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ARTICLE INFO ABSTRACT

Keywords: This paper introduces a homogenization-based constitutive model for the large-strain mechanical response

Fillers of elastomeric syntactic foams subject to arbitrary quasistatic loading and unloading conditions. Based on

P_or_es ) direct observations from experiments, this class of emerging foams are considered to be made of a nonlinear
Finite dEf‘?rmfmon elastic matrix filled with a random isotropic distribution of hollow thin-walled spherical shells - commonly
Homogenization

termed microspheres or microballoons — each having the same mean diameter that are made of an elastic
brittle material that is much stiffer than the elastomeric matrix, typically, either glass or a hard polymer.
Accordingly, such underlying microballoons behave effectively as rigid particles initially. Along a given loading
path, however, they may fracture (in the case of glass microballoons) or buckle (in the case of polymer
microballoons) at which point they abruptly transition to behave effectively as vacuous pores. On that account,
the proposed constitutive model corresponds to a homogenization solution for the nonlinear elastic response of
particle-filled porous elastomers — precisely, elastomers embedding both rigid spherical particles and vacuous
spherical pores of equal monodisperse size — wherein the volume fraction of pores corresponds to the volume
fraction of fractured or buckled microballoons and hence is not a fixed parameter but rather an internal variable
of state that evolves as a function of the loading history. After the general presentation of the model, where
its theoretical and practical features are discussed, its descriptive and predictive capabilities are showcased
via comparisons with experimental data for silicone syntactic foams filled with glass microballoons.

Internal variables

1. Introduction plastic shells were described in [15-17]. The only prior model associ-
ated with finite deformations is the micromechanical model introduced
by De Pascalis et al. [18],which deals exclusively with the case of the

prediction of the nonlinear loading curve for hydrostatic deformations.

The origin of syntactic foams, namely, materials comprised of a
metal, polymer, or ceramic matrix filled with hollow spheres - typically
made of a ceramic or a hard polymer and commonly termed micro-
spheres or microballoons — of micron or sub-micron size, dates back
to the 1950s. Since their discovery, they have increasingly proven very
effective in advancing a wide range of technologies and as a result have
occupied the interest of numerous investigators in a plurality of fields;
see, e.g., [1-5].

Despite early indications of their potential to enable new technolo-

In this context, the objective of this paper is to introduce a con-
stitutive model aimed at explaining, describing, and predicting the
mechanical response of elastomeric syntactic foams under arbitrar-
ily large quasistatic deformations directly in terms of their micro-
scopic properties and, in particular, of the fracturing or buckling of
their underlying microballoons. The focus is on the prominent class of

gies [2], investigations of soft elastomeric syntactic foams have not
been pursued to nearly the same extent as those of stiffer counterparts,
presumably because of the technical challenges associated with finite
deformations. Indeed, although the linear elastic response of syntactic
foams has been studied quite extensively previously - see, e.g., [6-9] —
only recently have experiments been reported on the macroscopic me-
chanical response of elastomeric syntactic foams at finite deformations
[10,11] and on the associated fracturing and buckling of the underlying
microballoons [11-14]. Theoretical models to describe the buckling of

* Corresponding author.

isotropic elastomeric syntactic foams filled with glass microballoons or
microballoons made of a hard polymer.

As elaborated in Section 3, based on direct observations from exper-
iments, one of two central ideas of the proposed model is to consider
that the microballoons in elastomeric syntactic foams behave initially
as rigid particles. Along a given loading path, however, they may
fracture (in the case of glass microballoons) or buckle (in the case
of polymer microballoons). At soon as they do so, they are assumed
to behave effectively as vacuous pores. The second central idea, also
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Fig. 1. Schematic of the particle-filled porous elastomer of interest in its ground
configuration £, depicting its underlying microstructure comprised of a random
isotropic distribution of rigid spherical particles and vacuous spherical pores. All
particles and pores have identical diameter. The nonlinear elastic behaviors of the
elastomeric matrix, the rigid particles, and the vacuous pores are characterized by
stored-energy functions W, W,, and W,. The macroscopic or homogenized nonlinear
elastic behavior of the particle-filled porous elastomer is characterized by the effective
stored-energy function W.

based on direct observations from experiments, is to consider that at
any given state of loading, elastomeric syntactic foams contain a statis-
tically uniform distribution of a mixture of intact and fractured/buckled
microballoons. In other words, the fracturing or buckling of microbal-
loons occurs uniformly throughout the foams, rather than occurring in
isolated localized regions.

Granted the above-two premises, it follows that the mechanical
response of elastomeric syntactic foams can be identified as the ho-
mogenized response of a class of particle-filled porous elastomers —
precisely, elastomers embedding both rigid spherical particles and vac-
uous spherical pores of equal monodisperse size' — wherein the volume
fraction of pores corresponds to the volume fraction of fractured or
buckled microballoons and hence is not a fixed parameter but rather
an internal variable of state that evolves as a function of the loading
history. For clarity of exposition, the relevant homogenization solution
is presented in Section 2, prior to its summons in Section 3.

Aimed at illustrating the use of the proposed model as well as at
showcasing its descriptive and predictive capabilities, Sections 4 and
5 are devoted to presenting comparisons with the experimental results
of Brown et al. [10,20] for silicone syntactic foams filled with glass
microballoons and to placing on record some concluding remarks.

2. A homogenization solution for the nonlinear elastic response of
particle-filled porous elastomers

As anticipated in the Introduction and as will become apparent in
the next section, an essential result needed in the construction of the
model proposed in this work for elastomeric syntactic foams is the
homogenization solution for the nonlinear elastic response at finite
deformations of a specific class of particle-filled porous elastomers.

The microscopic description of the particle-filled porous elastomers. Pre-
cisely, the class of particle-filled porous elastomers of interest here
consists of a random isotropic distribution of rigid spherical particles
firmly bonded to a homogeneous nonlinear elastic matrix that also
contains a random isotropic distribution of vacuous spherical pores;
such microstructures are reminiscent of those found in a variety of
other material systems, for instance, concrete, cortical bone, and bam-
boo [22-25]. The domain occupied by any such three-phase composite
material in its undeformed and stress-free ground state is denoted by
£, and its boundary by 0£2,. All particles and pores are taken to have
an identical initial diameter that is much smaller than the length scale
of Q,; see Fig. 1 for an schematic.

