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Abstract

We introduce a reduction from the distinct distances problem in R to an incidence problem
with (d — 1)-flats in R2?~!. Deriving the conjectured bound for this incidence problem (the
bound predicted by the polynomial partitioning technique) would lead to a tight bound for the
distinct distances problem in R%. The reduction provides a large amount of information about
the (d — 1)-flats, and a framework for deriving more restrictions that these satisfy.

Our reduction is based on introducing a Lie group that is a double cover of the special
Fuclidean group. This group can be seen as a variant of the Spin group, and a large part of our
analysis involves studying its properties.
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1 Introduction

The Erdds distinct distances problem is a main problem in Discrete Geometry, which asks for the
minimum number of distinct distances spanned by a set of n points in R?. That is, denoting the
distance between two points p, ¢ € R? as |pg|, we wish to find minp—y, [{|pq| : p,q € P}|.

In 1946, Erdés [4] observed that a v/n x v/ section of the integer lattice Z? spans ©(n/+/logn)
distinct distances (this observation is an immediate corollary of a number theoretic result of Landau
and Ramanujan). Erdés conjectured that no set of n points in R? spans an asymptotically smaller
number of distinct distances. Proving that every set of n points in R? spans Q(n/+/logn) distinct
distances turned out to be a difficult problem, to have a deep underlying theory, and to have strong
connections to several other parts of mathematics.

After over 60 years and many works on the distinct distances problem, Guth and Katz [7] proved
that every set of n points in R? spans €2(n/logn) distinct distances. Their proof involves studying
properties of polynomials, partly by using tools from Algebraic Geometry. This work began a new
era of polynomial methods in Discrete Geometry.

Already in his 1946 paper, Erdés observed that a n/4 x n'/4 x ... x n/? section of the in-
teger lattice Z¢ spans @(nQ/ 4) distinct distances. He then conjectured that this construction is
asymptotically best possible, in the sense that every set of n points in R? spans Q(nQ/ 4) distinct
distances. When the Guth—Katz paper first appeared, it seemed that similar techniques might
solve the distinct distance problem in R?. However, over six years have passed and no new results
were obtained for this problem. Before the new era of polynomial methods, Solymosi and Vu [14]
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derived a lower bound for the number of distinct distances in R¢. This bound was obtained by an
induction on the dimension d. The current best bounds for distinct distances in R? are obtained
by using this induction, with the planar distinct distances theorem as the induction basis. For
example, this implies that every n points in R determine Q*(n3/5) distinct distances.!

The proof of the planar distinct distances theorem reduces the problem into a point-line in-
cidence problem in R? (based on a previous work by Elekes and Sharir [3]), and then solves the
incidence problem by using polynomial methods. Specifically, given a finite set of lines £ in R? and
a positive integer k, we say that a point in R? is k-rich if it is contained in at least k lines of L.
The planar distinct distances theorem was reduced to the following problem.

Theorem 1.1 (Guth and Katz [7]). Let £ be a set of n lines in R® such that no point of R? is
contained in more than /n lines of L. Moreover, every plane, hyperbolic paraboloid, or single-
sheeted hyperboloid contains O(\/n) lines of L. Then for every k > 2, the number of k-rich points

is O ("2;2 + %)

It is possible to imitate the reduction of the planar distinct distances problem in higher di-
mensions. However, already for distinct distances in R? this leads to an incidence problem with
somewhat involved varieties that are difficult to study. For example, it is not clear how to bound
the number of varieties that can be contained in a hyperplane.

The main contribution of this paper is a more involved reduction that leads to a simpler incidence
problem. It is significantly easier to establish properties of the varieties in this problem. We refer
to k-dimensional planes in R¢ as k-flats. Let S¢ be the hypersphere in R%! that is centered at the
origin and of radius 1.

Theorem 1.2. The problem of deriving a lower bound on the minimum number of distinct distances
spanned by n points in R? can be reduced to the following problem:

Let F be a set of n distinct (d— 1)-flats in R??~1, such that every two flats intersect
in at most one point, every point of R~ is contained in O(\/n) flats of F, and every
hyperplane in R*4~1 contains O(/n) of these flats. Find an upper bound on the number
of k-rich points, for every 2 < k = O(nY/) (for some e > 0).

n(2d—1)/d

Deriving the bound O (W) for the number of k-rich points would yield the conjectured

lower bound of Q(n*%) distinct distances.

Remarks. (i) Using our methods, we obtained the same reduction for the case where the points
are on the hypersphere S? rather than in R%. Since the paper is already rather long and technical,
we decided not to include the proof of this case.

no+(2d—1)/d

(ii) For a > 0, deriving the bound O (W) for the number of k-rich points would yield a

lower bound of Q(n?/4=2%) distinct distances.

(iii) The ¢ in the bound k = O(n'/%*¢) comes from an incidence bound of Solymosi and Tao [13].
It is conjectured that this £ can be removed from the bound of [13], and this would immediately
remove the ¢ from the restriction on k.

