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Abstract— This paper aims to develop distributed feed-
back control algorithms that allow cooperative locomotion
of quadrupedal robots which are coupled to each other
by holonomic constraints. These constraints can arise from
collaborative manipulation of objects during locomotion. In
addressing this problem, the complex hybrid dynamical models
that describe collaborative legged locomotion are studied. The
complex periodic orbits (i.e., gaits) of these sophisticated and
high-dimensional hybrid systems are investigated. We consider
a set of virtual constraints that stabilizes locomotion of a
single agent. The paper then generates modified and local
virtual constraints for each agent that allow stable collaborative
locomotion. Optimal distributed feedback controllers, based on
nonlinear control and quadratic programming, are developed to
impose the local virtual constraints. To demonstrate the power
of the analytical foundation, an extensive numerical simulation
for cooperative locomotion of two quadrupedal robots with
robotic manipulators is presented. The numerical complex
hybrid model has 64 continuous-time domains, 192 discrete-
time transitions, 96 state variables, and 36 control inputs.

I. INTRODUCTION

This paper aims to develop a formal foundation, based

on hybrid systems theory, nonlinear control, and quadratic

programming (QP), to develop distributed feedback con-

trol algorithms that stabilize cooperative locomotion of

quadrupedal robots while steering objects. Legged robots

that are augmented with manipulators can form collabora-
tive robot (co-robot) teams that assist humans in different

aspects of their life such as labor-intensive tasks, construc-

tion, and manufacturing. Although important theoretical and

technological advances have allowed the development of

distributed controllers for motion control of complex robot

systems, state-of-the-art approaches address the control of

multiagent systems composed of collaborative robotic arms

[1], multifingered robot hands [2], aerial vehicles [3], [4], and

ground vehicles [5]–[7], but not cooperative legged agents.

Legged robots are inherently unstable, as opposed to most

of the systems where these algorithms have been deployed.

*The work of K. Akbari Hamed is supported by the National Science
Foundation (NSF) under Grant Numbers 1854898, 1906727, 1923216, and
1924617. The work of V. R. Kamidi and A. Pandala is supported by the NSF
under the Grant Number 1854898. The work of A. D. Ames is supported
by the NSF under Grant Numbers 1544332, 1724457, 1724464, 1923239,
and 1924526 as well as Disney Research LA. The content is solely the
responsibility of the authors and does not necessarily represent the official
views of the NSF.

1K. Akbari Hamed, V.R. Kamidi, and A. Pandala are with the Depart-
ment of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061,
USA, kavehakbarihamed@vt.edu, vinay28@vt.edu, and
agp19@vt.edu

2W. Ma and A. D. Ames are with the Department of Mechanical and
Civil Engineering, California Institute of Technology, Pasadena, CA 91125,
USA, wma@caltech.edu and ames@cds.caltech.edu

Fig. 1: Two Vision 60 robots, augmented with Kionva arms,

whose full-order models will be used for the numerical

simulations of cooperative locomotion.

Furthermore, the evolution of legged co-robot teams that

cooperatively manipulate objects can be represented by high-

dimensional and complex hybrid dynamical systems which

complicate the design of distributed control algorithms.

A. Related Work and Motivation
Hybrid systems theory has become a powerful tool to

design nonlinear controllers for dynamic legged locomotion

both in theory and practice [8]–[23]. Nonlinear controllers

that address hybrid nature of legged locomotion have come

out of hybrid reduction [24], controlled symmetries [19],

transverse linearization [20], and hybrid zero dynamics

(HZD) [9], [11]. HZD-based controllers have been numeri-

cally and experimentally evaluated for bipedal locomotion

[11]–[13], [20], [25]–[28], quadrupedal locomotion [29],

[30], powered prosthetic legs [31], and exoskeletons [32].

Existing nonlinear control approaches for legged robots

are tailored to the path planning and stabilization of dynamic

gaits for a single machine, but not complex hybrid dynamical

models that describe the evolution of multiagent legged

robotic systems. This is mainly due to the fact that state-

of-the-art techniques for dynamic locomotion are centralized

approaches that cannot be easily transferred to legged co-

robot teams. A legged co-robot team that manipulates an

object can be modeled as a set of legged robots which are

coupled to each other and the object by a set of holonomic

constraints. The question is how to construct controllers for

such a complex robotic system that control locomotion with

many DOFs and large amounts of sensory data? Computing

the control torques for such a composite system in 1kHz

is often impossible—this motivates the importance of devel-
oping distributed and decentralized controllers that address
lower-dimensional subsystems (e.g., each agent).
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Fig. 2: (a) Illustration of the hybrid models for locomotion of one agent and two agents. The figure depicts the digraphs

for 8-domain walking locomotion as well as 64-domain cooperative locomotion. (b) Illustration of the proposed distributed

feedback control algorithms based on HZD and local QPs for two robotic agents that are attached with a rod.

