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Abstract—Internet of Things (IoT) is experiencing an explo-
sion in the data traffic due to the increase in the number
of heterogeneous applications. The existing cloud computing
models will not be capable to support the IoT applications
that are delay-sensitive and using high bandwidth. The Edge-
IoT systems represented by shared edge clouds support a wide
range of IoT applications. Edge clouds provide resources closer
to the IoT devices to tackle the delay sensitivity and bandwidth
issues. However, the allocation of these resources with guaranteed
application’s utility in the context of Edge-IoT with multiple
heterogeneous IoT applications, various resource demands, and
limited resource availability is challenging. In this paper, we
propose a novel enhanced online Q-learning scheme to allocate
resources from edge clouds to IoT applications to maximize
their utility and maintain allocation fairness among them. The
developed online Q-learning scheme approximates its Q-value
to tackle the problem of large state space, reduce the required
learning computation, and expedite the system convergence. It
is implemented using two settings: centralized using a dedicated
controller at the edge cloud and distributed where edge servers
learn cooperatively to achieve a common goal of finding joint
resource allocation policy that maximizes the IoT applications’
utilities. Extensive numerical results demonstrate the capability
of the proposed scheme in improving applications’ utilities and
allocation fairness.

Index Terms—Edge Computing, Internet of Things, Resource
Allocation, Online Q-Learning

I. INTRODUCTION

With the current growth of heterogeneous IoT applications
such as 4K/8K UHD video, hologram, interactive mobile
gaming, smart homes, etc. [1], there will be tremendous
demand for network and computing resources to support these
applications. It will be very difficult for the existing centralized
cloud computing systems to scale with projected billions or
even trillions of weak IoT devices and ubiquitous applications,
due to the large amount of generated data and the relatively
long distance between [oT devices and clouds [2]. Edge com-
puting is considered as a potential approach that brings more
computing, networking, storage, and intelligence resources to
the edge, which would specifically benefit IoT applications that
are delay-sensitive, bandwidth/data intensive, or that require
closer intelligence [3], [4]. Moreover, virtualized and shared
“edge clouds” and the corresponding Edge-IoT systems are
enablers for the real time applications such as autonomous
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driving, robotics, smart homes and healthcare, which require
low latency [1], [4], [5].

However, unlike cloud computing, the edge computing
paradigm is still in the developing stage. Cloud computing
has virtually unlimited computing and networking resources in
large data centers, while edge computing has usually limited
resources over distributed edge nodes that have different
configurations and capabilities. In addition, heterogeneous IoT
applications have different resource, quality, and priorities
requirements, which makes the resource allocation problem
more challenging. The resource allocation problem in Edge-
IoT with these characteristics in addition to consideration of
IoT applications’ utilities and fairness is not well-explored.

In this paper, we propose a resource allocation model
that aims to maximize the IoT applications’ utilities with
consideration of allocation fairness among the heterogeneous
IoT applications. The application utility is defined as the gain
received by these applications as a result of the resource
allocation and it is evaluated in terms of the number of
applications’ requests successfully served by the edge cloud.
The utility is tied with the number of resource requests
initiated by the applications and time consumed to process
these requests. To achieve the maximization goal, we develop
a novel online Q-learning scheme to allocate resources to
the IoT applications. The proposed scheme has the following
merits. 1) It is aware of contextual information from the IoT
application side including delay requirements and priority, and
from the edge cloud side including the edge server capacity
and server load. 2) The scheme exploits such awareness
information to allocate edge resources such that the utility
of the applications is maximized and the resource are fairly
allocated. For example, applications that have urgent delay
requirements will have the priority in resource allocation
over the ones that are not delay sensitive. 3) The scheme
tackles the dimensionality issue of online Q-learning due to
the large state/action space in Edge-1oT systems by developing
approximation mechanism for the Q-value. The Q-value is ap-
proximated as a function of much smaller set of variables. This
reduces the scheme complexity as smaller state/action space
is exploited and expedites the scheme convergence. 4) The
proposed online Q-learning scheme uses the historical resource
allocation actions of the edge servers to achieve distributed and
cooperative resource allocation which enhances the scalability
of the system and avoids the bottleneck processing of the
typical centralized allocation. To the best of our knowledge,
the proposed scheme is the first to use online Q-learning to
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tackle the utility based resource allocation with the above
merits for multiple heterogeneous applications at the Edge-
IoT networks.

We choose online Q-learning [6] for such resource alloca-
tion problem as it is model free and the system can learn from
its past experience. It is challenging to determine the exact
state transition model for such dynamic Edge-IoT environment
by applying a model-based method such as dynamic program-
ming algorithms. Moreover, it is not trivial to list all the state
and action pairs to migrate from one state to another, and it is
not practical to pre-define the state transition model in problem
solving. The paper has the following unique contributions:

« We propose a novel resource allocation model that aims
to maximize the [oT applications’ utilities with considera-
tion of multiple applications’ priorities and various delay
requirements, and with guaranteed fairness in resource
allocation. In the proposed model, the resources are
allocated from the edge servers to the IoT applications
with awareness of the following factors: the edge server
load, the capacity of each server, and the IoT application’s
requirements that are determined by the application type.

o We develop an enhanced centralized online Q-learning
based resource allocation scheme that aims to maximize
IoT applications utilities. This scheme employs a con-
troller at the network edge which exploits awareness
information of edge cloud and IoT applications to achieve
resource allocation.

« We propose a novel distributed and cooperative online Q-
learning based resource allocation scheme that exploits
the capability of edge servers to learn cooperatively
through sharing their historical resource allocation actions
and the fact that allocation actions do not alter for similar
network states. Thus, edge servers exploit these historical
actions for allocation decisions if they encounter similar
network scenarios.

o The proposed online Q-learning model accounts for the
dimensionality problem in typical Q-leanring due to the
large state/action space. The proposed learning model
narrows the state space by approximating Q-value as
function of smaller set of variables using a brief represen-
tation feature. This reduces the required computation and
expedites the convergence significantly in comparison to
standard online Q-learning.