(iv) Usually a bound on the number of k-rich points also includes an extra term of the form n/k,
which dominates the bound when & is large. Since we are only interested in small values of k, this
extra term is not relevant in our case.

The incidence problem stated in Theorem 1.2 is false without including additional restrictions.
That is, one can obtain point-flat constructions in R?¢~! that have too many incidences. Using our

'In the Q*(-)-notation we ignore polylogarithmic factors.



framework, one can overcome this issue by deriving many additional restrictions for the incidence
problem. We do not mention such restrictions in Theorem 1.2, since it is not clear what are the
natural restrictions for deriving the incidence bounds. Instead, in Section 7 we demonstrate how
our framework can be used to derive additional restrictions, considering specifically the case of
distinct distances in R3.

The problem of distinct distances in R3 leads to an incidence problem with 2-flats in R®. In
Section 7, we bound the number of such 2-flats that can be contained in a constant-degree variety
in R®. We also bound the number of 2-flats that can have a one-dimensional intersection with a
constant-degree two-dimensional variety in R%. Some of these results are conditional on having a
good distinct distances bound for points on constant-degree surfaces in R®. Thus, to obtain the
conjectured distinct distances bound in R3, it is possible that one would first need to derive a
distinct distances bound for the special case of points on a surface in R3. Currently, such bounds
are known for planes, spheres, and two-sheeted hyperboloids (for example, see [15]). However, we
are far from having this bound for arbitrary constant-degree surfaces in R3. For more details, see
Sharir and Solomon [11].

The current best bounds for incidences with varieties in R? are obtained by the polynomial
partitioning technique (for example, see [5, 13]). We can efficiently apply this technique to inci-
dences with (d — 1)-flats in R??=2, but the case of (d — 1)-flats in R??~! seems to be just beyond the
current capabilities. There is a simple way to estimate the bounds that the polynomial partitioning
technique is expected to yield after overcoming the current issues.? In the case of (d — 1)-flats in

% + %) Note that this is the incidence

bound required in Theorem 1.2 to obtain a tight bound for the distinct distances problem in R€.

Theorem 1.2 states three restrictions on the set of flats F: the maximum number of flats incident
to a common point, the maximum number of flats contained in a common hyperplane, and the size
of the intersection of any two flats. Our framework can be used to obtain additional information
about the flats of F. In particular, before obtaining the set F of (d — 1)-flats in R?¢~1, we get a
set L of (g)—ﬂats in R(dzl). To move to the space R24~1 from the statement of Theorem 1.2, we
intersect £ with a generic (2d — 1)-flat. In Section 6 we describe the exact structure of the flats
of L (that is, the equations that define each flat). This structure can be used to obtain additional
properties of the flats of £, and thus of the flats of F. It is currently unclear what additional
properties would be needed to solve the resulting incidence problem, but given such properties it
seems reasonable that our techniques would lead to the derivation of the corresponding restrictions.

The inspiration for this work came from a blog post of Tao [15]. Tao states that he wrote this
post “to record some observations arising from discussions with Jordan Ellenberg, Jozsef Solymosi,
and Josh Zahl.” The post describes a reduction from the problem of finding a lower bound for the
number of distinct distances spanned by points on the sphere S? to Theorem 1.1. It also shows
how the case of distinct distances in R? can be viewed as a scaling limit of the case of distinct
distances in S?. This is an alternative way to reduce the planar distinct distances problem to a
point-line incidence problem in R3. While the original reduction can be seen as based on the Lie
group SE(2), the reduction in the blog post is based on the Lie group Spin(3) (a brief introduction
to these groups can be found in Section 2). A more direct approach to distinct distances on S? was
presented by Rudnev and Selig [10].

To derive a reduction from the distinct distances problem in R? we introduce a variant of the
group Spin(d), which we denote Spun(d). While Spin(d) is a double cover of SO(d), the group
Spun(d) is a double cover of SE(d). A large part of our analysis deals with studying properties of

R24=1 the expected incidence bound is my = O (

2This is done by bounding the number of incidences in the cells while ignoring the incidences on the partition
itself. See for example [12, Chapter 8§].



Spun(d).

In Section 2 we briefly describe several Lie groups that we rely on. In Section 3 we introduce
the group Spun(d) and study its structure. In Section 4 we derive Theorem 1.2 for the special case
of distinct distances in R3. We present this case separately since it is simpler to prove and provides
more intuition about what is happening in the proof. In Section 5 we extend the analysis from
Section 4 to any dimension. Finally, in Section 6 we derive the defining equations of the flats of L,
as stated above.

Acknowledgments. We would like to thank Joshua Zahl for many discussions that eventually
led to Section 7. We wish to thank William Ballinger and Dmitri Gekhtman for several helpful
discussions. We would also like to thank the anonymous referees for helping to improve a previous
draft of this work.

