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Abstract

We introduce a reduction from the distinct distances problem in Rd to an incidence problem
with (d − 1)-flats in R2d−1. Deriving the conjectured bound for this incidence problem (the
bound predicted by the polynomial partitioning technique) would lead to a tight bound for the
distinct distances problem in Rd. The reduction provides a large amount of information about
the (d− 1)-flats, and a framework for deriving more restrictions that these satisfy.

Our reduction is based on introducing a Lie group that is a double cover of the special
Euclidean group. This group can be seen as a variant of the Spin group, and a large part of our
analysis involves studying its properties.
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1 Introduction

The Erdős distinct distances problem is a main problem in Discrete Geometry, which asks for the
minimum number of distinct distances spanned by a set of n points in R2. That is, denoting the
distance between two points p, q ∈ R2 as |pq|, we wish to find min|P|=n |{|pq| : p, q ∈ P}|.

In 1946, Erdős [4] observed that a
√
n×
√
n section of the integer lattice Z2 spans Θ(n/

√
log n)

distinct distances (this observation is an immediate corollary of a number theoretic result of Landau
and Ramanujan). Erdős conjectured that no set of n points in R2 spans an asymptotically smaller
number of distinct distances. Proving that every set of n points in R2 spans Ω(n/

√
log n) distinct

distances turned out to be a difficult problem, to have a deep underlying theory, and to have strong
connections to several other parts of mathematics.

After over 60 years and many works on the distinct distances problem, Guth and Katz [7] proved
that every set of n points in R2 spans Ω(n/ log n) distinct distances. Their proof involves studying
properties of polynomials, partly by using tools from Algebraic Geometry. This work began a new
era of polynomial methods in Discrete Geometry.

Already in his 1946 paper, Erdős observed that a n1/d × n1/d × · · · × n1/d section of the in-
teger lattice Zd spans Θ(n2/d) distinct distances. He then conjectured that this construction is
asymptotically best possible, in the sense that every set of n points in Rd spans Ω(n2/d) distinct
distances. When the Guth–Katz paper first appeared, it seemed that similar techniques might
solve the distinct distance problem in Rd. However, over six years have passed and no new results
were obtained for this problem. Before the new era of polynomial methods, Solymosi and Vu [14]
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derived a lower bound for the number of distinct distances in Rd. This bound was obtained by an
induction on the dimension d. The current best bounds for distinct distances in Rd are obtained
by using this induction, with the planar distinct distances theorem as the induction basis. For
example, this implies that every n points in R3 determine Ω∗(n3/5) distinct distances.1

The proof of the planar distinct distances theorem reduces the problem into a point-line in-
cidence problem in R3 (based on a previous work by Elekes and Sharir [3]), and then solves the
incidence problem by using polynomial methods. Specifically, given a finite set of lines L in Rd and
a positive integer k, we say that a point in Rd is k-rich if it is contained in at least k lines of L.
The planar distinct distances theorem was reduced to the following problem.

Theorem 1.1 (Guth and Katz [7]). Let L be a set of n lines in R3 such that no point of R3 is
contained in more than

√
n lines of L. Moreover, every plane, hyperbolic paraboloid, or single-

sheeted hyperboloid contains O(
√
n) lines of L. Then for every k ≥ 2, the number of k-rich points

is O
(
n3/2

k2
+ n

k

)
.

It is possible to imitate the reduction of the planar distinct distances problem in higher di-
mensions. However, already for distinct distances in R3 this leads to an incidence problem with
somewhat involved varieties that are difficult to study. For example, it is not clear how to bound
the number of varieties that can be contained in a hyperplane.

The main contribution of this paper is a more involved reduction that leads to a simpler incidence
problem. It is significantly easier to establish properties of the varieties in this problem. We refer
to k-dimensional planes in Rd as k-flats. Let Sd be the hypersphere in Rd+1 that is centered at the
origin and of radius 1.

Theorem 1.2. The problem of deriving a lower bound on the minimum number of distinct distances
spanned by n points in Rd can be reduced to the following problem:

Let F be a set of n distinct (d− 1)-flats in R2d−1, such that every two flats intersect
in at most one point, every point of R2d−1 is contained in O(

√
n) flats of F , and every

hyperplane in R2d−1 contains O(
√
n) of these flats. Find an upper bound on the number

of k-rich points, for every 2 ≤ k = O(n1/d+ε) (for some ε > 0).

Deriving the bound O
(
n(2d−1)/d

k2+ε

)
for the number of k-rich points would yield the conjectured

lower bound of Ω(n2/d) distinct distances.

Remarks. (i) Using our methods, we obtained the same reduction for the case where the points
are on the hypersphere Sd rather than in Rd. Since the paper is already rather long and technical,
we decided not to include the proof of this case.

(ii) For α ≥ 0, deriving the bound O
(
nα+(2d−1)/d

k2+ε

)
for the number of k-rich points would yield a

lower bound of Ω(n2/d−2α) distinct distances.
(iii) The ε in the bound k = O(n1/d+ε) comes from an incidence bound of Solymosi and Tao [13].
It is conjectured that this ε can be removed from the bound of [13], and this would immediately
remove the ε from the restriction on k.
(iv) Usually a bound on the number of k-rich points also includes an extra term of the form n/k,
which dominates the bound when k is large. Since we are only interested in small values of k, this
extra term is not relevant in our case.

The incidence problem stated in Theorem 1.2 is false without including additional restrictions.
That is, one can obtain point-flat constructions in R2d−1 that have too many incidences. Using our

1In the Ω∗(·)-notation we ignore polylogarithmic factors.
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framework, one can overcome this issue by deriving many additional restrictions for the incidence
problem. We do not mention such restrictions in Theorem 1.2, since it is not clear what are the
natural restrictions for deriving the incidence bounds. Instead, in Section 7 we demonstrate how
our framework can be used to derive additional restrictions, considering specifically the case of
distinct distances in R3.

The problem of distinct distances in R3 leads to an incidence problem with 2-flats in R5. In
Section 7, we bound the number of such 2-flats that can be contained in a constant-degree variety
in R5. We also bound the number of 2-flats that can have a one-dimensional intersection with a
constant-degree two-dimensional variety in R5. Some of these results are conditional on having a
good distinct distances bound for points on constant-degree surfaces in R3. Thus, to obtain the
conjectured distinct distances bound in R3, it is possible that one would first need to derive a
distinct distances bound for the special case of points on a surface in R3. Currently, such bounds
are known for planes, spheres, and two-sheeted hyperboloids (for example, see [15]). However, we
are far from having this bound for arbitrary constant-degree surfaces in R3. For more details, see
Sharir and Solomon [11].

The current best bounds for incidences with varieties in Rd are obtained by the polynomial
partitioning technique (for example, see [5, 13]). We can efficiently apply this technique to inci-
dences with (d−1)-flats in R2d−2, but the case of (d−1)-flats in R2d−1 seems to be just beyond the
current capabilities. There is a simple way to estimate the bounds that the polynomial partitioning
technique is expected to yield after overcoming the current issues.2 In the case of (d − 1)-flats in

R2d−1, the expected incidence bound is mk = O
(
n(2d−1)/d

k(3d−2)/d + n
k

)
. Note that this is the incidence

bound required in Theorem 1.2 to obtain a tight bound for the distinct distances problem in Rd.
Theorem 1.2 states three restrictions on the set of flats F : the maximum number of flats incident

to a common point, the maximum number of flats contained in a common hyperplane, and the size
of the intersection of any two flats. Our framework can be used to obtain additional information
about the flats of F . In particular, before obtaining the set F of (d − 1)-flats in R2d−1, we get a

set L of
(
d
2

)
-flats in R(d+1

2 ). To move to the space R2d−1 from the statement of Theorem 1.2, we
intersect L with a generic (2d − 1)-flat. In Section 6 we describe the exact structure of the flats
of L (that is, the equations that define each flat). This structure can be used to obtain additional
properties of the flats of L, and thus of the flats of F . It is currently unclear what additional
properties would be needed to solve the resulting incidence problem, but given such properties it
seems reasonable that our techniques would lead to the derivation of the corresponding restrictions.

The inspiration for this work came from a blog post of Tao [15]. Tao states that he wrote this
post “to record some observations arising from discussions with Jordan Ellenberg, Jozsef Solymosi,
and Josh Zahl.” The post describes a reduction from the problem of finding a lower bound for the
number of distinct distances spanned by points on the sphere S2 to Theorem 1.1. It also shows
how the case of distinct distances in R2 can be viewed as a scaling limit of the case of distinct
distances in S2. This is an alternative way to reduce the planar distinct distances problem to a
point-line incidence problem in R3. While the original reduction can be seen as based on the Lie
group SE(2), the reduction in the blog post is based on the Lie group Spin(3) (a brief introduction
to these groups can be found in Section 2). A more direct approach to distinct distances on S2 was
presented by Rudnev and Selig [10].

To derive a reduction from the distinct distances problem in Rd we introduce a variant of the
group Spin(d), which we denote Spun(d). While Spin(d) is a double cover of SO(d), the group
Spun(d) is a double cover of SE(d). A large part of our analysis deals with studying properties of

2This is done by bounding the number of incidences in the cells while ignoring the incidences on the partition
itself. See for example [12, Chapter 8].
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Spun(d).
In Section 2 we briefly describe several Lie groups that we rely on. In Section 3 we introduce

the group Spun(d) and study its structure. In Section 4 we derive Theorem 1.2 for the special case
of distinct distances in R3. We present this case separately since it is simpler to prove and provides
more intuition about what is happening in the proof. In Section 5 we extend the analysis from
Section 4 to any dimension. Finally, in Section 6 we derive the defining equations of the flats of L,
as stated above.

Acknowledgments. We would like to thank Joshua Zahl for many discussions that eventually
led to Section 7. We wish to thank William Ballinger and Dmitri Gekhtman for several helpful
discussions. We would also like to thank the anonymous referees for helping to improve a previous
draft of this work.

2 Preliminaries: Lie groups

In our analysis we rely on a specific family of Lie groups. In this section we briefly introduce these
groups and some of their properties. In Section 3 we will introduce our own Lie group and study
it in more detail.

Given a point p ∈ Rd, we denote by ‖p‖ the standard Euclidean norm of p. Given two points
p, q ∈ Rd, we denote by |pq| the Euclidean distance between them (that is, ‖p− q‖).

Groups of rigid motions. A rigid motion (or isometry) of Rd is a transformation T : Rd → Rd
that preserves Euclidean distances. That is, for every v, u ∈ Rd we have that |uv| = |T (u)T (v)|.
It is well known that every rigid motion of Rd is a combination of translations, rotations, and
reflections. A rigid motion is said to be proper if it is a combination of translations and rotations.
In R2, a rigid motion is proper if and only if for every three points a, b, c ∈ Rd, the path a→ b→ c
forms a right turn if and only if T (a)→ T (b)→ T (c) forms a right turn (that is, if the rigid motion
is orientation preserving). A similar definition exists in higher dimensions. The Special Euclidean
group of Rd, denoted SE(d), is the group of proper rigid motions of Rd under the operation of
composition.

The Orthogonal group O(d) is the group of rigid motions of Rd that fix the origin. It consists
of the rotations around the origin and the reflections about a hyperplane incident to the origin.
Equivalently, we can think of O(d) as the set of rigid motions that take Sd−1 to itself. The Special
Orthogonal group SO(d) is the group of proper rigid motions of Rd that fix the origin (equivalently,
of proper rigid motions that take Sd−1 to itself). It consists of the rotations around the origin.
Note that SO(d) is a subgroup of both O(d) and SE(d).

For any unproved claims in the the remainder of this section, see [6, Sections 1.2–1.4].

Clifford algebras. A Clifford algebra is defined with respect to a vector space and to a symmetric
bilinear form. We only define a special case of this algebra: the Clifford algebra associated with
Rd and the Euclidean norm. This is a real unitary algebra C`d with a linear map i : Rd → C`d
that satisfies the following two properties. For every v ∈ Rd, we have i(v)2 = −‖v‖2 · 1, where 1
is the multiplicative identity element of C`d. Moreover, if A is a real algebra and f : Rd → A is a
linear map satisfying f(v)2 = −‖v‖2 · 1 for all v ∈ Rd, then there exists an algebra homomorphism
φ : C`d → A such that f = φ ◦ i. It can be shown that the algebra C`d is unique up to an
isomorphism.

We now present a more constructive definition of the Clifford algebra C`d (the definition that
we will actually rely is in the following paragraph). For a vector space V , we denote by V ⊗k the

k-fold tensor product of V with itself. Consider the direct sum
⊕

k∈N
(
Rd
)⊗k

, and let I be the
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ideal in this tensor algebra that is generated by all elements of the form v ⊗ v + ‖v‖2 · 1. Then we
can write C`d as the quotient ⊕

k∈N

(
Rd
)⊗k

/I.

Let j : Rn →
⊕

k∈N
(
Rd
)⊗k

be the natural injection, and let π :
⊕

k∈N
(
Rd
)⊗k →⊕

k∈N
(
Rd
)⊗k

/I
be the natural quotient map. Then the linear map associated with C`d is the composition π ◦ j.

For our purposes, it would be more intuitive to think of the Clifford algebra C`d as follows.
Let e1, . . . , ed denote the image of an element of the standard basis of Rn under the map i. When
dealing with tensor products of elements of C`d, we will write xy instead of x⊗ y. Note that C`d
is a 2d-dimensional real vector space with basis 1, e1, . . . , ed, e1e2, . . . , e1ed, e2e3, . . . , e1 · · · ed (that
is, the 2d subsets of {e1, . . . , ed}). Recalling the definition of I, we note that the Clifford algebra
satisfies e2j = −1 for every 1 ≤ j ≤ d. Moreover, a simple argument shows that ejek = −ekej for
every 1 ≤ j, k ≤ d with j 6= k. This explains why in the basis of C`d we do not have combinations
of elements e1, . . . , ed where some ek repeats more than once.

Let α : C`d → C`d be the automorphism satisfying α(1) = 1 and α(ej) = −ej for all j. Let
t : C`d → C`d be the anti-automorphism satisfying t(xy) = t(y)t(x), t(ej) = ej for all j, and
t(1) = 1. For example, we have α(e1 + e1e2) = −e1 + e1e2 and t(e1 + e1e2) = e1 + e2e1 = e1− e1e2.
It can be shown that the functions α and t are uniquely defined. We define the conjugate of x ∈ C`d
as x = α(t(x)) = t(α(x)). We also define the norm N(x) = xx. Returning to the above example,
we have e1 + e1e2 = −e1 − e1e2 and N(e1 + e1e2) = 2 · 1. Note that for every v ∈ Rd and x = i(v)
we have x = −x, which in turn implies N(x) = ‖v‖2.

We are especially interested in elements x ∈ C`d that satisfy α(x)i(v)x−1 ∈ i(Rd) for every
v ∈ Rd. One advantage of working with such elements is that their norm is well behaved.

Lemma 2.1.
(i) Let x ∈ C`d satisfy α(x)i(v)x−1 ∈ i(Rd) for every v ∈ Rd. Then N(x) = r · 1 for some r ∈ R.
(ii) Consider a second element y ∈ C`d that satisfies α(y)i(v)y−1 ∈ i(Rd) for every v ∈ Rd. Then
N(xy) = N(x)N(y).
(iii) Let x = i(u) for u ∈ Rd. Then α(x)i(v)x−1 ∈ i(Rd) for every v ∈ Rd.
Proof. (i) See [6, Proposition 1.8].

(ii) By part (i) of the lemma, N(y) = r · 1 for some r ∈ R, so N(y) commutes with everything
in C`d. This implies

N(xy) = xyxy = xyy x = xN(y)x = xxN(y) = N(x)N(y).

(iii) See [6, Proposition 1.6].

Rather than working with all of C`d, we will rely on the subalgebra

C`0d = {x ∈ C`d : α(x) = x}.

This is the 2d−1-dimensional subspace of C`d generated by the elements of the basis of C`d that
are the product of an even number of distinct ej ’s. Similarly, we set C`1d = {x ∈ C`d : α(x) = −x}.
This is a 2d−1-dimensional subspace (not a subalgebra), and is generated by the elements of the
basis of C`d that are the product of an odd number of distinct ej ’s.

Spin groups. Denote the multiplicative groups of C`d and C`0d as C`×d and C`0×d , respectively.
We define the Lie groups

Pin(d) = {x ∈ C`×d : N(x) = 1 and α(x)i(v)x−1 ∈ i(Rd) for every v ∈ Rd},
Spin(d) = {x ∈ C`0×d : N(x) = 1 and xi(v)x−1 ∈ i(Rd) for every v ∈ Rd}. (1)
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Note that in the definition of Spin(d) we can replace xi(v)x−1 with α(x)i(v)x−1, since x = α(x)
for every x ∈ C`0×d .

An equivalent definition for Pin(d) is the set of elements that can be written as i(v1)i(v2) · · · i(vk),
where v1, . . . , vk ∈ Sd−1 (and k is not fixed). Similarly, an equivalent definition of Spin(d) is the
set of elements that can be written as i(v1)i(v2) · · · i(vk), where v1, . . . , vk ∈ Sd−1 and k is even.

For γ ∈ Pin(d) and v ∈ Rd, we denote the group action of γ on p as pγ . This group action is
vγ = i−1(α(γ)i(v)γ−1). Notice that i is injective when considered as a function from Rd to i(Rd).
When v ∈ Rd we have α(γ)i(v)γ−1 ∈ i(Rd), so vγ = i−1(γi(v)γ−1) is well defined.

By Lemma 2.1, any γ ∈ Pin(n) satisfies

N(α(γ)i(v)γ−1) = N(α(γ))N(i(v))N(γ−1) = N(i(v)) = ‖v‖2 · 1.

That is, the transformation of Rd induced by the action of γ preserves the Euclidean norm, and
is thus in O(d). Letting ρ : Pin(d) → O(d) be defined by ρ(x)(v) = i−1(α(x)i(v)x−1), we get that
ρ is surjective with kernel {1,−1}. That is, Pin(d) is a double cover of O(d). In the special case
where γ = i(w) ∈ i(Rd) ⊆ Pin(d), the action of ρ(γ) corresponds to a reflection of Rd about the
hyperplane orthogonal to w and incident to the origin.

The restricted transformation ρ : Spin(d) → SO(d) is also surjective with kernel {1,−1}. For
some intuition, recall that the composition of two reflections about hyperplanes incident to the
origin is a rotation centered at the origin. Thus, the tensor product of two elements of i(Rd)
corresponds to a rotation in Spin(d). Similarly, the composition of rotations around the origin is a
rotation around the origin.

A proof of the following lemma can be found in [6, Section 1.4].

Lemma 2.2. Let d ≤ 5 and let x ∈ C`0d satisfy N(x) = 1. Then for every v ∈ Rd we have
xi(v)x−1 ∈ i(Rd).

The claim of Lemma 2.2 is false for d ≥ 6. Combining this lemma with the definition in (1)
yields the following result.

Corollary 2.3. For d ≤ 5, we have

Spin(d) = {x ∈ C`0×d : N(x) = 1}.

We will also rely on the following observation.

Lemma 2.4. If u, v ∈ Rd are orthogonal vectors then i(u)i(v) = −i(v)i(u).

Proof. We set u′ = u/‖u‖ and v′ = v/‖v‖, so that u′, v′ ∈ Sd−1. Since u and v are orthogonal, so
are u′ and v′. Thus, there exists γ ∈ Spin(d) that corresponds to a rotation taking e1 to u′ and e2
to v′. Since e1e2 = −e2e1, we have

γe1γ
−1γe2γ

−1 = −γe2γ−1γe1γ−1 which implies i(u′)i(v′) = −i(v′)i(u′).

