,i − θ?i)2

αt−1

)

−
E
∥∥∥V̂ 1/4

T (θT+1 − θ?)
∥∥∥2

αT
+

T∑
t=2

β1tG∞D
2
∞

αt
+ (1 + β1)

T∑
t=1

αtE
∥∥∥V̂ −1/4t mt

∥∥∥2 .
=

E
∥∥∥V̂ 1/4

2 (θ2 − θ?)
∥∥∥2

α2
+

T∑
t=3

d∑
i=1

E(θt,i − θ?i)2

(
v̂
1/2
t,i

αt
−
v̂
1/2
t−1,i

αt−1

)

−
E
∥∥∥V̂ 1/4

T (θT+1 − θ?)
∥∥∥2

αT
+

T∑
t=2

β1tG∞D
2
∞

αt
+ (1 + β1)

T∑
t=1

αtE
∥∥∥V̂ −1/4t mt

∥∥∥2 .
So far we just rearrange the terms in the series sum. Next, we are ready to obtain the upper bound.

2c(1− β1)

T∑
t=2

E ‖θt − θ?‖2

(i)
≤

E
∥∥∥V̂ 1/4

2 (θ2 − θ?)
∥∥∥2

α2
+D2

∞

T∑
t=3

d∑
i=1

E

(
v̂
1/2
t,i

αt
−
v̂
1/2
t−1,i

αt−1

)

−
E
∥∥∥V̂ 1/4

T (θT+1 − θ?)
∥∥∥2

αT
+

T∑
t=2

β1tG∞D
2
∞

αt
+ (1 + β1)

T∑
t=1

αtE
∥∥∥V̂ −1/4t mt

∥∥∥2

≤
E
∥∥∥V̂ 1/4

2 (θ2 − θ?)
∥∥∥2

α2
+D2

∞

d∑
i=1

E
v̂
1/2
T,i

αT
+

T∑
t=2

β1tG∞D
2
∞

αt
+ (1 + β1)

T∑
t=1

αtE
∥∥∥V̂ −1/4t mt

∥∥∥2
(ii)
≤ G∞D

2
∞

α2
+
dG∞D

2
∞
√
T

α
+
β1G∞D

2
∞

α(1− λ)2
+

α(1 + β1)
√

1 + log T

(1− β1)(1− δ)
√

1− β2

d∑
i=1

E ‖g1:T,i‖ , (21)

where (i) follows from Assumption 3 and because
v̂
1/2
t,i

αt
>

v̂
1/2
t−1,i

αt−1
, and (ii) follows from Lemmas 1 - 3.

Finally, applying the Jensen’s inequality yields

E ‖θout − θ?‖2 ≤
1

T

T∑
t=1

E ‖θt − θ?‖2 . (22)

We conclude our proof by further applying the bound in Equation (21) to Equation (22).

D Proof of Theorem 2

To prove the convergence for AltQ-AMSGradR, the major technical development beyond the proof of Theorem 1 lies in dealing
with the parameter restart. More specifically, the moment approximation terms are reset every r steps, i.e., mkr = v̂kr = 0 for
k = 1, 2, . . . , which implies θkr+1 = θkr for k = 1, 2, For technical convenience, we define θ0 = θ1. Using the arguments
similar to Equation (21), in a time window that does not contain a restart (i.e. kr ≤ S ≤ (k + 1)r − 1) we have

2c(1− β1)
S∑

t=kr

E ‖θt − θ?‖2

(i)
≤ G∞D

2
∞

αkr+2
+
dG∞D

2
∞
√
S

α
+

α(1 + β1)

(1− β1)(1− δ)
√

1− β2

d∑
i=1

E ‖gkr+1:S,i‖

√√√√ S∑
t=kr+1

1

t

+G∞D
2
∞

S∑
t=kr+2

β1t
αt

+ 2c(1− β1)
(
E ‖θkr+1 − θ?‖2 + E ‖θkr − θ?‖2

)
(ii)
=
G∞D

2
∞
√
kr + 2

α
+
dG∞D

2
∞
√
S

α
+

α(1 + β1)

(1− β1)(1− δ)
√

1− β2

d∑
i=1

E ‖gkr+1:S,i‖

√√√√ S∑
t=kr+1

1

t

+G∞D
2
∞

S∑
t=kr+2

β1t
αt

+ 4c(1− β1)E ‖θkr − θ?‖2 ,

where (i) follows from Equation (21) and (ii) follows from θkr+1 = θkr due to the definition of restart. Then we take the
summation over the total time steps and obtain