1 In practice, the diameters of microballoons in elastomeric syntactic foams
are drawn from a narrow probability distribution [19-21].
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The nonlinear elastic behavior of the matrix (m) is characterized by
the isotropic and incompressible stored-energy function

v, Iy if J=1
WL(F) = , (€]
+o00 otherwise

where I}, = F-F = trC, J = detF = y/detC, with C = F'F, and
where ¥, stands for any non-negative function of choice satisfying the
linearization conditions ¥,(3) = 0 and ¥/(3) = d¥(3)/dI| = u,/2, with
U, denoting the initial shear modulus of the matrix, and the strong
ellipticity conditions ¥/(I,) > 0 and ¥/(I))+2(I; — 2> =247 W/ (I;) > 0
(i = 1,2,3), with 4}, 4,, 43 denoting the singular values of F; see,
e.g., Section 4.2.7 in the monograph by Ogden [26] for an in-depth
discussion of the algebraic manipulation of stored-energy functions
subject to constraints.

Examples for the function ¥, include, for instance, the Neo-Hookean
model

Vol = 2 (1 -3 @)
introduced by Treloar [27], the model
2 3l-a,
— = A _ ra,
vy =Y et 3%] 3

r=1
introduced by Lopez-Pamies [28], as well as the Arruda and Boyce [29]
and Gent [30] models among others. In this last expression, u; > 0,
Uy > 0, a;, a, are real-valued material parameters, the first two of which
satisfy the condition u; + p, = yy.
The rigid and vacuous constitutive behaviors of the particles (r) and
the pores (p) are characterized by the stored-energy functions

0 if F=QeOrth*
W, (F) = ()]
+o00  otherwise

and
W,(F)=0;

see, e.g., [31] for an in-depth discussion of the algebraic manipulation
of stored-energy functions subject to the rigidity constraint (4).

At any material point X € £, it follows that the first Piola—
Kirchhoff stress tensor S is given by

ow

SX)=—X,F

X) aF( )
with
WX, F) = [1-0,(X) - 6,(X)] W (F) + 6,(X)W,.(F),
where 6, and 6, are the characteristic functions describing the spatial
locations occupied by the particles and the pores in Q,, ie., 6, takes
the value of 1 if the position vector X lies within a particle and zero
otherwise, while ¢, takes the value of 1 if the position vector X lies

within a pore and zero otherwise.
For later use, we introduce the notation

1

1
¢ = —— 0,.(X)dX, ¢ :=—/ 0,(X)dX,
Tl Jay T Pl Ja, B
and
c=cto

to express the volume fractions of the particles and the pores, as well as
the combined total volume fraction of particles and pores in the initial
domain £, occupied by the particle-filled porous elastomer.
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The macroscopic or homogenized response. Granted the isotropic (and
hence statistically uniform) distribution of the particles and the pores
and their vanishingly small size relative to the macroscopic size of
£, — taken henceforth to denote a representative volume element —
the macroscopic or homogenized constitutive response of the particle-
filled porous elastomer can be formally defined as the relation be-
tween the volume average of the first Piola-Kirchhoff stress S :=
|Qo|‘l /. % S(X)dX and the volume average of the deformation gradient
F = Q™" /Qo F(X)dX under affine boundary conditions on 982, [32].

It follows from standard arguments that such a relation can be
expediently cast in the variational form

5= ®)
oF

with

W (F) = min I(l_l WX, F)dX, 6)

Fek [ Jg,

where W, termed the effective stored-energy function, represents phys-
ically the total elastic energy (per unit undeformed volume) stored in
the material; in this last expression, K stands for a sufficiently large
set of admissible deformation gradients F(X) with prescribed volume
average F. It further follows from the overall local geometric and
constitutive isotropy of the material at hand that the effective stored-
energy function W defined by the variational problem (6) admits the
representation

W(f) = ?(71572,7)
in terms of the standard principal invariants

- - = - 1[2 =T= =T= - —
I,=F-F T,=3 [1, ~F P F F)], 7 = detF.

In a string of recent contributions, Lopez-Pamies et al. [33,34],
Goudarzi et al. [35], Lefévre and Lopez-Pamies [36,37], and Shrimali
et al. [38] have derived results that include as special cases the solution
for the homogenization problem (6) when the solid is filled only with
rigid spherical particles (i.e., when 6, = 0) or only with vacuous spher-
ical pores (i.e., when 6, = 0). In the next two subsections, we leverage
the same computational and analytical techniques used in those works
to generate the more general solution for the homogenization problem
(6) when rigid spherical particles and vacuous spherical pores are both
present (i.e., when 6, # 0 and 0, # 0).

2.1. Computational homogenization

In the footstep of a now well-established practice in infinitesimal
and finite elasticity [34,36,38-42], the particle-filled porous elastomers
studied in this work can be accurately approximated as infinite media
made out of the periodic repetition of a unit cell containing a random
distribution of a sufficiently large but finite number N = N, + N, of
N rigid spherical particles and N, vacuous spherical pores.

For expediency in the implementation of periodicity, we select here
the defining unit cell to be a unit cube Y, = (0, L)* = (0, L)x(0, L)x(0, L)
with edges of length L. To be able to span the large range of combined
total volume fractions of particles and pores ¢ = ¢, + ¢, € [0,0.5] of
relevance for elastomeric syntactic foams, we make use of the algorithm
introduced by Lubachevsky and Stillinger [43]; see also Lubachevsky
et al. [44]. Roughly speaking, the idea behind this algorithm is to
randomly seed at once in the unit cell Y, the desired total number
N of particles and pores as points endowed with random velocities
and a uniform radial growth rate. As the points move and grow into
spheres, their collision with one another are described by conservation
of momentum, while their crossings through the boundaries of the unit
cell are described by periodicity. When the desired volume fraction c is
reached, the algorithm is stopped. The final step consists in randomly
selecting which N, of the N spheres are rigid spherical particles and
which N, of them are vacuous spherical pores. For a desired volume
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Fig. 2. Representative unit cells containing a random distribution of N = N, +N,, = 120
spheres at volume fraction ¢ = ¢, +¢, = 0.2 with two different combinations of volume
fractions of rigid spherical particles ¢, and vacuous spherical pores c;: (a) ¢, = 0.2,
¢, =0 and (b) ¢, =0.1, ¢, =0.1. The corresponding numbers of rigid spherical particles
(shown in blue) and vacuous spherical pores (shown in orange) are N, = 120, N, =0
in (a) and N, = 60, N, = 60 in (b). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

fraction ¢, of rigid spherical particles and a desired volume fraction c
of vacuous spherical pores,
33 N 33 N
PSR and N, = TReT @)
where

R= ( 3L% ) 13

4 N
stands for the common radius of the particles and pores. Clearly, for a
given pair N and ¢, relations (7) may not lead to integer values for N,
and N, in terms of the desired values of ¢, and c;, in which case the
latter target pair may only be approximated.