The rest of the paper is organized as follows. The related
work is presented in Section II. Section III describes the sys-
tem model, fairness characterization, and problem formulation.
The centralized and distributed online Q-learning schemes for
resource allocation are presented in Section IV. The numerical
results are discussed in Section V and the paper concludes in
Section VI.

II. RELATED WORK

The recent work in the literature addressed the potential
benefits and technical aspects of edge computing. Many of
the recent work focus on the workload offloading problem [7].
The traffic offloading facilitates access for IoT applications to
resource-rich servers at the edge to handle their power exhaus-
tive computation. In [8], a workload offloading optimization

problem was proposed to minimize energy consumption under
the latency constraint. Another scheme was proposed in [9] to
tackle the workload offloading problem considering latency
to minimize the average response time. In [10], the authors
proposed different profit maximization frameworks for cloud
providers. [11] addressed the utility based pairing problem
between the fog nodes and IoT devices with the Irving’s
matching algorithm. All these solutions focus on the offloading
problem from the IoT devices to the edge servers without
considering solid models for resource allocation.

Other work considered the resource allocation problem in
Edge-IoT context focusing on serving data service subscribers
(DSSs). For example, the work in [12] considered a three-
tier edge network, where the data service operators can obtain
computing resources from different edge servers to serve their
DSSs using stackelberg game based joint optimization. From
the DSS’s side, the edge cloud was able to surrogate the
requirements and simplify the management of the network.
From the servers’ side, the edge cloud can exploit content
and support service delivery in an efficient way. The work in
[13] proposed an edge computing framework that can provide
rich flexibility in meeting different mobile users’ demands.
The authors in [14] proposed an Edge-IoT architecture to
enhance the system performance and computational resource
management. It focuses on admission control, computational
resource allocation, and power control. The authors in [15]
exploits reinforcement learning at the IoT devices to decide
whether to offload data for processing to the edge or perform
it locally with energy optimization objective. Deep reinforce-
ment learning based resource allocation scheme, which aims
to allocate computing and network resources to reduce the
average service time and balance the use of resources, was
proposed in [16]. Auction theory was also adopted in [17] to
allocate resources for IoT devices with various prices. Auction
schemes do not take the IoT users budget into consideration
for acquiring resources as they only focus on the servers profit
from providing the computation resources.

None of the proposed work in the literature that tackles
the resource allocation in Edge-IoT networks considering
multiple applications with heterogeneous delay requirements
and fairness guarantee at the edge, which is essential in the
context of IoT networks. In addition, none of them considered
cooperation between edge servers through exploitation of
historical allocations. In addition, it is vital to balance between
the efficiency and fairness in resource allocation. Conventional
schemes such as social welfare maximization [18] and auction
models [19] may not be suitable as they either give the
resources to the applications with high utility as the case in
the welfare maximization, or only to the auction winners as
in the auction based models.

III. SYSTEM DESCRIPTIONS

This section describes the system model, fairness character-
istics, and the resource allocation problem formulation.

A. System Model

The considered system model of Edge-IoT is depicted in
Fig. 1, where there are multiple distributed edge servers with
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Fig. 1. Edge-IoT Network Model

various computation capabilities and multiple heterogeneous
IoT applications that need to acquire available computation re-
sources to process their data. All the IoT applications’ requests
for resources are processed either at a controller located at the
edge for centralized allocation setting or at the edge servers for
the distributed allocation. Each IoT application sends dynamic
requests for resources from the edge and aims to maximize its
utility. It is assumed that the resource requests arrival rate
and resource capacity vary at each time instance. The edge
server load and capacity vary over time based on the demand
of the IoT devices and the resources allocated. Edge server’s
resources capacity, edge server’s load, application’s delay
requirements, and application’s priority are the main factors
that impact the resource allocation. Therefore, our resource
allocation scheme takes these factors into consideration to
harmonize the applications’ interests and support fairness in
resource allocation. The mentioned environment factors related
to the edge servers and the IoT devices can be very dynamic
over the time. Thus, it is difficult to determine an exact
model for this dynamic environment which makes model-free
solutions more appealing for such environment.

Let M, N, M, and N be the set of edge servers, the set
of IoT devices, the number of edge servers, and the number
of IoT devices respectively. ¢ and j are the indexes for the
IoT application and the edge server respectively assuming
that each IoT device runs one application. The capacity for
each edge server j is denoted by c;, which is the number of
computing resources available at that server. The edge server is
divided into a set of clusters each of which has homogeneous
computing resources. In case the edge server incorporates
various computing resources, each cluster is considered as a
separate edge server. Note that distinct edge servers can have
distinct capacity and one application can receive resources
from multiple edge servers. Let s; ; be the resources of server
j that are allocated to application . Hence, the vector of re-
sources allocated to application 7 from multiple edge servers is
denoted by s; = (81, Si,2,-----, Si,m ). Our resource allocation
scheme aims to find a computation resource allocation policy
7 for application ¢ from server j € M. The application utility
is denoted as w;(s;). Different IoT applications have distinct
methods to define w;(s;). In this work, we consider delay as
the main performance metric for the utility evaluation since
delay sensitive applications are the ones that need maximum

support of edge computing. The delay encountered at the
edge server for certain resource requests initiated by the IoT
applications consists of processing delay and network delay.
The processing delay df, ; is the time required at the edge
server to process the resources requests. The network delay
d;'; includes the transmission delay and the propagation delay
which is the round trip time between the IoT device and the
edge server and calculated as in [9].