2 Preliminaries: Lie groups

In our analysis we rely on a specific family of Lie groups. In this section we briefly introduce these
groups and some of their properties. In Section 3 we will introduce our own Lie group and study
it in more detail.

Given a point p € R%, we denote by ||p|| the standard Euclidean norm of p. Given two points
p,q € RY, we denote by |pg| the Euclidean distance between them (that is, ||p — ql|).

Groups of rigid motions. A rigid motion (or isometry) of R? is a transformation T : R — R?
that preserves Euclidean distances. That is, for every v,u € R? we have that |uv| = |T'(u)T(v)).
It is well known that every rigid motion of R? is a combination of translations, rotations, and
reflections. A rigid motion is said to be proper if it is a combination of translations and rotations.
In R2, a rigid motion is proper if and only if for every three points a,b, ¢ € R?, the path a — b — ¢
forms a right turn if and only if T'(a) — T'(b) — T'(c) forms a right turn (that is, if the rigid motion
is orientation preserving). A similar definition exists in higher dimensions. The Special Euclidean
group of R, denoted SE(d), is the group of proper rigid motions of R? under the operation of
composition.

The Orthogonal group O(d) is the group of rigid motions of R? that fix the origin. It consists
of the rotations around the origin and the reflections about a hyperplane incident to the origin.
Equivalently, we can think of O(d) as the set of rigid motions that take S~ to itself. The Special
Orthogonal group SO(d) is the group of proper rigid motions of R? that fix the origin (equivalently,
of proper rigid motions that take S?~! to itself). It consists of the rotations around the origin.
Note that SO(d) is a subgroup of both O(d) and SE(d).

For any unproved claims in the the remainder of this section, see [6, Sections 1.2-1.4].

Clifford algebras. A Clifford algebra is defined with respect to a vector space and to a symmetric
bilinear form. We only define a special case of this algebra: the Clifford algebra associated with
R? and the Euclidean norm. This is a real unitary algebra C¢; with a linear map i : R? — Cty
that satisfies the following two properties. For every v € R? we have i(v)? = —|v||? - 1, where 1
is the multiplicative identity element of C¢4. Moreover, if A is a real algebra and f: R? — A is a
linear map satisfying f(v)? = —||v||? - 1 for all v € R%, then there exists an algebra homomorphism
¢ : Cly — A such that f = ¢ oi. It can be shown that the algebra C/y is unique up to an
isomorphism.

We now present a more constructive definition of the Clifford algebra C/4 (the definition that
we will actually rely is in the following paragraph). For a vector space V, we denote by V®* the

k-fold tensor product of V with itself. Consider the direct sum @@,y (R) ®k, and let Z be the



ideal in this tensor algebra that is generated by all elements of the form v ® v + ||v||? - 1. Then we
can write Cl,; as the quotient
®k
D (Rd) /1.

keN

Let j: R" = @y (Rd)®k be the natural injection, and let m : @), oy (Rd)®k — Bren (Rd)®k /T
be the natural quotient map. Then the linear map associated with C¢; is the composition 7 o j.

For our purposes, it would be more intuitive to think of the Clifford algebra C¢; as follows.
Let eq,...,eq denote the image of an element of the standard basis of R under the map 7. When
dealing with tensor products of elements of C¢;, we will write zy instead of x ® y. Note that C¢y
is a 29-dimensional real vector space with basis 1,e1,...,eq,e1€2,...,e1€4,€2€3,...,€1---eq (that
is, the 27 subsets of {e1,...,eq}). Recalling the definition of Z, we note that the Clifford algebra
satisfies e? = —1 for every 1 < j < d. Moreover, a simple argument shows that eje;, = —ege; for
every 1 < j, k < d with j # k. This explains why in the basis of C¢; we do not have combinations
of elements ey, ..., eq where some e, repeats more than once.

Let a : Cly — CY4 be the automorphism satisfying «(1) = 1 and «(e;) = —e; for all j. Let
t : Cly — Clq be the anti-automorphism satisfying t(zy) = t(y)t(x), t(e;) = e; for all j, and
t(1) = 1. For example, we have a(e; +ejea) = —ep +ejeg and t(e; +e1e2) = €1 + eze; = €1 — ejea.
It can be shown that the functions o and t are uniquely defined. We define the conjugate of x € C'ly
as T = a(t(z)) = t(a(z)). We also define the norm N(x) = 2Z. Returning to the above example,
we have e] + ejes = —ey — ejep and N(ej + ejes) = 2- 1. Note that for every v € R? and z = i(v)
we have T = —z, which in turn implies N(z) = ||v||?.

We are especially interested in elements 2 € Cfy that satisfy a(z)i(v)a—! € i(R?) for every
v € R%. One advantage of working with such elements is that their norm is well behaved.