For definiteness, all the computational homogenization results pre-
sented in this work correspond to unit cells that contain a total of N =
120 spheres. Accordingly, in terms of the combined volume fraction ¢
of particles and pores, their radius is given by R = L(3c/4xN)!/? =
0.1258Lc'/3. We emphasize that the number N = 120 of spheres
in the unit cells was carefully selected based on a parametric study
that confirmed that it is sufficiently large to render overall nonlinear
elastic behaviors for the materials of interest here that are indeed
approximately isotropic; see Remark 1 in Leonard et al. [45]. By way
of an example, Fig. 2 shows two representative unit cells at the same
volume fraction ¢ = ¢, + ¢, = 0.2 of particles and pores with two
different combinations of volume fractions ¢, and c,.

p

2.1.1. FE discretization

The computations for the homogenized response (5)-(6) of the
particle-filled porous elastomers with the above-outlined microstruc-
tures can be expediently carried out with the finite-element (FE)
method.

In this work, we make use of the open-source mesh generator
code Netgen [46] to discretize the constructed unit cells with non-
overlapping 10-node tetrahedral elements. Meshes with about 1.75
million elements were checked to be sufficiently refined to deliver
accurate solutions.

Because of the incompressibility of the matrix material, we make
use of a hybrid re-formulation of the variational problem (6) in which
both the displacement field u and a pressure field p are the independent
fields in the problem. That re-formulation also restricts attention to
solutions that are periodic of period the unit cell Y; see Section 5
in [37] for the relevant details. Within the hybrid re-formulation, we
make use of tetrahedral elements which feature approximations that are
quadratic in the displacement field and linear in the pressure field. The
numerical implementation of the relevant discretized equations and the
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computation of their solution are carried out in the commercial FE code
ABAQUS [47].

As a final note in this subsection, we remark that all the FE results
that are presented in the sequel correspond to the average of two re-
alizations. For each type of particle-filled porous elastomer considered,
the responses of all two corresponding realizations showed very small
differences (less than 3%) between one another.

2.1.2. FE solutions for small deformations

Fig. 3 presents FE solutions (solid circles) for the macroscopic elastic
response in the limit of small deformations of particle-filled porous
elastomers with total volume fractions of particles and pores ¢ = ¢, +
¢ = 0.1,0.2,0.3,0.4, and 0.5; details of the FE calculations involved in
the asymptotic limit of small deformations can be found in Appendix A
of [48].

Specifically, plots are presented for the normalized values of the
effective shear modulus u/yu, in Fig. 3(a) and of the effective bulk
modulus k/yu, in Fig. 3(b) as functions of the volume fraction of pores
¢p- The plots also include the corresponding results (solid lines) from
the explicit approximation proposed below. Those are given by the
formulae (10) and are clearly in good agreement with the FE results
for any combination of volume fractions of particles and pores in the
entire range ¢ = ¢, + ¢, € [0,0.5] considered here.

Remark 1 (Particle/Pore Size Polydispersity). The effective moduli (10)
are exact results for particle-filled porous elastomers with two opposite
limiting classes of microstructures: (i) porous elastomers wherein the
matrix material contains rigid particles that are much smaller than the
pores and (ii) particle-filled elastomers wherein the matrix material
contains vacuous pores that are much smaller than the rigid particles.
The fact that the formulae (10) fare well in Fig. 3 with the FE solutions
for particle-filled porous elastomers wherein the rigid particles and the
vacuous pores are of the same size indicates that the size disparity be-
tween particles and pores has little effect on the macroscopic response
of these material systems all the way up to ¢ = 0.5, which is already
remarkably close to the percolation threshold ¢ ~ 0.64 [44,49,50].

2.1.3. Sample FE solutions for finite deformations

Figs. 4 and 5 present representative FE solutions (solid circles) for
the macroscopic elastic response of particle-filled porous elastomers at
finite deformations. The results pertain to materials wherein the un-
derlying elastomeric matrix is characterized by the basic Neo-Hookean
stored-energy function (2) and the total volume fraction of particles and
pores is ¢ = 0.2 corresponding to two different combinations of particles
and pores, ¢, =0.1, ¢ =01 and ¢, =0.05, ¢y =0.15.

Specifically, Fig. 4 presents plots of the normalized effective stored-
energy function W/, in terms of the invariant I, in part (a) and of the
invariant 72 in part (b) for fixed values of the remaining two invariants,
T,=3.63,7 =1.08and T, = 3.59, J = 1.17, respectively. Fig. 5 presents
plots of W /u, in terms of the invariant J for the fixed values of the
remaining two invariants 1, = 4.5, I, = 5.55 and 1, = 4.25, 1, = 5.05
and the volume fraction of pores ¢, = 0.1 in part (a) and ¢, = 0.15 in
part (b). Here, it is fitting to recall that fixing the values of any pair of
invariants T, I,, J restricts the range of physically allowable values of
the remaining invariant. The results displayed in Figs. 4 and 5 pertain
to the entire range of allowable values for each of the cases that is
presented.

Now, it is plain from Figs. 4 and 5 that the computed effective
stored-energy function (6) for the particle-filled porous elastomers of
interest in this work:

« depends roughly linearly on T,

« is essentially independent of T,

« depends nonlinearly on 7, and

» is approximately of the separable form

W =W d)+W5J)
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Fig. 3. FE solutions for the macroscopic elastic response in the limit of small
deformations of particle-filled porous elastomers with five different values of total
volume fraction of particles and pores: ¢ = c+e, =0.1,0.2,0.3,04, and 0.5. Parts (a) and
(b) show, respectively, the normalized effective shear modulus 7/u, and the normalized
effective bulk modulus k/u, as functions of the volume fraction of pores c,. For
comparison purposes, the corresponding results for the proposed explicit approximation
— given by formulae (10) introduced further below — are also included in the figure.

when the underlying matrix material is Neo-Hookean. These are pre-
cisely the same four key features identified by Lopez-Pamies et al.
[33,34], Goudarzi et al. [35], Leféevre and Lopez-Pamies [36,37], and
Shrimali et al. [38] for filled and porous Neo-Hookean elastomers. Fol-
lowing then the same two-step approach put forth in those works,? one
can readily construct a simple explicit approximate homogenization
solution for the effective stored-energy function W of particle-filled
porous elastomers with any non-Gaussian — not just Neo-Hookean —

matrix material. We present such an approximate solution next.

2 The first step consists in identifying the appropriate approximation for
the effective stored-energy function of the particle-filled porous elastomer
with Neo-Hookean matrix and then making use of a non-linear comparison
medium method to transcribe that Neo-Hookean result into the approximate
effective stored-energy function for particle-filled porous elastomers with any
non-Gaussian matrix of choice. We do not dwell any further on the specifics
of the approach and refer the interested reader to Lefévre and Lopez-Pamies
[36,37] and Shrimali et al. [38] for the technical details.
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Fig. 4. FE solutions for the effective stored-energy function W of particle-filled porous
elastomers, with Neo-Hookean matrix and total volume fraction of particles and pores
¢ =¢ +¢, =02, as functions of the invariants T, and T, for fixed values of the two
remaining invariants. The results are shown normalized with the initial shear modulus

Hy of the elastomeric matrix for two different volume fractions of pores, ¢, = 0.1

and 0.15. For comparison purposes, the corresponding results for the proposed explicit
approximation — given by the formula (12) introduced further below — are also included
in the figure.