2c(1− β1)

T∑
t=1

E ‖θt − θ?‖2

= 2c(1− β1)

bT/rc∑
k=1

kr−1∑
t=(k−1)r

E ‖θt − θ?‖2 +
T∑

t=bT/rcr

E ‖θt − θ?‖2 − E ‖θ0 − θ?‖2


≤
bT/rc∑
k=0

(
G∞D

2
∞

α

√
kr + 2 + 4c(1− β1)E ‖θkr − θ?‖2

)
+

bT/rc∑
k=1

dG∞D
2
∞

α

√
kr − 1

+
dG∞D

2
∞
√
T

α
+

α(1 + β1)

(1− β1)(1− δ)
√

1− β2

bT/rc∑
k=1

d∑
i=1

E
∥∥g(k−1)r+1:kr−1,i

∥∥√√√√ kr−1∑
t=(k−1)r+1

1

t

+
α(1 + β1)

(1− β1)(1− δ)
√

1− β2

d∑
i=1

E
∥∥gbT/rcr+1:T,i

∥∥√√√√ T∑
t=bT/rcr+1

1

t

+G∞D
2
∞

bT/rc∑
k=1

kr−1∑
t=(k−1)r+2

β1t
αt

+G∞D
2
∞

T∑
t=bT/rcr+2

β1t
αt

≤
bT/rc∑
k=0

(
G∞D

2
∞

α

√
kr + 2 + 4c(1− β1)E ‖θkr − θ?‖2

)
+

bT/rc∑
k=1

dG∞D
2
∞

α

√
kr − 1

+
dG∞D

2
∞
√
T

α
+

α(1 + β1)

(1− β1)(1− δ)
√

1− β2

bT/rc∑
k=1

d∑
i=1

E
∥∥g(k−1)r+1:kr−1,i

∥∥√√√√ kr−1∑
t=(k−1)r+1

1

t

+
α(1 + β1)

(1− β1)(1− δ)
√

1− β2

d∑
i=1

E
∥∥gbT/rcr+1:T,i

∥∥√√√√ T∑
t=bT/rcr+1

1

t
+G∞D

2
∞

T∑
t=1

β1t
αt
.

We can bound the term G∞D
2
∞
∑T
t=1

β1t

αt
by Lemma 3. Next, we bound another key term in the above inequality. We first

observe that ∀k ≥ 2, ∀i ∈ [d],

∥∥g(k−1)r+1:kr−1,i
∥∥√√√√ kr−1∑

t=(k−1)r+1

1

t

(i)
≤
∥∥g(k−1)r+1:kr−1,i

∥∥√√√√ kr−1∑
t=(k−1)r+1

1

t
+ |gkr,i|

√
1

kr

(ii)
≤
∥∥g(k−1)r+1:kr,i

∥∥√√√√ kr∑
t=(k−1)r+1

1

t
, (23)