B. Objectives and Contributions
The objectives and contributions of this paper are as

follows. We address complex hybrid models that describe

cooperative locomotion of legged robotic systems. The prop-

erties as well as periodic solutions (i.e., complex gaits) of

these sophisticated hybrid dynamical models are investi-

gated. We develop a distributed feedback control algorithm,

based on HZD and distributed QPs, to stabilize cooperative

gaits. We study virtual constraints and nominal HZD-based

controllers that stablize locomotion of one agent. We then

modify the virtual constraint controllers for the cooperative

locomotion of two agents. A QP formulation is set up to

compute the optimal distributed controllers that are close to

the nominal HZD controllers of each agent while imposing

the modified virtual constraints. To demonstrate the power of

the analytical foundation, an extensive numerical simulation

of two quadrupedal agents (Vision 60 robots) with Kinova

arms steering an object is presented (see Fig. 1). In this

simulation, the complex hybrid model has 64 continuous-

time domains, 192 discrete transitions, 96 state variables, and

36 control inputs. Our previous work in [33], [34] developed

an optimization algorithm, based on Poincaré return maps

and linear and bilinear matrix inequalities (LMIs and BMIs)

to synthesize decentralized controllers for legged locomotion.

However, the Jacobian linearization of the Poincaré map for

the above-mentioned complex hybrid model is computation-

ally intensive. The current paper addresses this complexity

with the proper modification of local virtual constraints and

the QP formulation. The current work is different from [35]

which addresses cooperative locomotion of guide robots and

humans. In particular, [35] considers a leash structure with a

“variable” and “controlled” length and angle that stabilize the

cooperative locomotion of quadrupedal robots and humans.

In the current study, the object is “passive” with a “fixed

length”. This paper instead develops distributed controllers

for each agent that stabilize the cooperative locomotion

subject to holonomic constraints. The current work is also

different from the study presented in [21] for locomotion

adaptation of limit cycle bipedal walkers in leader/follower

collaborative tasks. The current paper addresses complex

models of two agents while designing local and optimal

distributed controllers for stable collaborative locomotion.

Reference [21] only considers the follower dynamics while

designing a switching based controller for its adaptation to

a persistent external force that represents the leader.

II. MODELS OF COOPERATIVE LOCOMOTION

A. Hybrid Model of Locomotion for One Agent

We consider a full-order dynamical model of Vision 60

that is augmented with a Kinova arm for the locomotion

and manipulation purposes (see Fig. 1). Vision 60 is an

autonomous quadrupedal robot that is designed and man-

ufactured by Ghost Robotics1. Vision 60 has 18 DOFs of

which 12 leg DOFs are actuated. In particular, each leg

of the robot consists of a 1 DOF actuated knee joint with

pitch motion and a 2 DOF actuated hip joint with pitch and

roll motions. The remaining 6 DOFs are associated with the

translational and rotational movements of the body. In this

paper, we consider a 6 DOF Kinova arm that is affixed on

Vision 60. The generalized coordinates vector of each agent

is represented by q := col(pb, φb, qbody) ∈ Q ⊂ R
24, where

pb ∈ R
3 and φb ∈ R

3 denote the absolute position and

orientation (i.e., roll-pitch-yaw) of the robot with respect to

a world frame, respectively. In addition, qbody denotes a set

of coordinates that describe the shape of Vision 60 together

with the arm, and Q is the configuration space. The state and

control inputs (i.e., joint torques) of the system are denoted

by x := col(q, q̇) ∈ X := TQ ⊂ R
48 and u ∈ U ⊂ R

18,

respectively. In our notation, X and U represent the state

manifold and set of admissible controls. In addition, “col”

denotes a column vector.

Throughout this paper, we will consider a hybrid systems

formulation to describe multi-domain quadrupedal locomo-

tion for each agent as Σ (G,D,S, FG,Δ), in which G =
(V, E) denotes the directed cycle corresponding to the desired

locomotion pattern with the vertices set V and the edges set
E ⊆ V × V . In our formulation, the vertices represent the

continuous-time domains of quadrupedal locomotion that are

described by ordinary differential equations (ODEs) arising

from the Lagrangian dynamics. The edges represent the

discrete-time transitioning between continuous-time domains

arising from the changes in physical constraints. The evolu-

tion of the mechanical system during the domain v ∈ V is

1https://www.ghostrobotics.io/
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described by the ODE ẋ = fv(x)+gv(x)u for all (x, u) ∈ D,

where D represents the domains of admissibility. The set

of control systems is given by FG := {(fv, gv)}v∈V . The

evolution of the system during the discrete-time transition

e ∈ E is then described by the reset law (i.e., reinitialization

rule) x+ = Δe(x
−), where x− and x+ represent the

state of the system right before and after the transition,

respectively. Moreover, Δ := {Δe}e∈E is the set of discrete-

time dynamics. Finally, the guards of the hybrid system Σ is

given by the switching manifolds S := {Se}e∈E on which

the discrete-time transitions occur.