2.2. An explicit approximate homogenization solution

As alluded to above, in view of the functional features of W revealed
by the FE solutions, it is not difficult to deduce that the computational
homogenization results presented in the preceding subsection for the
effective stored-energy function of the particle-filled porous elastomers
can be described by the explicit approximation

W 1, .
W(F) = (I—Cr—Cp)q/m m%—?’ with
3(1 - [ —
h= G +2e,)(1 - cr)5/2 [ ]
3 a- C1D)71/3 : ®

27 —1-
3+2c’p

—1/3 / —
o 7" (27 +¢,-2)

(7— 1 +cp)1/3

3
P = e

(372/3 + 20p> -
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Fig. 5. FE solutions for the effective stored-energy function W of particle-filled porous
elastomers, with Neo-Hookean matrix and total volume fraction of particles and pores
¢ =c¢; +¢, =02, as functions of the invariant J for fixed values of the two remaining
invariants. The results are shown normalized with the initial shear modulus y, of the
elastomeric matrix for two different volume fractions of pores, ¢, = 0.1 and 0.15. For
comparison purposes, the corresponding results for the proposed explicit approximation
— given by the formula (12) - are also included in the figure.

Before proceeding with the use of the result (8) in the next section
to model the mechanical response of elastomeric syntactic foams, it is

appropriate to spell out a number of its features.

Remark 2 (The Macroscopic Constitutive Response). The macroscopic

constitutive relation (5) implied by the effective stored-energy function
(8) reads as

P s MR L s)es
TG+ 2e)(1 =) P\ 1 -,

3+6J +2c,(1+7J)

G+26)7 (1 = 2
YT~ 5c, - 47) 7, =T
w( —L— 43 ) )
(J+cp_1)4/3(1_cr)5/2 l—c—¢cp

Remark 3 (The Limit of Small Deformations). In the limit of small

deformations as F — I, the effective stored-energy function (8) reduces
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asymptotically to
W = e + <5 - -) (1) + O(F - 11P),

where € = (1_7 + l<_“T —2I)/2 and where
31 -cp)
G+2¢,)(1 -2/

41 —¢p)
and x=—""""— (10)

U= 3Cp(1 —CI)S/Z Hn

stand for the effective shear and bulk moduli of the particle-filled
porous elastomer.

In the further limit of dilute volume fraction of particles as ¢, \, 0,
the effective moduli (10) reduce to leading order to

3(1-cp) 41 -c,)

—M[ﬂ Mm!
3+ 2cP 3cp

"= and K=
which are nothing more than the classical Hashin-Shtrikman bounds
for the shear and bulk moduli of an isotropic porous elastic material
with incompressible matrix (Hashin-Shtrikman, 1963); it is important
to recall here that the Hashin-Shtrikman bounds (10) are realizable by
a multitude of microstructures. On the other hand, in the opposite limit
of dilute volume fraction of pores as &\ 0, the effective moduli (10)
reduce to leading order to the classical exact result due to Roscoe [51]
for an isotropic incompressible linear elastic material reinforced by
an isotropic distribution of rigid spherical particles of infinitely many
diverse sizes, namely,

— 1 —
H= mﬂm and K = +o00.
T

Remark 4 (The Dilute Limit of Particles). In the limit as the volume

fraction of rigid spherical particles ¢, \, 0, the effective stored-energy
function (8) reduces asymptotically to the result of Shrimali et al. [38]

— T
W(F)=(1—cp)l['m<1 P +3>+O(cr)

_cp

with
_ 3(1—cp)[_ ]

Ly (B+2c,) [21_1_

1/3
—1/3 ( =2/3 1/351
(=7 " (37 +2cp) o7
3+2¢,

P (27 +¢,-2)
(7— 1 +cp)1/3

for the effective stored-energy function of porous non-Gaussian elas-
tomers, cf. equation (5) in that reference.

Remark 5 (The Dilute Limit of Pores). In the limit as the volume fraction
of vacuous spherical pores ¢, \ 0, the effective stored-energy function
(8) reduces asymptotically to

—= 1, 13
W(F)—(l—cr)'Pm<m+3>+0< ) an
with
O e 11

7

For isochoric deformations when J = 1, the leading order term in
(11) agrees identically with the result of Lopez-Pamies et al. [34]
for the effective stored-energy function of particle-filled non-Gaussian
elastomers, cf. equation (2) in that reference.

For non-isochoric deformations when J > 1, on the other hand, the
leading order term in (11) differs from the result of Lopez-Pamies et al.
[34] in that it is finite. This is because under loading conditions with
sufficiently large ratios of hydrostatic-to-shear stresses, the initially
zero-volume pores can “cavitate” and grow elastically to occupy a finite
volume within the material; see, e.g, [52,53].
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Remark 6 (Closure of the Pores). The effective stored-energy function
(8) features the following asymptotic behavior:

W(F)a+oo as 7\ l—cp.

This is the macroscopic manifestation of the purely kinematical fact that
the current porosity in the particle-filled porous elastomer vanishes,
that is, complete closure of the underlying pores ensues, whenever the
determinant of the macroscopic deformation gradient F reaches the
critical value J = 1 — ¢p» at which point the particle-filled porous
elastomer (because of the incompressibility of the underlying matrix
and rigid particles) behaves as an incompressible solid for loadings with
any further volumetric compression.

Remark 7 (The Case of Gaussian or Neo-Hookean Matrix). For the basic
case when the matrix is Neo-Hookean, namely, when the function ¥,
is given by (2), the effective stored-energy function (8) specializes to

— 3(1—cp);4m _
W (F) = [11—3]+
2(3+2¢,) (1 - ¢
3 (1=cpa”
J— — C,
— ! T-1-—— 92
27 (1= )52 26

—1/3 / —
c;/SJ/ <2J+cp—2)

(7—1+cp>1/3

In turn, the associated macroscopic response (9) specializes to

(377 +2¢,) - 2

S 3(1 = cp)py Fols 3467 +2c,(1+7J)
G2 =el 0 2| 342)7" (1= )02
1/3

T(4=5c,—4D) ] =-r
(T +¢y = D¥3(1 = ¢, )52 '

Remark 8 (Accuracy at Small and Finite Deformations). In spite of its
simple and explicit form, as illustrated by the direct comparisons with
computational homogenization results presented in Figs. 3-5 above
and as demonstrated by a plurality of other comparisons not included
here, the approximation (8) describes fairly accurately the macroscopic
nonlinear elastic response of the particle-filled porous elastomers of
interest here at small as well as at finite deformations, this for Gaussian
and non-Gaussian behaviors of the underlying matrix and for any
combination of volume fractions of particles and pores in the entire
range ¢ = ¢, + ¢, € [0,0.5] of practical relevance for elastomeric
syntactic foams.