The maximum encountered delay for processing, trans-
mission and propagation must be maintained below certain
threshold d?j‘” as follows,

widl 4 di; < de

Vi, j (D
where w; is the server load that impact the processing delay
and is defined as the ratio of the received requests for resources
and the server maximum capacity. The arrival rate of requests
from application ¢ to server j is denoted as \; ;. The average
processing time at the server j is computed as follows,
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If d'; < d;"*", the maximum number of requests that server
J processes for application 1 is,
wj
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where ¢;; = maxz{(kij — gmarig+),0}. The service of

requests of application i is cons1dered7 successful if the total
delay is less than or equal the maximum delay tolerance. The
utility of application ¢ with resources allocated from server j
is calculated as follows,

Ui (8i5) = PijGi58i5 = PigSig Vi J )
where p; j = h; jq; ; and h; ; is the gain of the application 4
resulted from computing resources allocation from server j. It
is assumed that p; ; is computed beforehand. The total utility
for application ¢ with resources allocated from multiple servers

is given by,

M
Jj=1

One point to note is that the IoT devices prefer to request
services from edge servers that are close and lightly loaded.
Thus, the value of p;; is dependent on the load for server
7. The IoT application priority denoted by p; is assumed to
be predetermined and ranked based on the application’s delay
requirements. For example, the application with minimal delay
requirements will be given the highest priority in resource
allocation.

M
Zpi,jsi,j Vi (6)
—1
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B. Fairness Characterization

We characterize the fairness of the proposed utility model
using the envy-freeness feature [20], where every IoT appli-
cation 7 feels that its resource share from certain edge server
7 is at least as good as other applications. Therefore, the
application ¢ will not envy other applications. In the proposed
utility model, each application ¢ aims to maximize its utility
u;(s;) with capacity constraint sz\; sij < ¢ VjeM
which indicates that the edge servers may have different
capacities ¢;. The term (; = max;{p; ;s; ;} is defined as the
maximum achieved utility of application ¢ over a set of edge
servers. The preferred set PR; of application ¢ includes all
the edge servers that support the achievement of (; such that
PR; = {j : pijsij = (i}, Vi. Thus, each application ¢ will
aim to obtain its resources from the server that can give (;
(maximum utility). When the capacities of the edge servers
are the same, an envy free allocation indicates u(s;) > u(s})
for all 7 and 7’ € N. Since the servers have different capacities,
it implies that the maximum utility of application (; can
only be achieved through allocation from PR;. Thus, the
envy-freeness classical definition has to be extended i.e. an
allocation is envy-free if:

uisi) o wilsy)
G Ci’
where i € N, i’ # i is the index of other IoT applications.
The inequality in (7) can be written as,
;i ()¢ > wi(sy)G Vi,i, eN )

Now, we can prove that the allocation is envy-free if the
condition in (8) holds as follows,
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In (9), we substitute s; ; = A]"**/q; ; according to (4). Note
that in (10), W; refers to the total gain IoT application %
receives as a result of allocation from edge servers j € PR,
and defined according to (5) as W; = ZPR Z %4 This can
be inferred from the fact that each appllcatlon will acquire
resources from edge server in its preferred list PR; to max-
imize its utility. The results in (11) confirms that application
i achieves its maximum utility as the maximum number of
resource requests is satisfied when application ¢ finds the
ultimate allocation at certain server j.
M
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The fairness characteristic in (8) is proved as it is only fair
if the IoT application ¢ receives its resources from PR; such
that the utilities of all applications are maximized.

C. Problem Formulation

The allocation problem is formulated to maximize the
u;(s;) for all IoT applications subjected to the IoT application
delay requirements and the edge server resources capacity
constraints. The resource allocation problem to achieve the
ultimate allocation of computing resources s; is defined as
follows,

ma u;(s;) s.t. 13
Cl: widy; +d; <d"'" Vi
C2: 5;;>0, Vi,j
N
C3: ZSZ‘,]‘SCJ‘, VJEM
i=1

C1 is the constraint that maintains the delay of serving
certain application less than the maximum tolerable delay.
Moreover, it implicitly accounts for the priority of the IoT
applications as the applications that are delay sensitive are
given higher priority in resource allocation. C2 confirms that
the number of resources allocated is positive. The capacity
constraint in C3 guarantees that the allocated resources from
certain edge server 5 € M never exceed its capacity.

IV. ONLINE Q-LEARNING SCHEME FOR RESOURCE
ALLOCATION IN EDGE-IOT

In this section, we describe the online Q-learning scheme
employed to achieve resource allocation using both the cen-
tralized and the distributed online Q-learning settings.

A. Online Q-Learning Scheme Overview

Online Q-learning [6] is a model-free reinforcement learn-
ing technique which can be used to find an action policy for
any given Markov decision process (MDP). It works by learn-
ing a Q-value function that ultimately gives the expected utility
of selecting certain action in a certain state and following the
policy thereafter. MDP includes a discrete set of environment
states A and a discrete set of actions B. At each epoch t,
the learning agent obtains network state information a and
selects certain action b. A reward R will be received and used
to define certain Q-value which evaluates the action selected.
The process continues iteratively until it converges to an action
policy that maximizes the Q-value.

We formulate the MDP in this paper such that factors
include server load, IoT devices, edge servers, server capacity,
arrival rate of resources requests from IoT devices, and total
delay threshold are taken into consideration in the resource
allocation action selection. The state of the developed scheme
evolves as a discrete-time Markov decision process (DTMDP)
in which the resource allocation is defined as the action. The
scheme aims to maximize the IoT applications utilities while
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satisfying the constraints defined in C'1-C'3. Such maximiza-
tion problem lies within the domain of DTMDP. However,
the large number of Edge-IoT states represents a significant
impediment on developing a model-based scheme. Therefore,
we choose model-free online Q-learning to solve the resource
allocation problem with varying resource requests and edge
resource capacity over time. The state transitions and actions
occur at discrete time epochs. The DTMDP is formulated as
(A,B,T,R) where T : A x Bx A — [0,1] is the state
transition probability function. The actions available at each
epoch depends on the Edge-IoT state space. For instance, if
there is no resource requested from the edge, then the edge
servers are switched off and no resource allocation will be
necessary.