Continuous-Time Dynamics: Let us assume that Jc
v(q) de-

notes the leg contact Jacobian matrix during the continuous-

time domain v ∈ V , where the superscript “c” stands for

the contact. Then, the evolution of the mechanical system in

domain v can be described by the following ODE:

D(q) q̈ +H(q, q̇) = B u+ Jc�
v (q)λc (1)

Jc
v(q) q̈ + J̇c

v(q, q̇) = 0, (2)

where D(q) is the mass-inertia matrix, H(q, q̇) represents the

Coriolis, centrifugal, and gravitational terms, B is the input

distribution matrix, λc denotes the ground reaction forces

(i.e., Lagrange multipliers), and J̇c
v(q, q̇) := ∂

∂q (J
c
v(q) q̇) q̇.

By eliminating λc, one can express (1) and (2) as the input-

affine system ẋ = fv(x) + gv(x)u.

Discrete-Time Dynamics: The next-domain function μ :
V → V is defined as μ(v) = w if the vertices v and w are

adjacent on G, or equivalently, if e = (v → w) ∈ E . If during

the discrete transition e, an existing contact breaks, we define

the reset law Δe(x) as identity to preserve the continuity of

position and velocity. However, if a new contact point is

added to the existing set of contacts points with the ground,

we make use of the rigid impact model as follows [36]

D(q)
(
q̇+ − q̇−

)
= Jc�

μ(v) δλ
c, Jc

μ(v)(q) q̇
+ = 0, (3)

to model the abrupt changes in the velocity components

according to the impact. Here, δλc represents the intensity of

the impulsive ground reaction forces. From (3) and continuity

of position, one can obtain the impact map as x+ = Δe(x
−).

B. Continuous-Time Models for Cooperative Locomotion

In this section, we will address models of continuous-

time domains that describe cooperative locomotion of two

agents while steering an object. In our notation, the subscript

i ∈ {1, 2} represents the agent number. The state variables

and control inputs for the agent i are represented by xi :=
col(qi, q̇i) ∈ X and ui ∈ U , respectively. To simplify the

analysis, we will assume that the agents are identical. Let

pe(qi) ∈ R
3 denote the Cartesian coordinates of the end

effector (EE) with respect to the world frame. We consider

a holonomic constraint between the EEs as follows (see Fig.

2a):

‖pe(q1)− pe(q2)‖22 = constant. (4)

Equation (4) states that the Euclidean distance between the

agents’ EEs is constant. In particular, we assume that the

agents are carrying a massless bar with a fixed length whose

ends are connected to the agents’ EEs via socket (i.e., ball)

joints. Differentiating (4) results in (pe1 − pe2)
�(Je

1 q̇1 −
Je
2 q̇2) = 0 and (pe1−pe2)

�(Je
1 q̈1−Je

2 q̈2)+‖ṗe1− ṗe2‖2 = 0,

where Je(q) := ∂pe

∂q (q), pei := pe(qi), Je
i := Je(qi), and

ṗei = Je
i q̇i for i ∈ {1, 2}. Let us assume that λe ∈ R denotes

the Lagrange multiplier corresponding to the holonomic

constraint (4). Suppose further that the agents 1 and 2 are in

the continuous-time domains v ∈ V and w ∈ V , respectively.

Then, the equations of motions can be described by the

following coupled and constrained dynamics:

D1 q̈1 +H1 = B u1 + Jc�
v,1 λ

c
1 + Je�

1 (pe1 − pe2)λ
e (5)

D2 q̈2 +H2 = B u2 + Jc�
w,2 λ

c
2 + Je�

2 (pe2 − pe1)λ
e (6)

Jc
v,1 q̈1 + J̇c

v,1 = 0 (7)

Jc
w,2 q̈1 + J̇c

w,2 = 0 (8)

(pe1 − pe2)
�
(Je

1 q̈1 − Je
2 q̈2) + ‖ṗe1 − ṗe2‖2 = 0, (9)

where Di := D(qi), Hi := H(qi, q̇i), J
c
v,i := Jc

v(qi), and

J̇c
v,i := J̇c

v(qi, q̇i) for i ∈ {1, 2}. We remark that in (5) and

(6), (pe1 − pe2)λ
e ∈ R

3 and (pe2 − pe1)λ
e ∈ R

3 represent

the forces associated with the holonomic constraint (4) that

are aligned with the bar and applied to the EEs of the

agents 1 and 2, respectively. By eliminating the Lagrange

multipliers λc
1, λc

2, and λe from (5)-(9), one can express

the evolution of the composite mechanical system by ẋa =
fa
v,w (xa) + gav,w (xa)ua, where the superscript “a” stands

for the augmented system, and xa := col(x1, x2) ∈ X × X
and ua := col(u1, u2) ∈ U × U denote the augmented state

and control inputs, respectively.

