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Abstract—A robotic system can be viewed as a collection of
lower-dimensional systems that are coupled via reaction forces
(Lagrange multipliers) enforcing holonomic constraints. Inspired
by this viewpoint, this paper presents a novel formulation for
nonlinear control systems that are subject to coupling constraints
via virtual ‘“coupling” inputs that abstractly play the role of
Lagrange multipliers. The main contribution of this paper is a
process—mirroring solving for Lagrange multipliers in robotic
systems—wherein we isolate subsystems free of coupling con-
straints that provably encode the full-order dynamics of the
coupled control system from which it was derived. This dimension
reduction is leveraged in the formulation of a nonlinear optimiza-
tion problem for the isolated subsystem that yields periodic orbits
for the full-order coupled system. We consider the application
of these ideas to robotic systems, which can be decomposed
into subsystems. Specifically, we view a quadruped as a coupled
control system consisting of two bipedal robots, wherein applying
the framework developed allows for gaits (periodic orbits) to
be generated for the individual biped yielding a gait for the
full-order quadrupedal dynamics. This is demonstrated on a
quadrupedal robot through simulation and walking experiments
on rough terrains.

Index Terms—Robotics, cooperative control, optimization.

I. INTRODUCTION

O achieve dynamic walking on high-dimensional robotic

systems, methods that assume simplified models have
been applied, such as embedding the central pattern generators
to multi-legged locomotion [4]. Through another methodology
— dimension reduction, hybrid zero dynamics (HZD) has
proven to be a successful approach as a result of its ability to
make theoretic guarantees [19] and yield walking for complex
humanoids [13], [17] without assuming model simplifications.
The main idea behind this approach is that the full-order
dynamics of the robot can be reduced to a lower-dimensional
surface on which the system evolves. The system can then be
studied via the low-dimensional dynamic representation and,
importantly, guarantees made can be translated back to the full-
order dynamics, i.e., periodic orbits (or walking gaits) in the
low-dimensional system imply corresponding periodic orbits
in the full-order system. The goal of this paper is to capture
this dimension reduction in a more general context—that of
coupled control systems, which shows the ability to decompose
a complex system into low-dimensional subsystems.
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Fig. 1. Conceptual illustration of the full body dynamics decomposition,
where the 3D quadruped — the Vision 60 — is decomposed into two
constrained 3D bipedal robots.

Another means of dimension reduction for robotic sys-
tems comes from isolating subsystems and coupling these
subsystems at the level of reaction forces, i.e., Lagrange
multipliers that enforce holonomic constraints. This is the
idea underlying the highly efficient method for calculating
the dynamics of robotic systems: Spatial vector algebra [5].
For example, a double pendulum can be decomposed into two
single pendula connected via a constraint at the pivot joint
[6]. More generally, one can consider two equivalent ways of
expressing the dynamics of a robotic system [12]:

D(@)i+ H(q.9) =u & {Di(%‘)% i @) = ik )

s.t. hz (q) =0
Full-Order Dynamics
Reduced-Order Coupled Dynamics
for ¢ = 1,2, where h is a coupling (holonomic) constraint
that is enforced via the Lagrange multiplier A allowing
for the higher-dimensional ¢ to be decomposed into lower-
dimensional ¢;, i.e., ¢ = (q1, ¢2). For example, a quadrupedal
robot can be decomposed into two bipeds as in Fig. 1. Thus,
if one can make guarantees on the reduced-order coupled
systems, they can be translated to the full-order dynamics.

The study of coupled control systems has a long and rich
history from which the framework presented in this paper has
taken inspiration. The most prevalent example is that of multi-
robot systems [11], the consensus problem [14], [20], and
interconnected systems [2]. In the context of mechanical and
robotic systems on graphs, network synchronization has been
studied [3], [16]. Port-Hamiltonian systems also capture the
notion of coupling present in general mechanical systems [18].
Finally, the coordination of quadruped and human reaction
forces has recently been studied [7]. While not explicitly
discussed due to space constraints, many of these formulations
fit within the general setting of coupled control systems
presented here.