The assertion of the lemma is obtained by multiplying both sides by ‖u‖ · ‖v‖.
The above argument holds for d ≥ 3. When d = 2, there might not exist γ ∈ Spin(d) that takes

e1 to u′ and e2 to v′. In that case we can consider instead γ ∈ Spin(d) that takes e1 to v′ and e2
to u′

6



3 The group Spun(d)

In this section we introduce the group Spun(d). We first construct a variant Xd of the Clifford

algebra C`d. Consider the direct sum
⊕

k∈N
(
Rd+2

)⊗k
, and let I be the ideal in this tensor algebra

that is generated by

{ej ⊗ ek + ek ⊗ ej : 1 ≤ 1 ≤ j, k ≤ d+ 1}
⋃
{ed+2 ⊗ ed+2}⋃

{ej ⊗ ej + 1, ed+2 ⊗ ej − ej ⊗ ed+2 : 1 ≤ 1 ≤ j ≤ d+ 1} .

Then we write Xd as the quotient ⊕
k∈N

(
Rd+2

)⊗k
/I.

For brevity we write eiej instead of ei ⊗ ej . Let i : Rd → Xd be the linear map that takes the
standard basis elements of Rd to e1, . . . , ed, respectively. Let α : Xd → Xd be the automorphism
satisfying α(1) = 1, α(ej) = −ej for every 1 ≤ j ≤ d+ 1, and α(ed+2) = ed+2. Let t : Xd → Xd be
the anti-automorphism satisfying t(xy) = t(y)t(x), t(ej) = ej for every 1 ≤ j ≤ d+2, and t(1) = 1.
For example, when d = 4 we have

α(e3e4 + e1e5e6 + e2e6) = e3e4 + e1e5e6 − e2e6,
t(e3e4 + e1e5e6 + e2e6) = −e3e4 − e1e5e6 + e2e6.

For every x ∈ X, we define the conjugate of x as x = α(t(x)) = t(α(x)), and the norm of
x as N(x) = xx. Note that for every x = i(v) ∈ i(Rd) we have x = −x, which in turn implies
N(x) = ‖v‖2 · 1.

We define the standard basis of Xd to consist of 1 and of the tensor products of any number
of distinct elements from {e1, . . . , ed+2}. It is not difficult to verify that this set generates Xd and
is linearly independent. Let Z0

d ⊂ X0
d be the subspace generated by 1 and by products of an even

number of elements from {e1, e2, . . . , ed, ed+1ed+2} (note that ed+1ed+2 is a single element).
For 1 ≤ k ≤ d + 1, note that the subspace of Xk generated by 1 and by products of distinct

elements from {e1, . . . , ek} is a subalgebra of Xd. This subalgebra is isomorphic to the Clifford
algebra C`k, and we thus refer to it as C`k. With this notation, the above definition of the norm
N(·) of Xd generalizes the definition of a norm in C`k. Similarly, the subalgebra C`0d is contained
in Z0

d .
We are now ready to define our variant of Spin(d).

Spun(d) =
{
z ∈ Z0

d : N(z) = 1 and for every v ∈ Rd there exists w ∈ Rd

such that z (ed+2i(v) + ed+1) z = ed+2i(w) + ed+1

}
. (2)

We will prove that Spun(d) is indeed a group and a double cover of SE(d). But first we give a
brief intuition for the definition in (2). We can think of this definition as extending Spin(d) with
the two extra elements ed+1 and ed+2. The addition of ed+1 leads us to the group Spin(d + 1),
which is a double cover of SO(d+ 1). The role of ed+2 is to imitate a scaling limit argument as in
[15]. We think of ed+2 as a small ε > 0, or as the restriction to a small disc on Sd. As ε approaches
zero, this disc behaves more like a flat so Spin(d+ 1) becomes more similar to SE(d).

Note that for every γ ∈ Spin(d) we have that γed+1 = ed+1γ, and similarly for ed+2.

Theorem 3.1. The set Spun(d) is a group under the product operation of Xd. Moreover, the
inverse of every x ∈ Spun(d) is x.
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Proof. We first show that for every x, y ∈ Spun(d) we have xy ∈ Spun(d). Indeed, note that

N(xy) = xyy x = xN(y)x = xx = N(x) = 1.

Moreover, for every v ∈ Rd there exist u,w ∈ Rd such that

xy (ed+2i(v) + ed+1)xy = x(y(ed+2i(v) + ed+1)y)x = x(ed+2i(w) + ed+1)x = ed+2i(u) + ed+1.

Since the product operation of Xd is clearly associative and 1 is the identity element, it remains
to prove that every x ∈ Spun(d) has an inverse in Spun(d). We will prove that xx = xx = 1 and
that x ∈ Spun(d). Fix x ∈ Spun(d), and write x = γ1+ed+1ed+2γ2 where γ1 ∈ C`0d+1 and γ2 ∈ C`1d.
Since xx = N(x) = 1, we have

1 = xx = (γ1 + ed+1ed+2γ2)(γ1 + ed+1ed+2γ2) = γ1γ1 + ed+2(γ1ed+1γ2 + ed+1γ2γ1).

By comparing the parts that do not involve ed+2 on both sides of the equation, we get γ1γ1 = 1.
By comparing the parts that contain ed+2, we get γ1ed+1γ2 = −ed+1γ2γ1.

Since x ∈ Spun(d), for every v ∈ Rd there exists w ∈ Rd such that x(ed+2i(v) + ed+1)x =
ed+2i(w) + ed+1. In particular, there exists w0 ∈ Rd such that xed+1x = x(ed+2 · i(0) + ed+1)x =
ed+2i(w0) + ed+1. Fixing v, w ∈ Rd as defined above and setting u = w − w0 gives

ed+2xi(v)x = x(ed+2i(v) + ed+1)x− xed+1x = ed+2i(w) + ed+1 − (ed+2i(w0) + ed+1) = ed+2i(u).

We also have

ed+2xi(v)x = ed+2(γ1 + ed+1ed+2γ2)i(v)(γ1 + ed+1ed+2γ2) = ed+2γ1i(v)γ1.

Combining the above gives γ1i(v)γ1 = i(u) ∈ i(Rd). That is, γ1i(v)γ1 ∈ i(Rd) for every v ∈ Rd.
We have

ed+2i(w0) + ed+1 = xed+1x = (γ1 + ed+1ed+2γ2) ed+1 (γ1 + ed+1ed+2γ2)

= γ1ed+1γ1 + ed+2 (γ1ed+1ed+1γ2 + ed+1γ2ed+1γ1) . (3)

By again comparing the terms that do not involve ed+2 we get γ1ed+1γ1 = ed+1.
Since γ1i(v)γ1 ∈ i(Rd) for every v ∈ Rd and γ1ed+1γ1 = ed+1, we get that γ1i(v

′)γ1 ∈ i(Rd+1)
for every v′ ∈ Rd+1. Combining this with N(γ1) = γ1γ1 = 1 implies that γ1 ∈ Spin(d + 1). In
particular, the inverse of γ1 is γ1. Multiplying the above equation γ1ed+1γ1 = ed+1 by γ1 from the
right leads to γ1ed+1 = ed+1γ1. Since γ1 commutes with ed+1 we have γ1 ∈ C`0d, which in turn
implies γ1 ∈ Spin(d).

We next wish to show that xx = 1. Since xx = 1, it suffices to prove that xx = xx, or
equivalently

γ1γ1 + ed+2 (γ1ed+1γ2 + ed+1γ2γ1) = γ1γ1 + ed+2 (ed+1γ2γ1 + γ1ed+1γ2) .

Since the inverse of γ1 is γ1, we have that γ1γ1 = 1 = γ1γ1. It remains to prove that

γ1ed+1γ2 + ed+1γ2γ1 = ed+1γ2γ1 + γ1ed+1γ2.

Since ed+1 commutes with γ1 and γ1, this equation becomes γ1γ2 + γ2γ1 = γ2γ1 + γ1γ2.
Above we proved that γ1ed+1γ2 = −ed+1γ2γ1. Since ed+1 commutes with γ1 and γ1, we get

γ1γ2 = −γ2γ1. Multiplying by γ1 from the left and by γ1 from the right gives γ2γ1 = −γ1γ2.

8



Combining these two inequalities leads to the required equation γ1γ2 + γ2γ1 = 0 · 1 = γ2γ1 + γ1γ2.
We conclude that xx = 1. That is, x−1 = x.

To complete the proof of the lemma we need to show that x ∈ Spun(d). We already know
that N(x) = xx = 1. It remains to prove that for every v ∈ Rd there exists w ∈ Rd such that
x (ed+2i(v) + ed+1)x = ed+2i(w) + ed+1.

By considering the coefficients of ed+2 in (3), we get

i(w0) = γ1ed+1ed+1γ2 + ed+1γ2ed+1γ1 = γ2γ1 − γ1γ2.

Multiplying by γ1 from the right and by γ1 from the left gives γ1i(w0)γ1 = γ1γ2 − γ2γ1. Since
γ1 ∈ Spin(d), there exists w1 ∈ Rd such that γ1i(w0)γ1 = i(w1).

We have that

xed+1x = (γ1 + ed+1ed+2γ2) ed+1 (γ1 + ed+1ed+2γ2) = ed+1 + ed+2 (γ2γ1 − γ1γ2) = ed+1 − ed+2i(w1).

Since γ1 ∈ Spin(d), for every v ∈ Rd there exists u ∈ Rd such that γ1i(v)γ1 = i(u). By
combining the above, we get

x (ed+2i(v) + ed+1)x = ed+2xi(v)x+ xed+1x

= ed+2 (γ1 + ed+1ed+2γ2) i(v) (γ1 + ed+1ed+2γ2) + ed+1 − ed+2i(w1)

= ed+2 (γ1i(v)γ1 − i(w1)) + ed+1 = ed+2i(u− w1) + ed+1.

Now that we established the Spun(d) is a group, we start to study its structure.

Lemma 3.2. We have Spun(d) = {γ (1 + ed+1ed+2i(v)) : γ ∈ Spin(d), v ∈ Rd}. Every element
of Spun(d) corresponds to a unique pair (γ, v) ∈ Spin(d)× Rd.

Proof. For arbitrary γ ∈ Spin(d) and v ∈ Rd, we set x = γ (1 + ed+1ed+2i(v)). Then

N(x) = γ (1 + ed+1ed+2i(v)) (1 + ed+1ed+2i(v))γ = γ (1 + ed+1ed+2i(v)) (1− ed+1ed+2i(v)) γ

= γ(1− ed+1ed+2i(v) + ed+1ed+2i(v))γ = γγ = 1.

Since γ ∈ Spin(d), there exists w1 ∈ Rd such that γi(v)γ = i(w1). For every u ∈ Rd there exists
w2 ∈ Rd such that γi(u)γ = i(w2), so

x(ed+2i(u) + ed+1)x = ed+2(xi(u)x) + xed+1x

= ed+2γ (1 + ed+1ed+2i(v)) i(u) (1− ed+1ed+2i(v)) γ + γ (ed+1 + ed+2i(v)) (1− ed+1ed+2i(v)) γ

= ed+2γi(u)γ + γ(ed+1 + 2ed+2i(v))γ = ed+2i(w2 + 2w1) + ed+1 ∈
(
ed+2i(Rd) + ed+1

)
.

We conclude that {γ (1 + ed+1ed+2i(v)) : γ ∈ Spin(d), v ∈ Rd} ⊆ Spun(d).
For the other direction, consider an element x ∈ Spun(d), and recall from the proof of Theorem

3.1 that x = γ1+ed+1ed+2γ2 for some γ1 ∈ Spin(d) and γ2 ∈ C`1d. By definition, there exists w0 ∈ Rd
such that xed+1x = x(ed+2i(0) + ed+1x = ed+2i(w0) + ed+1. In the proof of Theorem 3.1 it is also
shown that i(w0) = γ2γ1 − γ1γ2 and that γ1γ2 = −γ2γ1. Together these imply γ2γ1 = i(w0)/2.
Since γ1 ∈ Spin(d), it has the inverse γ1. Thus, there exists w1 ∈ Rd such that

γ2 = (γ2γ1)γ1 = i(w0)γ1/2 = γ1γ1i(w0)γ1/2 = γ1i(w1)/2.
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We conclude that x = γ1(1 + ed+1ed+2i(w1)/2) where γ1 ∈ Spin(d). That is, Spun(d) ⊆
{γ (1 + ed+1ed+2i(v)) : γ ∈ Spin(d), v ∈ Rd}.

Note that γ is uniquely determined by x, since it is exactly the part of x that does not involve
ed+2. Once γ is fixed, there is a unique v ∈ Rd that satisfies γed+1ed+2i(v) = ed+1ed+2γ2. That is,
the pair (γ, v) is uniquely determined.

Recall that every transformation of SE(d) can be seen as a translation followed by a rotation,
which is a pair in SO(d) × Rd. Lemma 3.2 states that every element of Spun(d) corresponds to
a unique pair of Spin(d) × Rd. Since Spin(d) is a double cover of SO(d), we are starting to see
why Spun(d) is a double cover of SE(d). The following result proves this property, and provides a
variant of the homomorphism ρ : Spin(d)→ SO(d) defined above.

Theorem 3.3. For every d there exists a surjective group homomorphism ρ : Spun(d) → SE(d)
with ker(ρ) = {−1, 1}. That is, Spun(d) is a double cover of SE(d).

Proof. Let a ∈ Rd be a fixed point. By Lemma 3.2, any element x ∈ Spun(d) can be written
as γx (1 + ed+1ed+2i(vx)) where γx ∈ Spin(d) and vx ∈ Rd are uniquely determined. We set
px = γxi(a+ 2vx)γx and note that px ∈ i(Rd). We have

γx +
1

2
ed+1ed+2 (pxγx − γxi(a)) = γx +

1

2
ed+1ed+2 · 2γxi(vx) = γx(1 + ed+1ed+2i(vx)) = x. (4)

Thus, for any x ∈ Spun(d) there exist unique px ∈ i(Rd) and γx ∈ Spin(d) such that x = γx +
1
2ed+1ed+2 (pxγx − γxi(a)). We now rely on this observation to define the map ρ : Spun(d)→ SE(d).
For any v ∈ Rd, denote the translation of Rd by v as v+ ∈ SE(d). Similarly, for any p ∈ i(Rd), we
set p+ = (i−1(p))+ ∈ SE(d). As stated in Section 2, there is a unique Γx ∈ SO(d) that corresponds
to γx. We set

ρ(x) = p+x ◦ Γx ◦ (−a)+.

Note that px and Γx are uniquely determined by x. Recalling that a is fixed, we conclude that the
map ρ(·) is well-defined.

For every p ∈ i(Rd) and γ ∈ Spin(d), by setting i(u) = 1
2 (γpγ − i(a)) ∈ i(Rd) we get

γ (1 + ed+1ed+2i(u)) = γ +
1

2
ed+1ed+2 (pγ − γi(a)) .

Combining this with (4) and with Lemma 3.2 implies that for every p ∈ i(Rd) and γ ∈ Spin(d)
there exists x ∈ Spun(d) such that p = px and γ = γx. Every transformation M ∈ SE(d) can be
written as (M(a))+ ◦ R ◦ (−a)+ for some transformation R ∈ SO(d). Indeed, note that for any
R ∈ SO(d) the map (M(a))+ ◦ R ◦ (−a)+ takes a to M(a), so we just need to choose the R that
rotates the space properly around a. We conclude that ρ is surjective.

For x, y ∈ Spun(d), we now consider how the product xy ∈ Spun(d) behaves. Since γy ∈ Spin(d),
there exists vz ∈ Rd such that i(vz) = γyi(vx)γy. Then

xy = γx (1 + ed+1ed+2i(vx)) γy (1 + ed+1ed+2i(vy))

= γx (γy + ed+1ed+2i(vx)γy) (1 + ed+1ed+2i(vy))

= γxγy (1 + ed+1ed+2i(vz)) (1 + ed+1ed+2i(vy)) = γxγy (1 + ed+1ed+2i(vz + vy)) .

This implies that γxy = γxγy and that vxy = vz + vy. This in turn implies that pxy = γxyi(a+
2vz + 2vy)γxy. We are now ready to verify that ρ is a group homomorphism. Note that the action
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of γxy is first performing the action of γy and then the action of γx. That is, Γxy = Γx ◦ Γy. For
the same reason we have

ρ(x)ρ(y) = p+x ◦ Γx ◦ (−a)+ ◦ p+y ◦ Γy ◦ (−a)+ = p+x ◦ Γx ◦ (py − i(a))+ ◦ Γy ◦ (−a)+

= p+x ◦ (γx(py − i(a))γx)+ ◦ Γx ◦ Γy ◦ (−a)+

= (px + γx(py − i(a))γx)+ ◦ Γxy ◦ (−a)+

=
(
γx

(
i(a+ 2vx) + γyi(a+ 2vy)γ(y)− i(a)

)
γx

)+
◦ Γxy ◦ (−a)+

= (γxγy(2γyi(vx)γy + i(a+ 2vy))γxγy)
+ ◦ Γxy ◦ (−a)+

= (γxyi(a+ 2vxy)γxy)
+ ◦ Γxy ◦ (−a)+ = p+xy ◦ Γxy ◦ (−a)+ = ρ(xy).

It remains to find the kernel of the homomorphism ρ. Let I be identity element of SE(d) and
let x ∈ Spun(d) satisfy ρ(x) = p+x ◦ Γx ◦ (−a)+ = I. That is, p+x ◦ Γx = a+. The composition of
a rotation and a translation cannot be a translation, so Γx is the identity of SO(d) and px = i(a).
This implies that γx ∈ {−1,1} ⊂ Spin(d). Combining the above with (4) gives

ker(ρ) = ρ−1(I) =

{
−1 +

1

2
ed+1ed+2 (−i(a) + i(a)) ,1 +

1

2
ed+1ed+2 (i(a)− i(a))

}
= {−1,1}.

Let τ : {ed+2i(v) + ed+1 : v ∈ Rn} → Rn be the map defined by τ(ed+2i(v) + ed+1) = v. The
following lemma studies the behaviour of the homomorphism ρ from Theorem 3.3.

Lemma 3.4. For every w ∈ Rd and x ∈ Spun(d),

ρ(x)(w) = τ(x(ed+2i(w) + ed+1)x).

Proof. By Lemma 3.2, every x ∈ Spun(d) can be written as γx (1 + ed+1ed+2i(vx)) for some γx ∈
Spin(d) and vx ∈ Rd. Recalling that px = γxi(a+ 2vx)γx, we have

x(ed+2i(w) + ed+1)x = γx (1 + ed+1ed+2i(vx)) (ed+2i(w) + ed+1) (1− ed+1ed+2i(vx)) γx

= γxed+2i(w)γx + γx (1 + ed+1ed+2i(vx)) ed+1 (1− ed+1ed+2i(vx)) γx

= ed+2γxi(w)γx + γx (ed+1 + ed+1ed+2i(vx)ed+1 − ed+1ed+1ed+2i(vx)) γx

= ed+2γx(i(w) + 2i(vx))γx + γxed+1γx

= ed+2

(
px + γx(i(w)− i(a))γx

)
+ ed+1.

That is, the operation of τ(x(ed+2i(w) + ed+1)x) can be seen as first translating w by −a, then
performing the rotation of γx ∈ Spin(d), and finally translating by px. This is exactly the operation
ρ(x) = p+x ◦ Γx ◦ (−a)+.