3. The proposed model for elastomeric syntactic foams

As outlined in the Introduction, the microballoons in elastomeric
syntactic foams are typically made of either glass or a hard polymer,
both of which are much stiffer than the embedding elastomeric matrix.
As a result, they behave effectively as rigid spherical particles initially.
Along a given loading path, however, the experiments show that the
glass microballoons may fracture while the polymer microballoons may
buckle. The experiments also show that the fracturing or the buckling
of the microballoons tend to occur uniformly throughout the entire
specimen being tested, as opposed to this occurring in a single localized
region; see, e.g., [11,13,14,54,55]. This evidence prompts the following
two idealizations:

« after fracturing or buckling, the microballoons in elastomeric
syntactic foams transition to behave effectively as vacuous pores
and

+ at any given state of loading, elastomeric syntactic foams contain
a statistically uniform distribution of a mixture of intact and
fractured/buckled microballoons.
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Granted these two idealizations, it is plain that the mechanical response
of elastomeric syntactic foams can be described by the homogenization
solution worked out in the preceding section for particle-filled porous
elastomers with the caveat that the volume fraction of pores c, corre-
sponds now to the volume fraction of fractured/buckled microballoons
and hence is not a fixed parameter, but, instead, a variable that evolves
as a function of the loading history.

In the sequel, we make the above statement precise. We do so by
considering c, to be an internal variable within the classical constitutive
framework based on internal variables of state; see, e.g., [56-59].
Within that framework, absent changes in temperature, the constitutive
relation describing the macroscopic mechanical response of elastomeric
syntactic foams can be formally written in the compact form

s=Yw.c)
oF P
, a3)
E(F.c,)=0

where S once again denotes the first Piola—Kirchhoff stress tensor,
v = y(F ) stands for the free-energy function, and &(F, cp) is the
evolution equation for the internal variable c;, taken henceforth, again,
to correspond to the volume fraction of fractured/buckled microbal-
loons. Given its physical meaning, c, is bounded from below and above
according to 0 < ¢, < ¢, where ¢ stands for the volume fraction of
microballoons in the syntactic foam at hand.

We proceed in Subsections 3.1 and 3.2 by presenting specific pre-
scriptions for the free-energy function y/(F, c;) and the evolution equa-
tion &(F, ) = 0 and then spell out the constitutive response (13) that
they imply in Sub Section 3.3 together with some of its salient features.

3.1. The free-energy function y(F,c,)

Upon transcribing the homogenization solution (8) to the current
setting, we prescribe the free-energy function in (13) to be given by

1 .
wF.c)=(1-0)¥, <1—_‘c + 3) with

3(1-¢p)
C B+2e)(1+c,— )2

1, [1,-3]+

=g (P r2g) 0D

3+2cp

3
I S IY
JIBA+ e, = )2 [

c}lj/SJl/3 (2J+cp —2)

(J-1+¢,)"

Here, we emphasize that ¢ stands for the volume fraction of mi-
croballoons and hence is a fixed parameter for any given elastomeric
syntactic foam. We also recall that the function ¥, denotes the finite
branch of the stored-energy function (1) describing the isotropic and
incompressible elasticity of the underlying elastomeric matrix material,
while, again, I, =F - F and J = detF.

3.2. The evolution equation E(F,c,) = 0 for c,

In principle, the evolution equation for the volume fraction ¢, of
fractured/buckled microballoons in elastomeric syntactic foams along
a given loading path can be determined by carrying out the appropriate
homogenization calculations wherein the presence of the microballoons
is resolved explicitly and the proper bifurcation and post-bifurcation
analyzes are accounted for from the outset; see Geymonat et al. [60]
for the relevant theoretical framework and Michel et al. [61,62] for two
pertinent examples.

Alternatively, the evolution equation can be prescribed phenomeno-
logically on the basis of macroscopic observations. In this work, we
follow this latter top-down approach.
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While still relatively scarce and almost exclusively limited to uniax-
ial compression loading paths, all the currently available experiments
on elastomeric syntactic foams consistently indicate that initially intact
microballoons remain roughly so provided that the applied loads are
relatively small. As the applied loads increase, there is a distinct point
at which the microballoons start fracturing or buckling in significant
numbers. Upon continuing loading, more and more microballoons may
fracture or buckle until all of them had done so, that is, G =c and the
process is exhausted.

To model the above-outlined behavior along any given loading path,
say parameterized by the time 7 € [0, T'], we propose the following basic
class of rate-independent evolution equations:

[g—;:(ll,n L+ [%(11,1)] J@)
NOE it f(L@0,J0)) 2 maxge,o, {f (11(), ()} .
0 otherwise
1s)
with initial condition
(0 = ¢, 16)

for c,. In these expressions, we have made use of the standard “dot”
notation to indicate derivatives with respect to the time ¢ and f(I;,J)
is any (suitably well-behaved) non-negative material function subject
to the constraints cg <fd;,Jy<cforall I, J>0.

Remark 9 (The Initial Condition (16)). For newly fabricated elastomeric
syntactic foams, the initial volume fraction of fractured/buckled mi-
croballoons is expected to be vanishingly small and thus cg = 0+. In
practice, it suffices to set ) = 107°.

Remark 10 (Irreversibility). The class of evolution equations (15)
describes the processes of fracturing and buckling of the microballoons
as irreversible. While the fracture of glass microballoons is indeed
irreversible, Yousaf et al. [11] have shown that buckled polymer mi-
croballoons may unbuckle back to their original spherical form upon
unloading. In this work, we restrict attention to evolution equations of
the form (15) and will not consider generalizations that account for the
possible reversible buckling of polymer microballoons.

Remark 11 (The Function f(I;,J)). In an ideal world, the function
f(I,,J) would be determined for a given elastomeric syntactic foam of
interest by fitting its mechanical response for a variety of loading con-
ditions that span the entire space of uniform deformations. At present,
however, most of the experimental data available in the literature is
narrowly restricted to uniaxial compression. So one must resort to the
use of a model to extrapolate that limited available data to the entire
deformation space.

In this work, for demonstration purposes, we shall consider func-
tions of the form

fdy, ) =gl). a7

It is expected from long-standing knowledge on other types of foams
(syntactic or otherwise) that volume-decreasing loading conditions
when J < 1 should favor the fracturing or buckling of the underlying
microballoons in elastomeric syntactic foams, while volume-increasing
loading conditions when J > 1 should hinder them; see, e.g, the
experimental results of Gupta et al. [63] and Landauer et al. [64]. The
constitutive choice (17) is among the simplest that allow to describe
such a “tension”/“compression” asymmetry.
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As illustrated below in Section 4, fits to uniaxial compression data
indicate that the particular form

P Y — ifJ <1
2 r
g = (146 (41 = 1)) : a8)
0 otherwise
where w, > 0 with Y® w, = 1,7 > 0,5, > 0, and 5, > 0

are c-dependent material parameters, is descriptive of a variety of
elastomeric syntactic foams.