This paper generalizes the aforementioned methods — zero
dynamics and system decomposition through coupling con-
straints — and unifies them through a novel formulation: cou-
pled control systems. We then utilize zero dynamics to reduce
to a subsystem dependent on coupling constraints which is
then eliminated via coupling relations to yield the final isolated
subsystem. The main result of this paper is that solutions to
the isolated subsystem are solutions to the full-order system,
and thus periodic orbits on the subsystem yield periodic orbits
on the full-order system. This result is leveraged to construct a
nonlinear optimization problem utilizing collocation methods
to generate these periodic solutions.

Our motivating application is gait (periodic orbit) genera-
tion for quadrupedal robots. Previously, HZD methods were
applied to quadrupedal walking [9]; yet the high complexity
of this system made it computationally expensive to generate
gaits when compared to their bipedal analogs. To address
this shortcoming, recent work has aimed at decomposing
quadruped into bipedal robots [10]—it is this methodology
that this paper formalizes and extends. In this paper, we
consider quadrupedal robots utilizing the coupled control sys-
tem paradigm, wherein this system can be reduced to lower-
dimensional isolated subsystems on which periodic orbits
(gaits) can be generated. We demonstrate the results through
the realization of these generated gaits experimentally to
achieve stable walking on rough terrains.

II. CoUPLED CONTROL SYSTEMS

This section introduces the notion of coupled control sys-
tems, for which a collection of differential equations are
coupled via algebraic coupling condition. The goal is to
present the basic paradigm used throughout the paper.

We first introduce a bidirectional graph T' = (N, E) where
the vertices N = {1, 2} represent the indices of the subsystems
and edges E = {(1,2),(2,1)} represent their connections.
We then denote X = {X;};en as a set of internal states,
Z = {Z2,;}ien as a set of coupled states, and U = {U; }ien
as a set of admissible control inputs. In addition, we assume
1#j€Nande=(ij),e=(j,i) € E throughout the paper.

We can now define the main object of interest.

Definition 1. A coupled control system (CCS) (¢ is defined
on a graph I' and a conditional expression:

i = fi(mi, zi) + gi(@i, zi)ui + Ge (@i, 2iy 25) Ae
Zi = pi(wi, 20) 4+ qi (T4, 2i)wi + Ge (T4, 205 25) Ae

A
= 1
G st ce(zi,25) = —ca(z5,2:) =0 M
Ae = — g,
where, z; € X,z € Zj,u; € Uy, ce(z,2;) = 0 1is a

coupling constraint enforced by the coupling inputs A., and
= represents the identical equality of functions.

We additionally denote =z = (z{,z9)" € X,z =

(20,20)" € Z,u = (uf,ug)" €U and A\ = N, 21T
throughout the paper.

Solutions. We define solutions to coupled control systems by
assuming the existence of feedback control laws: u(z,z) =
{u1(z1, 2), u2(z2, z) }. Applying these controllers to (1) yields
a coupled dynamical system (CDS):
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Fig. 2. Left: the configuration of the quadruped, each leg of which
has a point contact toe. Right: the decomposition of a quadrupedal
robot into two bipedal systems.
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T = fzd(:r“ Z) + ge(l’i, Z))‘E
g = p (20, 2) + de(wi, 2)Ae 2
St ce(2) =0, Ae=-Xz
where, ff' £ fi(zi,z) + gi(wi, zi)ui(w, 2), and pf =
pi(xsi, 2;) + qi(xi, z;)ui (x4, z). Then the solution of the cou-
pled dynamic system, T, is a set of solutions:

{(atl(t), 21(1), Ae(®)), (w2(t), 22(8), )\g(t))} st.QVteICR

with initial condition: {(z1(0), 21(0), Ac(0)), (x2(0), 22(0),
Az(0))}, and I C R is the time interval of their existence. Per
the above notation, we will sometimes denote the solutions by
(x(t), z(t), A(t)) with initial condition (x(0),z(0), A(0)).
Coupling constraints. Importantly, the solutions must satisfy
the coupling constraints at all time. Therefore,
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Hence, to solve for the coupling inputs ). that satisfy the
coupling constraints, it is necessary to solve an equation that
depends on the states of both subsystems. To address this, we
present a method for isolating a subsystem via conditions on
the controllers of the other systems in the next section. Before
doing this, we utilize the following example to illustrate the
concepts of coupled control systems.