C. Discrete-Time Models for Cooperative Locomotion

This section addresses the discrete-time transition for the

composite mechanical system. We consider a general case in

which the agents 1 and 2 can switch from any continuous-

time domains v and w to v′ and w′, respectively. This

discrete-time transition is denoted by (v, w) → (v′, w′). We

define the extended contact Jacobian matrix for the agent

1 as Ĵc
v→v′(q1) by Ĵc

v→v′(q1) := Jc
v(q1) if v′ = v and

Ĵc
v→v′(q1) := Jc

μ(v)(q1) for v′ �= v. An analogous extended

contact Jacobian matrix Ĵc
w→w′(q2) can be defined for the

agent 2. The evolution of the composite mechanical system

over the infinitesimal period of the impact can be then

described by the following coupled dynamics

D1

(
q̇+1 − q̇−1

)
= Ĵc�

v→v′,1 δλ
c
1 + Je�

1 (pe1 − pe2) δλ
e (10)

D2

(
q̇+2 − q̇−2

)
= Ĵc�

w→w′,2 δλ
c
2 + Je�

2 (pe2 − pe1) δλ
e (11)

Ĵc
v→v′,1 q̇

+
1 = 0 (12)

Ĵc
w→w′,2 q̇

+
2 = 0 (13)

(pe1 − pe2)
� (

Je
1 q̇

+
1 − Je

2 q̇
+
2

)
= 0, (14)

where δλc
1, δλc

2, and δλe represent the intensity of the impul-

sive Lagrange multipliers at the leg ends and EEs. By elimi-

nating the Lagrange multipliers from (10)-(14), one can ob-

tain an augmented reset law as xa+ = Δa
(v,w)→(v′,w′)(x

a−).
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D. Complex Hybrid Model for Cooperative Locomotion

The complex hybrid model that describes the cooperative

locomotion of two robots will have a complex graph that is

taken as the strong product of graph G = (V, E) with itself.

In particular, this strong product is represented by Ga :=
G � G = (Va, Ea) that has the vertices set Va := V × V .

Furthermore to define the edges set Ea, we remark that any

e = ((v, w) → (v′, w′)) ∈ Ea if and only if 1) v = v′ and

(w → w′) is an edge in E , or 2) (v → v′) is an edge

in E and w = w′, or 3) (v → v′) is an edge in E and

(w → w′) is an edge in E . Finally, the complex hybrid model

is defined as Σa (Ga,Da,Sa, FGa,Δa), in which FGa :=
{(fa

v,w, g
a
v,w)}(v,w)∈Va , Δa := {Δa

e}e∈Ea , and Da and Sa

denote the augmented sets of admissibility and switching

surfaces, respectively.

Example 1: In this paper, we will consider walking gait

of Vision 60 whose graph G is assumed to have 8 continuous-

time domains and 8 discrete-time domains. It can be shown

that Ga := G � G has 64 continuous-time domains and 192
discrete-time domains (see Fig. 2a).

III. DISTRIBUTED FEEDBACK CONTROLLERS

This section aims to present the structure of the proposed

distributed feedback control algorithms that will stabilize

complex dynamic gaits for cooperative locomotion of two

legged robots. We will consider complex periodic locomo-

tion of the composite robot. We will also investigate some

properties of the complex hybrid model. Sections IV and

V will synthesize distributed controllers for the cooperative

locomotion. We define a periodic gait for one agent as

follows.

Assumption 1: (Periodic Gait of One Agent): We sup-

pose that there is a family of nominal state feedback laws

Γnom(t, x) := {Γnom
v (t, x)}v∈V that generates a periodic

orbit (i.e., gait) for the hybrid model of one agent Σ. In

particular, there is a periodic state trajectory (i.e., solution)

ϕ� : [0,∞) → X for Σ if we apply the nominal state

feedback law u = Γnom
v (t, x) during the continuous-time

domain v for all v ∈ V . The corresponding periodic orbit
is given by O := {x = ϕ�(t) | 0 ≤ t < T} for some

fundamental period T > 0.

We then present the concept of measurable global variables

for both agents (i.e., subsystems) as follows.

Assumption 2: (Measurable Global Variables): There is

a set of quantities Θ that (i) depend on the global state

variables xa = col(x1, x2), i.e., Θ = Θ(xa) and (ii) are

measurable for both subsystems via sensors. These variables

are referred to as the measurable global variables. We further

assume that agents know the domain numbers of each other.

In particular, (v, w) ∈ Va is known for both agents.