3.3. The constitutive response

Having introduced the free-energy function (14) and the evolution
equation (15) with (17), it is now a simple matter to spell out the con-
stitutive relation (13) that they imply. Indeed, the first Piola—Kirchhoff
stress S reads as

6(1 —c,)

= 4 ! <—‘ + 3) F+
B +2¢p)(1 + ¢, - c)/2 2\ 1-c
3+6J +20p(1 +7J)
+
B+ ZCP)J'/3(1 +op - c)3/?

IS¢, —40)

(J+ce, = D31+, — )2

C,

1
p! (1 ! +3> FT (19
—-C

where 7, is given explicitly by (14), and where ¢, is defined, in terms
of the initial volume fraction of fractured/buckled microballoons c}? and
the deformation history, by the ordinary differential equation

d .
ﬁ(f)] J@® if g(J(®) 2 maxgc,, {8 (J ()}

&0 = [ 20)

0 otherwise
for t € (0,T] with ¢,(0) = cg.

Numerical solution of the evolution equation (20). In general, because
of its two distinct branches, the evolution equation (20) for I needs to
be solved numerically. All the same, the construction of such numerical
solutions is trivial. Indeed, upon partitioning the time interval of inter-
est [0,7] into the discrete times 0 = /%, ¢!, ..., ¢, ¢+ . M =T, the
solution for c;’”'l = ¢, (") at the discrete time #*+' is given explicitly
in terms of the solution CIT = (") at the previous discrete time "
and the associated values of the invariant J”+! = J(™*1) at /! and
Jk = J(#*) at all previous times t* by the rule

g () if g (I > maxg_yo Ly {8 (J5)}
el = . 21)

cI')” otherwise

Clearly, for functions g(J) that are non-decreasing, such as (18),
and loading paths along which J increases monotonically in time, the
discrete solution (21) can be written continuously in time as

¢ (1) = g(J ().

The limit of small deformations. In the limit of small deformations as
F — I, recalling the linearization properties ¥, (3) = 0 and ¥, (3) = p,/2
of the stored-energy function ¥, (I,) characterizing the elastic response
of the underlying elastomeric matrix, where, again, u, denotes its initial
shear modulus, the constitutive relation (19) reduces asymptotically to

S =2ue+ <K - %") (tre)l + O(||F = 11),

where € = (F + F — 2I)/2 stands for the infinitesimal strain tensor,
~ 31-¢p) .
B+2e)( +c, =2 "

7 (22)
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and
41 -cy)

_ 23
BRI e @3

denote the shear and bulk moduli of the elastomeric syntactic foam,

and where [ is, of course, still defined by the evolution equation (20).

Specialization to uniaxial compression. As mentioned above, the arche-
typical experiment to probe the mechanical behavior of elastomeric
syntactic foams has been uniaxial compression. Customarily, a cylindri-
cal specimen of the elastomeric syntactic foam of interest is stretched
uniaxially along its longitudinal direction, say by 4 < 1 in the e
direction, while its perpendicular directions e, and e, are kept traction
free so that the deformation gradient and first Piola—Kirchhoff stress
throughout the specimen take the spatially homogeneous forms

h 0 0 00 0
Fy=| 0 4 0| and S;=[ 0 0 0
0 0 i 00 S

Here, S and 4, are, respectively, the nominal axial stress and the lateral
stretch induced in the specimen by the applied stretch A.

Now, according to the constitutive relation (19), the nominal axial
stress .S is given explicitly in terms of A and 4, by

s= ) w! < unt 3) I+
G +2e)(1 +¢, - c)¥/2 "\ 1-c
3+ 6474+ 2c,(1+7474) .
B+ 2e,)AZ V(1 + ¢, — )32

1/3 42 2
ASA(4 =S¢, — 445 4) I .
] P ! :| Wé( uni +3> l (24)

C,

p
(a+c, = D31 + ¢, — )32 1-c A

while the lateral stretch 4, is defined implicitly in terms of A as the
smallest root larger than 1 of the nonlinear algebraic equation
6(1 —c,) .
0= 2 ‘Pn’]< un +3> A+
(B +2e)(1 + ¢, — )32 l-c
346474+ 2c,(1+7422)
+
G+ 2e, )NV + ¢, — )32

1/3 2 2
¢, ATA4 =S¢, — 447 4) T
5 P ! P ! ,1,11/1 < uni +3> l (25)
(A7d+ ¢y = D¥3(L+ ¢, — /2 l—c A
In these last two expressions,
3(1 —c¢p)

I, = P [ +247 = 3] +

(B +2c)(1 + ¢, —cy/?

3

[2474-1-

WD+, =)
(1= )47 D3 (3T +2¢,)
3+ 2¢,

PR3 (2220 + ¢, - 2)

P
1/3

(AFA-1+¢,)

and % is defined by the evolution equation (20), where now J = /1/1[2
in terms of the applied stretch and the induced lateral stretch.

In general, the nonlinear algebraic equation (25) does not admit an
explicit solution for 4, and hence must be solved numerically. In the
limit of small deformations as A — 1, however, it is not difficult to

show that the solution is given by
h=1-vA-D+0((A-17),

where

3k —2u 6+cp
V= =
2Bk +pu) 12+ llcp
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Table 1
Material parameters in the Lopez-Pamies model (3) for the PDMS elastomer used as the
matrix material in the elastomeric syntactic foams. The associated initial shear modulus
Hy = H; + p, is also listed for convenience.

u; (MPa) Hy (MPa) ® a

0.4562 0.4471 —2.4336 4.3410

Hy (MPa)
0.9033

denotes the Poisson’s ratio of the elastomeric syntactic foam. In turn,
it is not difficult to deduce that the stress—stretch relation (24) reduces
also explicitly to

S=EGA-1+0((4-17?)
with
9 u 36(1 —cp)

E = = 26
3 tn (e, — P12+ 11¢,) ™ (26)

in the limit as 4 — 1. The coefficient E is nothing more than the Young’s
modulus of the elastomeric syntactic foam.

The two material functions and two material parameters in (19) —(20) and
their calibration from experiments. The proposed constitutive relation
(19)-(20) contains two material functions, ¥,(I,) and g(J), and two
material parameters, ¢ and cg. Physically, again, the function ¥,(I,)
describes the elastic response of the elastomeric matrix in the foam. The
function g(J) describes the evolution of the volume fraction I of frac-
tured/buckled microballoons along any given loading path. Moreover,
¢ stands for the volume fraction of microballoons, while ¢¥ denotes the
initial volume fraction of fractured/buckled microballoons.