Application to quadrupedal robots. The motivating appli-
cation considered here, is to compute periodic solutions to
the quadrupedal dynamics. As Fig. II shows, we decompose
this quadruped into two bipeds, whose dynamics are on a CCS
graph (according to definition 1: T' £ (N = {f,r},E = {e =
(f,r),€ = (r,f)}), where f,r label the front and rear bipedal
systems, correspondingly. We pick the coordinates for these
two subsystems as gr = (&, 0] ,0[ )7, ¢: = (&,0] 00 )7
with & € R3 x SO(3) and the leg joints 6y, € R, Since
all leg joints are actuated, the inputs are u; € U C RS. The
(continuous-time) dynamics of a quadruped as two coupled
bipedal systems are given by a set of Differential Algebraic
Equations (DAEs):

Di; + H; = J Fi + Biui + J. Ae (5)

Ro 2 JiGi + Jigi =0 (6)
st ce(§i,€) =& —& =0 )

Ae = —Ae ®)

with D;(g;) € R™*™ the mass-inertia matrix, H;(q;, ¢;) € R"



the drift vector, and B; = [Ogxs Isx6] the actuation matrix.
The contact (holonomic) constraint h;(g;) = 0 is enforced via
ground reaction forces F; € R3, whose second derivative is
given in (6). More details of these notations can be found in
[10].Note that F; can be eliminated by the solving (5)-(6) to
have a shorter form: D;g; +H; = B; uZ+J Ae. The derivation
is straightforward hence omitted.

To obtain a CCS as in (1), we pick “normal form” type
coordinates (see [15]), with the “output” (also known as virtual
constraint [19]) that we wish to zero, given by

yi(gi, i) = ¥ (@) — y* (&, ), €
where 2, y? are the actual and desired outputs, &; represents
a parameterization of time and a; € R6*% are the coefficients
for six 5*M-order Bezier polynomials that are designed by
the optimization algorithm in Sec.IV. Since our goal is to
find a symmetric ambling gait for quadrupeds, we chose
oy = May, with the matrix M representing a mirroring
relation. It is important to note that the output coordinate here
utilizes a state-feedback structure, instead of the time-based
construction of [10]. We can then construct our internal states

= (y;,5)7, leaving the coupled states as z; = (¢;, &) 7
The end result is a CCS of the form given in (1) for this
mechanical system:

| Yi n 0o - 0o A\
ne Jyidi — inDZIHi inDlei v inDi_lJJ ‘

fi(xi,zi)

. & o 1. 0
e { JeD ' H;| T | JeD; By Uit gD T Ae

qi(®;,2;)

9i (@i, zi) Ge(xiszi zj)

pi(®i,2;) Ge(wi,2i,25)
st ce(ziyzj) =2 —2; =0, Ae = =g,

where Jy, = 0yi(q:)/0qi, Je = 0/0q = [Isxs Opxe), and
we suppressed the dependency on x;, z; for all entries.

III. ISOLATING CONTROL SUBSYSTEMS

The main idea in approaching the analysis and design of
controllers for coupled control systems is to isolate subsystems
that encode the behavior of the overall CCS. This section
outlines the procedure for isolating the subsystems through
a two-step approach: restricting systems to the zero dynamics
manifold, and leveraging this to explicitly calculate the cou-
pling conditions. We then can reduce the full-order CCS to
a subsystem that no longer depends on the internal states of
the other subsystem. We establish the main result of the paper
encapsulating these constructions: solutions to the subsystem
yield solutions to the full-order dynamics.

A. A-Coupled Subsystem

Given a CCS (, we define the zero dynamics manifold for
each subsystem ¢ € N as:

Z; 2 {(z,2) € X x Z | x; = 0}. (10)

Thus, the zero dynamics manifold for i*" subsystem consists
of the internal states, x;, being zero, i.e., the system evolves
only according to the coupled states z.