Using this hypothesis, we propose a parameterized family
of local controllers for the agent i ∈ {1, 2} as follows

ui = Γi
v,w (t, xi,Θ, ξi) , (v, w) ∈ Va (15)

(see Fig. 2b). Here, Γi is a local state feedback law that

has access to 1) the local state variables of the agent i, i.e.,

xi, 2) the measurable global variables Θ(xa), and 3) the

domain number of the other agent that is denoted by w.

Furthermore, this local feedback law is parameterized by a

set of adjustable local controller parameters ξi to achieve

stability of the complex gait. More specifically, we will show

that the stability of the cooperative gaits will depend on the

proper selection of local controller parameters ξi, i ∈ {1, 2}.

Before we present the complex periodic gaits for cooper-

ative locomotion of two agents, we consider the following

assumption on distributed feedback controllers.

Assumption 3: The family of local feedback laws

Γi
v,w(t, xi,Θ, ξi) for i ∈ {1, 2} do not depend on the

horizontal displacements (i.e., Cartesian coordinates) of the

robots on the walking surface. However, they are allowed to

depend on the translational velocities of the robots.

Definition 1: (Translation Operator): We define the

translation operator on X by Td(x) = Td(q, q̇) which takes

the state vector x and adds the vector d ∈ R
2 to its Cartesian

positions in the horizontal plane. This corresponds to moving

the robot on the walking surface by the vector d while

keeping the other state variables of the robot unchanged.

Now we are in a position to present the following result

for complex gaits of cooperative locomotion.

Theorem 1: (Complex Periodic Orbits): Suppose that As-
sumptions 1-3 are satisfied and we employ the local feedback
laws (15). Let d ∈ R

2 − {0} be a vector and define the
augmented trajectory as Oa

d := {xa |x1 = ϕ�(t), x2 =
Td (ϕ

�(t)) , 0 ≤ t < T}. Assume that the distributed
feedback controllers Γi

v,w(t, xi,Θ, ξi), when evaluated on
the augmented orbit Oa

d , are reduced to the nominal state
feedback laws for each agent, that is, for every i ∈ {1, 2}
and v ∈ V ,

Γi
v,v (t, xi,Θ, ξi) = Γnom

v (t, xi) , ∀xa ∈ Oa
d , ∀t ≥ 0. (16)

Then, Oa
d is a periodic orbit for the complex model Σa.

Proof: Choose an arbitrary x1 ∈ O and let v be

the corresponding continuous-time domain vertex for the

agent 1. Then, x2 = Td(x1) ∈ Td(O) and w = v is

the domain vertex for the agent 2. For these state values,

pe2 = pe1 + col(d, 0) and ṗe2 = ṗe1. Consequently, the

holonomic constraints (4) and its first-order time derivative

are satisfied. We need to show that its second order time-

derivative is also met. From (16), u1 = Γ1
v,v(t, x1,Θ, ξ1) =

Γnom
v (t, x1). This together with Assumption 3 implies that

u2 = Γnom
v (t, Td(x1)) = Γnom

v (t, x1) = u1. Hence, the

Lagrange multiplier λe in (5) and (6) can be zero and

thereby, p̈e2 = p̈e1. This renders Oa
d invariant under the

augmented continuous-time dynamics of the complex model.

An analogous reasoning can be presented for the invariance

under the augmented discrete-time dynamics. Consequently,

Oa
d is an augmented periodic orbit for the system.

IV. HZD-BASED NOMINAL CONTROLLERS

This section presents the nominal controllers that generate

the periodic locomotion O for each agent. The modification

of these feedback laws to develop the distributed feedback

controllers for cooperative locomotion of two agents will be

presented in Section V. Since the agents are identical, we
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drop the subscript i ∈ {1, 2} to simplify the presentation.

During the continuous-time domain v ∈ V , we consider vir-

tual constraints with nonholonomic (i.e., relative degree one)

and holonomic (i.e., relative degree two) components. The

nonholonomic component is used to regulate the speed of the

robot, wheres the holonomic component is used for position

control. We employ standard input-output (I-O) linearization

[37] to asymptotically impose virtual constraints.

Consider an output function for the domain v as yv(t, x)
that can be decomposed as follows:

yv(t, x) :=

[
ynh
v (t, q, q̇)
yh
v(t, q)

]
:=

[
s(q, q̇)− s�(τ, v)
Cv (q − q�(τ, v))