For the case of newly fabricated syntactic foams when the volume
fraction ¢ of microballoons is known from the fabrication process, one
can presume that cg = 0+, the function ¥, (I,) can be calibrated from
a routine experiment such as uniaxial tension and/or compression on
the matrix material, while the function g(J) can be calibrated from
a uniaxial compression experiment on the foam. The last calibration
process amounts to determining - for instance, by least squares —
the value of I in the stress—stretch relation (24) that best matches
the stress—stretch experimental data. Ideally, the uniaxial compression
experiment should be carried out up to sufficiently large deformations
that probe the entire evolution domain from ¢, = cg toc, =c.

For cases when no or only partial information is available about the
fabrication process, one would have to make use of specific functional
forms for ¥,(I,) and g(J), and then fit their material parameters
together with ¢ and ¢? to the available experimental data on the foam.
In this more elaborate calibration process, the formulae (22), (23), and
(26) for the initial shear, bulk, and Young’s moduli are likely to be
useful in determining the volume fraction ¢ of microballoons as well as
the share c? of these that are initially fractured/buckled alongside the
initial shear modulus y,, of the underlying matrix material.

4. Comparisons with experiments

In this section, with the dual objective of illustrating its use and
showcasing its descriptive and predictive capabilities, we confront the
proposed model (19)-(20) with the experimental results of Brown
et al. [10,20] for silicone syntactic foams filled with glass microbal-
loons. These pertain specifically to quasistatic uniaxial compression
tests of syntactic foams with volume fractions of microballoons ¢ =
0.46,0.37,0.30,0.20, 0.10, wherein the matrix is the popular PDMS
Sylgard 184 supplied by Dow Corning, with weight ratio 10:1 of base
to curing agent, and the randomly distributed microballoons are the
A16/500 glass bubbles supplied by 3M, which are made of soda-lime-
borosilicate glass and feature an average diameter of 60 pm and a
thickness of 1 pm.

Given that the volume fractions ¢ = 0.46,0.37,0.30,0.20, 0.10 of
microballoons as well as the initial volume fraction c¢? = 0+ of fractured
microballoons in each of the fabricated foams are known from the
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Fig. 6. Stress—stretch response in uniaxial compression of the PDMS elastomer used
as the matrix material in the elastomeric syntactic foams of Brown et al. [10,20].
The dash line corresponds to experimental loading/unloading data, while the solid line
corresponds to the response (27) predicted by the Lopez-Pamies model (3) with the
material parameters listed in Table 1.
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Fig. 7. Initial Young’s modulus E of the elastomeric syntactic foams as a function of
the volume fraction ¢ of microballoons. The solid circles (with error bars) correspond
to the average of the two sets of experiments of Brown et al. [10] for each ¢, while
the solid line corresponds to the predictions from the proposed model, which are given
by the formula (26) evaluated at ¢, = c}‘)‘ =0+ and the shear modulus y, of the matrix
material listed in Table 1.

outset, our first task is to calibrate the material function ¥,(I,). To
do so, we choose ¥, (I,) to be given by the stored-energy function (3)
and determine its four material parameters u;, u,, a;, a, by fitting the
loading part of the stress—stretch data reported by Brown et al. [20]
for the uniaxial compression of an unfilled specimen; consistent with
the presentation of the experimental results by Brown et al. [10,20],
the stretch data is presented in the form of nominal compressive strain
e =1-41in all the results that follow. Table 1 lists the results obtained
from that fit. Fig. 6 compares the stress—stretch relation

A, _1
S=a (2 +2271)
2
= (3= 472 Y3ty [2 4247 @7
r=1
predicted by the stored-energy function (3), with the material parame-
ters listed in Table 1, and the experimental data. Two observations are
immediate. The first one is that the model is in good agreement with
the experiment. The second one is that PDMS Sylgard 184 with 10:1
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Fig. 8. The material function (18) with the parameters listed in Table 2 for the
elastomeric syntactic foams with microballoon volume fraction: (a) ¢ = 0.37 and (b)

¢ =0.20.

ratio of base to curing agent exhibits a small but noticeable hysteretic
behavior. According to the recent investigations of Poulain et al. [65]
and Leonard et al. [45] on the same type of elastomer, this behavior is
not due to viscous dissipation, but instead to the Mullins effect. We do
not model this effect here, but discuss it further in Section 5.

The initial linear elastic response of the foams. Having determined the
elastic response of the PDMS matrix in the foams, we proceed by
comparing the Young’s modulus (26) predicted by the model with the
experimental results at the initial time + = 0, when the initial volume
fraction of the fractured microballoons is known from the fabrication
process to be given by ¢, = ¢¥ = 0+. Fig. 7 shows that comparison.
It is plain that the model predictions are in fairly good agreement
with the experimental results for the entire range of volume fractions
¢ of microballoons considered. As argued by Leonard et al. [45] for
the same type of PDMS elastomer filled with solid — as opposed to
hollow - glass particles, the minor discrepancies between the rigorous
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Fig. 9. (a) Stress-stretch response in uniaxial loading/unloading compression of the
elastomeric syntactic foam with volume fraction ¢ = 0.37 of microballoons. The dashed
line corresponds to an experiment of Brown et al. [20], while the solid line corresponds
to the response (24) predicted by the model with functions (3) and (18) and the
material parameters listed in Tables 1 and 2. (b) The corresponding evolution of the
volume fraction ¢, of fractured microballoons predicted by the model.

Table 2
Material parameters in the function (18) with R = 2 for the elastomeric syntactic foams

with volume fractions ¢ = 0.37 and ¢ = 0.20 of microballoons.

=037
w, = 0.6312 71 =15.00 B, =0.4478 8, =500
w, = 03688 7, = 80.55 £, = 1.00 8, =069
¢=020

w, = 0.4667 7 =1499 B, = 04478 8, =5.00
w, =0.5333 7, = 2491 B, = 0.6833 8, =5.00

The finite-deformation response of the foams with ¢ = 0.37 and ¢ = 0.20.
We now turn to confront the model predictions with the experimental
results at finite deformations for the foams with volume fractions ¢ =
0.37 and ¢ = 0.20 of microballoons, which unequivocally involve the

homogenization result (26) and the experiments in Fig. 7 are likely
due to the fact that the elasticity of PDMS Sylgard 184 is extremely
sensitive to its cross-link density. Indeed, small differences in the base-
to-curing-agent ratio and/or the curing time in the fabrication process
of the PDMS Sylgard 184 specimens can lead to noticeable differences
in their Young’s modulus. The discrepancies may also be partly due to
the clustering of microballoons.

evolution of the volume fraction I of fractured microballoons.