For w ∈ Rd and x ∈ Spun(d), we write wx = ρ(x)(w) = τ(x(ed+2i(w) + ed+1)x).

3.1 The sets Tap

Given points a, p ∈ Rd, we define

Tap = {x ∈ Spun(d) : ax = p} . (5)

That is, Tap is the set of elements of Spun(d) that correspond to a proper rigid motion of Rd that
takes a to p. In this section we study the structure of Tap. We begin by presenting a relatively
simple description of this set.
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Lemma 3.5. For any a, p ∈ Rd, we have

Tap =

{
γ +

1

2
ed+1ed+2 (i(p)γ − γi(a)) : γ ∈ Spin(d)

}
.

Proof. Let x ∈
{
γ + 1

2ed+1ed+2 (i(p)γ − γi(a)) : γ ∈ Spin(d)
}

. That is, there exists γx ∈ Spin(d)
such that x = γx + 1

2ed+1ed+2 (i(p)γx − γxi(a)). We get that

N(x) = xx =

(
γx +

1

2
ed+1ed+2 (i(p)γx − γxi(a))

)(
γx +

1

2
ed+1ed+2 (i(a)γx − γxi(p))

)
= γxγx +

1

2
ed+1ed+2 (γxi(a)γx − i(p) + i(p)− γxi(a)γx) = 1.

For every u ∈ Rd we have

x(ed+2i(u) + ed+1)x

=

(
γx +

1

2
ed+1ed+2 (i(p)γx − γxi(a))

)
(ed+2i(u) + ed+1)

(
γx +

1

2
ed+1ed+2 (i(a)γx − γxi(p))

)
= γx(ed+2i(u) + ed+1)γx +

1

2
ed+2

(
ed+1 (i(p)γx − γxi(a)) ed+1γx + γxed+1ed+1 (i(a)γx − γxi(p))

)
= ed+2γxi(v)γx + ed+1 +

1

2
ed+2

(
(i(p)− γxi(a)γx)− (γxi(a)γx − i(p))

)
= ed+2 (γxi(v − a)γx + i(p)) + ed+1 ∈

(
ed+2i(Rd) + ed+1

)
. (6)

By combining the above, we get that x ∈ Spun(d). From (6) we obtain

x(ed+2i(a) + ed+1)x = ed+2 (γxi(a− a)γx + i(p)) + ed+1 = ed+2i(p) + ed+1.

Since the action of x takes a to p, we have that x ∈ Tap. This in turn implies{
γ +

1

2
ed+1ed+2 (i(p)γ − γi(a)) : γ ∈ Spin(d)

}
⊆ Tap.

For the other direction, consider y ∈ Tap ⊂ Spun(d). By Lemma 3.2, there exist γy ∈ Spin(d)
and vy ∈ Rd such that y = γy (1 + ed+1ed+2i(vy)). We also know that

ed+2i(p) + ed+1 = y(ed+2i(a) + ed+1)y

= γy (1 + ed+1ed+2i(vy)) (ed+2i(a) + ed+1) (1− ed+1ed+2i(vy)) γy

= γy (ed+2i(a) + ed+1 + ed+1ed+2i(vy)ed+1 − ed+1ed+1ed+2i(vy)) γy

= ed+2γy (i(a) + 2i(vy)) γy + ed+1.

The above calculation implies that i(p) = γy (i(a) + 2i(vy)) γy. After rearranging we get i(vy) =
(γyi(p)γy − i(a))/2. We thus have

y = γy (1 + ed+1ed+2i(vy)) = γy

(
1 +

1

2
ed+1ed+2(γyi(p)γy − i(a))

)
= γy +

1

2
ed+1ed+2(i(p)γy − γyi(a)).

We conclude that Tap ⊆
{
γ + 1

2ed+1ed+2 (i(p)γ − γi(a)) : γ ∈ Spin(d)
}

, which in turn implies
that the two sets are identical.
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The following lemma provides a more geometric representation of the sets Tap: the intersection
of Spun(d) with the linear subspace. Let

Fap =

(
1 +

1

2
ed+1ed+2i(p)

)
C`0d

(
1− 1

2
ed+1ed+2i(a)

)
. (7)

Lemma 3.6. For a, p ∈ Rd, we have Tap = Fap ∩ Spun(d).

Proof. Let x ∈ Fap ∩ Spun(d). Since x ∈ Fap, there exists δ ∈ C`0d such that

x =

(
1 +

1

2
ed+1ed+2i(p)

)
δ

(
1− 1

2
ed+1ed+2i(a)

)
= δ +

1

2
ed+1ed+2 (i(p)δ − δi(a)) . (8)

As in the proof of Theorem 3.3, since x ∈ Spun(d) there exist γx ∈ Spin(d) and px ∈ i(Rd)
such that x = γx + 1

2ed+1ed+2 (pxγx − γxi(a)). Combining this with (8) implies that γx = δ and
px = i(p). By Lemma 3.5 we get that x ∈ Tap. We conclude that Fap ∩ Spun(d) ⊆ Tap.

For the other direction, consider x ∈ Tap. By Lemma 3.5, there exists γ ∈ Spin(d) such that

x = γ +
1

2
ed+1ed+2 (i(p)γ − γi(a)) =

(
1 +

1

2
ed+1ed+2i(p)

)
γ

(
1− 1

2
ed+1ed+2i(a)

)
∈ Fap.

That is Tap ⊆ Fap. By definition, we have that Tap ⊂ Spun(d). This implies Tap ⊆ Spun(d) ∩ Fap
and completes the proof of the lemma.

4 Distinct distances in R3

In this section we prove Theorem 1.2 for the case of R3. The proof is based on the Spun(3) group
that was defined in Section 3. We note that C`03 is isomorphic to R4 as a vector space. Specifically,
we consider the basis 1, e1e2, e1e3, e2e3 of C`03 and write

x = x1 · 1 + x2e1e2 + x3e1e3 + x4e2e3.

Lemma 4.1. For every x ∈ C`03 we have N(x) =
∑4

j=1 x
2
j · 1.

Proof. Using the above notation

x = α(t(x1 · 1 + x2e1e2 + x3e1e3 + x4e2e3)) = x1 · 1− x2e1e2 − x3e1e3 − x4e2e3.

This immediately implies N(x) = xx = x21 + x22 + x23 + x24.

By combining Corollary 2.3 and Lemma 4.1, we get that

Spin(3) =

(x1, x2, x3, x4) ∈ C`03 :
4∑
j=1

x2j = 1

 . (9)

We are now ready to derive our reduction for distinct distances in R3.

Theorem 4.2. The problem of deriving a lower bound on the minimum number of distinct distances
spanned by n points in R3 can be reduced to the following problem:

13



Let F be a set of n distinct 2-flats in R5, such that every two flats intersect in at most
one point, every point of R5 is contained in O(

√
n) flats of F , and every hyperplane in

R5 contains O(
√
n) of these flats. Find an upper bound on the number of k-rich points,

for every 2 ≤ k = O(n1/3+ε) (for some ε > 0).

Deriving the bound O
(
n5/3

k2+ε

)
for the number of k-rich points would yield the conjectured lower

bound of Ω(n2/3) distinct distances.

Proof. Let P be a set of n points in R3. Let D denote the number of distinct distances that are
spanned by P, and denote these distances as δ1, . . . , δD. Recalling that |uv| is the distance between
the points u and v, we set

Q =
{

(a, b, p, q) ∈ P4 : |ab| = |pq| > 0
}
.

The quadruples of Q are ordered, so (a, b, p, q) and (b, a, p, q) are considered as two distinct elements
of Q. The proof is based on double counting |Q|.

For every j ∈ {1, . . . , D}, let Ej = {(a, b) ∈ P2 : |ab| = δj}. Since every ordered pair of distinct

points (a, b) ∈ P2 appears in exactly one set Ej , we have that
∑D

j=1 |Ej | = n2 − n > n2/2. The
Cauchy-Schwarz inequality implies

|Q| =
D∑
j=1

|Ej |2 ≥
1

D

 D∑
j=1

|Ej |

2

>
n4

4D
. (10)

For a, b, p, q ∈ R3 with a 6= b, we have |ab| = |pq| if and only if there exists a proper rigid motion
in SE(3) that takes both a to p and b to q. Thus, for every (a, p) ∈ P2 we set

Rap = {γ ∈ SE(3) : aγ = p}.

To derive an upper bound for |Q| it suffices to bound the number of quadruples (a, b, p, q) ∈ P4

that satisfy a 6= b and Rap ∩ Rbq 6= ∅. Since we wish to work in Spun(3) rather than in SE(3), we
recall the following definition from (5).

Tap = {x ∈ Spun(3) : ax = p} = ρ−1(Rap).

Recall from Theorem 3.3 that the homomorphism ρ is surjective with kernel {1,−1}. That is,
for every point of Rap ∩ Rbq there are two corresponding points in Tap ∩ Tbq. It thus suffices to
bound the number of quadruples (a, b, p, q) ∈ P4 that satisfy a 6= b and Tap ∩ Tbq 6= ∅.

Before getting to the more technical details of the proof, we provide a brief sketch of the rest
of the proof. We will show that Spun(3) can be embedded in R8 as a well-behaved six-dimensional
variety (see Lemma 4.3). Under this embedding, each set Tap is a three-dimensional variety that
corresponds to an intersection of the Spun(3) variety with a four-dimensional linear subspace. We
project the Spun(3) variety in R8 from the origin onto the hyperplane defined by x1 = 1, and then
perform a standard projection by removing the coordinates x1 and x8.

Combining the above projections gives a map that is a bijection between most of the Spun(3)
variety and R6. This map takes each set Tap to a 3-flat in R6, and every two such 3-flats are either
disjoint or intersect in a line. Since the map is a bijection only after removing a small part of
Spun(3), we get that a quadruple (a, p, b, q) is in Q if and only if the two corresponding 3-flats in
R6 are contained in a common hyperplane. By performing a generic projective transformation and
then intersecting the 3-flats with a hyperplane, we obtain an incidence problem between points and
2-flats in R5.
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From Spun(3) to R6. Recall that Spun(3) is contained in the eight-dimensional subspace Z0
3 ⊂ X3

generated by 1, e1e2, e1e3, e2e3, e1e4e5, e2e4e5, e3e4e5, e1e2e3e4e5. We consider Z0
3 as R8 by mapping

these basis elements to the standard basis vectors of R8. That is, we write x = x1 · 1 + x2e1e2 +
x3e1e3 + x4e2e3 + x5e1e4e5 + x6e2e4e5 + x7e3e4e5 + x8e1e2e3e4e5 as the point (x1, x2, . . . , x8) ∈ R8.
With this notation, we study the behavior of Spun(3) as a set in R8. Set

G =
{
x ∈ R8 : x1x8 − x2x7 + x3x6 − x4x5 = 0

}
and C =

{
x ∈ R8 : x21 + x22 + x23 + x24 = 1

}
.

Lemma 4.3. Spun(3) = G ∩ C.

Proof. For every x ∈ Z0
3 we have

x = α(t(x1 · 1 + x2e1e2 + x3e1e3 + x4e2e3 + x5e1e4e5 + x6e2e4e5 + x7e3e4e5 + x8e1e2e3e4e5))

= x1 · 1− x2e1e2 − x3e1e3 − x4e2e3 − x5e1e4e5 − x6e2e4e5 − x7e3e4e5 + x8e1e2e3e4e5,

and thus

N(x) = xx =
(
x21 + x22 + x23 + x24

)
1 + 2 (x1x8 − x2x7 + x3x6 − x4x5) e1e2e3e4e5. (11)

That is, N(x) = 1 if and only if x ∈ C ∩G. Combining this with (2) implies that Spun(3) ⊆ C ∩G.
For the other direction, consider x ∈ C ∩G. By (11) we have that N(x) = 1. Note that we can

write x = γ1 + e4e5γ2 from some γ1 ∈ C`03 and γ2 ∈ C`13. We then get

1 = N(x) = (γ1 + e4e5γ2)(γ1 + e4e5γ2) = γ1γ1 + e4e5(γ1γ2 + γ2γ1).

This implies that N(γ1) = γ1γ1 = 1 and γ1γ2 = −γ2γ1. From (9) we get that γ1 ∈ Spin(3).
Since γ2γ1 ∈ C`13, there exist u ∈ R3 and λ ∈ R such that γ2γ1 = i(u) + λe1e2e3. Since

e1e2e3 = e1e2e3, we have γ2γ1 = −i(u) + λe1e2e3. On the other hand, we have

γ2γ1 = γ1γ2 = −γ2γ1 = −i(u)− λe1e2e3.

Thus, it must be that λ = 0. This in turn implies that γ2γ1 ∈ i(R3) and γ1γ2 = −γ2γ1 ∈ i(R3).
For every v ∈ R3, we have

x (e5i(v) + e4)x = (γ1 + e4e5γ2) (e5i(v) + e4) (γ1 + e4e5γ2)

= γ1e5i(v)γ1 + (γ1 + e4e5γ2)e4(γ1 + e4e5γ2)

= e5γ1i(v)γ1 + γ1e4γ1 + γ1e4e4e5γ2 + e4e5γ2e4γ1

= e5 (γ1i(v)γ1 + γ2γ1 − γ1γ2) + e4.

By the above, γ1i(v)γ1 + γ2γ1 − γ1γ2 ∈ i(R3). From the definition in (2), we conclude that
x ∈ Spun(3). That is, C ∩G ⊆ Spun(3), which in turn implies S ∩G = Spun(3).

The proof of Lemma 4.3 also implies that Spun(3) =
{
x ∈ Z0

3 : N(x) = 1
}

. We will not rely
on this observation.

We now perform a gnomonic projection3, although with the cylindrical hypersurface C rather
than a sphere. Let π8 : R8 → R7 be the projection defined by π8(x1, x2, ..., x8) = (x2, ..., x8). Let
H0 denote the hyperplane in R8 defined by x1 = 0 and let H1 denote the hyperplane defined by
x1 = 1. For each x ∈ R8 \H0 there exists a unique λx ∈ R such that the x1-coordinate of λxx is 1.

3Recall that in a gnomonic projection we project the sphere S2 onto a tangent plane, by shooting rays from the
center of S2 onto the plane.
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We define π : R8 \H0 → R7 as π(x) = π8(λxx). That is, π projects x from the origin onto H1 and
then removes the first coordinate of the resulting point.

For points a, p ∈ P , let Fap be defined as in (7). Note that Fap ⊂ Z0
3 is a four-dimensional

subspace of R8. Since Fap is ruled by lines incident to the origin, we have that π(Fap \ H0) =
π8(Fap ∩ H1) and Fap 6⊆ H1. In the definition (7), by taking an element of C`03 with a constant
term 1 · 1 we get that Fap ∩H1 6= ∅. Since Fap is a 4-flat and H1 is a hyperplane that intersects
Fap without containing it, the intersection Fap ∩H1 is a 3-flat. Since the restriction of π8 to H1 is
linear and injective, we get that π(Fap \H0) is a 3-flat in R7.

Note that C is a cylindrical hypersurface, and let C+ be set of points of C with a positive x1-
coordinate. By Lemmas 3.6 and 4.3 we have Tap = Fap ∩ C ∩ G, which implies π(Tap ∩ C+) ⊆
π(Fap \H0). By (9) we have that T00 = Spin(3) = F00 ∩ C. This implies

Tap =

(
1 +

1

2
e4e5i(p)

)
T00

(
1− 1

2
e4e5i(a)

)
=

((
1 +

1

2
e4e5i(p)

)
F00

(
1− 1

2
e4e5i(a)

))⋂((
1 +

1

2
e4e5i(p)

)
C
(

1− 1

2
e4e5i(a)

))
= Fap ∩ C.

Thus, for every v ∈ H1∩Fap there exists r ∈ R such that rv ∈ C+. That is, π(Fap\H0) ⊆ π(Tap∩C+),
which in turn implies π(Tap ∩ C+) = π(Fap \H0). We conclude that π maps each set Tap ∩ C+ onto
a 3-flat in R7.

Let g : R8 → R be the map defined by g(x1, ..., x8) = x1x8 − x2x7 + x3x6 − x4x5. Note that
G = g−1(0). For every v ∈ G and r ∈ R we have g(rv) = r2g(v), so rv ∈ G. That is, G is ruled by
lines incident to the origin, which implies that π(G \H0) = π8(G ∩H1). Let g7 : R7 → R be the
map defined by g7(x2, ..., x8) = x8 − x2x7 + x3x6 − x4x5 and note that π(G \ H0) = g−17 (0). We
set G7 = g−17 (0) ⊂ R7. Since each Tap ∩ C+ ⊂ Spun(3) ⊂ G, every 3-flat of the form π(Tap ∩ C+)
is contained in G7. Given (x2, . . . , x8) ∈ R7, let x = (1, x2, . . . , x8). Then there exists r ∈ R such
that y = rx is the unique point on C+ that satisfies π(y) = (x2, . . . , x8). That is, the restriction of
π to C+ is a bijection between C+ and R7. Moreover, π maps G to G7 (it is not injective in this
domain) and maps each Tap ∩ C+ to a 3-flat contained in G7.

Let π7 : R7 → R6 be the projection that is defined by π7(x2, ..., x7, x8) = (x2, ..., x7). Since
g7(x2, ..., x7, x8) = g7(x2, ..., x7, x

′
8) implies x8 = x′8, the restriction of π7 to G7 is injective. Since

π7 is linear and every 3-flat of the form π(Tap ∩C+) is contained in G7, we get that π7(π(Tap ∩C+))
is a 3-flat in R6. Furthermore, since both the restriction of π7 to G7 and the restriction of π to C+
are bijections, the restriction of π7 ◦ π to C+ ∩ G is injective. For every v ∈ G \ H0 there exists
r ∈ R such that rv ∈ C+ ∩G. That is, η = π7 ◦ π is a bijection from G ∩ C+ to R6.

Studying intersections of 3-flats. Recall from Lemma 3.6 that Tap = Fap ∩Spun(3). To study
intersections of the 3-flats in R6, we first study the intersections Fap ∩ Fbq.

Lemma 4.4. We have that Tap ∩ Tbq = ∅ if and only if Fap ∩ Fbq = {0}.

Proof. By Lemma 3.6, Tap = Fap ∩ Spun(3) and Tbq = Fbq ∩ Spun(3). Thus, Fap ∩ Fbq = {0}
immediately implies Tap ∩ Tbq = ∅.

Next, we assume that Fap∩Fbq 6= {0}. For any v ∈ R3 we have
(
1 + 1

2e4e5i(v)
) (

1− 1
2e4e5i(v)

)
=
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1. Combining this with the definition of Fap gives

Fap ∩ Fbq =

(
1 +

1

2
e4e5i(p)

)(
1− 1

2
e4e5i(p)

)
(Fap ∩ Fbq)

(
1 +

1

2
e4e5i(a)

)(
1− 1

2
e4e5i(a)

)
=

(
1 +

1

2
e4e5i(p)

)(
C`03 ∩ F(b−a)(q−p)

)(
1− 1

2
e4e5i(a)

)
.

Since Fap ∩ Fbq 6= {0}, we have that C`03 ∩ F(b−a)(q−p) 6= {0}. That is, there exist γ, δ ∈ C`03
such that

γ =

(
1 +

1

2
e4e5i(q − p)

)
δ

(
1− 1

2
e4e5i(b− a)

)
.