]
, (17)

in which the superscripts “nh” and “h” stand for the non-

holonomic and holonomic components, respectively. In (17),

s(q, q̇) ∈ R represents the forward speed of a point on the

robot (i.e, head of the robot), s�(τ, v) denotes the desired

evolution of the speed on the orbit O in terms of the gait

timing variable and the continuous-time domain v ∈ V , τ
denotes the gait timing variable (i.e., phasing variable) that

is taken as the scaled time for each domain, and q�(τ, v)
represents the desired evolution of the configuration variables

on O during the domain v. Finally, Cv is an output matrix

that affects the stability of the gait. In particular, our previous

work has shown that the proper selection of the output matrix

Cv can change the stability behaviors of the gait [23], [29],

[34]. Differentiating the virtual constraints (17) yileds[
ẏnh
v

ÿh
v

]
=

[
Lgvy

nh
v

LgvLfvy
h
v

]
︸ ︷︷ ︸

=:Av(t,x)

u+

[
Lfvy

nh
v

L2
fvy

v
v

]
︸ ︷︷ ︸
=:bv(t,x)

= −
[

Kp y
nh
v

Kp y
h
v +Kd ẏ

h
v

]
︸ ︷︷ ︸

=:ev(t,x)

,

(18)

where Kp and Kd are positive-definite gains. From (18), one

can solve for the nominal state feedback law as follows:

u = Γnom
v (t, x) := −A�

v

(
Av A

�
v

)−1
(bv + ev) (19)

that will result in the asymptotic output tracking, i.e.,

limt→∞ yv(t) = 0. Here, we assume that the decoupling

matrix Av is full-rank with a number of rows less than or

equal to the number of actuators (i.e., columns).

V. SYNTHESIS OF DISTRIBUTED CONTROLLERS

The objective of this section is to synthesize the distributed

feedback controllers that satisfy the properties of Section III.

We will make use of two local real-time QPs (one for each

agent) to synthesize these controllers. For this purpose, we

consider the following set of measurable global variables

Θ:=col
(
s1, s2, q

roll
1 , qroll

2 , qpitch
1 , qpitch

2 , q̇roll
1 , q̇roll

2 , q̇pitch
1 , q̇pitch

2

)
that are available for both subsystems. Here, si, q

roll
i , qpitch

i ,

q̇roll
i , and q̇pitch

i represent the forward speed, roll angle, pitch

angle, roll angular velocity, and pitch angular velocity for

the agent i ∈ {1, 2}, respectively. Suppose further that the

agents i ∈ {1, 2} and j �= i ∈ {1, 2} are in the continuous-

time domains v and w, respectively. We would like to modify

the virtual constraints for agents to allow stable cooperative

locomotion. Let us assume that yiv,w(t, xi,Θ, ξi) denotes the

modified virtual constraints for the agent i. In our notation,

the modified virtual constraints depend on 1) the time t, 2)

the local state variables xi, and 3) the measurable global

variables Θ. Furthermore, they are parameterized by a set

of adjustable controller parameters, represented by ξi. One

typical choice for the modified outputs can be as follows:

yiv,w (t, xi,Θ, ξi) : =

[
ynh
v (t, qi, q̇i)
yh
v (t, qi)

]

−
[

αv,w (sj − s�(τ, w)
C roll

v,w

(
qroll
j − q�,roll (τ, w)

)]

−
[

0

Cpitch
v,w

(
qpitch
j − q�,pitch (τ, w)

)]
,

(20)

where αv,w as well as C roll
v,w and Cpitch

v,w are scalars and

vectors with proper dimensions to be determined. In (20), the

nonholonomic output for the agent i is corrected according

to the additive term −αv,w(sj − s�(τ, w)) which takes into

account the speed of the agent j. Note that the original

nonholonomic term ynh
v (t, qi, q̇i), defined in (17), vanishes

on the continuous-time domain v of the orbit O. According

to the construction procedure, the additive term is also zero

on the domain w of the same orbit. Hence, on the domain

(v, w) of the complex gait Oa
d , the modified nonholonomic

term is zero. The additive terms for the holonomic portion of

the modified output include the roll and pitch measurements

of the other agent that are given by the terms −C roll
v,w(q

roll
j −

q�,roll(τ, w)) and −Cpitch
v,w (qpitch

j − q�,pitch(τ, w)), respectively.

In an analogous manner, one can show that the modified

holonomic output is zero on the continuous-time domain

(v, w) of the cooperative gait Oa
d . In Section VI, we will

show that the stability of the complex gait depends on the

proper selection of the parameters αv,w, C roll
v,w, and Cpitch

v,w . Let

us define the adjustable controller parameters as follows:

ξi :=
{
αv,w, C

roll
v,w, C

pitch
v,w

}
(v,w)∈Va . (21)

We remark that in general the controller parameters can be

different for the agents. However, since the models of two

agents are assumed to be identical, we assume that ξi = ξj
for i, j ∈ {1, 2}.

We are now interested in regulating the modified outputs.