The key idea underlying the analysis of CCSs is to reduce
the entire coupled system into the behavior of a single subsys-
tem. This is achieved through the above constructions related

to the zero dynamics. We start by designing controllers for
the overall CCS on the zero dynamics of subsystem j € N.
A controller uJZ’A(a:j, z) is said to render the zero dynamics
manifold 7 ; invariant if it satisfies:

0= f;(0,25) + g;(0, ZJ) (O z) + gz(0, 2) Az amn
where uZ 1mpl1c1tly depends on A; for ¢ = (j,i) € E. By
applymg u , we obtain a A-coupled control subsystem (-

CCSub) for the i*" subsystem:
i = fi(wi, z1) + gi(i, z3)us
= pi(wi, zi) + ¢i(@i, 2i)ui
Z; —p;(O zj) + ¢;(0, Z?) >
st ce(2) =0, )\,:—)\,
Thus, the i*? subsystem evolves according to its own dynamics
and the zero dynamics of all remaining systems—all of which
are coupled via the coupling inputs .
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e

B. Explicit Coupling Conditions

The coupling between the control systems (1) is enforced
via A and the coupling constraints of the form (4). Similarly,
even in the reduction to a subsystem (12), the coupling is still
achieved through A. We wish to generalize this so as to remove
the coupling, i.e., isolate subsystems, while still preserving the
overall behavior of the full system. We first deﬁne the coupling
relation that allows the use of the controllers uZ"* to eliminate
the dependence on the controllers and internal states of the
other subsystem.

Definition 2. For a A-CCSub CiZ A and i € N, a coupling
relation is a functional relationship on the coupling inputs
N (2, 2 ui) = AZ (20, 2)us + b2 (4, 2), (13)

that satisfies the coupling constraint (3) for all e = (4, ) € E.

The coupling relation is then summarized in the following:

Lemma 1. For a CCS C, if we have
O & [ B0 ~5:(0,2) ]

b 9940, 2) qe(qu) e (0, 2)
invertible, there exists a controller uj that renders Z; invari-
ant and a coupling relation in (13), given by:

Z
Uj(07z§uz‘) _X-1 V_O )
L\f(whz;ui)] =« ({—Jc(m)qi(l‘i’zi) vt
— I8 pi(wi, ) — I s (0, 25)
Proof. Evaluating (3) along the zero dynamics manifold Zj,
0, yields: J7 (2)(pi(wi2) + qilzi, 2)ui +

(w)

(14)

i.e., r; =

(5, 200+ T9 (2) (550, )+ 45 (0, 2)uts + (0, 2)A,) = 0
Combining this with (11) and simultaneously solving for uJZ
and A% yields the desired result. O

Recall that the controller u%* that renders the zero dynam-
ics surface invariant 1rnpl1c1tly depends on Az via (11). Now
with a coupling relation, the dependence of \; is removed, and
as a result we say that ujz renders the zero dynamics manifold
Z; invariant if:

0= ij(O7 z) + gjz(O7 2)us + g5(0, 25) (uJZ(O, Zyui) — ul) (15)

where uZ

j is now a function of u; and



{fg (25,2) 2 fie520) = Gelwg, PE@,2), (g

9gj (1'37 ) égj(mjvzj)_gé(wjvz)AeZ(xivz)'
Returning to (4), given a coupling relation we can rewrite
this coupling constraint as:

Ce(xs,2) = Jéi’j)(z) (piz(:rZ7 2) + q; (a:z, )u)

+J90) (P 2) + g (o 2)u) =0 A7)
where for the subsystem Ciz * we have
piz(xiv ) £ pl(l"lazl) + qP(xh )bg(xlvz)
qZZ(ZCZ,Z) =4qi (xlazl) + qe(IZ,Z)AeZ(ZCZ‘,Z) (13)
pjz(m’uz) é p]( vZJ) + qJ (07 ZJ)UJZ(OvZ) (0 Z)b (x’bvz)
sz(xiwz)é (j*(07Z)A§(CL‘i7Z)

C. Isolating Subsystems

We now arrive at the key concept for which all of the
previous constructions have built — reducing a CCS to a single
subsystem that can be used to give guarantees about the entire
CCS. This is based on the following definition.

Definition 3. For a CCS (., and ¢ # j € N, assume a
coupling relation A\Z such that there exist ujz rendering the
zero dynamics manifold Z; invariant. Then the it" control
subsystem (CSub) associated with the CCS ( is given by:

Ty = fiz(xu z) +gz (@i, 2)uq
Zi :pzz(wzaz) +qz (1‘2775)
z; = pjz(l’z, z) + a5 (:L‘“Z)

where fZ(x;, 2) = fi(zi,2i) + e (i, )bz(gcz7 ) 9; Z(xy,2) =
9i(i, 2) + Je(xi, 2)AZ (24, 2), and pZ, g7, p?,q% are given
in (18). Furthermore, when a feedback controller u;(x;, ) is
applied to CZ, the result is a dynamical system, denoted by
DZ,