By comparing the terms that do not depend on e5, we get γ = δ. By then comparing the coefficient
of e5 on each side, we get i(q − p)γ = γi(b− a).

Note that for any x ∈ C`03, the coefficient of 1 in xx is equal to the coefficient of 1 in xx (this
coefficient equals ‖x‖2 when thinking of x as a point in R4, as in the beginning of this section).
Recall that for any s ∈ R3 we have i(s)i(s) = i(s)i(s) = ‖s‖2 ·1. By taking x = i(q−p)γ = γi(b−a),
we get that the coefficient of 1 in γi(q − p)i(q− p)γ = ‖q− p‖2γγ is equal to the coefficient of 1 in
γi(b− a)i(b− a)γ = ‖b− a‖2γγ. Since the coefficients of 1 in γγ and γγ are equal, it follows that
‖b− a‖ = ‖q − p‖. Since the vectors b− a, q − p ∈ R3 have the same length, there exists a rotation
β ∈ Spin(3) such that βi(b− a)β−1 = i(q − p). By Lemma 3.5, we have

βap =

(
1 +

1

2
e4e5i(p)

)
β

(
1− 1

2
e4e5i(a)

)
= β +

1

2
e4e5(i(p)β − βi(a)) ∈ Tap.

To prove that Tap ∩ Tbq 6= ∅, we show that βap ∈ Tbq. Since βap ∈ Tap, we have that βap ∈
Spun(3). It remains to prove that βap takes b to q. Indeed, recalling that β takes b − a to q − p
gives

βap(e5i(b) + e4)βap =

(
β +

1

2
e4e5(i(p)β − βi(a))

)
(e5i(b) + e4)

(
β +

1

2
e4e5(i(a)β − βi(p))

)
= β(e5i(b) + e4)β +

1

2
e5
(
βe4e4(i(a)β − βi(p)) + e4(i(p)β − βi(a))e4β

)
= β(e5i(b))β + e4 +

1

2
e5
(
−(βi(a)β − i(p)) + (i(p)− βi(a)β)

)
= e5(βi(b− a)β) + e4 + e5i(p) = e5i(q − p) + e4 + e5i(p) = e5i(q) + e4.

We next study the case where Fap ∩ Fbq 6= {0}.

Lemma 4.5. If Fap 6= Fbq and Fap ∩ Fbq 6= {0}, then

Fap ∩ Fbq =

(
1 +

1

2
e4e5i(p)

)
β · C`02 · α

(
1− 1

2
e4e5i(a)

)
,

for any α, β ∈ Spin(3) that satisfy α i(b−a)‖b−a‖α
−1 = e3 and βe3β

−1 = i(q−p)
‖q−p‖ .

Proof. By the assumptions and Lemma 4.4, we have that a 6= b and p 6= q, so ‖b− a‖ and ‖q − p‖
are nonzero. Thus, the definitions of α and β are valid. Let

Nap =

(
1 +

1

2
e4e5i(p)

)
β · C`02 · α

(
1− 1

2
e4e5i(a)

)
.
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Since α, β ∈ C`03, we have β · C`02 · α ⊂ C`03 so Nap ⊆ Fap. We note that

α

(
1− 1

2
e4e5i(a)

)
= α

(
1− 1

2
e4e5i(a− b+ b)

)
= α

(
1− 1

2
e4e5i(a− b)

)(
1− 1

2
e4e5i(b)

)
=

(
α− 1

2
e4e5αi(a− b)α−1α

)(
1− 1

2
e4e5i(b)

)
=

(
1 + ‖b− a‖1

2
e4e5e3

)
α

(
1− 1

2
e4e5i(b)

)
. (12)

Similarly,(
1 +

1

2
e4e5i(p)

)
β =

(
1 +

1

2
e4e5i(p− q + q)

)
β =

(
1 +

1

2
e4e5i(q)

)(
1 +

1

2
e4e5i(p− q)

)
β

=

(
1 +

1

2
e4e5i(q)

)
β

(
1 +

1

2
e4e5β

−1i(p− q)β
)

=

(
1 +

1

2
e4e5i(q)

)
β

(
1− ‖q − p‖1

2
e4e5e3

)
. (13)

Combining (12) and (13) gives

Nap =

(
1 +

1

2
e4e5i(p)

)
β · C`02 · α

(
1− 1

2
e4e5i(a)

)
=

(
1 +

1

2
e4e5i(q)

)
β

(
1− ‖q − p‖1

2
e4e5e3

)
· C`02 ·

(
1 + ‖b− a‖1

2
e4e5e3

)
α

(
1− 1

2
e4e5i(b)

)
.

By Lemma 4.4, the assumption Fap ∩ Fbq 6= {0} implies Tap ∩ Tbq 6= ∅. That is, there exists a
rigid motion of SE(3) that takes both a to p and b to q, which in turn implies that ‖b−a‖ = ‖q−p‖.
Thus, for any γ ∈ C`02 we have

(
1− ‖q − p‖12e4e5e3

)
γ
(
1 + ‖b− a‖12e4e5e3

)
= γ. Combining this

with the calculation above yields

Nap =

(
1 +

1

2
e4e5i(q)

)
β · C`02 · α

(
1− 1

2
e4e5i(b)

)
⊆ Fbq.

We conclude that Nap ⊆ Fap ∩ Fbq. To prove the other direction, consider x ∈ Fap ∩ Fbq. By
definition, there exist γ, γ′ ∈ C`03 such that

x =

(
1 +

1

2
e4e5i(p)

)
γ

(
1− 1

2
e4e5i(a)

)
=

(
1 +

1

2
e4e5i(q)

)
γ′
(

1− 1

2
e4e5i(b)

)
. (14)

The part of x that does not involve e5 needs to be identical in both definitions, so γ = γ′. The
part of x that does involve e5 also needs to be identical in both definitions, so i(p)γ − γi(a) =
i(q)γ − γi(b), or equivalently γi(b− a) = i(q − p)γ. This implies that

β−1γα−1αi(b− a)α−1 = β−1i(q − p)ββ−1γα−1,

which in turn implies β−1γα−1e3 = e3β
−1γα−1. Since e3 commutes with β−1γα−1, we get that

β−1γα−1 ∈ C`02. That is, γ ∈ β · C`02 · α. By combining this with the first equality of (14), we
conclude that x ∈ Nap and thus that Fap ∩ Fbq ⊆ Nap.
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Let Lap = η(Tap\H0) be the 3-flat in R6 that corresponds to Tap. Given points a, p, b, q ∈ R3, we
now study the intersection Lap ∩Lbq. Let Lapbq = η (〈Fap, Fbq〉 \H0). By comparing the definitions
of Fap and Lap, we note that Lap ∪ Lbq ⊂ Lapbq.

Note that the map η(x) is well-defined for every point x ∈ R8 \ H0. Additionally, when we
restrict the domain of η to H1 it becomes a linear map. Let η′ : R8 → R6 be the standard linear
projection satisfying η′(x1, x2, ..., x8) = (x2, ..., x7). We think of η′ as a linear extension of the
restricted η to R8. Denote by 〈Fap, Fbq〉 the linear subspace that is spanned by Fap and Fbq.

Lemma 4.6. If Tap ∩ Tbq 6⊆ H0 and Tap 6= Tbq, then Lap ∩ Lbq is a line.

Proof. From Tap ∩ Tbq 6⊆ H0 we have that Lap ∩ Lbq 6= ∅. Since Lap and Lbq are distinct 3-flats
in R6, their intersection is a flat of dimension between zero and two. If dim (Lap ∩ Lbq) = 2 then
dim (Fap ∩ Fbq ∩H1) = 2, which in turn implies dim (Fap ∩ Fbq) = 3. This contradicts Lemma 4.5
which states that dim (Fap ∩ Fbq) = 2. Thus, it remains to prove that Lap ∩ Lbq is not a single
point.

For any v ∈ 〈Fap, Fbq〉 ∩H1, we have

Lapbq = η(〈Fap, Fbq〉 \H0) = η′(〈Fap, Fbq〉 ∩H1) = η′(〈Fap, Fbq〉 ∩H0) + η′(v).

This implies that

dimLapbq = dim (〈Fap, Fbq〉 ∩H0)− dim
(
〈Fap, Fbq〉 ∩H0 ∩ ker(η′)

)
. (15)

By Lemma 4.5, dim(Fap ∩ Fbq) = dimC`02 = 2. Since dimFap = dimFbq = dimC`03 = 4, we
have dim (〈Fap, Fbq〉 ∩H0) = 4 + 4− 2− 1 = 5 (by definition both Fap and Fbq intersect H0 but are
not contained in it). Combining this with (15) leads to dimLapbq ≤ 5. This completes the proof,
since the intersection of two 3-flats in a 5-dimensional space cannot be a single point.

Next, we study what happens to Lap and Lbq when Tap ∩ Tbq = ∅.

Lemma 4.7. For any a, p, b, q ∈ R3, any flat in R6 that contains Lap and Lbq also contains Lapbq.

Proof. Let W be a flat that contains Lap and Lbq. Then there exists a linear subspace V ⊆ R6 such
that for any w ∈W we have W = w + V . Recall that Fap ∩H1 6= ∅. For any x ∈ 〈Fap, Fbq〉 ∩H1,

Lapbq = η (〈Fap, Fbq〉 \H0) = η (〈Fap, Fbq〉 ∩H1) = η′ (〈Fap, Fbq〉 ∩H1) = η′ (〈Fap, Fbq〉 ∩H0)+η(x).

For x ∈ Fap ∩H1 we have that W = η(x) + V and Lap = η′(x + Fap ∩H0) = η(x) + η′(Fap ∩
H0). Combining this with Lap ⊆ W gives η′(Fap ∩ H0) ⊆ V . Similarly, by taking y ∈ Fbq ∩ H1

we get W = η(y) + V , which in turn implies η′(Fbq ∩ H0) ⊆ V . Combining the above yields
η′ (〈Fap, Fbq〉 ∩H0) ⊆ V . We conclude that Lapbq ⊆W , as desired.

Corollary 4.8. If Tap ∩ Tbq = ∅ then no hyperplane contains both Lap and Lbq.

Proof. Lemma 4.7 implies that Lapbq is the smallest flat that contains Lap∪Lbq. By Lemma 4.4, the
assumption Tap∩Tbq = ∅ implies that Fap∩Fbq = {0}. Since Fap and Fbq are 4-flats in Z0

3
∼= R8 that

intersect in a single point, we have 〈Fap, Fbq〉 = Z0
3 . That is, Lapbq = η (〈Fap, Fbq〉 \H0) = R6.

We are now ready to state the connection between the distinct distances problem and the flats
Lap. Let Q′ be the set of quadruples (a, p, b, q) ∈ P4 such that Tap ∩ Tbq 6⊆ H0. The following
corollary is a special case of Corollary 5.16 that we will prove in Section 5.

Corollary 4.9. We have that Q′ ⊂ Q and |Q′| ≥ |Q|/2.
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Flats in R6 and in R5. We set

L = {Lap : a, p ∈ P and a 6= p}.

Note that L is a set of Θ(n2) flats of dimension three in R6. By Corollary 4.9, to get an asymptotic
upper bound for the number of quadruples in Q it suffices to derive an upper bound for the number
of quadruples (a, p, b, q) ∈ P4 such that Tap ∩ Tbq 6⊆ ∅. By Lemma 4.6, for every such quadruple we
have that Lap ∩Lbq is a line. On the other hand, when Tap ∩ Tbq ⊆ H0 we have that Lap ∩Lbq = ∅.
Thus, it remains to derive an upper bound on the number of pairs of flats of L that intersect (in a
line).

Lemma 4.10. (a) Every point of R6 is contained in at most n flats of L.
(b) Every hyperplane in R6 contains at most n flats of L.

Proof. Consider three distinct points a, p, q ∈ P and note that Tap ∩ Taq = ∅, since a rigid motion
cannot simultaneously take a into two distinct points. This immediately implies part (a) of the
lemma. By Corollary 4.8, Lap and Laq cannot be in the same hyperplane, which implies part
(b).

Let Hg be a generic hyperplane in R6, in the sense that every 3-flat of L intersects Hg in a
2-flat, and every line of the form Lap ∩ Lbq (with a, b, p, q ∈ P) intersects Hg at a single point. Let
F = {Lap ∩Hg : Lap ∈ L} and consider Hg as R5. Note that F is a set of Θ(n2) distinct 2-flats.
Every two 2-flats of F are either disjoint or intersect in a single point. By Lemma 4.10, every point
of R5 is incident to at most n of the 2-flats of F and every hyperplane in R5 contains at most n of
the 2-flats of F .

For every integer k ≥ 2, let mk denote the number of points of R5 that are contained in exactly
k of the 2-flats of F . Similarly, let m≥k denote the number of points of R5 that are contained in at
least k of the 2-flats of F . Then |Q| is the number of pairs of intersecting flats of F , and

|Q| =
n∑
k=2

mk · 2
(
k

2

)
<

n∑
k=2

k2mk = O

(
logn∑
k=1

22km≥2k

)
.

If we had the bound m≥k = O
(
n10/3

k2+ε

)
for some ε > 0, then the above would imply |Q| =

O(n10/3). Combining this with (10) would imply that the points of P span Ω
(
n2/3

)
distinct

distances.
An incidence result of Solymosi and Tao [13] implies that the number of incidences between m

points and n 2-flats in R5, with every two 2-flats intersecting in at most one point, is O(m2/3+ε′n2/3+
m+n) (for any ε′ > 0). Every incidence bound of this form has a dual formulation involving k-rich
points (for example, see [12, Chapter 1]). In this case, the dual bound is: Given n2 2-flats in R5

such that every two intersect in at most one point, for every k ≥ 2 the number of k-rich points

is O
(
n4/(1−ε′)

k3/(1−ε′)
+ n2

k

)
. By taking ε′ to be sufficiently small with respect to ε, we obtain the bound

m≥k = O
(
n4+ε

k3
+ n2

k

)
. This bound is stronger than the required bound when k = Ω(n2/3+ε). That

is, it remains to consider the case where k = O(n2/3+ε). This completes the proof of Theorem
4.2.
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5 Distinct distances in Rd

In this section we prove Theorem 1.2 in every dimension. While the general outline of the proof
remains the same as in the proof of Theorem 4.2, several steps become significantly more involved.
As before, we embed Spun(d) in a real space and then perform several projections to lower dimen-
sional spaces. Since Corollary 2.3 does not hold for d ≥ 6, we do not have a simple description of
Spun(d) as in Lemma 4.3. This leads us to study Spun(d) in a more indirect way.

Recall that Spun(d) is contained in the subspace Z0
d ⊂ Xd generated by 1 and by products of

an even number of elements from {e1, e2, . . . , ed, ed+1ed+2}. Note that Z0
d has a basis of size 2d.

We consider Z0
d as R2d by mapping the above basis elements to the standard basis vectors of R2d .

With this notation, we study the behavior of Spun(d) as a set in R2d .

5.1 Studying m-terms

For an even integer m > 0, anm-term of C`0d is a product of m distinct elements from {e1, e2, . . . , ed}
(together with a real coefficient). Similarly, an m-term of Z0

d is a product of m distinct elements from
{e1, e2, . . . , ed, ed+1ed+2} (together with a real coefficient). In both cases a 0-term is 1 multiplied
some real number. In this section we study several basic properties of m-terms. Since these are
just straightforward calculations, the reader might prefer to skip this section and refer to it when
necessary.

Lemma 5.1. For a fixed even m, let x ∈ C`0d\{0·1} consist entirely of m-terms and let γ ∈ Spin(d).
Then γxγ−1 also consists entirely of m-terms.

Proof. Let z ∈ C`0d and γ ∈ Spin(d). We think of C`0d as R2d and write ‖z‖ for the Euclidean

norm of z in R2d . Note that the first coordinate of zz is ‖z‖ and so is the first coordinate of
zz (since ‖z‖ = ‖z‖). Since zγ−1zγ−1 = zγ−1γz = zz, by considering the first coordinate of
these expressions we get that ‖z‖ = ‖zγ−1‖. That is, multiplication by γ−1 from the right is an
orthogonal transformation (with respect to the Euclidean norm). Similarly, γzγz = zz implies
that multiplication by γ from the left is also an orthogonal transformation. We conclude that the
conjugation z → γzγ−1 is orthogonal with respect to the Euclidean norm. Combining this with
γ1γ−1 = 1 implies that z and γzγ−1 have the same first coordinate.

For u1, . . . , um ∈ Rd, the product i(u1) · · · i(um) cannot contain `-terms for any ` > m. More-
over, for any m-term ek1ek2 · · · ekm we have that γek1ek2 · · · ekmγ−1 = γek1γ

−1γek2γ
−1 . . . γekmγ

−1.
This implies that γxγ−1 cannot contain `-terms for any ` > m.

We write γxγ−1 = δ+ δ′, where δ consists entirely of m-terms and δ′ consists entirely of smaller
terms. We have

N(x− γ−1δ′γ)−N(x)−N(γ−1δ′γ) = (x− γ−1δ′γ)(x− γ−1δ′γ)− xx− γ−1δ′δ′γ

= −
(
xγ−1δ′γ + γ−1δ′γx

)
. (16)

For any y, z ∈ C`0d, the first coordinate of yz is the dot product of y and z as vectors in

R2d . Since γ−1δ′γ consists entirely of `-vector terms with ` < m, the first coordinate of (16) is
zero. Since conjugation by γ preserves the first coordinate, we have that the first coordinate of
(x− γ−1δ′γ)(x− γ−1δ′γ)− xx− γ−1δ′δ′γ is the same as the first coordinate of

γ
(

(x− γ−1δ′γ)(x− γ−1δ′γ)− xx− γ−1δ′δ′γ
)
γ−1

= γ(x− γ−1δ′γ)γ−1γ(x− γ−1δ′γ)γ−1 − γxγ−1γxγ−1 − δ′δ′

= δδ −
(
δδ + δ′δ′ + δδ′ + δ′δ

)
− δ′δ′ = −

(
δδ′ + δ′δ + 2δ′δ′

)
.
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Since δ and δ′ do not have terms of the same size, the first coordinates of δδ′ and δ′δ are both
zero. This implies that first coordinate of δ′δ′ is zero. Since this first coordinate equals ‖δ′‖, we
get that δ′ = 0 and complete the proof.

Lemma 5.2. For a fixed even m, let x ∈ C`0d−1 consist entirely of m-terms. Then for every a ∈ Rd
the expression xed(i(a) + ed) consists entirely of m-terms and (m+ 2)-terms. It the d’th coordinate
of a is not −1, then xed(i(a) + ed) contains at least one m-term.

Proof. Let ad be the d’th coordinate of a and let a′ = a− (0, . . . , 0, ad). We have that

xed(i(a) + ed) = x
(
(−1− ad)1 + edi(a

′)
)

= −(1 + ad)x− xi(a′)ed.

Since xi(a′) ∈ C`d−1 consists entirely of (m−1)-terms and (m+1)-terms, we have that xi(a′)ed
consists entirely of m-terms and (m + 2)-terms, as desired. Since no term of x contains ed and
every term of xi(a′)ed contains ed, if ad 6= −1 then the m-terms from −(1 + ad)x are nonzero and
do not get canceled by other terms.

Lemma 5.3. For a fixed even m, let z ∈ Z0
d \ {0 ·1} contain only m-terms and let a, p ∈ Rd. Then

(1+ 1
2ed+1ed+2i(p))z(1− 1

2ed+1ed+2i(a)) contains only m-terms and (m+2)-terms. This expression
contains at least one nonzero m-term.