Lemma 2.1.
(i) Let x € Cly satisfy a(x)i(v)z~! € i(R?) for every v € RY. Then N(x) =r-1 for some r € R.
(ii) Consider a second element y € Cly that satisfies a(y)i(v)y~' € i(R?) for every v € RL. Then
N(zy) = N(2)N(y)-
(iii) Let x = i(u) for u € RE. Then a(z)i(v)z~! € i(R?) for every v € R?.
Proof. (i) See [6, Proposition 1.8].

(ii) By part (i) of the lemma, N(y) = r -1 for some r € R, so N(y) commutes with everything
in Clg. This implies

N(zy) = zyry = xyyT = N (y)T = 2ZN(y) = N(z)N(y).
(iii) See [6, Proposition 1.6]. O
Rather than working with all of C¢y, we will rely on the subalgebra
Cly={zecCly: alz) =z}

This is the 2?7 !-dimensional subspace of C¥; generated by the elements of the basis of C¢; that
are the product of an even number of distinct e;’s. Similarly, we set C¢} = {z € Cl; : a(z) = —x}.
This is a 29~ !-dimensional subspace (not a subalgebra), and is generated by the elements of the
basis of C'/; that are the product of an odd number of distinct e;’s.

Spin groups. Denote the multiplicative groups of C¢; and Cﬁg as O and Cﬁgx, respectively.

We define the Lie groups
Pin(d)={z € Cl} : N(z)=1 and a(z)i(v)z~' €i(R?) for every v € R},
Spin(d) = {r € C/5* : N(z)=1 and wi(v)z~' €i(R?) for every v € R?}. (1)



Note that in the definition of Spin(d) we can replace zi(v)x~! with a(z)i(v)z !

for every x € C’ng.

An equivalent definition for Pin(d) is the set of elements that can be written as i(vy)i(v2) - - - i(vg),
where vq,...,vp € Sg_1 (and k is not fixed). Similarly, an equivalent definition of Spin(d) is the
set of elements that can be written as i(v1)i(ve) - - - i(vk), where vy, ..., v € Sg—1 and k is even.

For v € Pin(d) and v € R?, we denote the group action of v on p as p”. This group action is
v =i Y a(y)i(v)y~t). Notice that i is injective when considered as a function from R? to i(R%).
When v € R? we have a(y)i(v)y~! € i(R%), so v¥ =i~ ! (yi(v)y~!) is well defined.

By Lemma 2.1, any 7 € Pin(n) satisfies

N(a(y)i()y™") = N(a))N(i(w)N(H™") = N(i(v) = [[o]* - 1.

, since x = «a(x)

That is, the transformation of R? induced by the action of 4 preserves the Euclidean norm, and
is thus in O(d). Letting p : Pin(d) — O(d) be defined by p(z)(v) = i~ (a(z)i(v)z~!), we get that
p is surjective with kernel {1, —1}. That is, Pin(d) is a double cover of O(d). In the special case
where v = i(w) € i(R%) C Pin(d), the action of p(7) corresponds to a reflection of R? about the
hyperplane orthogonal to w and incident to the origin.

The restricted transformation p : Spin(d) — SO(d) is also surjective with kernel {1, —1}. For
some intuition, recall that the composition of two reflections about hyperplanes incident to the
origin is a rotation centered at the origin. Thus, the tensor product of two elements of i(R?)
corresponds to a rotation in Spin(d). Similarly, the composition of rotations around the origin is a
rotation around the origin.

A proof of the following lemma can be found in [6, Section 1.4].

Lemma 2.2. Let d < 5 and let x € C{Y satisfy N(z) = 1. Then for every v € R? we have
ri(v)a~! € i(R?).

The claim of Lemma 2.2 is false for d > 6. Combining this lemma with the definition in (1)
yields the following result.

Corollary 2.3. For d <5, we have
Spin(d) = {z € C¢5* : N(z) = 1}.
We will also rely on the following observation.
Lemma 2.4. If u,v € R% are orthogonal vectors then i(u)i(v) = —i(v)i(u).

Proof. We set v’ = u/||u|| and v' = v/||v||, so that u/,v" € S¥~!. Since u and v are orthogonal, so
are v’ and v'. Thus, there exists v € Spin(d) that corresponds to a rotation taking e; to v’ and e9
to v/. Since ejea = —eseq, we have

very tyeay Tt = —yeay lyery™! which implies  i(u)i(v') = —i(v')i(u).

The assertion of the lemma is obtained by multiplying both sides by |[Ju| - ||v]|.