Note that the coupling constraint (17) was not explicitly
stated in the CSub CZ. This was because it was solved for
via the coupling relation A\%. That is, the system naturally
evolves on the constraint manifold: C £ {(x,z) € X x Z :
ce(z) =0, ¥ e € E}. This is made formal in the following
result. Additionally, it will be seen that solutions to the
i*h subsystem, denoted by (x;(t), 2(t), A(t)), can be used to
construct solutions to the full-order CCS. Before formally
stating the ultimate result of this paper, we need some notation.
Let (x;,2) € X; x Z and consider the canonical embedding
t: Xy x Z <= X x Z given by i(x;,2) = (x,z), where
x={z;,z;} and z; = 0.

Theorem 1. Let Cc be a CCS, and for the j* system

assume there exist u] that render the zero dynamics manifold

Z; invariant. Let CZ be the corresponding \-CCSub for
the " subsystem. Given a feedback controller u;(x;, 2) for
the CSub with corresponding dynamical subsystem DZ with
solution (xz;(t),z(t)) fort e I CR.If

u(z:(0),2(0)) e C = u(xi(t),2(t)) €eC VieICR
then (1(x;(t), 2(t)), \Z(t)) with
NA(E) = { N2 a(0), 25 el (0, 2(0) |
is a solution to D, the CDS obtained by applying u;, ujz

ct e (19)

Proof. The condition that (z(0),2(0)) € C is equivalent
to ce(2(0)) = 0. Concretely, c.(z;(0),z;(0)) = 0. Since
AZ is a coupling relation, it satisfies (4) and more explic-
itly (17); therefore, and being explicit about the arguments,
¢e(x(t),2(t)) =0 for all t € I and all e € E. It follows that
ce(2(t)) =0forallt €I and e € E.

The fact that (u(z;(t), 2(t)), A%(t)) is a solution to T
assuming that (x;(t), z(t)) is a solution to D% follows trivially
from the fact that the zero dynamics Z; are invariant, i.e.,
L(ZEZ(t),Z(t)) GZ]', Vitel O

Periodic Orbits. In the context of quadrupedal dynamics,
we will be interested in generating periodic solutions, i.e.,
walking. A solution to a CDS T is periodic of period T > 0
if for some initial condition (z(0), z(0), A(0)):

(2(t +1T), 2(t + T), At +T)) = (2(t), 2(8), A1)

with the resulting periodic orbit: O = {(x(¢),2(t)) € X x
Z10<t<T}. As aresult of Theorem 1, periodic orbits in
a subsystem correspond to the periodic orbits in the full-order
dynamics.

Corollary 1. Under the conditions of Theorem 1, assume that
(z;(t), 2(t)) is a periodic solution to D% with period T > 0
and corresponding orbit O; = {(z;(t),2(t)) € X; x 2|0 <
t < T}. Then (u(x(t),2(t),\2(t)) is a periodic solution to
the CDS with period T' > 0 and corresponding periodic orbit
0= L(Oi).

Application to quadrupeds. For the quadrupedal dynamics
Ro. since the output (9) has (vector) relative degree 2 with
respect to u; (see [19]), we can explicitly design the controller
uj A that renders Z; invariant:

uit = (Jy, D5 By) " (Jy, Dy T Hj ~

jyjd]' - JyriDj_ljJAe)»
as given by Lemma 1. Hence, this controller satisfies (11) and
renders a A-coupled CSub, as in (12).

For robotic systems, we take these ideas one step further
to obtain “bipeds” that are the isolated subsystems associated
with quadrupeds. Operating on the invariant zero dynamics
manifold Z; yields y;(g;, ;) = 0, hence

0. = Ha Y (6]70‘]) and q; (5]) (5] 7( a yd(§j7aj))T)T

= §(&,6,6) = T(&)E + I (5;‘»51)51
where J, = 8q] (&)/0¢;. In another word, if u * exists and
is applied to 5" subsystem, the j*" bipedal dynamlcs given
by in (5)-(6) are equivalent to:
{ Dyt (&5,€5,8) + Hy = J] Fy+ Bjuf + J0 A (20)
T (6,65,6) + ;47 (€5.65) = 0 1)
where for simplicity we have suppressed the dependencies

of D;(q;(&)), J5(4;(&;)) and H;(4;(&;), d5(&;,€5)). We then
leverage a specific structure of rigid-body dynamics when us-

ing the floating base convention: Bju; + JJ Ae = (A, u;r)‘r
Utilizing this, (21) and the first 6 rows of (20) yield the
following “bipedal” dynamics:

o {DZ@ +HZ JF 4+ e
‘&

szj +w =0
with D]ZZDjJZ7HJZ:ﬁjjz£j+H37J] _JjJZ’andeZ:

J; jzfj +jj szl Here, we denote L] as the first 6 rows (block)

(22)



of the a variable. Hence, R? represents the dynamics of a
subsystem j on Z;, i.e., (22) evolves according to (11) where
F; can be uniquely determined.

IV. COUPLED SYSTEM OPTIMIZATION

With the previous construction of coupled control systems,
we present a general optimization framework to solve for
the solution to the ** CSub in (19) associated with the
CCS, while synthesising the controllers that render forward
invariance of the zero dynamics manifolds. The approach we
will take is a locally direct collocation based optimization
method [8], which has been widely applied to finding solutions
to dynamical systems such as [13]. We now pose the previous
formulations as a set of constraints to represent the controlled
dynamics of CZ. Along this process, the problem formulation
of our target application — the control of quadrupedal walk-
ing, will be used as an example to illustrate this method.

Optimization setup. We first discretized the time horizon ¢t €
[0,T] evenly to obtain the grid indices x = 0,1,..K, ie.,
t® = Tk/K. We define the decision variable associated with
the i*" control subsystem CZ as:

X 2 {19“}&:0’1““}(, A {:rf,:if,zf,éf,zf,éf,u?,u?’”}
Note that we abbreviated the dependency on time ¢ as [1® £
O(¢") for notational simplicity.

Recall that given a coupling relation, we have associated
zero dynamics invariance conditions given by (15). We will
enforce these conditions in the optimization to ensure that u]z’“

renders Z; invariant as:
Frero(97) 2 [£(0,2%) + g7 (0,2l + 9,0, 5) (uf" = uf),

J
where fZ# and g% are given as in (16).

Next, following from the constructions in Sec.III-C, we de-
fine constraints corresponding to the dynamics of the i*" con-
trol subsystem CZ (as obtained from the coupling relation).
Denote x" = (xf, 2f, 2%) and
TR, 2%) + P (a2 s
pE(xf, 2") + qf (aF, 2% )uff

Py (af, 2%) + of (@i, 2)uf

F(X",ui) =

to obtain the dynamic constraints as
den(ﬁﬁ) £ XFU - F(Xﬁu?) =0,

which is an equality constraint imposed on the x** node to
enforce all of the states and controllers satisfy the dynamics in
(19). Further, to guarantee that those local solutions satisfying
(C.2) stay on the same vector flow, i.e., belong to one
unique solution, we employ an implicit stage-3 Runge-Kutta
method for formulating this objective as an equality constraint.
Concretely, we use Hermite interpolation to compute the
interpolated value of x7 and its slope x% (see equation (30)
of [8]) at the center of the subinterval [t*,¢*"1]. Then the
collocation constraints are formed as:

d(x", X" uf) £ X~ F(xZ,uf) =0 (€3)
Physical Constraints & Periodic Constraints. A set of
inequality constraints (path constraints) p(9*) > 0 are used to
enforce conditions along the time horizon. For robotics, these
are widely applied as obstacle avoidance conditions, and some
feasibility conditions for the dynamical system, representing

(C2)
th

real-world physics. In our application — the walking dynamics
of quadrupeds, the inequality constraints are used to define the
friction cone condition and maximum ground clearance of the
swing foot to be higher than 8 cm.

In addition, a set of equality constraints are imposed on
the decision variables at ¢ = 0,7 to “connect” the initial and
final condition: b(x°, x¥) = 0, so that the optimal solution
to the optimization is a periodic solution to the dynamical
system. Particularly, the dynamics of quadrupedal locomotion
include both continuous and discrete dynamics, forming a
hybrid control system. To find a periodic solution (ambling
motion), we have the periodic constraint as:

Ky K -0
N e R
9 —4q;
where A(-) represents the plastic impact dynamics that maps
the pre-impact velocity ¢X to its post-impact term.