We consider the following DTMDP for resource allocation:
N, = (N,M,d]"*", u;(si), si;). The MDP components are
defined as follows,

o State: the environment state at epoch t is defined as,
a=(l, J, wj, ¢y A%, Nij,pi). ar € A describes the
evolution of the network state in time epoch t = 1,2...
The state information is acquired by the controller in the
centralized setting or the corresponding edge server in the
distributed one. p; refers to the IoT application priority
which is predetermined according to the application delay
requirements.

o Action: by = (s;;) is defined as the allocation of
computing resource s;; for all IoT applications. It is
selected for each state a; at epoch t.

o Reward: the reward function is the utility achieved by
all the IoT applications Vi and is defined as, R;(a,b) =

The allocation policy 7 : A — B is defined as the probability
of selecting certain action b; at state a; that maximizes
the achieved utility subjected to the optimization constraints
C1-C3. The value function which is defined as the total
expected discounted utility function over infinite time horizon
conditioned on initial network state a; for allocation policy
7w € IT is found as,

Valar) = E-{ > _ B""Rlas, 7(by))|as }

t=1

(14)

where the expectation F; is over distinct actions in distinct
states fort = 1,2,3... and 8 € [0, 1) is the discount factor. The
DTMDP evolution for certain resource allocation policy 7 € II
is Markovian with the following state transition probability:

T(a,b,a’) = Pr(a;+1 = d'|ay = a,b; = b) (15)

where a} € A and t = 1,2,.... An exact model for the
transition probability is impractical because: 1) the resource
request processing is constrained by dynamic factors including
the server load, server capacity, and IoT application delay
requirements; 2) it is infeasible to list all the (a, b, a’) pairs;
3) it is not desirable to predefine the state transition model for
problems in which the real state information deviates from the
model; 4) the DTMDP state space for such Edge-IoT system
is large which makes it extremely difficult to compute the
resource allocation policy. Therefore, we develop an online

Q-learning based resource allocation scheme which gradually
adapts to the dynamic Edge-IoT environment according to the
received reward.

B. Centralized Resource Allocation Using Enhanced Online
Q-learning

In this setting, we assume that a controller is located
between the edge servers and the IoT applications. This
controller follows the DTMDP defined in Section IV.A and
manages the resource allocation process as it receives the
state information from both sides (edge servers and IoT
applications) and employs the online Q-learning technique to
achieve the ultimate resource allocation policy. Fig. 2 presents
the centralized resource allocation setting. When the Edge-IoT
system is in the state a; € A in epoch ¢, a finite set of possible
actions can be selected by the controller from the action space
B. The action b, is selected by the controller in epoch ¢. The
controller learns the optimal resource allocation policy which
is defined based on the optimal Q-values Q*(a,b) as follows,

7*(a) = arg max Q*(a,b) (16)

The optimal Q-value of the online Q-learning is defined as the
current expected reward added to a future discounted reward
as follows,

Q" (a,0) = E[Ry(a,0) + 8 Y _ max Q*(a’,0')]

a’€A

a7

where (3 is the discount factor and b’ € B is the future action.
The optimal Q-value Q*(a,b) is learned by updating the Q-
value under the action b in epoch ¢ as follows,

Q"™ (a,b) = (1 — a"Q"(a, b) + ' [Ry(a, b)
+ﬁmaxb’eBQt (a/7 b/) - Qt (a7 b)]

where o' € (0,1] is the learning rate. The initialization of
Q'(a,b) for all (a,b) € A x B is arbitrary. The considered on-
line Q-learning scheme is a stochastic approximation method
established to solve the Bellman’s optimality equation in (18)
associated with the discrete time DTMDP. Online Q-learning
does not need explicit state transition probability model and
it converges with probability one to an optimal solution if
o2, ol is infinite, > ;o (af)? is finite, and all state/action
pairs are visited infinitely [21]. These conditions are satisfied
if the probability of the action selection in any state is not
zero during the action exploration step. We utilize e-greedy
strategy [22] to balance exploration and exploitation in online
Q-learning. € is the percent of the time that the controller takes
a randomly selected action (exploration) rather than taking the
action that will maximize its reward (exploitation). Given the
considered DTMDP above in Edge-IoT environment which
can be very dynamic and has a large number of state/action
pairs, it makes the representation of Q!(a,b) impossible. This
curse of dimensionality in the proposed DTMDP increases
the computational complexity. Thus, it is necessary to de-
velop a form of brief representation in which the Q-values
are approximated as a function of smaller set of variables
with a reduced and countable state space A*. The compact

(18)
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Fig. 2. Centralized resource allocation setting

representation of Q : AT x B — R is achieved using the
function Q/ : AT x B x RV — R which is called a function
approximator.

To approximate the Q-function, we consider a group of
functions Q = {Qy} that are parameterized by a finite
dimensional vector ¥ = [{¥,})_;] € RY. The iterative
procedure to find Q* is replaced by a suitable procedure to
find ¥* instead such that Q* is approximated by a function
in Q. Therefore, we switch from searching in an infinite
dimensional function space to a finite dimensional space (R").
An implication can be deduced that unless Q* € Q, we cannot
determine the exact Q*. We will be able to determine the fixed
point of a combined operator oH, where p is a mapping that
projects a function defined in AT x B to a point in Q. The
group Q is assumed to have a linear span of a basis function
Xv : AT x B — R and any ¢ € Q can be written as a linear
combination of x,(a,b). Therefore, the approximated Q' is
calculated as follows:

|4
Q'(a.b,9) => Wyxu(a,b) =9x"(a,0)  (19)
v=1

where T is the transpose operator and the vector x(a,b) =
[xv(a,b)Y_,] with a scalar function x,(a,b) defined over
A* x B and 9, belongs to the vector ¥ € RY. y,(a,b)(v =
1,2,3....,V) is viewed as the basis functions and ¥,(v =
1,2,3...., V) are the associated weights. The basis functions
Xv(a,b) adopted for Q-value approximation are assumed to
be bounded and linearly independent and > |x,(a,b))| < 1
for all (a,b) € AT x B. We consider a sample based
approximation model that introduce further restrictions on the
set of the basis functions. This allows to derive error bounds
for the given approximation (Qy~. The basis functions are
also assumed to verify ||xy||co = 1. With the basis functions
assumptions hold, the basis functions are linearly independent.