Eliminating the Lagrange multipliers in (5)-(9) will result in

the following coupled dynamics for the vertex (v, w) of the

complex graph[
D1 0
0 D2

] [
q̈1
q̈2

]
+

[
Ha

v,w,1

Ha
v,w,2

]
=

[
Ba

v,w,11 Ba
v,w,12

Ba
v,w,21 Ba

v,w,22

] [
u1

u2

]
,

(22)

where Di := D(qi) for i ∈ {1, 2}, and Ha
v,w,i and Ba

v,w,ij

depend on the augmented state variables xa for i, j ∈ {1, 2}.

Since 1) the agent i does not have access to all state variables

of the agent j, and 2) the agent i cannot make decision

for the control action of the agent j �= i (i.e., uj), we

need to approximate the coupled dynamics (22) for the I-

O linearization purpose of the modified output yiv,w. As the
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agent i has access to its own local state variables xi as

well as the measurable global variables Θ, it is reasonable

to assume that it can approximate the “remaining” portion

of the augmented state variables by their desired evolution

on the domain w of the orbit O at any time t. Using this

assumption, the agent i can approximate its own coupled

dynamics in (22) as follows:

Di q̈i + Ĥa
v,w,i = B̂a

v,w,ii ui + B̂a
v,w,ij u

�
j (t, w), (23)

where u�
j (t, w) represents the feedforward torques on domain

w of the orbit O. Moreover, Ĥa
v,w,i, B̂

a
v,w,ii, and B̂a

v,w,ij are

approximations of Ha
v,w,i, B

a
v,w,ii, and Ba

v,w,ij , respectively,

using the above-mentioned assumption.

Next, the I-O linearization along (23) yields

Ai
v,w (t, xi,Θ, ξi)ui + biv,w (t, xi,Θ, ξi)

= −eiv,w (t, xi,Θ, ξi) , (24)

where Ai
v,w, biv,w, and eiv,w are the extensions of the terms

that were computed for the locomotion of a single agent

in (18). Now we are in a position to present the local QP

for each agent. The objective of the local QPs is to modify

the control inputs for each agent to be close enough to its

own nominal HZD-based control while imposing the mod-

ified virtual constraints for cooperative locomotion. More

specifically, we consider the following local QP for the agent

i ∈ {1, 2} at every time sample (e.g., 1kHz) (see Fig. 2b)

min
(ui,δ)

1

2
‖ui − Γnom

v (t, xi)‖2 + w

2
‖δ‖2 (25)

s.t. Ai
v,w ui + biv,w + δ = −eiv,w (26)

umin ≤ ui ≤ umax, δmin ≤ δ ≤ δmax, (27)

in which w > 0 is a weighting factor, and δ is a defect

variable to satisfy the equality constraint (26) in case (24)

cannot be met. This may happen if the modified decoupling

matrix Ai
v,w is not full-rank. The cost function (25) tries to

make the local controller ui close enough to the nominal

controller while keeping the 2-norm of the defect variable

small. Inequality constraints (27) ensure the feasibility of the

applied torques, where umin, umax, δmin, and δmax denote

the lower and upper bounds for the decision variables.

Remark 1: As the nominal HZD-based controllers stabi-

lize the motion of each single, we would like to find an

optimal solution that is close enough to the nominal con-

troller while satisfying the modified virtual constraints. The

solution of the QP will be then a combination of the nominal

HZD-based controller and modified virtual constraint con-

trollers, and this combination will be parameterized by the

weighing factor w. We have observed that this combination

is important in stabilizing cooperative gaits (see Section VI).

Theorem 2: (Properties of the Optimal Local Con-
trollers): The solutions of the local QPs (25)-(27) satisfy
the property (16).

Proof: According to the construction procedure, for ev-

ery xa ∈ Oa
d , (v, w) ∈ Va, i ∈ {1, 2}, and any controller pa-

rameters ξi, the modified virtual constraints yiv,w(t, xi,Θ, ξi)

and d
dty

i
v,w(t, xi,Θ, ξi) (for holonomic portions) are zero. In

addition, the approximate terms Ĥa
v,w, B̂a

v,w,ii, and B̂a
v,w,ij

are equal to their actual values on the orbit Oa
d . Hence, the

approximate dynamics (23) as well as the approximate I-O

linearization in (24) become the precise ones for the complex

dynamics on the orbit Oa
d . This together with the fact that

the modified outputs are zero on Oa
d implies that the optimal

solution of local QPs (25)-(27) on Oa
d is equal to the nominal

HZD-based controllers which completes the proof.

Corollary 1: (Complex Gait with Local QPs): Suppose
that Assumptions 1-3 are satisfied and we employ the optimal
local controllers in (25)-(27). Then, Oa

d is a periodic orbit
for the complex hybrid model Σa.

Proof: The proof is a result of Theorems 1 and 2.