The above argument holds for d > 3. When d = 2, there might not exist v € Spin(d) that takes
e1 to v’ and e to v'. In that case we can consider instead v € Spin(d) that takes e; to v and e
to v’ O



3 The group Spun(d)

In this section we introduce the group Spun(d). We first construct a variant X, of the Clifford

algebra C'¢4. Consider the direct sum @y (Rd+2)®k, and let Z be the ideal in this tensor algebra
that is generated by

{ej@er+er®e: 1§1§j,k§d+1}U{ed+2®ed+2}
{e;@ej+1legio®ej —ejRegio: 1<1<j<d+1}.
J J J J

Then we write X4 as the quotient

B (=) r

keN

For brevity we write e;e; instead of e; ® e;. Let 7 : R? — X, be the linear map that takes the
standard basis elements of R? to eq,...,eq, respectively. Let o : Xg — Xy be the automorphism
satisfying a(1) =1, a(e;) = —e; for every 1 < j < d+1, and a(eq42) = eq42. Let t: Xg — X4 be
the anti-automorphism satisfying t(zy) = t(y)t(z), t(e;) = e; for every 1 < j < d+2, and ¢(1) = 1.
For example, when d = 4 we have

afeses + ereseq + eseg) = eseq + e1eseq — ezeg,

t(eses + ereses + exeg) = —eseq — ejeseq + e266.

For every © € X, we define the conjugate of x as T = a(t(x)) = t(a(zx)), and the norm of
r as N(z) = 27. Note that for every x = i(v) € i(R?) we have T = —z, which in turn implies
N(z) = [Jo]? - 1.

We define the standard basis of Xy to consist of 1 and of the tensor products of any number
of distinct elements from {ej,...,eq12}. It is not difficult to verify that this set generates Xy and
is linearly independent. Let Zg C Xg be the subspace generated by 1 and by products of an even
number of elements from {ej, e, ..., €4, eqr1€412} (note that egyieqio is a single element).

For 1 < k < d+ 1, note that the subspace of X generated by 1 and by products of distinct
elements from {ejy,...,er} is a subalgebra of X;. This subalgebra is isomorphic to the Clifford
algebra C'j, and we thus refer to it as C'¢;. With this notation, the above definition of the norm
N(-) of X4 generalizes the definition of a norm in C¥¢j. Similarly, the subalgebra C¢J is contained
in Zg.

We are now ready to define our variant of Spin(d).

Spun(d) = {z € Z3: N(2) =1 and for every v € R? there exists w € RY

such that z (eq42i(v) + €q41) Z = earoi(w) + €qp1}. (2)

We will prove that Spun(d) is indeed a group and a double cover of SE(d). But first we give a
brief intuition for the definition in (2). We can think of this definition as extending Spin(d) with
the two extra elements eg1 and egio. The addition of egzy; leads us to the group Spin(d + 1),
which is a double cover of SO(d + 1). The role of ey is to imitate a scaling limit argument as in
[15]. We think of eqyo as a small € > 0, or as the restriction to a small disc on S?. As ¢ approaches
zero, this disc behaves more like a flat so Spin(d + 1) becomes more similar to SE(d).

Note that for every v € Spin(d) we have that yeg41 = eq417, and similarly for egyo.

Theorem 3.1. The set Spun(d) is a group under the product operation of X4. Moreover, the
inverse of every x € Spun(d) is T.



Proof. We first show that for every z,y € Spun(d) we have zy € Spun(d). Indeed, note that
N(zy) = zyyT = «N(y)T = 2T = N(z) = 1.

Moreover, for every v € R? there exist u, w € R? such that

zy (edt28(v) + edr1) TY = 2(y(ear2i(v) + €41+1)Y)T = (ear2i(w) + €411)T = eqy2i(u) + eqy1-

Since the product operation of X is clearly associative and 1 is the identity element, it remains
to prove that every x € Spun(d) has an inverse in Spun(d). We will prove that 7 = Zz = 1 and
that 7 € Spun(d). Fix « € Spun(d), and write © = 71 +€q41€4+272 where v € C09, | and v, € CU).
Since T = N(z) = 1, we have

1 =27 = (71 + eqr1€a+272) (71 + €dr1€d4+272) = M1 + edr2(11€d+172 + €dr17271)-

By comparing the parts that do not involve ez;2 on both sides of the equation, we get v177 = 1.
By comparing the parts that contain eqi2, we get vieq+172 = —e€q+17271-

Since x € Spun(d), for every v € R? there exists w € RY such that z(egy2i(v) + eq11)T =
ear2i(w) + egp1. In particular, there exists wy € R? such that zeq 1T = 2(egpa - 1(0) + eqy1)T =
eqgr2t(woy) + egy1. Fixing v, w € R? as defined above and setting u = w — wy gives

ed+271(v)T = z(ea+2i(v) + €d41)T — T4 11T = eqr2i(w) + eq1 — (€ar2i(wo) + €at1) = eay2i(u).