The online Q-learning defined earlier is combined with
the compact state representation using gradient based update.
Thus, the update rule in (18) is re-defined accordingly as
follows,

t+1 __ ot t [ YW AR VAN
I =9 +a(Rt(a,b)+ﬁg1€a%m9x (a', V)

9"x" (a,b))x(a,b) (20)

The new update rule in (20) is composed of ¥ = [{9%}V_,]
which is the vector of parameter value over epoch ¢, a generic
temporal difference in the epoch and the gradient. The gradient
(x(a,b)) is defined as the vector of partial derivatives with
respect to 9°,

Since the update rule in (20) is performed in a vector
basis, it will not converge. Thus, we use ordinary differential
equations (ODE) to obtain the necessary conditions for conver-
gence. To proceed, we first introduce the following definitions
and assumptions.

Definition 1: we define the matrix Y as,

T =E[x" (a,b)x(a,b)] 1)

For the parameter vector ¥ and a specific network state
a € A*, we define a vector x(a,9) = [{xu(a,b)}V_,]
where b € BY. BY is the set of optimal resource allocation
actions for state a and it is defined as BY{b € B’|b =
arg maxyep X’ (a,b’)}. Now, we define the following a ¥-
dependent matrix:

Y7 =EN"(a,9)x(a, V)]

Both Y and Y7 are positive. We introduce the following
required assumptions,

Assumption 1: The basis functions {x,(a,b)
early independent for all (a,b) € AT x B.

Assumption 2: For every v = (1,2...V), xu(a,b) is
bounded, which means E{x2(a,b)} < oo and the reward
function satisfies E{R?(a,b)} < oo.

Assumption 3: The learning rate {a'} fulfill the constraint
Yo ot =coand Y .o, (af)? < oc.

Proposition 1: Under assumptions 1-3 and Definition I, the
approximated online Q-learning converges with probability
one, if

(22)

\%4

o—1 are lin-

T < T V9eRY (23)

Proof: The convergence of the proposed online Q-
learning requires finding stable fixed points of the ODE
associated with the update rule in (20), which are found as
follows,

0 = E[Ry(a,b) + 89X (a,0") = 9'x" (a,0))x(a,b)] (24)

We need to find a stable points of the ODE defined in (24)
to prove the convergence of the proposed online Q-learning.
Thus, we define two trajectories ¢ and % of the ODE with
different initial conditions and 9% = ¥} — ¥%. Then, we have

el _

ot 2001 =93 (95)" = 2BE[9ix" (¢, 97)x(a,0) ()"

—05x " (a’, 05)x(a,b)(95) "] — 206 L (05)T  (25)

Using the definition of x(a,?) in Definition I, we can infer
the following two inequalities,

PN (@ 9) < N (95) 26)
IexT(d',05) < 9px" (d,97) 27)

Since the expectation E in (25) is taken over different resource
allocation actions in different states, we can define the two
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sets I'y = {(a,b) € AT x B|9txT(a,b) > 0} and T_ €
A* x B—T,. If we substitute (26) and (27) in (25), we get,

0|19 1*
ot

E[9ox" (', 99))x(a,0)(05) " |T-]) — 2057 ()"

< 26(E[96xT (o', 95))x(a,0) (95) T T'+]
(28)

Holder’s inequality [23] is applied to the expectation in (28)
as follows,

alvsI*
< t
o 28 \/IE It x

VE[(x(a.b)@
< \JE[(x(a, b)(95)T

o/, 05))° 0]

D770 + V[T (@, 0)) 0]

Pir-) 200"
X \/IE [(X(a b) ()"
] % \E[(x(ab)(9%) )\r])

=205 (9)"

<28 (\/IE (95xT (!, 94))°] )2y ]

+\/IE [(9EXT (', 9%))

With application of the definition of TV in (22), we get,

‘9”22”2 < 28 fmaz [95 771 ()7, 0T (957
VE[(x(a.B)(0)7)] + ~200 (05" (29)
If the condition in (23) is met, we can indicate that,
WA < amge gy - 205 (05)"
= (28 - 2)90 (%) (30)

which means that 9} converges to the origin. Therefore, there
exists a stable point of the ODE in (24). Thus, the proposed
online Q-learning with Q-value approximation converges with
probability one. u
Since there is a stable point ¥* of the ODE in (24), we can
indicate the following,
0 =E[R(a,b) + B9'x" (a',9") = 9'x" (a,b))x(z,9)] (3D
Then,
= E[R:(a,b) + B9*xT (d',9*))x(a, b)] 1! (32)

As a result, the optimal approximated Q-function confirms
that,

Q'(a,b,9%) = E[Ry(a,b) + B9*x" (a/,9"))
X(a,b)] x Y7 x(a,b) (33)

for all (a,b) € AT x B.