Proof. We write z = z1 + z2ed+1ed+2 where z1 ∈ C`0d and z2 ∈ C`1d. We then have(
1 +

1

2
ed+1ed+2i(p)

)
z

(
1− 1

2
ed+1ed+2i(a)

)
= z +

1

2
ed+1ed+2 (i(p)z1 − z1i(a)) .

We observe that both i(p)z1 and z1i(a) contain only (m + 1)-terms and (m − 1)-terms, and
do not contain ed+1ed+2. This implies that 1

2ed+1ed+2 (i(p)z1 − z1i(a)) contains only (m + 2)-
terms and m-terms. Additionally, the part of z + 1

2ed+1ed+2 (i(p)z1 − z1i(a)) that does not involve
ed+1ed+2 is exactly z1. Thus, if z1 6= 0 · 1 then we have at least one m-term. If z1 = 0 · 1 then
z + 1

2ed+1ed+2 (i(p)z1 − z1i(a)) = z, and we again have an m-term.

5.2 Proof of Theorem 1.2.

Let P be a set of n points in Rd. Let D denote the number of distinct distances that are spanned
by P and denote these distances as δ1, . . . , δD. We set

Q =
{

(a, b, p, q) ∈ P4 : |ab| = |pq| > 0
}
.

The quadruples of Q are ordered, so (a, b, p, q) and (b, a, p, q) are considered as two distinct elements
of Q. Our proof is based on double counting |Q|.

For every j ∈ {1, . . . , D}, let Ej = {(a, b) ∈ P2 : |ab| = δj}. Since every ordered pair of distinct

points (a, b) ∈ P2 appears in exactly one set Ej , we have that
∑D

j=1 |Ej | = n2 − n > n2/2. The
Cauchy-Schwarz inequality implies

|Q| =
D∑
j=1

|Ej |2 ≥
1

D

 D∑
j=1

|Ej |

2

>
n4

4D
. (17)

For a, b, p, q ∈ Rd with a 6= b, we have |ab| = |pq| if and only if there exists a proper rigid motion
in SE(d) that takes both a to p and b to q. Thus, for every (a, p) ∈ P2 we set

Rap = {γ ∈ SE(d) : aγ = p}.
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To derive an upper bound for |Q| it suffices to bound the number of quadruples (a, b, p, q) ∈ P4

that satisfy a 6= b and Rap ∩Rbq 6= ∅. Since it would be simpler to work in Spun(d) rather than in
SE(d), we recall the following definition from (5).

Tap = {x ∈ Spun(d) : ax = p} = ρ−1d (Rap).

From Spun(d) to R(d+1
2 ). In Section 4 we studied the bijection η from the set of points of Spun(3)

that have a positive x1-coordinate to R6. We now generalize this bijection to the case of Spun(d).
Let Spun(d)+ be the set of points of Spun(d) that have a positive first coordinate (the coordinate
that corresponds to the coefficient of 1).

Let π1 : R2d → R2d−1 be the projection defined by π1(x1, x2, ..., x2d) = (x2, ..., x2d). Let H0

denote the hyperplane in R2d defined by x1 = 0 and let H1 denote the hyperplane defined by x1 = 1.
For each x ∈ R2d \ H0 there exists a unique λx ∈ R such that the x1-coordinate of λxx is 1. We

define π : R2d \H0 → R2d−1 as π(x) = π1(λxx). We think of elements of R2d−1 as corresponding to

elements of Z0
d , except for the coefficient of 1 (which was removed by π1). Let π′ : R2d−1 → R(d+1

2 )

be the projection that keeps only the
(
d+1
2

)
coordinates corresponding to 2-terms of Z0

d . We will
see that we do not lose information of elements of Spun(d)+ by keeping only these coordinates.
Finally, let ηd = π′ ◦ π1. Note that η3 is indeed the map η from Section 4.

We first claim that the restriction of π1 to Spun(d)+ is injective. Indeed, assume that π1(x) = y

for x ∈ Spun(d)+ and write y = (y2, ..., y2d) ∈ R2d−1. This implies that λxx = (1, y2, ..., y2d). Since
x ∈ Spun(d)+, we have that N(x) = xx = 1 and thus N(λxx) = λ2x · 1. That is, the value of λx
is determined up to a sign by N(λxx). This sign has to be positive, since the first coordinate of

x must be positive. We conclude that for every y ∈ R2d−1 there exists at most one x ∈ Spun(d)+
such that π1(x) = y.

Set

Gd = {r · γ ∈ C`0d : r ∈ R \ {0} and γ ∈ Spin(d)},
Jd = {r · x ∈ Z0

d : r ∈ R \ {0} and x ∈ Spun(d)}.

Note that Gd is a group under the product operation of C`0d. Similarly, Jd is a group under the
product operation of Z0

d . By studying these groups, we will obtain information about ηd and about
the structure of Spun(d).

The following lemma provides a consistent form for writing elements of Gd. Below we will rely
on this lemma to prove various claims by induction on d.

Lemma 5.4. (a) For every element g ∈ Gd there exists h ∈ Gd−1 that satisfies the following.
Either g = hed−1ed or there exists u ∈ Sd−1 \ {i−1(−ed)} such that g = h (edi(u)− 1).
(b) For every z ∈ Jd there exist v ∈ Rd and g ∈ Gd such that z = g

(
1− 1

2ed+1ed+2i(v)
)
.

Proof. (a) By definition, for every g ∈ Gd there exists r ∈ R \ {0} such that g/r ∈ Spin(d). This
implies that (g/r)−1 = g/r, so (g/r)(g/r) = 1. That is, g−1 = g/r2. We define the group action of
g on v ∈ Rd to be

i−1(gi(v)g−1) = i−1
(
g

r
i(v)

(g
r

))
= i−1

(
g

r
i(v)

(g
r

)−1)
.

Since this is the action of g/r ∈ Spin(d) on v, it is a rotation of SO(d). Thus, the action of g maps
some point u ∈ Sd−1 to i−1(ed).
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We first assume that u 6= i−1(−ed). We write s = ‖u+ (0, . . . , 0, 1)‖ and note that s 6= 0. Since

i−1(ed),
u+i−1(ed)

s ∈ Sd−1, we get that x = ed (ed + i(u)) /s ∈ Spin(d). Since u ∈ Sd−1, we note that
the vectors u+ i−1(ed), u− i−1(ed) ∈ Rd are orthogonal. By Lemma 2.4 we have

xi(u)x−1 =
ed (ed + i(u)) i(u) (ed + i(u)) ed

s2
=
ed (i(u) + ed)

(
i(u)+ed

2 + i(u)−ed
2

)
(ed + i(u)) ed

s2

=
ed (i(u) + ed)

2 ((i(u) + ed)− (i(u)− ed)) ed
2s2

=
−ed · 2ed · ed

2
= ed.

The above implies that gx−1 is in the stabilizer of i−1(ed). We observe that the stabilizer of
i−1(ed) is Gd−1. Setting h = (g · x−1/s) ∈ Gd−1, we get that

g = gx−1x = hed (ed + i(u)) = h(edi(u)− 1).

The above completes the proof of the case where u 6= i−1(−ed). We now assume that u =
i−1(−ed). That is, that gedg

−1 = −ed. Let h = −ged−1ed and note that h−1 = −eded−1g−1. This
implies that hedh

−1 = ed. As before, since h is in the stabilizer of ed we have h ∈ Gd−1. We get
that g = −ged−1eded−1ed = hed−1ed, as asserted.

(b) Since z ∈ Jd, there exists r ∈ R such that z/r ∈ Spun(d). By Lemma 3.2, there exist
γ ∈ Spin(d) and u ∈ Rd such that z/r = γ (1 + ed+2ed+1i(u)). The assertion of the lemma is
obtained by setting g = rγ and v = −2u.

The following two lemmas will help us to show that the restriction of ηd to Spun(d)+ is injective.

Lemma 5.5. If g, g′ ∈ Gd have the same nonzero first coordinate and the same 2-terms, then
g = g′.

Proof. We prove the lemma by induction on d. For the induction basis, note that the claim is
trivial when d ≤ 3. We now assume that the claim holds for Gd−1 and prove it for Gd.

Consider g, g′ ∈ Gd that satisfy the assumption of the lemma. As in the proof of Lemma 5.4(a),
if g(−ed)g−1 = i−1(ed) then there exists h ∈ Gd−1 such that g = heded−1. This contradicts g having
a nonzero first coordinate, so we must have g(−ed)g−1 6= i−1(ed). A symmetric argument implies
that g′(−ed)(g′)−1 6= i−1(ed). By Lemma 5.4(a), there exist h, h′ ∈ Gd−1 and u, u′ ∈ Sd−1 \ {−ed}
such that g = h (edi(u)− 1) and g′ = h′ (edi(u

′)− 1).
We write h = r · 1 + h2 + h+ such that r ∈ R, every term of h2 is a 2-term, and h+ contains no

0-term and 2-terms. That is, we have

g = h (edi(u)− 1) = hedi(u)− r · 1− h2 − h+.

Let uj be the j’th coordinate of u, and set u∗ = u− (0, . . . , 0, ud). Then

g = hedi(u∗)− r(1 + ud) · 1− h2(1 + ud)− h+(1 + ud).

A symmetric argument gives

g′ = h′edi((u
′)∗)− r′(1 + u′d) · 1− h′2(1 + u′d)− h′+(1 + u′d).

By the assumption on u and u′, we have that ud 6= −1 and u′d 6= −1. Since g and g′ have
nonzero first coordinates, we have that r 6= 0 and r′ 6= 0. Since these first coordinates are identical,
r(1 + ud) = r′(1 + u′d). By the assumption on the 2-terms of g and g′, we have that (1 + ud)h2 =
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(1+u′d)h
′
2 (the expressions hedi(u∗) and h′edi((u

′)∗) may also contain 2-terms, but these all involve
ed and thus do not affect the terms of h2, h

′
2 ∈ C`0d−1).

By setting ` = (1 + ud)/(1 + u′d) we get that r′ = `r 6= 0 and h′2 = `h2. We may thus apply the
induction hypothesis on h, `h′ ∈ Gd−1, to obtain that h′ = `h. That is,

g = hedi(u∗)− h(1 + ud) and g′ = `hedi((u
′)∗)− `h(1 + u′d).

We write h2 =
∑

1≤j<k≤d−1 λj,kejek, where the coefficients λj,k are in R. Consider the terms of
the form ejed for some 1 ≤ j ≤ d− 1. By the assumption about 2-terms in g and g′, we have

redi(u∗) +
∑

1≤j<k≤d−1
λj,kejek(ujedej + ukedek)

= `rxedi((u
′)∗) + `

∑
1≤j<k≤d−1

λj,kejek(u
′
jedej + u′kedek).

Simplifying, we have

redi(u∗) +
∑

1≤j<k≤d−1
λj,k(−ujeked + ukejed)

= `redi((u
′)∗) + `

∑
1≤j<k≤d−1

λj,k(−u′jeked + u′kejed).

This leads to the following system of linear equations.
r λ1,2 λ1,3 · · · λ1,d−1
−λ1,2 r λ2,3 · · · λ2,d−1
−λ1,3 −λ2,3 r · · · λ3,d−1

...
...

...
. . .

...
−λ1,d−1 −λ2,d−1 −λ3,d−1 · · · r




u1 − `u′1
u2 − `u′2
u3 − `u′3

...
ud−1 − `u′d−1

 = 0.

After placing zeros in every cell of the main diagonal, the above matrix becomes skew-symmetric.
Recall that the eigenvalues of a skew-symmetric matrix are pure imaginary, and that adding a
constant c to every element of the main diagonal adds c to every eigenvalue. Since r is a nonzero
real number, we get that the above matrix has no zero eigenvalues, and is thus invertible. This
implies that the only solution to the above system is uj = `u′j for every 1 ≤ j ≤ d− 1.

By recalling that ` = (1 + ud)/(1 + u′d) we get

u2d = (`(1 + u′d)− 1)2 = `2(1 + 2u′d + (u′d)
2)− 2`(1 + u′d) + 1.

Combining the above with u, u′ ∈ Sd−1 leads to

1 = ‖u‖2 =

d∑
j=1

u2j =

d−1∑
j=1

`2(u′j)
2 + `2(1 + 2u′d + (u′d)

2)− 2`(1 + u′d) + 1

= 2`2 + 2`2u′d − 2`− 2`u′d + 1.

Tidying up the above gives `+ `u′d = 1 + u′d, so ` = 1. We thus get that h = h′ and u = u′, and
conclude that g = g′.

Lemma 5.6. If x, y ∈ Jd have the same nonzero first coordinate and the same 2-terms, then x = y.
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Proof. By Lemma 5.4(b), there exist g, h ∈ Gd and ux, uy ∈ Rd such that x = g
(
1− 1

2ed+1ed+2i(ux)
)

and y = h
(
1− 1

2ed+1ed+2i(uy)
)
. We write g = rx · 1 + g2 + g′ where rx ∈ R, every term of g2 is

a 2-term, and g′ contains no 0-term and no 2-terms. We symmetrically write h = ry · 1 + h2 + h′.
That is, we have

x = g

(
1− 1

2
ed+1ed+2i(ux)

)
= (rx + g2 + g′)

(
1− 1

2
ed+1ed+2i(ux)

)
= rx · 1 + g2 + g′ − 1

2
ged+1ed+2i(ux),

y = h

(
1− 1

2
ed+1ed+2i(uy)

)
= (ry + h2 + h′)

(
1− 1

2
ed+1ed+2i(uy)

)
= ry · 1 + h2 + h′ − 1

2
hed+1ed+2i(uy).

Since x and y have the same first coordinate, we have that rx = ry. Since ηd(x) = ηd(y), we
have g2 = h2. By lemma 5.5, we get that g = h. We thus have

x = g − 1

2
ged+1ed+2i(ux), and y = g − 1

2
ged+1ed+2i(uy).

We write g2 =
∑

1≤j<k≤d λj,kejek, where the coefficients λj,k are in R. Also, let ux,j denote the
j’th coordinate of ux. We now consider the terms of the form ejed+1ed+2 with 1 ≤ j ≤ d. Since x
and y have the same 2-terms, we have

rxed+1ed+2i(ux) +
∑

1≤j<k≤d
λj,kejek(ux,jed+1ed+2ej + ux,ked+1ed+2ek)

= rxed+1ed+2i(uy) +
∑

1≤j<k≤d
λj,kejek(uy,jed+1ed+2ej + uy,ked+1ed+2ek).

Simplifying, we have

rxed+1ed+2i(ux) +
∑

1≤j<k≤d
λj,k(−ux,jeked+1ed+2 + ux,kejed+1ed+2)

= rxed+1ed+2i(uy) +
∑

1≤j<k≤d
λj,k(−uy,jeked+1ed+2 + uy,kejed+1ed+2).

This leads to the following system of linear equations.
rx λ1,2 λ1,3 · · · λ1,d
−λ1,2 rx λ2,3 · · · λ2,d
−λ1,3 −λ2,3 rx · · · λ3,d

...
...

...
. . .

...
−λ1,d −λ2,d −λ3,d · · · rx




ux,1 − uy,1
ux,2 − uy,2
ux,3 − uy,3

...
ux,d − uy,d

 = 0.

By repeating the eigenvalues argument from the proof of Lemma 5.5, we get that the only
solution to this system is ux,j = uy,j for every 1 ≤ j ≤ d. Since ux = uy, we conclude that
x = y.

Corollary 5.7. The restriction of ηd to Spun(d)+ is injective.
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Proof. Consider two elements x, y ∈ Spun(d)+ such that ηd(x) = ηd(y). Let x1 be the first coor-
dinate of x and let y1 be the first coordinate of y. We set x′ = x/x1 and y′ = y/y′, and note that
x′, y′ ∈ H1. Moreover, we have that ηd(x) = ηd(x

′) = π′ ◦ π1(x′) and ηd(y) = ηd(y
′) = π′ ◦ π1(y′).

This also implies that ηd(x
′) = ηd(y

′), which in turn implies that x′ and y′ have the same 2-terms.
Since x′ and y′ also have the same first coordinate, Lemma 5.6 states that x′ = y′. By the definition
of Spun(d)+, there is a unique r ∈ R such that r ·x′ ∈ Spun(d)+. We thus conclude that x = y.

We next show that the restriction of ηd to Spun(d)+ is surjective in a similar manner.

Lemma 5.8. Consider r ∈ R and elements λj,k ∈ R for every 1 ≤ j < k ≤ d, such that r 6= 0.
Then there exists g ∈ Gd such that the first coordinate of g is r and the coefficient of the term ejek
in g is λj,k.

Proof. We prove the lemma by induction on d. For the induction basis, note that the claim is
trivial when d = 1. For the induction step, we assume that the claim holds for Gd−1 and consider
the case of Gd.

By the induction hypothesis, there exists h ∈ Gd−1 with first coordinate r and the term λj,kejek
for every 1 ≤ j < k ≤ d−1. We set g = h−hedi(u) ∈ Gd, for some u ∈ Rd−1 that will be determined
below. Note that the first coordinate of g is r and the coefficient of the term ejek in g is λj,k, for
1 ≤ j < k ≤ d− 1. We now consider the terms of the form ejed in g, and observe that these are all
in −hedi(u). Let uj denote the j’th coordinate of u. Since for every 1 ≤ j ≤ d− 1 we would like g
to contain the term λj,dejed, we get the following system of linear equations.

r −λ1,2 −λ1,3 · · · −λ1,d−1
λ1,2 r −λ2,3 · · · −λ2,d−1
λ1,3 λ2,3 r · · · −λ3,d−1

...
...

...
. . .

...
λ1,d−1 λ2,d−1 λ3,d−1 · · · r




u1
u2
u3
...

ud−1

 =


λ1,d
λ2,d
λ3,d

...
λd−1,d

 .

By repeating the eigenvalues argument from the proof of Lemma 5.5, we get that the above
matrix is invertible. Thus, there exists a choice of u1, . . . , ud−1 such that the above system holds.
That is, there exists u ∈ Rd−1 such that g satisfies the assertion of the lemma.

Lemma 5.9. Consider r ∈ R and elements λj,k ∈ R for every 1 ≤ j < k ≤ d+ 1, such that r 6= 0.
Then there exists g ∈ Jd such that the first coordinate of g is r and the coefficient of the term ejek
in g is λj,k (when k = d+ 1 we consider the term ejed+1ed+2 instead).

Proof. By lemma 5.8, there exists h ∈ Gd such that the first coordinate of h is r and the coefficient
of the term ejek is λj,k, for every 1 ≤ j < k ≤ d. We set g = h− hed+1ed+2i(u) ∈ Jd, for a vector
u ∈ Rd that will be determined below. Note that the first coordinate of g is r and the coefficient of
the term ejek in g is λj,k, for 1 ≤ j < k ≤ d. We now consider the terms of the form ejed+1ed+2 in
g, and observe that these are all in −hed+1ed+2i(u). Let uj denote the j’th coordinate of u. Since
for every 1 ≤ j ≤ d we would like g to contain the term λj,d+1ejed+1ed+2, we get the following
system of linear equations.


r −λ1,2 −λ1,3 · · · −λ1,d
λ1,2 r −λ2,3 · · · −λ2,d
λ1,3 λ2,3 r · · · −λ3,d

...
...

...
. . .

...
λ1,d λ2,d λ3,d · · · r




u1
u2
u3
...
ud

 =


λ1,d+1

λ2,d+1

λ3,d+1
...