We also have

ed27i(V)T = egr2(71 + eay1€441272)i(v) (T + eqr1€a272) = eqr2Y1i(v)71-

Combining the above gives v1i(v)71 = i(u) € i(RY). That is, y17(v)7y1 € i(RY) for every v € R,
We have

ea+2i(wo) + eqr1 = Teq 11T = (71 + ear1€d+272) €ar+1 (V1 + €d+1€d+272)
= Y1€d171 + €dt2 (V1€d+1€d+172 + €d+172€d+171) - (3)

By again comparing the terms that do not involve ez, o we get vie4+171 = €q+1-

Since v1i(v)71 € i(R?) for every v € R? and yieqi177T = eqy1, we get that y1i(v/)y7 € (R
for every v/ € R, Combining this with N(y1) = 7157 = 1 implies that v; € Spin(d + 1). In
particular, the inverse of v, is 7. Multiplying the above equation vieq44+171 = eq4+1 by 1 from the
right leads to yieq+1 = eq+17y1- Since y; commutes with ez we have v, € Cﬁg, which in turn
implies v, € Spin(d).

We next wish to show that Tz = 1. Since T = 1, it suffices to prove that T = ZTx, or
equivalently

N+ edv2 (V1€d+172 + €a+17271) = Y171 + €ar2 (€at17271 + Vied+172) -
Since the inverse of v, is 47, we have that 7171 =1 = 7717v1. It remains to prove that
Y€d+172 t €d+17271 = €d+17271 t V1€d+172-

Since eg4+1 commutes with v and A7, this equation becomes v172 + Y271 = F271 + F172-
Above we proved that vieq1172 = —egr17271. Since egyr1 commutes with v and 77, we get
Y172 = —v271. Multiplying by 77 from the left and by ~; from the right gives 7271 = —717e.



Combining these two inequalities leads to the required equation 172 + 271 = 01 = 3271 + J172.
We conclude that z = 1. That is, 27! = 7.

To complete the proof of the lemma we need to show that T € Spun(d). We already know
that N(Z) = Tz = 1. It remains to prove that for every v € R? there exists w € R? such that

T (ed+2z’(v) + €d+1) T = ed+2z’(w) + €d+1-
By considering the coefficients of e4,9 in (3), we get

i(wo) = Y1€d+1€d4172 + €d+172€d+171 = Y271 — V172-

Multiplying by =1 from the right and by 77 from the left gives 77i(wo)y1 = 172 — J271. Since
AT € Spin(d), there exists w; € R? such that F7i(wo)y; = i(w1).
We have that

Teqr12 = (V1 + edr1€d+272) €d+1 (71 + €dr1€d+272) = €dt1 + eqra (7271 — T172) = €dt1 — €q2i(wi).

Since 71 € Spin(d), for every v € R? there exists u € R? such that F7i(v)y; = i(u). By
combining the above, we get

T (€a+2i(v) + €a+1) T = €412Ti(v)T + Teg1@
= edr2 (71 + ed+1€d+272) 1(v) (71 + eqri1ed+272) + €dr1 — eq42i(wr)
= eqr2 (Mi(v)y1 —i(w1)) + eqr1 = eqr2i(u — w1) + eqy1.

Now that we established the Spun(d) is a group, we start to study its structure.

Lemma 3.2. We have Spun(d) = {7 (1 + egi1eq42i(v)) : v € Spin(d), v € R%}. Every element
of Spun(d) corresponds to a unique pair (,v) € Spin(d) x RY.

Proof. For arbitrary v € Spin(d) and v € R?, we set x = v (1 + egy1€442i(v)). Then

N(z) =7 (1 + earr€a42i(v)) (1 + ear1€a+2i(v))T =7 (1 + €dr1€d4+2i(v)) (1 — €atr€atai(v)) ¥
V(1 — €ar1€d+42i(v) + €at1€a4+2i(v))7 = ¥y = 1.

Since v € Spin(d), there exists w; € R? such that vi(v)y = i(w;). For every u € R? there exists
wy € R? such that yi(u)y = i(ws), so

z(ea+2i(u) + €411)T = eqr2(xi(u)T) + reg1@
= eqr27 (1 + eqr1ear2i(v))i(u) (1 — eqr1ear2i(v)) ¥ + v (ear1 + €ar2i(v)) (1 — eqy1eq42i(v)) 5

= eq27i(u)y + y(eqr1 + 2€442i(v))y = egroi(wa + 2w1) + €441 € (ed+2i(Rd) + €d+1) .

We conclude that {v (1 + egy1eq42i(v)) : v € Spin(d),v € R?} C Spun(d).

For the other direction, consider an element = € Spun(d), and recall from the proof of Theorem
3.1 that x = y1+eg41€4+272 for some v; € Spin(d) and v € Cﬁ}i. By definition, there exists wy € R?
such that xeg 117 = z(e4429(0) + €4+1T = eq42i(wp) + €44+1. In the proof of Theorem 3.1 it is also
shown that i(wy) = 7271 — 7172 and that 172 = —79271. Together these imply Y271 = i(wp)/2.
Since ;1 € Spin(d), it has the inverse 77. Thus, there exists w; € R? such that

Y2 = (7271)71 = i(wo)y1/2 = MA1i(wo)v1/2 = Y1i(wr)/2.