C. Distributed and Cooperative Approximated Online Q-
Learning Resource Allocation

Even with the brief representation of the Q-value in the
centralized setting, the number of allocation actions will grow
exponentially as the number of IoT devices increases in Edge-
IoT. This increase will eventually create a practical scalability
challenge as the controller will not be able to cope with
such Edge-IoT system with large number of IoT devices with
heterogeneous applications. The edge servers can cooperate
with each other in learning to enhance the resource allocation.
This cooperation facilitates a distributed scheme for resource
allocation. In the distributed scheme, edge servers learn in a
cooperative multi-agent learning fashion how to make local
decisions for resource allocation of IoT devices in their
proximities. In this setting, the IoT devices send the resource
requests to the edge server in their proximity. The edge servers
shares their state information with each others through the
controller and learn cooperatively to achieve a common goal
of finding joint resource allocation policy that maximizes the
IoT applications’ utilities and fulfill the constraints in C'1 to
C3. The controller acts as a repository in this setting from
which the learning agents (edge servers) obtain the online Q-
learning MDP (state/action/rewards) of each other. Thus, these
servers can exploit them to achieve their actions policy in
the distributed learning. This cooperation solves the scalability
problem and enhances the decision making for resource allo-
cation. In addition, it optimizes the resource allocation action
as it is generated based on the shared information between all
the edge servers.

The edge servers take the role of the learning agent in a team
Markov game. The game is defined as A = {M, A", B, R}
with the common objective of finding a resource allocation
policy 7 that maximizes the total expected applications utilities
given in (13), where M is the set of the edge servers. The
optimal Q-value Q* (s, b) for all (a,b) € AT x B, is related to
the optimal joint resource allocation policy and captures the
team Markov game structure. For each environment state a €
AT, the edge servers play the game A, = {M, B,Q*(a,.)} in
which Q*(a, .) is independent. The actions in the team Markov
game is generated jointly by the M independent edge servers
in a distributed fashion. The joint resource allocation action b
at state a is evaluated as optimal if Q*(a,b) > Q*(a,b’) for
all ' € B. The distributed and cooperative resource allocation
setting is presented in Fig. 3. Since it is impossible to have a
particular state visited infinitely often when the state space is
large which is the case in Edge-IoT, we exploit the compact
representation model explained in section IV.B. Consequently,
we conclude the following proposition.

Proposition 2: For the Markovian game A, the distributed
multi-agent online Q-learning algorithm converges with prob-
ability one if the constraint in Proposition 1 holds.

Proof: If we consider that each edge server follows an
independent resource allocation strategy as the controller in
Section IV.B, then, the team Markov game is a discrete time
MDP. As a result, the proof of Proposition 2 is the same as
the proof of Proposition 1 in the centralized setting. [ ]
To coordinate the multi-agent learning, the following assump-
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Distributed resource allocation setting

tions are made,

Assumption 4: The resource allocation policy of different
edge servers do not change significantly in similar network
states.

Assumption 5: The initial network state a(t) evolves ac-
cording to irreducible and Harris recurrent Markov chain [24].
Based on Assumption 4, it is necessary to check the state
similarities in order to exploit the historical allocation actions
of each edge server. Therefore, we exploit Hamming distance
[25] to measure the similarity between two network states a
and o’ denoted by Dy (a,a’). Each edge server can employ
the resource allocation action used by other edge servers for
the current network state by using the past actions of these
servers. The historical actions up to epoch ¢ can be obtained
by the o-algebra as follows,

F(t) = o({a(n), b(n)}—1, {R(a(n), b(n))};=1)
where the information of each experienced state a(n), each
performed action b(n) and application utility R(a(n),b(n))
can be extracted from the controller. At each epoch ¢, ev-
ery edge server checks the Hamming distance between the
current state a(t) and state a(n) in F(¢). Then, it ob-
tains a sample set AL (a(t), F(t)), which is composed of
F most recent states from F'(t) that minimize the distance
Z?:l Dp(a(t),a(ny))). Then, a virtual game is created as
Loy = {M, B, E(a(t),.)} for state a(t) at ¢, where E(a(t),.)
is the common reward (utility) that all the servers gain after
they select resource allocation action b € B and is set to 1 if
b= argmazycpQ'(a(t),b’,9*) and 0 otherwise. In addition,
Bj (a(t)) is created for each edge server as the set of joint
actions that achieve reward of value 1 in state a(t).

The multi-agent approximated online Q-learning is imple-
mented through the following procedure, when ¢t < Z, all
the edge servers select resource allocation actions randomly.
from t = Z + 1, each edge server j picks [ allocation
records B, (Af(a(t), F(t))) from the historical actions that
corresponds to Af(a(t), F(t)). Note that Z and [ are two
integers that satisfy 1 < [ < F < Z. Considering the
following conditions: (i) there exist a resource allocation action

” /
Z’ = (lS’b ]l;’b _)j )e %JFBEiﬁl(fg?()t)sch(l;))t;la Eiil;;}jlere efi;t]s eﬁ)ieii
3= VA ’ ’
one joint action b that is b € BL(A; (a(t), F(t))) I_IB; (a(t)).

(34)

Algorithm 1 Distributed online Q-learning algorithm for
resource allocation
Require: i, j, Cj, d;('f;lx, /\i,j’ Wj, Pi
Ensure: s; for [oT App
1: Initialization of Learning

2 sett=1,97 <0

3: evaluate the state a(t)

4: if (t < Z 4 1) then

5: Select action b randomly;

6: if (C1 to C3 are satisfied ) then

7: Ri(a,b) is achieved

8: else

9: Ry (CL, b) =0

10:  end if

11: else

12:  Update BJ (a(t)) = {b|E(a(t),b) = 1} for a(t)

13:  for (exploitation probability 1 — €) do

14: Randomly select B}, (A (a(t), F(t))) out of F ac-
tions corresponding to A% (a(t), F(t))

15: Calculate E’(a(t), b;) according to (35) and populate
B! (a(t))

16: if ((i) and (ii) hold) then

17: select the most recent action from

B (Ag(a(t), F(1))) N B; (a(t))

18: else

19: select an action from Bj(a(t))