λd,d+1

 .
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By repeating the eigenvalues argument from the proof of Lemma 5.5, we get that the above
matrix is invertible. Thus, there exists a choice of u1, . . . , ud such that the above system holds.
That is, there exists u ∈ Rd such that g satisfies the assertion of the lemma.

Theorem 5.10. The map ηd : Spun(d)+ → R(d+1
2 ) is a bijection.

Proof. By Corollary 5.7 the restriction of ηd to Spun(d)+ is injective. It remains to show that this

restriction is surjective on R(d+1
2 ). Consider v ∈ R(d+1

2 ). By Lemma 5.9, there exists g ∈ Jd such
that ηd(g) = v and the first coordinate of g is 1. By the definition of Jd, there exists r ∈ R \ {0}
such that rg ∈ Spun(d). We have that ηd(rg) = ηd(g) = v. Thus, the restriction of ηd to Spun(d)+

is surjective on R(d+1
2 ).

Now that we established that the restriction of ηd to Spun(d)+ is a bijection, we move to study
the image of Tap ∩ Spun(d)+ under ηd. In particular, we will show that this image is a

(
d
2

)
-flat.

Similarly to Spun(d)+, let Spin(d)+ be the set of elements of Spin(d) where the term 1 has a positive
coefficient. We also recall the definition of Fap from (7).

Lemma 5.11. For a, p ∈ Rd, we have ηd(Tap ∩ Spun(d)+) = ηd (Fap \H0).

Proof. By Lemma 3.6 we have Tap∩Spun(d)+ ⊆ Fap \H0, which implies that ηd(Tap∩Spun(d)+) ⊆
ηd (Fap \H0). For the other direction, we consider z ∈ Fap \ H0. To complete the proof, we will
show that there exists x ∈ Tap ∩ Spun(d)+ such that ηd(z) = ηd(x).

We recall that
(
1− 1

2ed+1ed+2i(p)
) (

1 + 1
2ed+1ed+2i(p)

)
= 1. Since z ∈ Fap, we have(

1− 1

2
ed+1ed+2i(p)

)
z

(
1 +

1

2
ed+1ed+2i(a)

)
∈ C`0d.

Since C`0d is contained in Z0
d , we can also think of Gd as contained in Z0

d . Then, by Lemma 5.8
there exists γ ∈ Spin(d)+ such that

ηd(γ) = ηd

((
1− 1

2
ed+1ed+2i(p)

)
z

(
1 +

1

2
ed+1ed+2i(a)

))
.

Thus, there exists λ ∈ R\{0} such that
(
1− 1

2ed+1ed+2i(p)
)
z
(
1 + 1

2ed+1ed+2i(a)
)
−λγ contains

no 0-term and no 2-terms. By Lemma 5.3, multiplying from the left by
(
1 + 1

2ed+1ed+2i(p)
)

and
from the right by

(
1− 1

2ed+1ed+2i(a)
)

cannot create any 0-terms and 2-terms. That is, setting
y = λ

(
1 + 1

2ed+1ed+2i(p)
)
γ
(
1− 1

2ed+1ed+2i(a)
)
, the expression z − y contains no 0-terms and 2-

terms. Equivalently, z and y have the same the same 0-terms and 2-terms. Note that y has a
nonzero first coordinate, so ηd (y) = ηd(z).

Set x = y/λ. By Lemma 3.5, we have

x =

(
1 +

1

2
ed+1ed+2i(p)

)
γ

(
1− 1

2
ed+1ed+2i(a)

)
= γ +

1

2
ed+1ed+2 (i(p)γ − γi(a)) ∈ Tap.

Since γ ∈ Spin(d)+, we get that x ∈ Spun(d)+. Finally, ηd(x) = ηd (y) = ηd(z), as required.

Note that the map ηd(x) is well-defined for every point x ∈ R2d \ H0. Additionally, when we

restrict the domain of ηd to H1 it is a linear map. Let η′d : R2d → R(d+1
2 ) be the standard projection

that keeps only the coordinates corresponding to basis elements of Z0
d that are 2-terms. We can

think of η′d as a linear extension of the restricted ηd to R2d .
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Lemma 5.12. The projection ηd(Tap ∩ Spun(d)+) is a
(
d
2

)
-flat.

Proof. Since Fap is ruled by lines that are incident to the origin, we get that ηd(Fap \ H0) =
ηd(Fap ∩H1). Since Fap ∩H1 is a flat and the restriction of ηd to H1 is a linear map, Lemma 5.11

implies that ηd(Tap ∩ Spun(d)+) is a flat in R(d+1
2 ). It remains to establish the dimension of this

flat.
From the definition of Fap in (7) we notice that Fap∩H1 6= ∅ (for example, by taking the element

1 from C`0d in this definition). We also note that every v ∈ Fap∩H1 satisfies Fap∩H1 = v+(Fap∩H0).
For such a v we have

ηd(Fap \H0) = ηd(Fap ∩H1) = η′d(v + Fap ∩H0) = ηd(v) + η′d(Fap ∩H0).

Combining the above with Lemma 5.11 implies that

dim(ηd(Tap ∩ Spun(d)+)) = dim(η′d(Fap ∩H0)) = dim(Fap ∩H0)− dim
(
ker η′d ∩ Fap ∩H0

)
.

Since dimFap = dim(C`0d) = 2d−1 and Fap properly intersects the hyperplane H0, we get that
dim(Fap ∩H0) = 2d−1 − 1. Note that the elements of ker η′d ∩ Fap ∩H0 do not have 2-terms and 0-
terms. Let τap : Z0

d → Z0
d be the map defined by τap(x) = (1+ 1

2ed+1ed+2i(p))x(1− 1
2ed+1ed+2i(a)).

By Lemma 5.3, we have that ker η′d ∩ Fap ∩H0 is the subspace generated by{
τap(x) : x is an element of the standard basis of C`0d that is an m-term for some m ≥ 4

}
.

Since τ−1ap (x) =
(
1− 1

2ed+1ed+2i(p)
)
x
(
1 + 1

2ed+1ed+2i(a)
)
, we note that τap is a linear bijection.

This implies that the above generating set is linearly independent, so dim (ker η′d ∩ Fap ∩H0) =

2d−1 −
(
d
2

)
− 1. We conclude that

dim(ηd(Tap ∩ Spun(d)+)) = 2d−1 − 1−
(

2d−1 −
(
d

2

)
− 1

)
=

(
d

2

)
.

Studying the flats in R(d+1
2 ). Let Lap = ηd(Tap \H0) be the

(
d
2

)
-flat in R(d+1

2 ) that corresponds
to Tap. Given points a, p, b, q ∈ Rd, we now study what happens to Lap and Lbq when Tap∩Tbq 6= ∅.
This part is mostly identical to the case of R3 that was presented in Section 4. In particular, the
proofs of Lemma 4.4, Lemma 4.5, Lemma 4.7, and Corollary 4.8 easily extend to Rd (by changing
e4e5 to ed+1ed+2 and other such straightforward revisions).

The proof of Lemma 4.6 does not immediately extend to Rd. Instead of that lemma, we rely on
the three following ones. Let Tap+ be the set of points of Tap that have a positive first coordinate.

Lemma 5.13. If Tap ∩ Tbq 6⊆ H0 then Lap ∩ Lbq = ηd (Fap ∩ Fbq ∩H1).

Proof. By Lemma 3.6 we have Tap+ ∩ Tbq+ ⊆ (Fap ∩ Fbq) \H0. This implies that

ηd(Tap+ ∩ Tbq+) ⊆ ηd ((Fap ∩ Fbq) \H0) = ηd (Fap ∩ Fbq ∩H1) .

By Lemma 5.11 we have that ηd(Tap+) = ηd(Fap \ H0) = ηd(Fap ∩ H1), and symmetrically
ηd(Tbq+) = ηd(Fbq ∩H1). Combining this with Theorem 5.10 implies that

ηd(Tap+ ∩ Tbq+) = ηd(Tap+) ∩ ηd(Tbq+) = ηd(Fap ∩H1) ∩ ηd(Fbq ∩H1) ⊇ ηd (Fap ∩ Fbq ∩H1) .

Combining the above, we conclude that

ηd (Fap ∩ Fbq ∩H1) = ηd(Tap+ ∩ Tbq+) = Lap ∩ Lbq,

as asserted.
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In Lemma 5.15 below, we will study Lap ∩ Lbq when Tap ∩ Tbq 6⊆ H0. Handling the case where
Tap∩Tbq 6= ∅ and Tap∩Tbq ⊆ H0 is more difficult. The following lemma shows that this problematic
case cannot happen too often.

Lemma 5.14. Assume that Tap ∩ Tbq 6= ∅. Then Tap ∩ Tbq ⊆ H0 if and only if a− b = q − p.

Proof. By the (straightforward) extension of Lemma 4.5 to Spun(d), we have

Fap ∩ Fbq =

(
1 +

1

2
ed+1ed+2i(p)

)
βC`0d−1α

(
1− 1

2
ed+1ed+2i(a)

)
, (18)

for any α, β ∈ Spin(d) that satisfy α i(b−a)‖b−a‖α
−1 = ed and βedβ

−1 = i(q−p)
‖q−p‖ . Combining this with

Lemma 5.3 implies that(
1 +

1

2
ed+1ed+2i(p)

)
βC`0d−1α

(
1− 1

2
ed+1ed+2i(a)

)
⊆ H0 (19)

if and only if βC`0d−1α ⊆ H0. By lemma 5.1 we have that x ∈ H0 if and only if β−1xβ ∈ H0, so
βC`0d−1α ⊆ H0 if and only if C`0d−1αβ ⊆ H0.

Assume that a − b = q − p. For an arbitrary β ∈ Spin(d) such that βedβ
−1 = i(q−p)

‖q−p‖ , set

γ = ed−1ed and α = γβ−1. Since γ is the product of two elements from i(Sd−1), we have that
γ ∈ Spin(d), which in turn implies that α ∈ Spin(d). We get that

α

(
i(b− a)

‖b− a‖

)
α−1 = γβ−1

(
i(b− a)

‖b− a‖

)
βγ−1 = −γβ−1

(
i(q − p)
‖q − p‖

)
βγ−1 = −γedγ−1 = ed. (20)

We can thus use these α and β in (19). This implies that C`0d−1αβ = C`0d−1ed−1ed ⊆ H0, which in
turn implies that (19) is false. Combining this with (18) and with Lemma 3.6 implies Tap∩Tbq ⊆ H0.

Next, assume that a − b 6= q − p. For an arbitrary β ∈ Spin(d) such that βedβ
−1 = i(q−p)

‖q−p‖ , set

B = β−1 i(b−a)‖b−a‖β. We have that −ed 6= B, so we may set γ = 1
‖ed+B‖ed (ed +B) and α = γβ−1.

Since γ is the product of two elements from i(Sd−1), we have that γ ∈ Spin(d), which in turn implies
that α ∈ Spin(d). Performing a calculation similar to the one in the proof of lemma 5.4, we have

that α
(
i(b−a)
‖b−a‖

)
α−1 = ed. We can thus use these α and β in (18).

Let

x =

(
1 +

1

2
ed+1ed+2i(p)

)
β1γβ−1

(
1− 1

2
ed+1ed+2i(a)

)
. (21)

Note that x ∈ Fap∩Fbq. By Lemmas 5.1, 5.2, and 5.3 we have that x /∈ H0. Since x is a product of
elements of Spun(d), we have that x ∈ Spun(d). Lemma 3.6 implies Tap∩Tbq = Fap∩Fbq∩Spun(d),
so x ∈ Tap ∩ Tbq. We conclude that Tap ∩ Tbq 6⊆ H0, which completes the proof.

Lemma 5.15. If Tap 6= Tbq and Tap ∩ Tbq 6⊆ H0, then dim (Lap ∩ Lbq) =
(
d−1
2

)
.

Proof. By the assumption Lap ∩ Lbq 6= ∅. Let v ∈ Lap ∩ Lbq, and note that it suffices to prove that

dim ((Lap − v) ∩ (Lbq − v)) =
(
d−1
2

)
. By Lemma 5.13,

(Lap − v) ∩ (Lbq − v) + v = Lap ∩ Lbq = ηd (Fap ∩ Fbq ∩H1) = η′d (Fap ∩ Fbq ∩H0) + v.

By the extension of Lemma 4.5 to Rd, we have that dim (Fap ∩ Fbq) = dim(C`d−1) = 2d−2.
The assumption Tap ∩ Tbq 6⊆ H0 implies that Fap ∩ Fbq properly intersects H0. This in turn
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implies dim (Fap ∩ Fbq ∩H0) = 2d−2− 1. It remains to show that dim (Fap ∩ Fbq ∩H0 ∩ ker (η′d)) =

2d−2 −
(
d−1
2

)
− 1.

For an arbitrary β ∈ Spin(d) that satisfies βedβ
−1 = i(q−p)

‖q−p‖ , set B = β−1 i(b−a)‖b−a‖β. By Lemma
5.14, the assumption Tap ∩ Tbq 6⊆ H0 implies a − b 6= q − p, which in turn implies that B 6= −ed.
Let γ = 1

‖en+B‖en (en +B) and let α = γβ−1. Since γ is the product of two elements from i(Sd−1),
we have that γ ∈ Spin(d), which in turn implies that α ∈ Spin(d). By repeating the argument in
(20), we get that α b−a

||b−a||α
−1 = ed. By the extension of Lemma 4.5 to Rd, we have

Fap ∩ Fbq =

(
1 +

1

2
ed+1ed+2i(p)

)
βC`0d−1γβ

−1
(

1− 1

2
ed+1ed+2i(a)

)
. (22)

Consider the map τap : Z0
d → Z0

d defined by

τap(x) =

(
1 +

1

2
ed+1ed+2i(p)

)
βxα

(
1− 1

2
ed+1ed+2i(a)

)
.

Since τ−1ap (x) = β−1
(
1− 1

2ed+1ed+2i(p)
)
x
(
1 + 1

2ed+1ed+2i(a)
)
α−1, we note that τap is a linear

bijection.
We claim that Fap ∩ Fbq ∩H0 ∩ ker (η′d) is generated by{
τ(f) : f is an element of the standard basis of C`0d−1 and an m-term for some m ≥ 4

}
. (23)

Indeed, for any such m-term f , Lemmas 5.1, 5.2, and 5.3 imply that

τ(f) =

(
1 +

1

2
ed+1ed+2i(p)

)
βfα

(
1− 1

2
ed+1ed+2i(a)

)
∈ H0 ∩ ker(η′d).

By (22), this expression is also in Fap ∩ Fbq.
If f ∈ Z0

d contains a 0-term or a 2-term, then Lemmas 5.1, 5.2, and 5.3 imply that τap(f) /∈
Fap ∩ Fbq ∩ H0 ∩ ker(η′d). That is, if g ∈ Fap ∩ Fbq ∩ H0 ∩ ker(η′d) then τ−1ap (g) contains no 0-
term or 2-terms. We conclude that (23) generates Fap ∩ Fbq ∩ H0 ∩ ker(η′d). Since τ(f) is a
bijection, the set (23) is a linearly independent subset of Fap∩Fbq ∩H0∩ker(η′d). This implies that

dim(Fap ∩ Fbq ∩H0 ∩ ker(η′d)) = 2d−2 −
(
d−1
2

)
− 1, which completes the proof.

We are now ready to state the connection between the distinct distances problem and the flats
Lap. Let Q′ be the set of quadruples (a, p, b, q) ∈ P4 such that Tap ∩ Tbq 6⊆ H0. In particular, note
that (a, p, b, q) ∈ Q′ implies that Tap ∩ Tbq 6= ∅.

Corollary 5.16. We have that Q′ ⊂ Q and |Q′| ≥ |Q|/2.

Proof. Recall that a quadruple (a, p, b, q) ∈ P4 is in Q if and only if Tap∩Tbq 6= ∅. Since Tap∩Tbq 6⊆
H0 implies Tap ∩ Tbq 6= ∅, we have that Q′ ⊆ Q. It remains to show that at least half of the
quadruples of Q are also in Q′. Consider Tap 6= Tbq such that Tap ∩ Tbq ⊆ H0. By Lemma 5.14 we
have that a − b = q − p. This implies that b − a 6= p − q, so Tbp ∩ Taq 6⊆ H0 (since |ab| = |pq|, we
get that Tbp ∩Taq 6= ∅). That is, for every quadruple (a, p, b, q) ∈ Q not in Q′ there exists a distinct
quadruple (b, p, a, q) that is in Q′.

Flats in R(d+1
2 ) and in R2d−1. We set

L = {Lap : a, p ∈ P and a 6= p}.
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Note that L is a set of Θ(n2) flats of dimension
(
d
2

)
in R(d+1

2 ). By Corollary 5.16, to get an
asymptotic upper bound for the number of quadruples in Q it suffices to derive an upper bound
for the number of quadruples (a, p, b, q) ∈ P4 such that Tap ∩Tbq 6⊆ H0. By Lemma 5.15 every such

quadruple satisfies dimLap ∩ Lbq =
(
d−1
2

)
. On the other hand, when Tap ∩ Tbq ⊆ H0 we have that

Lap ∩Lbq = ∅. Thus, it remains to derive an upper bound on the number of pairs of flats of L that

intersect (in a
(
d−1
2

)
-flat).

The proof of the following lemma is identical to the proof of Lemma 4.10.

Lemma 5.17. (a) Every point of R(d+1
2 ) is contained in at most n flats of L.

(b) Every hyperplane in R(d+1
2 ) contains at most n flats of L.

Note that
(
d+1
2

)
−
(
d−1
2

)
= 2d− 1 and that

(
d
2

)
−
(
d−1
2

)
= d− 1. Let Hg be a generic (2d− 1)-flat

in R(d+1
2 ), in the sense that:

• Every
(
d
2

)
-flat of L intersects Hg in a (d− 1)-flat.

• Every
(
d−1
2

)
-flat of the form Lap ∩ Lbq (with a, b, p, q ∈ P) intersects Hg at a single point.

Let F = {Lap∩Hg : Lap ∈ L} and consider Hg as R2d−1. Note that F is a set of Θ(n2) distinct
(d − 1)-flats. Every two (d − 1)-flats of F are either disjoint or intersect in a single point. By
Lemma 5.17, every point of R2d−1 is incident to at most n of the flats of F and every hyperplane
in R2d−1 contains at most n of the flats of F .

For every integer k ≥ 2, let mk denote the number of points of R2d−1 that are contained in
exactly k of the (d − 1)-flats of F . Similarly, let m≥k denote the number of points of R2d−1 that
are contained in at least k of the (d− 1)-flats of F . Then |Q′| is the number of pairs of intersecting
(d− 1)-flats of F , and

|Q| ≤ 2|Q′| = 2

n∑
k=2

mk · 2
(
k

2

)
< 2

n∑
k=2

k2mk = O

(
logn∑
k=1

22km≥2k

)
.

If we had the bound m≥k = O
(
n(4d−2)/d

k2+ε

)
for some ε > 0, then the above would imply |Q| =

O(n(4d−2)/d). This would in turn imply that the points of P span Ω
(
n2/d

)
distinct distances.