where (i) holds due to |gt,i|
√

1
t > 0 and (ii) follows from Cauchy-Schwarz inequality. Then we have

bT/rc∑
k=1

d∑
i=1

∥∥g(k−1)r+1:kr−1,i
∥∥√√√√ kr−1∑

t=(k−1)r+1

1

t
+

d∑
i=1

∥∥gbT/rcr+1:T,i

∥∥√√√√ T∑
t=bT/rcr+1

1

t

(i)
≤
bT/rc∑
k=1

d∑
i=1

|gkr,i|
√

1

kr
+

bT/rc∑
k=1

d∑
i=1

∥∥g(k−1)r+1:kr−1,i
∥∥√√√√ kr−1∑

t=(k−1)r+1

1

t

+
d∑
i=1

∥∥gbT/rcr+1:T,i

∥∥√√√√ T∑
t=bT/rcr+1

1

t

=

bT/rc∑
k=1

d∑
i=1

∥∥g(k−1)r+1:kr−1,i
∥∥√√√√ kr−1∑

t=(k−1)r+1

1

t
+ |gkr,i|

√
1

kr


+

d∑
i=1

∥∥gbT/rcr+1:T,i

∥∥√√√√ T∑
t=bT/rcr+1

1

t

(ii)
≤
bT/rc∑
k=1

d∑
i=1

∥∥g(k−1)r+1:kr,i

∥∥√√√√ kr∑
t=(k−1)r+1

1

t
+

d∑
i=1

∥∥gbT/rcr+1:T,i

∥∥√√√√ T∑
t=bT/rcr+1

1

t

=
d∑
i=1

bT/rc∑
k=1

∥∥g(k−1)r+1:kr,i

∥∥√√√√ kr∑
t=(k−1)r+1

1

t
+
∥∥gbT/rcr+1:T,i

∥∥√√√√ T∑
t=bT/rcr+1

1

t


(iii)
≤

d∑
i=1

‖g1:T,i‖

√√√√ T∑
t=1

1

t
,

where (i) follows from |gkr,i|
√

1
kr , ∀k ≥ 1, ∀i ∈ [d], (ii) follows from Equation (23) and (iii) holds due to Cauchy-Schwarz

inequality. Then we have

2c(1− β1)
T∑
t=1

E ‖θt − θ?‖2

≤
bT/rc∑
k=0

(
G∞D

2
∞

α

√
kr + 2 + 4c(1− β1)E ‖θkr − θ?‖2

)
+

bT/rc∑
k=1

dG∞D
2
∞

α

√
kr − 1

+
dG∞D

2
∞
√
T

α
+

α(1 + β1)

(1− β1)(1− δ)
√

1− β2

bT/rc∑
k=1

d∑
i=1

E
∥∥g(k−1)r:kr−1,i∥∥

√√√√ kr−1∑
t=(k−1)r

1

t

+
α(1 + β1)

(1− β1)(1− δ)
√

1− β2

d∑
i=1

E
∥∥gbT/rcr:T,i∥∥

√√√√ T∑
t=bT/rcr

1

t
+G∞D

2
∞

T∑
t=1

β1t
αt

≤
bT/rc∑
k=0

(
G∞D

2
∞

α

√
kr + 2 + 4c(1− β1)E ‖θkr − θ?‖2

)
+

bT/rc∑
k=1

dG∞D
2
∞

α

√
kr − 1

+
dG∞D

2
∞
√
T

α
+

α(1 + β1)

(1− β1)(1− δ)
√

1− β2

d∑
i=1

E ‖g1:T,i‖

√√√√ T∑
t=1

1

t
+G∞D

2
∞

T∑
t=1

β1t
αt

(i)
≤
bT/rc∑
k=0

(
G∞D

2
∞

α

√
kr + 2 + 4c(1− β1)E ‖θkr − θ?‖2

)
+

bT/rc∑
k=1

dG∞D
2
∞

α

√
kr − 1

+
dG∞D

2
∞
√
T

α
+
α(1 + β1)

√
d(1 + log T)

(1− β1)(1− δ)
√

1− β2

d∑
i=1

E ‖g1:T,i‖+
β1G∞D

2
∞

α(1− λ)2
,

where (i) follows from Lemma 2 and Lemma 3.
Finally, applying the Jensen’s inequality and the above bound, we obtain

E ‖θout − θ?‖2 ≤
1

T

T∑
t=1

E ‖θt − θ?‖2

≤ 1

T

bT/rc∑
k=0

(
G∞D

2
∞

2cα(1− β1)

√
kr + 2 + 2E ‖θkr − θ?‖2

)
+

1

T

bT/rc∑
k=1

dG∞D
2
∞

2cα(1− β1)

√
kr − 1

+
dG∞D

2
∞
√
T

2cα(1− β1)
+

α(1 + β1)
√
d(1 + log T)

2c(1− β1)2(1− δ)
√

1− β2

d∑
i=1

E ‖g1:T,i‖+
β1G∞D

2
∞

2cα(1− β1)(1− λ)2
,

which concludes the proof.

	Introduction
	Main Contributions
	Related Work

	Preliminaries
	Q-learning Algorithm
	Linear Function Approximation

	Convergence Analysis of Q-AMSGrad
	Q-AMSGrad Algorithm
	Convergence Result

	Convergence Analysis of Q-AMSGradR
	Q-AMSGrad Algorithm with Momentum Restart
	Convergence Result

	Experimental Performance
	DQN Algorithm
	Linear Quadratic Regulator
	Atari Games

	Conclusion
	Further Details and Results on Experiments
	Linear Quadratic Regulator
	Atari Games

	 Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2