(C.6)

Optimization problem. To find the periodic solution to dy-
namical system (19), we now parse this coupled controlling
problem of the isolated i*" subsystem as:

arg;nin d(X) (NLP)
st Fleo(97) =0 k=0,1...,K (C.l1)
Fagn(97) =0 k=0,1...,K (C2)
dx" X"t uf)=0 k=0,1....K—1 (C3)

VT EX X ZxU k=0,1...,K (C4)

p(¥") >0 k=0,1....K (C5)

b(X) =0 (C.6)

where ®(-) € R is the cost function. Here, we pick the cost
function as the acceleration of the torso orientation to yield
a less energetic motion for the ease of experiments. (C.4)
defines the upper and lower bounds of the decision variables,
i.e., that they live in the admissible space of values. In the
application of walking, this was used to define the feasible
configuration space and the actuator torque less than 40N-m.
The other constraints are as stated as above.

Solutions. As a result, the optimization (NLP) can si-
multaneously produce trajectories (solutions) of the states
{zi(t), 2()}, uJZ(t) that renders the zero dynamics manifold
Z; invariant and the open-loop controller w;(t), Vt € [0, T
for which these solutions are defined. Note that one can also
enforce the dynamics 7 +exf = 0 with € > 0 to guarantee the
convergence attribute of the i*" isolating subsystem, in which
case the controller u;(z;,z) is equivalently an input-output
feedback linearization controller. Per Theorem 1, given ujz that
renders invariant Z; and the feedback controller u;(z;, z), we
can compute A% (t) using (13), hence (v(z;(t), 2(t)), \%(t)) is
a solution to the original CDS. Further, by imposing the peri-
odic condition on the solution’s boundary condition, the opti-
mization produced a periodic solution to period 7' to the CCS.
Therefore, according to Corollary 1, (¢(x;(t), 2(t), A%(t)) is a
periodic solution to the CDS with period 7.

Application to quadrupeds. When posing the control prob-
lem of quadrupeds, we leverage the subsystems representing
the front and rear bipeds: RZBf and RZ, as given in (22).
Note that these subsystems are still coupled through A—while
this could be explicitly solved for via Lemma 1, we keep it
implicit due to the complexity of inverting the mass-inertia
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Fig. 3. Top: Snapshots showing a full step of the ambling gait in an outdoor lawn. Bottom: The periodic trajectory produced by optimization (NLP) (in red)
vs. the experimental tracking data (in cyan) vs. RaiSim simulation data (in green) in the form of phase portrait (limit cycle) using 18 seconds’ data.

matrix for this particular robotic application. The i*" subsys-
tem yield (C.1), (C.2) and (C.3) for (NLP). Specifically for
all of the grid indices x = 0,1,...5, we have the decision
variables: 9% = {qf, ¢f,&F, &5, uf, Ff, F¥, o, AZ'}. Finally,
the optimization converges to a periodic solution to the isolated
bipedal system, which can then be composed to obtain the
ambling motion of the quadruped (shown in Fig. 3) according
to Theorem 1. We report that the optimization took 17.6s and
295 iterations of searching, which is over 58% faster than the
previous full-model based approach in [9]. The computational
complexity is mitigated mainly due to the dimension reduction
of the state space which is enabled by the representation of the
quadrupedal dynamics as bipedal subsystems. For validation
purposes, both simulations in a physics engine — RaiSim — and
hardware experiments were conducted with a unified, time-
based PD approximation of input-output linearizing controllers
to track the the desired outputs (represented by oy, =
May):

wi(gi, Gi t) = —kp (9% (@) — yi' (t, 04)) — ka(y™(@i) — 92 (¢, )
with kp, kq the PD gains. The result is successful ambling
in simulation, and experimentally walking on flat and outdoor
uneven terrains (see video [1]). See Fig. 3 for walking tiles and
the tracking performance. Remark that the averaged absolute
torque inputs are 11.16 N-m, which are well within the
hardware limits.