An incidence result of Solymosi and Tao [13] implies that the number of incidences between m
points and n flats of dimension d − 1 in R2d−1, with every two flats intersecting in at most one
point, is O(m2/3+ε′n2/3 + m + n) (for any ε′ > 0). Every incidence bound of this form has a dual
formulation involving k-rich points (for example, see [12, Chapter 1]). In this case, the dual bound
is: Given n2 flats of dimension d−1 in R2d−1 such that every two intersect in at most one point, for

every k ≥ 2 the number of k-rich points is O
(
n4/(1−ε′)

k3/(1−ε′)
+ n2

k

)
. By taking ε′ to be sufficiently small

with respect to ε, we obtain the bound m≥k = O
(
n4+ε

k3
+ n2

k

)
for the number of k-rich points. This

bound is stronger than the required bound when k = Ω(n2/d+ε). That is, it remains to consider
the case where k = O(n2/d+ε).

6 The structure of the flats Lap

In this section we study the structure of the
(
d
2

)
-flats Lap in R(d+1

2 ). In particular, we derive the
equations that define such a flat. This structure is useful for deriving additional properties of the
flats, which may be required for solving the incidence problem in Theorem 1.2.

Recall that we think of every coordinate of R(d+1
2 ) as corresponding to a 2-term in the standard

basis of Z0
d . We denote the coordinate corresponding to ejek as xj,k, for every 1 ≤ j < k ≤ d.
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Similarly, we denote the coordinate corresponding to ejed+1ed+2 as xj,d+1. For a ∈ Rd, we denote
by aj the j’th coordinate of a.

Theorem 6.1. Given a, p ∈ Rd, the flat ηd(Tap ∩ Spun(d)+) is defined by the following system of

d equations in the coordinates of R(d+1
2 ).

a1 − p1 =(a2 + p2)x1,2 + (a3 + p3)x1,3 + · · ·+ (ad + pd)x1,d + 2x1,d+1,

a2 − p2 =− (a1 + p1)x1,2 + (a3 + p3)x2,3 + · · ·+ (ad + pd)x2,d + 2x2,d+1,

...

ad − pd =− (a1 + p1)x1,n − (a2 + p2)x2,d − · · · − (ad−1 + pd−1)xd−1,d + 2xd,d+1.

Proof. In the following proof, every reference to orthogonal elements is with respect to the standard
inner product 〈·, ·〉 of R2d . For a vector v ∈ R2d , we denote the dual of v as v∗. That is, v∗ is the

map v∗(u) = 〈v, u〉. For linear maps f, g : R2d → R2d , we denote by f t(g)(v) the transpose g(f(v)).
Consider the linear map τap : Z0

d → Z0
d defined by

τap(x) =

(
1 +

1

2
ed+1ed+2i(p)

)
x

(
1− 1

2
ed+1ed+2i(a)

)
.

We also observe that

τ−1ap (x) =

(
1− 1

2
ed+1ed+2i(p)

)
x

(
1 +

1

2
ed+1ed+2i(a)

)
. (24)

Thus, τap is a linear bijection.

Lemma 6.2. For u,w ∈ Z0
d , we have that u is orthogonal to τap(w) if and only if u =

(
(τ−1ap )t ◦ v∗

)∗
for some v ∈ R2d orthogonal to w.

Proof. Let v ∈ R2d be orthogonal to w. We have that4

〈
(
(τ−1ap )t ◦ v∗

)∗
, τap(w)〉 =

((
(τ−1ap )t ◦ v∗

)∗)∗
(τap(w)) =

(
(τ−1ap )t ◦ v∗

)
(τap(w))

=
(
v∗ ◦ τ−1ap

)
(τap(w)) = v∗(w) = 〈v, w〉 = 0.

That is,
(
(τ−1ap )t ◦ v∗

)∗
is orthogonal to τap(w), as required.

For the other direction, assume that u is orthogonal to τap(w) and note that

u = (u∗)∗ =
(
(τ−1ap )t

(
((τ−1ap )t)−1 ◦ u∗

))∗
.

That is, u =
(
(τ−1ap )t ◦ v∗

)∗
for v =

(
((τ−1ap )t)−1 ◦ u∗

)∗
. We also have that

〈v, w〉 =
〈(

((τ−1ap )t)−1 ◦ u∗
)∗
, w
〉

=
((

((τ−1ap )t)−1 ◦ u∗
)∗)∗

(w) =
(
((τ−1ap )t)−1 ◦ u∗

)
(w)

=
(
τ tap(u

∗)
)

(w) = u∗ (τap(w)) = 〈u, τap(w)〉 = 0.

4Strictly speaking, (u∗)∗ is not equal to u. With a slight abuse of notation, we apply here the natural isomorphism

between the space
(
R2d

∗)∗
and R2d .
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Let V 0
d be the orthogonal complement of C`0d in Z0

d . Note that every term of every element of

V 0
d contains ed+1ed+2. Lemma 6.2 implies that

(
(τ−1ap )t ◦

(
V 0
d

)∗)∗
is the orthogonal complement of

τap
(
C`0d

)
. Let I2d−1 be the 2d−1× 2d−1 identity matrix. We can express (τ−1ap )t as a 2d× 2d matrix

of the form5 (
I2d−1 C

0 I2d−1

)
. (25)

Indeed, recall that taking the transpose of a linear transformation corresponds to taking the trans-
pose of the matrix of this transformation. Note that the columns of (25) with index greater than
2d−1 form a basis of (τ−1ap )t ◦ (V 0

d )∗.

We denote the coordinates of Z0
d
∼= R2d as y1, . . . , y2d . Let (v1, . . . , v2d)

∗ ∈
(
Z0
d

)∗
be one of

the basis vectors of (τ−1ap )t ◦ (V 0
d )∗ that are columns of (25). We associate with this vector the

equation v1y1 + . . . + v2dy2d = 0. Let Sap be the system of 2d−1 homogeneous linear equations
that are obtained in this way from the column vectors of (25) with index greater than 2d−1. Since(
(τ−1ap )t ◦

(
V 0
d

)∗)∗
is the orthogonal complement of τap

(
C`0d

)
, the set of solutions to Sap is τap

(
C`0d

)
.

We construct a system of homogeneous linear equations S′ap by taking a subset of the equations
of Sap, as follows. Let v1y1 + . . .+ v2dy2d = 0 be an equation of Sap. We add this equation to S′ap
if for every nonzero coefficient vj the variable yj corresponds either to a 0-term or to a 2-term. Let
F ′ap be the set of solutions to the system S′ap.

Lemma 6.3. ηd(F
′
ap \H0) = ηd(τap(C`

0
d) \H0).

Proof. As stated above, the set of solutions to Sap is τap(C`
0
d). Since S′ap ⊂ Sap, we get that

τap(C`
0
d) ⊂ F ′ap. This immediately implies ηd(τap(C`

0
d) \H0) ⊆ ηd(F

′
ap \H0). It remains to prove

that ηd(F
′
ap \H0) ⊆ ηd(τap(C`0d) \H0).

For a linear equation w1y1+. . .+w2dy2d = 0, we set w = (w1, . . . , w2d)
∗ and u = (u1, . . . , u2d)

∗ =
τ tap ◦w. If z ∈ Z0

d is a solution to w1y1 + . . .+w2dy2d = 0 then w∗ is orthogonal to z, which in turn

implies that
(
τ tap ◦ w

)∗
is orthogonal to τ−1ap (z). That is, τ−1ap (z) is a solution to u1y1+ . . .+u2dy2d =

0. Conversely, if z ∈ Z0
d is a solution to u1y1 + . . .+u2dy2d = 0 (that is, u∗ is orthogonal to z) then

τap(z) is orthogonal to
(
(τ−1ap )t ◦ u

)∗
=
(
(τ tap)

−1 ◦ u
)∗

= w∗. We conclude that τ−1ap is a bijection
from the solutions to w1y1 + . . .+ w2dy2d = 0 to the solutions to u1y1 + . . .+ u2dy2d = 0.

Recall that every equation of Sap is defined by a dual vector v ∈ (Rd)∗ of the form (τ−1ap )t ◦
(γed+1ed+2)

∗, where γed+1ed+2 is a basis vector of V 0
d (that is, γ is in the standard basis of C`1d).

Every non-zero term of such a vector corresponds to a 0-term or a 2-term if and only if v∗ ∈ Rd is
orthogonal to every vector corresponding to an m-term for some m ≥ 4. Let w ∈ Rd be a vector
that corresponds to such an m-term. If γ = ej for some 1 ≤ j ≤ d, then Lemma 5.3 implies that
τ−1ap (w) is orthogonal to γed+1ed+2. Lemma 6.2 states that ((τ−1ap )t ◦ (ejed+1ed+2)

∗)∗ is orthogonal
to τap((τ

−1
ap )t(w)) = w. That is, when γ = ej the equation defined by v is in S′ap.

Next, assume that γed+1ed+2 is an m-term with m ≥ 4, and write u = γed+1ed+2. Lemma 5.3
implies that τap(u) contains neither 2-terms nor a 0-term. If ((τ−1ap )t ◦ u∗)∗ is orthogonal to τap(u)
then by (the other direction of) Lemma 6.2 we get that u is orthogonal to u. This contradiction
implies that ((τ−1ap )t ◦ u∗)∗ is not orthogonal to τap(u), so in this case the equation defined by v is
not in S′ap.

Combining the two preceding paragraphs implies that the equations of S′ap are determined by
the vectors (τ−1ap )t ◦ ((ejed+1ed+2)

∗) for 1 ≤ j ≤ d. It follows that the equations of S′00 are obtained

5To write this matrix, we must choose a specific ordering of the dual elements of the standard basis of Z0
d . As

long as the elements dual to the basis elements involving ed+1ed+2 come after those dual to those that do not, the
details of the ordering do not matter.
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from those defining S′ap by applying τ tap to the coefficient vectors. By the second paragraph of this
proof, for every v ∈ F ′ap we have that τ−1ap (v) ∈ F ′00.

When a = p = 0, we have that (25) is the identity matrix. Thus, each equation of S00 consists of
a single term. This in turn implies that F ′00 is the subspace defined by having 0 in every coordinate
that corresponds to a 2-term of the form ejed+1ed+2 (where 1 ≤ j ≤ d). For v ∈ F ′ap \ H0, we
obtain that τ−1ap (v) contains no terms of the form ejed+1ed+2. By Lemmas 5.6 and 5.9, there is a
unique x ∈ Jd with the property that x− τ−1ap (v) contains no 0-term and no 2-terms. Note that x
also contains no terms of the form ejed+1ed+2, so Lemma 5.8 implies that x ∈ Gd. Since x ∈ C`0d,
we have that τap(x) ∈ τap

(
C`0d

)
. By Lemma 5.3, the expression τap

(
x− τ−1ap (v)

)
also contains

no 0-term and no 2-terms, so ηd(τ(x)) = ηd(v). That is, there exists τap(x) ∈ τap
(
C`0d

)
such that

ηd(τap(x)) = ηd(v). Since v /∈ H0, we have that τ−1ap (v) /∈ H0, which in turn implies that x /∈ H0 and
that τ(x) /∈ H0. This implies that ηd(F

′
ap \H0) ⊆ ηd(τap(C`0d) \H0) and completes the proof.

By Lemma 6.3, to complete the proof of Theorem 6.1 it suffices to study ηd(F
′
ap \H0). We move

from the coordinate system yj to the coordinate system xj,k, as described before the statement of
the theorem. We denote by x1 the coordinate corresponding to the coefficient of 1 (that is, y1).

We now study the equations of S′ap. As discussed in the proof of Lemma 6.3, these equations
correspond to the dual vectors (τ−1ap )t◦(ejed+1ed+2)

∗ for 1 ≤ j ≤ d. If ejed+1ed+2 is the k’th element
in our ordering of the basis of Z0

d , then (τ−1ap )t ◦ (ejed+1ed+2)
∗ is the k’th column of the matrix (25).

Since the transpose of a linear transformation corresponds to the transpose of the matrix of the
transformation, the above is also the k’th row of the matrix of τ−1ap . To get this row, we apply τ−1ap
to the basis vectors of Z0

d and then keep the coefficient of ejed+1ed+2 (recall that τ−1ap is defined in
(24)). The only basis vectors of Z0

d for which this coefficient is nonzero are 1 and 2-terms involving
ej . Repeating this process for every 1 ≤ j ≤ d leads to the following system.

(a1 − p1)x1 =(a2 + p2)x1,2 + (a3 + p3)x1,3 + · · ·+ (ad + pd)x1,d + 2x1,d+1,

(a2 − p2)x1 =− (a1 + p1)x1,2 + (a3 + p3)x2,3 + · · ·+ (ad + pd)x2,d + 2x2,d+1,

...

(ad − pd)x1 =− (a1 + p1)x1,d − (a2 + p2)x2,d − · · · − (ad−1 + pd−1)xd−1,d + 2xd,d+1.

Recall from the beginning of Section 5 that ηd = π′ ◦ π1. Since the above is a system of
homogeneous linear equations, F ′ap is spanned by lines that are incident to the origin. This implies
that π(F ′ap \H0) = π(F ′ap ∩H1). Thus, π(F ′ap \H0) is the set of solutions to the system obtained
by setting x1 = 1:

(a1 − p1) =(a2 + p2)x1,2 + (a3 + p3)x1,3 + · · ·+ (ad + pd)x1,d + 2x1,d+1,

(a2 − p2) =− (a1 + p1)x1,2 + (a3 + p3)x2,3 + · · ·+ (ad + pd)x2,d + 2x2,d+1,

... (26)

(ad − pd) =− (a1 + p1)x1,d − (a2 + p2)x2,d − · · · − (ad−1 + pd−1)xd−1,d + 2xd,d+1.

Since none of the variables xj,k correspond to elements of R2d−1 that are in the kernel of π′, we
get that ηd(F

′
ap) is the solution set of (26).

7 Properties of the 2-flats in R5

In this section we study the 2-flats in R5 that are obtained from our reduction of the three-
dimensional distinct distances problem. In particular, we show how one can bound the number of
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2-flats contained in constant-degree three- and four-dimensional varieties. We also show how one
can bound the number of 2-flats that have a one-dimensional intersection with a constant-degree
two-dimensional variety. Deriving these results requires several definitions and tools from Algebraic
Geometry, and these are described in Section 7.1.

7.1 Algebraic Geometry preliminaries

In the following, F could be taken to be either C or R. The variety defined by the polynomials
f1, . . . , fk ∈ F[x1, . . . , xd] is

V(f1, . . . , fk) =
{

(a1, . . . , ad) ∈ Fd : fj(a1, . . . , ad) = 0 for all 1 ≤ j ≤ k
}
.

There are several non-equivalent definitions for the degree of a variety in Rd. For our purposes,
we define the degree of a variety U ⊂ Rd as

min
f1,...,fk∈R[x1,...,xd]

V(f1,...,fk)=U

max
1≤i≤k

deg fi.

That is, the degree of U is the minimum integer D such that U can be defined with a finite set of
polynomials of degree at most D.

A variety U ⊆ Fd is reducible if there exist two proper subvarieties U ′, U ′′ ⊂ U such that
U = U ′

⋃
U ′′. Otherwise, U is irreducible. An irreducible component of U is an irreducible variety

that is contained in U , and not contained in any other irreducible subvariety of U .

Lemma 7.1. Let U ⊂ Rd be a variety of degree k. Then the number of irreducible components of
U is Od,k(1).

Intuitively, we say that a variety U ⊂ Rd has dimension k if there exists a subset of U that is
homeomorphic to the open k-dimensional cube, but no subset of U is homeomorphic to an open
cube of a larger dimension. For more information about varieties in Rd and a more precise definition
of dimension, see for example [2].

Singular points, regular points, and tangent flats. The ideal of a variety U ⊆ Rd, denoted
I(U), is the set of polynomials in R[x1, . . . , xd] that vanish on every point of U . We say that a
set of polynomials f1, . . . , f` ∈ R[x1, . . . , xd] generate I(U) if every element of I(U) can be written
as
∑`

j=1 fjgj for some g1, . . . , g` ∈ R[x1, . . . , xd]. We also write 〈f1, . . . , f`〉 = I(U) to state that
f1, . . . , f` generate I(U).

The Jacobian matrix of a set of polynomials f1, . . . , fk ∈ R[x1, . . . , xd] is

Jf1,...,fk =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xd

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xd

· · · · · · · · · · · ·
∂fk
∂x1

∂fk
∂x2

· · · ∂fk
∂xd


Consider a variety U ⊂ Rd of dimension k, and let f1, . . . , f` ∈ R[x1, . . . , xd] satisfy 〈f1, . . . , f`〉 =

I(U). We say that p ∈ U is a singular point of U if rank J(p) < d − k. A point of U that is not
singular is said to be a regular point of U . We denote the set of singular points of U as Using, and
the set of regular points of U as Ureg. A k-dimensional variety has a unique well-defined tangent
k-flat at every regular point. We denote the tangent k-flat at p ∈ U as TpU , and think of it as a
linear subspace (that is, as incident to the origin). At singular points of a real variety, a unique
well-defined tangent flat may or may not exist.
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Theorem 7.2. Let U ⊂ Rd be a variety of degree k and dimension d′. Then Using is a variety of
dimension smaller than d′ and of degree Ok,d(1).

References for the above claims and additional information can be found, for example, in [2].

Complexification. Given a variety U ⊂ Rd, the complexification U∗ ⊂ Cd of U is the smallest
complex variety that contains U , in the sense that any other complex variety that contains U also
contains U∗ (for example, see [9, 16]). As shown in [16, Lemma 6], such a complexification always
exists, and U is precisely the set of real points of U∗.

As shown in [16, Section 10], there is a bijection between the irreducible components of U and the
irreducible components of U∗, such that each real component is the real part of its corresponding
complex component. In particular, the complexification of an irreducible variety is irreducible.
The real dimension of a real irreducible component in Rd is equal to the complex dimension of the
corresponding complex component in Cd.

Constructible sets, semi-algebraic sets, and projections. As before, F could be taken to
be either C or R. If U ⊂ Fd is a set, the Zariski closure U is the smallest variety in Fd that contains
U . A set X ⊂ Fd is constructible if there exist non-empty varieties X1, . . . , X` ⊂ Fd such that
dimXj+1 < dimXj for every 1 ≤ j < ` and

X =
((

(X1\X2) ∪X3

)
\X4 . . .

)
. (27)

We define dim(X) = dim(X) = dim(X1). We define the complexity of X to be min(deg(X1) +
deg(X2) + . . . + deg(X`)), where the minimum is taken over all representations of X of the form
(27). This definition is not standard. However, since we are interested only in constructible sets of
bounded complexity, any reasonable definition of complexity would work equally well. For further
details, see for example [8, Chapter 3].

A semi-algebraic set in Rd is the set of points in Rd that satisfy a given finite Boolean combi-
nation of polynomial equations and inequalities in d coordinates. Every constructible set in Rd is
semi-algebraic. On the other hand, a semicircle in R2 is semi-algebraic but not constructible.

Let S ⊂ Rd be a semi-algebraic set defined by a Boolean combination of equations and inequal-
ities involving the polynomials f1, . . . , fk ∈ R[x1, . . . , xd] (that is, the j’th equation or inequality
has zero on one side and fj on the other). The dimension of S is the dimension of the real variety
S. The complexity of S is min{deg f1 + · · ·+ deg fk}, where the minimum is taken over all Boolean
combinations that define S. Note that the degree of the variety S is at most the complexity of S.

One can also include the quantifiers ∀ and ∃ in the definition of a semi-algebraic set, each quan-
tifying an additional variable that is not a coordinate of the points in the set. For every definition
of a semi-algebraic set using quantifiers, there exists a definition that does not use quantifiers. For
example, the formula ∀t : (t > 0) ∨ (x + y > t) defines an open half-plane in R2, which can easily
be defined without the ∀ quantifier. In the above definition of the complexity, one may only use
definitions of S that do not include such quantifiers. For the following, see for example [1, Section
11.3].