Remark 2: (Stability Modulo d): One immediate result

from Corollary 1 and Assumption 3 is that the proposed local

controllers can stabilize the cooperative locomotion by the

proper selection of the controller parameters ξi, i ∈ {1, 2},

but cannot stabilize the location of the agents with respect to

each other. In particular, Oa
d for any d with the property d �=

0 can be a periodic orbit. We refer to this stability, stability
modulo d. Full-state stability requires the measurement of

the absolute Cartesian positions of the agents which is not
considered in this paper.

VI. NUMERICAL RESULTS

The objective of this section is to numerically evaluate

the effectiveness of the proposed distributed controllers for

stabilizing cooperative locomotion of two Vision 60 robots

augmented with 6 DOF Kinova arms. We consider a walking

gait O for each agent with 8 continuous-time domains at the

speed of 0.34 (m/s) (see Fig. 2a). The gait is designed via

FROST (Fast Robot Optimization and Simulation Toolkit) —

an open-source toolkit for path planning of dynamic legged

locomotion [38]. Our previous work in [23] has shown that

the stability of gaits in the HZD approach depends on the

proper selection of the virtual constraints that is equivalent

to the proper selection of the output matrices Cv in (17).

To exponentially stabilize the gait O, we make use of

the iterative optimization algorithm of [29], [34] that was

developed based on LMIs and BMIs to look for stabilizing

values of Cv . Figure 3a depicts the time profile of the regular

virtual constraints for stable locomotion of one agent. Here,

we employ the nominal HZD-based controllers that were

developed in Section IV. Convergence to a stable periodic

motion is clear. Although the nominal HZD-based controllers

can stabilize the walking gait for a single agent, they cannot
address the cooperative locomotion of two agents.

Figure 3b illustrates the original virtual constraints for the

complex hybrid model of collaborative locomotion, where

each agent only employs its own nominal controller. Here,

we assume that the agents carry a massless bar with the

length of 1 (m) (we suppose that d = col(0, 1)). The initial

augmented state is taken off of the orbit Oa
d . Divergence

from the periodic gait is clear which indicates the instability.

To stabilize the gait, we modify the virtual constraints for

each agent as proposed in (20). In this paper, we choose

the distributed controller parameters based on the output
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(a) (b) (c)

Fig. 3: (a) Plot of the original virtual constraints with the nominal HZD controller for locomotion of a single agent versus

time. The gait is stable. Colors distinguish different domains of locomotion. (b) Plot of the original virtual constraints for

cooperative locomotion of two agents with the nominal HZD-based control (i.e., no modified virtual constraints and no QP).

The complex gait is unstable. (c) Plot of the modified virtual constraints for cooperative locomotion of two agents with the

proposed distributed controllers. The complex gait is stable.

(a) (b) (c)

Fig. 4: Phase portraits for the complex hybrid model of cooperative locomotion with the proposed distributed controllers.

matrices Cv that are optimized using the BMI algorithm. Let

C roll
v and Cpitch

v denote the columns of the optimized matrix

Cv that correspond to the roll and pitch motions, respectively.

We then choose

C roll
v,w = βv,w C roll

v and Cpitch
v,w = γv,w Cpitch

v , (28)

where βv,w and γv,w are scalars to be determined. Equation

(28) reduces the choice of the controllers parameters ξi in

(21) to that of the scalars {αv,w, βv,w, γv,w}. In this paper,

we heuristically take αv,w = βv,w = γv,w = 0.5. Figure

4 illustrates the phase portraits for the roll, pitch, and yaw

motions of one of the agents during cooperative locomotion.

Convergence to the periodic orbit is clear. Figure 3c depicts

the time profile of modified virtual constraints. Snapshots

of the cooperative locomotion are illustrated in Fig. 5. The

animation of these simulations can be found at [39].

VII. CONCLUSIONS

This paper presented an analytical approach to design

distributed feedback controllers that stabilize cooperative

locomotion of legged robots which are coupled to each other

by holonomic constraints. We addressed complex hybrid

dynamical models that represent collaborative locomotion of

legged robots while steering objects with their arms. The

paper studied properties and complex periodic orbits of these

sophisticated and high-dimensional hybrid systems. Virtual

constraints were devolved for stable locomotion of single

agents and are imposed by nominal HZD-based controllers.

The paper then modified the virtual constraints to achieve

stable cooperative locomotion of two agents. The distributed

controllers were implemented via local QPs to be close

to the nominal HZD-based controllers while satisfying the

modified virtual constraints. To demonstrate the power of the

proposed approach, we employed the distributed controllers

for an extensive numerical simulation that describes the

complex hybrid model for cooperative locomotion of two

Vision 60s with Kionva arms to steer an object. The complex

model of locomotion has 64 continuous-time domains, 192

discrete-time transitions, 96 state variables, and 36 control

inputs. For future work, we will experimentally investigate

the distributed control algorithms on two Vision 60 robots

with Kinova arms. We will also study safety-critical control

algorithms that allow collaborative locomotion and obstacle

avoidance in complex environments.
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