V. CONCLUSION

As inspired by robotic systems, this paper presented a new
formulation of coupled control systems: control systems that
are connected via coupling relations and coupling inputs. We
demonstrated how these systems can be reduced to a single
subsystem that encodes the behavior of the full-order coupled
system; this was achieved through leveraging zero dynamics
and coupling relations. The main result of this paper was
that solutions to these isolated subsystems are solutions to
the full-order systems. Building on this, we constructed a
nonlinear optimization problem on only a given subsystem that
yields periodic orbits for the full-order dynamics. Finally, the
application of these ideas were considered for coupled control
systems from which a specific example includes quadrupeds.
This was demonstrated through experiments on hardware. The
general formulation of the CCS problem allows for a wide
variety of applications, such as coupling bipedal locomotion
to get walking on sloped terrain, stair climbing, and trotting
behaviors for multi-legged systems.

[1]
[2]
[3]
[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

Experimental video. https://youtu.be/GlpgSXMinoU.

G. Antonelli. Interconnected dynamic systems: An overview on dis-
tributed control. IEEE Control Systems Magazine, 33(1), 2013.

S.-J. Chung and J.-J. E. Slotine. Cooperative robot control and con-
current synchronization of Lagrangian systems. IEEE transactions on
Robotics, 25(3):686-700, 2009.

S. M. Danner, N. A. Shevtsova, A. Frigon, and I. A. Rybak. Compu-
tational modeling of spinal circuits controlling limb coordination and
gaits in quadrupeds. eLife, 6:e31050, nov 2017.

R. Featherstone. Rigid body dynamics algorithms. Springer, 2014.

S. Ganesh, A. D. Ames, and R. Bajcsy. Composition of dynamical
systems for estimation of human body dynamics. In International
Workshop on Hybrid Systems: Computation and Control, pages 702—
705. Springer, 2007.

K. A. Hamed, V. R. Kamidi, W. Ma, A. Leonessa, and A. D. Ames.
Hierarchical and safe motion control for cooperative locomotion of
robotic guide dogs and humans: A hybrid systems approach. IEEE
Robotics and Automation Letters, 5(1):56-63, 2020.

A. Hereid, C. M. Hubicki, E. A. Cousineau, and A. D. Ames. Dynamic
humanoid locomotion: A scalable formulation for HZD gait optimiza-
tion. IEEE Transactions on Robotics, pages 1-18, 2018.

W.-L. Ma, K. Akbari Hamed, and A. D. Ames. First steps towards
full model based motion planning and control of quadrupeds: A hybrid
zero dynamics approach. In 2019 IEEE International Conference on
Intelligent Robots and Systems (IROS), Macau, China, 2019.

W.-L. Ma and A. D. Ames. From bipedal walking to quadrupedal lo-
comotion: Full-body dynamics decomposition for rapid gait generation.
In 2020 IEEE International Conference on Robotics and Automation
(ICRA), May 2020.

M. Mesbahi and M. Egerstedt. Graph theoretic methods in multiagent
networks, volume 33. Princeton University Press, 2010.

R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry. A mathematical
introduction to robotic manipulation. CRC press, 1994.

J. Reher, E. A. Cousineau, A. Hereid, C. M. Hubicki, and A. D. Ames.
Realizing dynamic and efficient bipedal locomotion on the humanoid
robot DURUS. In IEEE International Conference on Robotics and
Automation (ICRA), 2016.

W. Ren, R. W. Beard, and E. M. Atkins. A survey of consensus problems
in multi-agent coordination. In Proceedings of the 2005, American
Control Conference, 2005., pages 1859-1864. IEEE, 2005.

S. Sastry. Nonlinear systems: analysis, stability, and control, volume 10.
Springer New York, 1999.

M. W. Spong and N. Chopra. Synchronization of networked Lagrangian
systems. In Lagrangian and Hamiltonian Methods for Nonlinear Control
2006, pages 47-59. Springer, 2007.

K. Sreenath. A Compliant Hybrid Zero Dynamics Controller for Stable,
Efficient and Fast Bipedal Walking on MABEL. The International
Journal of Robotics Research, 30(9):1170-1193, Aug. 2011.

A. van der Schaft, D. Jeltsema, et al. Port-hamiltonian systems theory:
An introductory overview. Foundations and Trends ® in Systems and
Control, 1(2-3):173-378, 2014.

E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and
B. Morris. Feedback Control of Dynamic Bipedal Robot Locomotion.
Control and Automation. CRC Press, Boca Raton, June 2007.

W. Yu, G. Chen, and M. Cao. Consensus in directed networks of agents
with nonlinear dynamics. [EEE Transactions on Automatic Control,
56(6):1436-1441, 2011.