Lemma 7.3. Let S ⊂ Rd be a semi-algebraic set using k quantified variables, and s polynomials of
degree at most D. Then S is of complexity Ok,s,D,d(1).

Both in Rd and in Cd, the projection of a variety is not necessarily a variety. In Rd, the projection
of a constructible set is not necessarily constructible. The following result states properties that are
satisfied by every projection. For part (a), see for example [8, Theorem 3.16] (this reference only
says that the projection of a constructible set is constructible. However, the proof is constructive
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and thus gives us a bound on the complexity of the projection.) Part (b) is implied by Lemma 7.3,
noting that the projection of a semi-algebraic set can be obtained by adding ∃ quantifiers to its
definition.

Theorem 7.4.
(a) Let X ⊂ Cd be a constructible set of dimension d′ and complexity k. Let π : Rd → Re be a
projection on e out of the d coordinates of Rd. Then π(X) is a constructible set of dimension at
most d′ and of degree Ok,d(1).
(b) Let U ⊂ Rd be a semi-algebraic set of dimension d′ and complexity k. Let π : Rd → Re be a
projection on e out of the d coordinates of Rd. Then π(U) is a variety of dimension at most d′ and
of degree Ok,d(1).

For d > d′, let X ⊂ Cd be a constructible set and let Y ⊂ Cd′ be an irreducible variety. Let
π : Cd → Cd′ be a projection onto d′ coordinates. We say that π : X → Y is dominant if π(X) = Y .
The following is a corollary of Chevalley’s upper semi-continuity theorem (for example, see [8,
Corollary 11.13] and the paragraph following it; for the claim that the set is constructible, see also
[8, Theorem 3.16]).

Theorem 7.5. Let X ⊂ Cd and Y ⊂ Cd′ be irreducible varieties of degrees at most k, and suppose
π : X → Y is dominant. Then exists a variety Y ′ ⊂ Cd of degree Ok(1) such that dimY ′ < dimY
and for every y ∈ Y \ Y ′ we have that π−1(y) is a constructible set of dimension dimX − dimY
and degree Ok,d(1).

We require a real variant of Theorem 7.5.

Corollary 7.6. Let U be a variety of dimension d in R6, let π : R6 → R3 be the projection on
the first three coordinates, and let U3 = π(U) be of dimension d3. Then there exists a variety
W ⊂ R3 of degree Ok(1) such that dimW < d3 and for every u ∈ U3 \W we have that π−1(u) is a
constructible set of dimension at most d− d3 and degree Ok(1).

Proof. Consider the complexification U∗ of U and the complexification U∗3 of U3. Note that U∗ is of
dimension d and that U∗3 is of dimension d3. We extend the projection π : R6 → R3 to π : C6 → C3.
As before, this is the projection on the first three coordinates.

Set U ′ = π(U∗). By Theorem 7.4(a), the variety U ′ is of degree Ok(1). Since U∗3 is the
smallest complex variety containing U3, we have that U∗3 ⊆ U ′. Consider the cylindrical variety
C = π−1(U∗3 ) ⊂ C6, and note that U is contained in the real part of C. Since U∗ is the smallest
variety in C6 that contains U , we have that U∗ ⊆ C. This in turn implies that U ′ ⊆ U∗3 , so U ′ = U∗3 .
In particular, dimU ′ = d3.

By Theorem 7.5, there exists a variety W ∗ ⊂ C3 of degree Ok(1) such that dimW ∗ < d3 and for
every u ∈ U ′ \W ∗ we have that π−1(u) is a constructible set of dimension d− d3 and degree Ok(1).
We set W ⊂ R3 to be the real part of W ∗, and note that dimW < d3. Since (U3 \W ) ⊂ (U ′ \W ∗),
for every u ∈ U3 \W we have that π−1(u) ⊂ R6 is a constructible of dimension at most d− d3 and
degree Ok(1).

7.2 Flats in R5.

Theorem 6.1 implies the following for the case of distinct distances in R3. Given two points
a = (a1, a2, a3) and p = (p1, p2, p3) in R3, the corresponding 3-flat Lap ⊂ R6 is defined by

−(a1 + p1)x2 − (a2 + p2)x3 + 2x6 = a3 − p3,
−(a1 + p1)x1 + (a3 + p3)x3 + 2x5 = a2 − p2,

(a2 + p2)x1 + (a3 + p3)x2 + 2x4 = a1 − p1. (28)
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Note that {Lap : a, p ∈ R3} is a six-dimensional family of 3-flats in R6.
Let P be a set of n points in R3, and let H be a hyperplane in R6, chosen generically with

respect to P. For a, p ∈ R3 we write Fap = Lap ∩H. We consider the sets

F = {Fap : a, p ∈ R3} and FP = {Fap : a, p ∈ P}.

Since H is chosen generically, FP is a set of n2 distinct 2-flats in H. We think of H as R5, so FP
becomes a set of 2-flats in R5. As shown in Section 4, every pair of flats in FP intersect in at most
one point.

Theorem 7.7. Let U be an irreducible three-dimensional variety in R5 of degree k. Then either U
contains Ok

(
n2/3

)
flats of FP or there exists a curve in R3 of degree Ok(1) that contains Ωk

(
n2/3

)
points of P.

It is not difficult to show that n2/3 points on a constant-degree curve in R3 span Ω
(
n2/3

)
distinct distances. This is exactly the conjectured number of distances in R3, so we may assume
that no constant-degree curve in R3 contains n2/3 points of P. Then, Theorem 7.7 implies that
every constant-degree three-dimensional variety in R5 contains O(n2/3) flats of FP .

Proof of Theorem 7.7. For any a, p ∈ R3, by (28) we have the parametrization

Lap =

{
(s, t, r,

(
a1 − p1 − (a2+p2)s− (a3 + p3)t

)
/2,
(
a2 − p2 + (a1 + p1)s− (a3 + p3)r

)
/2,

(
a3 − p3 + (a1 + p1)t+ (a2 + p2)r

)
/2) ∈ R6 : s, t, r ∈ R

}
. (29)

To parameterize Lap ∩H, we isolate x3 in the linear equation defining H and use this to eliminate
the parameter r (since H is generic, its defining equation contains x3). This parametrization of
Lap ∩ H consists of five linear functions in the two variables s, t ∈ R, with coefficients that are
polynomials of degree at most two in the coordinates of a and p.

We identify H with R5. Equivalently, let πH : H → R5 be a the map that takes H to R5.
Since πH can be seen as a translation followed by a rotation and a projection, we can write πH as
five linear polynomials in x1, . . . , x6. Combining this with the above parametrization, we obtain a
parametrization of Fap = πH(Lap ∩H) using five linear functions in the two variables s, t ∈ R and
coefficients that are polynomials of degree at most two in the coordinates of a and p.

Let f ∈ R[x1, . . . , x5] be a polynomial of degree 2k such that V(f) = U (if U is defined as
V(f1, . . . , fm) where each fj is of degree at most k, then we take f = f21 + · · · + f2m). We think
of f |πH(Lap∩H) as a polynomial of degree at most 2k in R[s, t] and coefficients that depend on the
coordinates of a and p. Note that Fap ⊂ U if and only if f |πH(Lap∩H) is identically zero. That
is, if and only if the coefficient of every monomial of f |πH(Lap∩H) is zero. There are Ok(1) such
monomials, and the coefficient of each is a polynomial of degree at most 4k in the coordinates of a
and p. This implies that the set

FU =
{

(a, p) ∈ R6 : Fap ⊂ U
}

is a variety of degree Ok(1). We use the notation FU to refer both to the above set of points in R6

and to the set of corresponding 2-flats in R5.
Let u be a regular point of U , and let Fap, Fa′p′ ⊂ U be 2-flats of F incident to u. Since any pair

of 2-flats of F intersect in at most one point, we have Fap ∩Fa′p′ = {u}, so TuFap and TuFa′p′ span
a 4-flat in R5. This is impossible, since both TuFap and TuFa′p′ are contained in the 3-flat TuU .
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This contradiction implies that every regular point of U is incident to at most one 2-flat of FU . By
Theorem 7.2, the set of singular points Using is a two-dimensional variety of degree Ok(1). Thus,
the number of 2-flats of F contained in Using is Ok(1), and in particular there are Ok(1) flats of FP
in Using. Every 2-flat of FP that is not contained in Using intersects Using in a variety of dimension
at most one. That is, excluding Ok(1) flats, every flat of FU intersects Ureg in a constructible set
of dimension two. If FU is of dimension at least two then U contains a two-dimensional union of
disjoint two-dimensional constructible sets, which in turn implies that U is of dimension at least
four. This contradicts the assumption that U is three-dimensional, so FU is of dimension at most
one.

Let π1 : R6 → R3 be the projection on the first three coordinates and let π2 : R6 → R3 be
the projection on the last three coordinates. That is, for points a, p ∈ R3 we have π1(a, p) = a
and π2(a, p) = p. By Theorem 7.4(b), the variety γ1 = π1(FU ) ⊂ R3 is of degree Ok(1) and of
dimension at most one. We symmetrically define γ2 = π2(FU ).

Set P1 = P∩γ1 and P2 = P∩γ2. If |P1| = Ω
(
n2/3

)
then we are done, since we found a constant-

degree curve in R2 containing many points of P. We may thus assume that |P1| = O
(
n2/3

)
, and

symmetrically that |P2| = O
(
n2/3

)
. If γ1 is of dimension zero, then by Lemma 7.1 it is a set of

Ok(1) points. Since |P2| = O
(
n2/3

)
, we get that Ok

(
n2/3

)
flats of FP are contained in U . This

completes the proof, so we may assume that γ1 is of dimension one.
By Corollary 7.6, excluding Ok(1) exceptional points, for every a ∈ γ1 there are Ok(1) points

w ∈ FU such that π1(w) = a. Since |P2| = O
(
n2/3

)
, the exceptional points correspond to Ok

(
n2/3

)
flats of FP in U . Since |P1| = O

(
n2/3

)
, the non-exceptional points also correspond to Ok

(
n2/3

)
flats of FP in U . We conclude that |P2 ∩ FU | = Ok

(
n2/3

)
, which completes the proof.

We now study the number of 2-flats of FP in a four-dimensional constant-degree variety in R5.

Theorem 7.8. Let P be a set of n points in R3 and let U be an irreducible four-dimensional variety
in R5 of degree k. Then either U contains Ok

(
n4/3

)
flats of FP or there exists a surface in R3 that

contains Ωk

(
n2/3

)
points of P.

Proof. The case where U is a hyperplane was already handled in Section 3, so we may assume that
U is not a hyperplane. We begin by imitating the proof of Theorem 7.7. As in that proof, we define

FU =
{

(a, p) ∈ R6 : Fap ⊂ U
}
,

and note that FU is a variety of degree Ok(1).
By Theorem 7.2, the set of singular points Using is a three-dimensional variety of degree Ok(1).

By Lemma 7.1, the set Using consists of Ok(1) irreducible components. We apply Theorem 7.7 to
each of these components, obtaining that either there exists a one-dimensional variety containing
Ω
(
n2/3

)
points of P, or that the total number of flats from FU contained in Using is O

(
n2/3

)
. We

may assume that we are in the latter case, since otherwise we are done.
Let w be a regular point of U , and let Fw be a set of 2-flats of F that are contained in U and

incident to w. Note that for every Fap ∈ Fw we have Fap ∈ U ∩ (w + TwU). Since U is not a
hyperplane, the intersection C = U ∩ (w + TwU) is a variety of degree at most k and dimension
at most three. Since every pair of 2-flats of Fw intersect in at most one point, every point of
C \ {w} is incident to at most one such flat. It is not difficult to verify that the points in FU that
correspond to flats of Fw form a variety. If this variety is of dimension at least two, then C contains
a two-dimensional family of 2-flats that intersect only at w, so dimC = 4. This contradicts the
above claim that dimC ≤ 3, so the points of FU that correspond to 2-flats in Fw form a subvariety
of FU of dimension at most one.
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Every 2-flat of FU that is not contained in Using intersects Ureg in a constructible set of degree
Ok(1) and dimension two. Since U is four-dimensional and every point of Ureg is incident to a
family of 2-flats of dimension at most one, we conclude that FU is of dimension at most three.

Let π1 : R6 → R3 be the projection on the first three coordinates and let π2 : R6 → R3 be the
projection on the last three coordinates. As in the proof of Theorem 7.7, we set γ1 = π1(FU ) and
γ2 = π2(FU ). These are two varieties of degree Ok(1) and dimension at most three. We partition
the rest of the analysis according to the dimension of γ1.

If dim γ1 = 0 then by Lemma 7.1 it consists of Ok(1) points. Each such point can participate
in at most n points of P2 ∩ FP , and this sums up to a total of Ok(n) flats of FP in U .

If dim γ1 = 1 then we may assume that γ1 contains O
(
n2/3

)
points of P, since otherwise we

are done. By Corollary 7.6, excluding Ok(1) exceptional points, for every a ∈ γ1 the set of points
w ∈ FU satisfying π1(w) = a is contained in a variety of dimension two and of degree Ok(1). Since
the set of exceptional points is zero-dimensional, it can be handled as in the case of dim γ1 = 0.

Consider a non-exceptional point a ∈ γ1 and set γa = π2(π
−1
1 (a)). Note that γa ⊂ R3 is a variety

of degree Ok(1) and dimension at most two. If |γa ∩P| = Ω
(
n2/3

)
then we are done. We may thus

assume that every non-exceptional point a ∈ γ1 ∩P satisfies |γa ∩P| = O
(
n2/3

)
. This gives a total

of Ok
(
n4/3

)
flats of FP in U .

If dim γ1 = 2 then we may assume that γ1 contains O
(
n2/3

)
points of P, since otherwise we are

done. By Corollary 7.6, there exists a variety W ⊂ R3 of dimension at most one and degree Ok(1)
such that for every a ∈ γ1 \W we have that π−1(a) is a constructible set of dimension at most one
and degree Ok(1). Since dimW ≤ 1, points on W can be handled as in the case of dim γ1 = 1. For

a point a ∈ γ1 \W we set γa = π2(π
−1
1 (a)). Note that γa ⊂ R3 is a variety of degree Ok(1) and of

dimension at most one. If |γa ∩ P| = Ω
(
n2/3

)
then we are done. We may thus assume that every

non-exceptional point a ∈ γ1 ∩ P satisfies |γa ∩ P| = O
(
n2/3

)
. This gives a total of Ok

(
n4/3

)
flats

of FP in U .
Finally, consider the case where dim γ1 = 3. By Corollary 7.6, there exists a variety W ⊂ R3

of dimension at most two and degree Ok(1) such that for every a ∈ γ1 \W we have that π−1(a) is
a set of Ok(1) points. Since dimW ≤ 2, it can be handled as in the cases of dim γ1 ≤ 2. For every
non-exceptional a ∈ γ1, we have that FU contains Ok(1) points of {a} × P . By summing this over
every a ∈ P \W we get a total of Ok

(
n4/3

)
flats of FP in U .

We conclude this section by studying the number of 2-flats of FP that have a one-dimensional
intersection with a given two-dimensional variety.

Theorem 7.9. Let P be a set of n points in R3 and let U be an irreducible two-dimensional variety
in R5 of degree k. Then either U has a one-dimensional intersection with Ok

(
n4/3

)
flats of FP or

there exists a two dimensional variety of degree Ok(1) in R3 that contains Ωk

(
n2/3

)
points of P.

Proof. Set
FU =

{
(a, p) ∈ R6 : dim(Fap ∩ U) = 1

}
.

By Lemma 7.1, if a 2-flat in R5 has a zero-dimensional intersection with U , then this intersection
consists of Ok(1) points. Denote this maximum number of intersection points as αk. A 2-flat in R5

intersects U in a variety of dimension at least one if and only if this intersection consists of at least
αk + 1 points. That is, (a, p) ∈ FU if and only if Fap 6= U and there exist αk + 1 distinct points of
R5 that are contained in U ∩ Fap. This is a semi-algebraic condition, so FU is semi-algebraic. By
Lemma 7.3, the complexity of FU is Ok(1).
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By Theorem 7.2, the set of singular points Using is a one-dimensional variety of degree Ok(1).
Thus, for a 2-flat to have a one-dimensional intersection with Using, the 2-flat must contain a one-
dimensional component of Using. Since any pair of 2-flats of F intersect in at most one point, the
number of 2-flats of F that have a one-dimensional intersection with Using is Ok(1).

Let w be a regular point of U , and let Fw be a set of 2-flats of FU such that w is contained in
a one-dimensional component of their intersection with U . Note that for every Fap ∈ Fw we have
that Fap ∩ (w + TwU) is a line (or equal to Fap). Since every pair of 2-flats of Fw intersect in at
most one point, every point of (w + TwU) \ {w} is incident to at most one such line. Thus, Fw is
of dimension at most one. Since U is two-dimensional and every regular point of U is incident to
a one-dimensional subset of flats of FU , we conclude that FU is of dimension at most two.

Let π1 : R6 → R3 be the projection on the first three coordinates and let π2 : R6 → R3 be
the projection on the last three coordinates. As in the preceding proofs, let γ1 = π1(FU ) and
γ2 = π2(FU ). By Theorem 7.4, both γ1 and γ2 are varieties of degree Ok(1) and dimension at most
two. If |γ1 ∩ P| = Ω(n2/3) or |γ2 ∩ P| = Ω(n2/3), then we are done. We may thus assume that
|γ1 ∩ P| = O(n2/3) and |γ2 ∩ P| = O(n2/3). We partition the rest of the analysis according to the
dimension of γ1.

If dim γ1 = 0 then by Lemma 7.1 it consists of Ok(1) points. Since |γ2 ∩ P| = O
(
n2/3

)
, every

point of γ1 corresponds to O
(
n2/3

)
elements of FU . By summing this over every point of γ1, we

get O
(
n2/3

)
flats of FP that have a one-dimensional intersection with U .

If dim γ1 = 1, then we apply Corollary 7.6 to it. We obtain that, excluding Ok(1) exceptional
points, for every a ∈ γ1 we have that π−1(a) is contained in a variety of dimension at most one
and degree Ok(1). We denote such a variety as γa, and set γ′a = π2(γa). By Theorem 7.4, γ′a ⊂ R3

is a variety of dimension at most one and of degree Ok(1). If |γ′a ∩ P| = Ω
(
n2/3

)
then we are

done. It remains to handle the case where for every non-exceptional a we have |γ′a ∩P| = O
(
n2/3

)
.

Recalling also that |γ1 ∩ P| = O
(
n2/3

)
, we get that O

(
n4/3

)
flats of FP have a one-dimensional

intersection with U .
If dim γ1 = 2, we again apply Corollary 7.6 to it. This implies that there exists a variety W

of dimension at most one and degree Ok(1), such that for every a ∈ γ1 \W we have that π−1(a)
consits of Ok(1) points. Since dimW ≤ 1, it can be handled as the cases of dim γ1 ≤ 1. Recalling
that |γ1∩P| = O

(
n2/3

)
, we conclude that O

(
n2/3

)
flats of FP have a one-dimensional intersection

with U .
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high dimensions, Combinatorica 28 (2008), 113–125.

[15] T. Tao, Lines in the Euclidean group SE(2), blog post, https://terrytao.wordpress.com/
2011/03/05/lines-in-the-euclidean-group-se2/

[16] H. Whitney, Elementary structure of real algebraic varieties, Annals Math. 66 (1957), 545–556.

43