20: end if

21:  end for
22:  for (exploration probability ¢) do

23: select allocation action randomly
24:  end for
25: end if

26: check a(t) — a(t +1) and R(a(t),b(t))
27: Update 9! according to (20)
28 t=1t+1

If (i) and (ii) are satisfied, the edge server j selects the
allocation action BJ (n*), where n* = max,{n|b(n) €
Yr(Xp(zt, F(t))) N Bj (a(t))}. Otherwise, the edge server
j selects a random action from Bi(a(t)) = {b;|b; =
arg maxy E'(a(t),b})}, where

’ . 'Y;'(a(t)v b*j)
E'(a(t),b;) = ZE(a(t)’b)f

b—J

(35)

The value in (35) is found using [ records that are randomly
drawn from F' most recent actions, v5(a(t),b—;) is the num-
ber of times the other servers perform the joint action b_;
in state a(t). The distributed multi-agent online Q-learning
for resource allocation process in Edge-IoT is illustrated in
Algorithm 1. The distributed multi-agent learning for resource
allocation converges with probability one to the best joint
resource allocation policy with consideration of assumptions
1-5 and | < F/(oa, +2) for each a € A*, where pa, is the
best response graph of game A, [26].

The convergence of {¥*} to the optimal ¥* is demonstrated
as a result of Proposition 2. Thus, the game I';(;) based on
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9% will evolve to reach the game I', established based on
9* for a € A", Under Assumptions 4 and 5, the team stage
game A, is decreased to a team stage game with states
Al (a(t), F(t)). The M servers manage resource allocation
policy for all a(t) as | < F'/(oa,,, +2) by applying theorem
1 in [26]. This guarantees that the distributed multi-agent
resource allocation will converge with probability one.

V. EVALUATION AND NUMERICAL RESULTS

A. Simulation Setup

The evaluation environment composes of area with di-
mensions of 10x10 km, where the locations of edge servers
and IoT devices are uniformly assigned. A total of 90 edge
servers and 900 locations are generated, where each IoT device
assumes to hold one of these locations. We consider three
applications with various delay requirements in our simulation:
gun-shot detection (GSD) (300 devices), Virtual Reality (VR)
application (300 devices), and home voice assistant (VA)
(300 devices), which are all delay sensitive but with different
priorities. Highest priority goes to GSD, then VR application
and finally VA and this is reflected on the number of resource
requests for each application. The link bandwidth between the
IoT devices and edge servers is assumed to have the capacity
of 54 Mbps as the traffic of the considered applications is
heavy while the link capacity between the edge servers is
100 Mbps. The network delay including transmission and
propagation delays are estimated according to the round trip
time and link capacity and it is assumed to be between [1,2]
ms for the link between IoT devices and edge servers and
between [0.5, 1.2] ms for the link between the edge servers.
The resource requests length are exponentially distributed with
an average length of 80 KB. The processing delay at the edge
server is 40 ms on average. The maximum tolerable delay of
the application follows a uniform distribution. The service rate
k; ; is generated randomly with maximum rate of 200 requests
per unit time. The evaluation results consist of applications
utilities, fairness in resource allocation, and delay measure-
ment. We consider social welfare with different weights (SW)
[18], the three-tier resource allocation scheme proposed in
[12] (TRA), DQN scheme in [27], and the resource allocation
scheme (ECF) proposed in [14] for performance comparison.
In the social welfare maximization scheme, the objective is to
maximize the user utility subjected to the capacity constraints
of the edge servers. The scheme TRA uses stackelberg game
based optimization to allocate resources from edge servers to
services subscribers. In ECF framework, cross-layer dynamic
stochastic network optimization is exploited to maximize the
system utility, based on the Lyapunov stochastic optimization
approach. The label (OQL-Cent) indicates our proposed cen-
tralized online Q-learning setting while (OQL-Dist) indicates
the distributed one. In [27], the authors proposed a DQN
based offloading and resource allocation scheme for Edge-
IoT system. They exploit deep neural networks for Q-value
approximation to account for the dimensionality problem in
large scale Edge-IoT environment with a large number of IoT
devices.

0.9
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Fig. 4. Application utility for different applications
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Fig. 5. Network utility against the number of servers

B. Application Utility and Fairness Evaluation

In this section, we demonstrate the capability of the pro-
posed scheme in terms of the achieved application utility,
network utility and fairness in resource allocation. Application
utility is defined as the maximum gain that the application
can achieve from its resource allocation. It measures the
satisfaction of the application as it is a function of the number
of applications requests that are successfully processed. The
request is considered to be successfully processed if the
encountered delay including both network and processing
delay are less than maximum tolerable delay of the appli-
cation. Fig. 4 presents the performance comparison among
the schemes in terms of application utility achieved for the
three considered applications. The network utility which is
the cumulative utility for all applications against the number
of servers is presented in Fig. 5. The results in Fig. 4 and
Fig. 5 show that our scheme outperforms all other schemes
in terms of the utility achieved. We notice that SW scheme
allocates resources fairly but with low utility. In spite of the
comparable utility achieved by TRA, ECF, and DQN schemes
in the GSD application, they lack the fairness feature as the
voice assistance application gained very low utility. The reason
is that these schemes focus on the application that has the
highest priority which is the GSD. Fig. 6 compares the envy-
freeness (EF) among the schemes where EF =1 means that the
allocation is envy-free. The general concept of EF is that every
IoT application 7 feels that its resource share from certain edge
server j is at least as good as other applications. Therefore, the
application i will not envy other applications. EF is calculated
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as follows, 100
EF = min 0)/6 (36) &g
o () /e £ s
<
where ¢ and k are the indices of two different IoT applications, g 50
w is the utility function, ¢ is the maximum utility of the g
application. We can notice that our scheme in both settings £ 5
outperforms the TRA, ECF and DQN schemes. z
0
0.2 0.4 0.6 0.8 1
C. Delay Evaluation -
. . Resource Request Probability
In this section, we evaluate the performance of the proposed
. . B sw [ TRA [0 ECF [ DQN [ OQL-Cent
resource allocation scheme in terms of the encountered average B OQL-Dist

service delays which include both processing and network
delay. We evaluate the average service delay recorded by our
scheme for the GSD, VR and VA applications as a function 120 o

of the probability of resources requests from the edge cloud.
We compare the performance of the proposed scheme against %0
the one achieved by SW, TRA, ECF, and DQN schemes. Fig. 6
7, Fig. 8, and Fig. 9 present the average service delay for the
30
increases because more resources will be available for the 0 i L
2