We conclude that © = ~1(1 + egyieq+2i(w1)/2) where 7, € Spin(d). That is, Spun(d) C
{7 (1 + eas1eas2i(v)) : 7 € Spin(d), v € R},

Note that « is uniquely determined by x, since it is exactly the part of x that does not involve
edqta. Once 7 is fixed, there is a unique v € R? that satisfies yeqy1e442i(v) = eqy1€q4272. That is,
the pair (v, v) is uniquely determined. ]

Recall that every transformation of SE(d) can be seen as a translation followed by a rotation,
which is a pair in SO(d) x R?. Lemma 3.2 states that every element of Spun(d) corresponds to
a unique pair of Spin(d) x R?. Since Spin(d) is a double cover of SO(d), we are starting to see
why Spun(d) is a double cover of SE(d). The following result proves this property, and provides a
variant of the homomorphism p : Spin(d) — SO(d) defined above.

Theorem 3.3. For every d there exists a surjective group homomorphism p : Spun(d) — SE(d)
with ker(p) = {—1,1}. That is, Spun(d) is a double cover of SE(d).

Proof. Let a € R? be a fixed point. By Lemma 3.2, any element z € Spun(d) can be written
as Yz (1 + eqy1eq42i(v,)) where v, € Spin(d) and v, € R? are uniquely determined. We set
Pe = Vzi(a + 2v.)7z and note that p, € i(R?). We have

1 . 1 . .
Yo+ 5ed+1€d+2 (P2Ve — V2i(a)) = Ve + SCd+1€d+42 - 2721(Vz) = Yo (1 + eay1e442i(ve)) =z (4)

Thus, for any = € Spun(d) there exist unique p, € i(R?) and v, € Spin(d) such that z = v, +
%ed+1€d+2 (Pzyz — Y2i(a)). We now rely on this observation to define the map p : Spun(d) — SE(d).
For any v € R?, denote the translation of R? by v as v+ € SE(d). Similarly, for any p € i(R%), we
set p© = (i71(p))" € SE(d). As stated in Section 2, there is a unique I',, € SO(d) that corresponds

to vz. We set

p(z) =pf olzo(—a)t.

Note that p, and I'; are uniquely determined by x. Recalling that a is fixed, we conclude that the

map p(-) is well-defined.
For every p € i(R?) and v € Spin(d), by setting i(u) = 3 (Fpy — i(a)) € i(R?) we get

1

v (1 +eqrieay2i(u)) =+ Cd+1€d+2 (py —vi(a)) .

Combining this with (4) and with Lemma 3.2 implies that for every p € i(R%) and v € Spin(d)
there exists © € Spun(d) such that p = p, and v = v,. Every transformation M € SE(d) can be
written as (M(a))T o Ro (—a)™ for some transformation R € SO(d). Indeed, note that for any
R € SO(d) the map (M(a))* o Ro (—a)™ takes a to M(a), so we just need to choose the R that
rotates the space properly around a. We conclude that p is surjective.

For z,y € Spun(d), we now consider how the product zy € Spun(d) behaves. Since 7, € Spin(d),
there exists v, € R? such that i(v,) = 7,i(vs)y,. Then

zry = vz (1 + eqyi1ed2i(vz)) Yy (1+ ed+1€d+2i<vy))
=7z (Y + edr1€d+2i(v2)yy) (1 + ear1eq12i(vy))
=YYy (1 + eqr1€d420(v2)) (1 + eqgrieq2i(vy)) = Yoy (1 + eqgpieq2i(ve +vy)) .

This implies that v, = vz, and that v,y = v, + vy. This in turn implies that p,, = vzyi(a +
20, + 2vy)7zy. We are now ready to verify that p is a group homomorphism. Note that the action
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of 7y is first performing the action of «, and then the action of v,. That is, I'yy = I'y o I'y. For
the same reason we have

p(x)p(y) =pf ol o (—a)t opz/r ol'yo (—a)T =pfol,o0 (py — i(a))T o ryo (—a)t
= p;_ o (Vz(py — i(a))%)+ ol'golyo (_a)+
= (pr +72(py — i(a))72) T 0Ty 0 (—a) ™

= (3 (ita+202) + yita+ 20,90) — i@)) %)~ 0Ty 0 (-a)*
)+

= (VY (29 i(ve) vy + i(a + 21)1,))fygﬂy)Jr 0Ty 0 (—a
= (Yayi(a + 2vzy)77xy)+ ollyy o (—a)+ = p;'y ol'yy o (—a)+ = p(xy).

It remains to find the kernel of the homomorphism p. Let I be identity element of SE(d) and
let x € Spun(d) satisfy p(x) = pf o, o (—a)™ = I. That is, p} o', = a™. The composition of

x
a rotation and a translation cannot be a translation, so I'; is the identity of SO(d) and p, = i(a).