10

To that end, we first need to calibrate the material function g(J) in
the evolution equation (20) for each of the two foams. We do so by
choosing g(J) to be given by the function (18) with R = 2 and by de-
termining via least squares the values of its seven material parameters
Wi, ¥15 P15 61, Wy = 1—wy, v5, P, 6, for which the stress—stretch relation
(24) predicted by the model best matches the measured stress—stretch
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Fig. 10. (a) Stress-stretch response in uniaxial loading/unloading compression of the
elastomeric syntactic foam with volume fraction ¢ = 0.20 of microballoons. The dashed
line corresponds to experimental data due to Brown et al. [10], while the solid line
corresponds to the response (24) predicted by the model with functions (3) and (18)
and the material parameters listed in Tables 1 and 2. (b) The corresponding evolution

of the volume fraction ¢, of fractured microballoons predicted by the model.

responses of the two foams in uniaxial compression. Table 2 lists the
material parameters that result from such a fitting process. Precisely,
the parameters for the foam with ¢ = 0.37 were obtained by fitting the
loading part of the single-cycle uniaxial compression test reported by
Brown et al. [20]. The parameters for the foam with volume fraction
¢ = 0.20 were obtained by fitting the loading parts of a ratcheted cyclic
uniaxial compression test reported by Brown et al. [10]. Fig. 8 presents
plots of the resulting functions g(J) for the foam with ¢ = 0.37 in part
(a) and for the foam with ¢ = 0.20 in part (b).

Having fully calibrated both material functions ¥,,(I,) and g(J), the
model (19)-(20) for the elastomeric foams with ¢ = 0.37 and ¢ = 0.20 is
now complete and can be readily deployed to determine the mechanical
response of those foams under any loading path of choice.

Fig. 9(a) confronts the stress-stretch response (24) predicted by the
model with the experimental data of Brown et al. [20] for the foam with
volume fraction ¢ = 0.37 of microballoons that is loaded in uniaxial
compression up to a compressive strain of 1-4 = 0.5 and then unloaded.
Fig. 9(b) presents the corresponding evolution of the volume fraction
¢, of fractured microballoons predicted by the model as a function of

the applied compressive strain 1 — 4.

International Journal of Non-Linear Mechanics 126 (2020) 103548

T
Experiment

6 L Model

45| 7

—S (MPa)

0350
03
025
021
Cp [
0.15]
0.1F

0.05

0.2
1-A

(b)

Fig. 11. (a) Comparison of the stress—stretch experimental data presented in Fig. 9(a)
with the response (24) predicted by the model with function (3), the material
parameters listed in Table 1, and the volume fraction ¢, of fractured microballoons
presented in part (b). Note that ¢, continues to increase during the unloading.

It is plain that the stretch-stress model prediction is in fairly good
agreement with the experimental data, especially for the loading part
of the test. The larger discrepancies seen during the unloading may be
due, at least in part, to the fact the model does not account for the
Mullins effect in the underlying PDMS matrix, which, as noted in the
discussion of Fig. 6 above, is noticeable. Another possible contributing
factor is that fracturing of microballoons might also occur during the
unloading part of the experiment, a process that the basic choice (18)
for the material function g(J) does not account for. Indeed, Fig. 9(b)
shows that the model predicts that ¢, remains essentially vanishingly
small up to a compressive strain of about 1 — 4 = 0.14, at which
point ¢, starts to increase monotonically with increasing strain. At
the maximum applied strain of 1 — 4 = 0.5, the volume fraction of
fractured microballoons reaches the value ¢, = 0.235. During the entire
unloading part of the test, the model predicts that ¢, remains constant
at ¢, = 0.235.

Fig. 10 shows analogous results to those presented in Fig. 9 for the
foam with volume fraction ¢ = 0.20 of microballoons. In this case, the
results correspond to the tenth cycle in a ratcheted loading/unloading
uniaxial compression test in which the maximum applied compressive
strain 1 — 4 in each successive loading cycle is increased by 0.05; see
Fig. 7(a) in Brown et al. [10]. As was the case in Fig. 9, it is immediate
from Fig. 10(a) that the stress—stretch response predicted by the model
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Fig. 12. (a) Comparison of the stress—stretch experimental data presented in Fig. 10(a)
with the response (24) predicted by the model with function (3), the material
parameters listed in Table 1, and the volume fraction ¢, of fractured microballoons
presented in part (b). Note that ¢, continues to increase during the unloading.

is in good agreement with the loading part of the test. It is equally
clear that the model underpredicts the softening of the unloading part,
significantly more so than for the foam with ¢ = 0.37. Again, this is
partly due to the Mullins effect of the matrix. As we elaborate in the
next section, it may also be due to the fact that microballoons might
continue to fracture during the unloading part of the test, which is a
process, again, that the basic choice (18) for the material function g(J)
does not account for.
4.1. Fracturing of microballoons during unloading

To gain definite insight into the respective extents to which the
matrix Mullins effect and the fracturing of microballoons impact the
unloading branches in the results presented in Figs. 9(a) and 10(a), one
would have to first generalize the homogenization result (8) to account
for the Mullins effect in the underlying matrix material and then
generalize the free-energy function (14) for the elastomeric syntactic
foams accordingly. This is an admittedly challenging endeavor that is
beyond the scope of this work.

Nevertheless, one can readily gain partial insight by neglecting
altogether the effect of the Mullins effect and considering that the
only active dissipation mechanism during the unloading branches is
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the fracturing of microballoons. To do so, it suffices to determine the
value of I in the stress-stretch relation (24) predicted by the model
that best matches the stress—stretch experimental data in Figs. 9(a) and
10(a) for both the loading and the unloading branches. The results
of such a fitting process are presented in Fig. 11 for the elastomeric
foam with volume fraction ¢ = 0.37 of microballoons and in Fig. 12
for the foam with ¢ = 0.20. Both sets of results show that the model
is in good agreement with the experimental data and therefore suggest
that fracture of microballoons — rather remarkably — may indeed occur
during the unloading of the foams.

5. Final comments

Summing up, the results presented in Figs. 7-12 point to the capabil-
ities of the proposed framework/model to accurately explain, describe,
and predict the mechanical behavior of elastomeric syntactic foams
along arbitrary quasistatic loading paths from the bottom up, in
particular, directly in terms of the elastic response of the underlying
elastomeric matrix, the initial volume fraction of microballoons, and
their fracturing or buckling. The results also point to the critical need to
carry out more experiments that go beyond uniaxial compression and,
in particular, that explore the possibility of the fracturing of microbal-
loons during “unloading” in order to guide the construction of accurate
evolution equations for the volume fraction ¢, of fractured/buckled
microballoons. Plans to carry out such experiments are underway.

We close by noting that the mathematical richness and simplicity of
the proposed free-energy function (14) for elastomeric syntactic foams
may readily be transcribed to model other types of elastomeric foams.
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