Fig. 8. Average delay for VR application

GSD, VR and VA applications respectively. The figures show
that the delay is reduced as the resources request probability

Average Delay (ms)

applications. In addition, we observe that our proposed scheme 0
outperforms the other schemes as it recorded the lowest service Resource Request Probability

delay for all the applications which highlights the advantages m sw I TRA I ECF [ DON B OQL-Cent
of using online Q-learning to determine the most appropriate B OQL-Dist

resource allocation policy that maximizes the applications
utilities. In addition, we demonstrate the capability of our
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Fig. 9. Average delay for VA application

proposed resource allocation scheme to maintain the average 80
delay defined in (1) below certain delay threshold defined &
according to the application type as in C1. Fig. 10 presents is: 60
the average delay of different applications compared to their 2
corresponding threshold. It is evident that our scheme using % 40
both centralized and distributed settings is able to maintain the &
average applications delays below the specified threshold and i% 20
consequently fulfills the constraint in C'1.
0
D. Applications and Environment Analysis VR Application Voice Assistant  Gun-shot Detection
In this part, the effect of the number of IoT devices and B OQL-Dist :ppoh(git_lgr;iype Threshold

number of edge servers on the achieved network utility is
evaluated. Fig. 11 and Fig. 12 show the impact of the number
of the IoT devices and the number of edge servers on the ratio of each application is 1/3 of the total number of the IoT
achieved utilities for the three applications: GSD, VR and devices. We observe that as the number of devices increases,
VA following both online Q-learning settings. Note that the the network utility decreases as the same set of edge servers

Fig. 10. Average delay for multiple application compared to threshold
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is shared among more devices. However, the utility increases
significantly as the number of servers increases where more
resources will be available.

In addition, we demonstrate the capability of our resource
allocation scheme in maintaining the average edge server
load balanced and stable regardless of the number of IoT
devices that join the system. Fig. 13 shows the normalized
average server utilization versus the number of IoT devices.
We can notice that our scheme using both approaches keep
the utilization of the server steady and balanced. The server
utilization is compared with the utilization achieved by the
DQN scheme. The DQN scheme measured server utilization
deteriorates as the number of IoT devices increases. This
evaluation demonstrates that the proposed online Q-leaning
scheme maintained the server utilization i.e. the amount of
allocated resources below the maximum capacity. Finally,
Fig. 14 measures the speed of convergence of our scheme
using both centralized and distributed settings. We compare
the performance to cooperative online Q-learning with same
optimization objective but without Q-value approximation
(OQL-NA), DQN, and ECF schemes. It is evident that our
scheme achieves a considerable improvement in speed of
convergence in comparison to the typical online Q-learning
thanks to the approximation of Q-value that reduces that state
space. We also notice that the centralized approach achieved
better convergence than the distributed one. The reason is
that the distributed approach requires information exchange
of the historical resource allocation actions among the edge
servers which consumes more time. The evaluation in Fig. 14
is executed for the GSD application.

All the presented results demonstrate the potential of the
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proposed utility based resource allocation in Edge-IoT using
approximated online Q-learning. Note that the distributed
setting of online Q-learning records better results than the
centralized setting. This is expected as the edge servers learn
the ultimate resource allocation action in a cooperative manner
and in the distributed setting. The cooperative learning allows
the edge servers to utilize the controller as a repository to store
their individual resource allocation policy. This makes edge
servers able to exploit each others allocation policies in similar
network scenarios. Hence, it fosters the servers’ capability to
have better resource allocation actions in comparison with the
centralized online Q-learning. Each edge server obtains the
state information from the controller and becomes able to play
an optimal resource allocation action in a team Markov game
by using its historical experience and other servers experience.
Moreover, the computational complexity of the centralized
online Q-learning increases significantly as a result of the
extreme growth in the number of IoT devices in comparison
with the complexity of the distributed approach. Thus, the
usage of centralized setting might be less preferred especially
in large scale Edge-IoT systems. However, the centralized
setting has better convergence speed as the distributed setting
requires more time to run the team Markov game on multiple
servers to reach joint resource allocation policy.

VI. CONCLUSION

In this paper, we investigated the resource allocation prob-
lem in Edge-IoT network, which consists of multiple dis-
tributed edge servers and heterogeneous IoT applications. We
proposed a novel application utility based model to allocate re-

2327-4697 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permilsJon. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Missouri-St Louis. Downloaded on August 13,2020 at 00:09:48 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2020.3015689, IEEE

Transactions on Network Science and Engineering

sources to multiple applications that maximizes the application
utility considering many factors such as servers load, capacity,
and applications’ requirements. The proposed model maintains
fairness in resource allocation at maximum level and this was
evaluated using the envy-freeness feature. We developed an
enhanced centralized online Q-learning scheme for resource
allocation in which a dedicated controller is exploited to
gather network state information and learns how to achieve
an effective resource allocation policy. The developed scheme
comprises a unique method to expedite the learning conver-
gence with less computation in comparison with the typical Q-
learning through approximation of the Q-value. In addition, we
proposed a distributed cooperative online Q-learning approach
where each edge server acts as a learning agent. The learning
agent takes advantage of other servers’ resource allocation
policies if it encounters the same state scenario. The distributed
online Q-learning improves the resource allocation process and
converges to better application utility.
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