This implies that v, € {—1,1} C Spin(d). Combining the above with (4) gives

mmmzp*ur={4+QWHWHc4wwww»A+QWHwﬁuwwwm»}=&4J}
O

Let 7 : {eqg+2i(v) + eqg41 : v € R"} — R™ be the map defined by 7(egy2i(v) + e441) = v. The
following lemma studies the behaviour of the homomorphism p from Theorem 3.3.

Lemma 3.4. For every w € R? and z € Spun(d),

p(x)(w) = 7(z(eqr2i(w) + €441)T).
Proof. By Lemma 3.2, every = € Spun(d) can be written as v, (1 + eg11€e442i(v,)) for some v, €

Spin(d) and v, € R%. Recalling that p, = y,i(a + 2v, )7z, we have

z(eq+20(w) + €a+1)T = 7z (1 + egr1€d+2i(vz)) (eatoi(w) + ea1) (1 — eqr1€a+2i(ve)) Vo
= Yzea+2i(W)Vz + Vo (1 + ea+1€4+2i(vz)) €a+1 (1 — €av1€a+2i(vz)) Vo
= €d12721 (W) ¥z + Yz (€dr1 + €dr1€d+21(Ve)edr1 — €dy1€dr1€d21(Ve)) T
= ea+27(H(w) + 20(v2) )7z + Ve€dt17e
= eqra(pr + Vo (i(w) — i(a))7z) + €dr1.

That is, the operation of 7(x(egi2i(w) + e411)T) can be seen as first translating w by —a, then
performing the rotation of v, € Spin(d), and finally translating by p,. This is exactly the operation
p(z) =pfolyo(—a)t. O

For w € R? and 2 € Spun(d), we write w” = p(z)(w) = 7(z(egq2i(w) + €441)T).

3.1 The sets Ty,
Given points a, p € R?, we define
Top = {z € Spun(d) : a” =p}. (5)

That is, T, is the set of elements of Spun(d) that correspond to a proper rigid motion of R? that
takes a to p. In this section we study the structure of 7,,. We begin by presenting a relatively
simple description of this set.
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Lemma 3.5. For any a,p € R?, we have

T = {1+ eanicasa )y ~ @) : ~ € Spinia) }.

Proof. Let # € {v+ $eqs1€q42 (i(p)y — vi(a)) : v € Spin(d) }. That is, there exists v, € Spin(d)
such that @ = v, + Leqr1€at2 (i(p)Ve — V2i(a)). We get that

V(@) = a2 = (70 + peanicasa (6s —1ai@)) (7 + geascasa (607 — i)

1 N . o
= Ve + 5edr1€d+2 (v2i(a)¥z — i(p) +i(p) — Yzi(a)yz) = 1.

For every u € R? we have

r(eat2i(u) + €441)T

1

= (e + geasacara ()70 = 1)) (asait) + can) (75 + geanrcasa ()7 ~ (o) )

= Yz (eaqyoi(u) + eqp1)Ve + %€d+2 (ear1 (i(p)Ye — 72i(a)) €a4 17z + Va€ar1€as+1 (i(a)Ve — 72i(p)))
= cani(W) + eas + seasa((i(9) ~ ilaVB) — (ailaVTs — i(2)))
= cara (Vi (v = a5 +i(0) + earr € (earsi®?) +eapn) (6)
By combining the above, we get that = € Spun(d). From (6) we obtain

r(€dt2i(a) + €a4+1)T = eqr2 (Vai(a — a)Vz + i(p)) + €a+1 = €a+2i(p) + €41

Since the action of x takes a to p, we have that = € T},,. This in turn implies

{’Y + %€d+1ed+2 (i(p)y —vi(a)) : v € Spin(d)} < Tap-

For the other direction, consider y € T, C Spun(d). By Lemma 3.2, there exist v, € Spin(d)
and v, € R? such that y = 7, (1 + ey 1e412(vy)). We also know that
ed+21(p) + €a+1 = y(ea+2i(a) + €a41)y
=Yy (1 + eat1eq+2i(vy)) (€ar2i(a) + eat1) (1 — eqrr€arai(vy)) Ty
=y (€at2i(a) + €at1 + €ar1€d+21(vy)edr1 — ear1€dr1€dr2i(vy)) Ty
= ey (i(a) + 2i(vy)) 7y + edr1-

The above calculation implies that i(p) = 7, (i(a) + 2i(vy)) 7. After rearranging we get i(vy) =
(Fi(p)yy —i(a))/2. We thus have

) 1 . .
Y=y (1 + eqr1earai(vy)) = (1 + §€d+1€d+2('7yz(p)'7y - l(a)))
1 , .
=y + §ed+1€d+2(l(p)7y — yyi(a)).

We conclude that Tn, C {7 + eqt1eat2 (i(p)y — vi(a)) : v € Spin(d) }, which in turn implies
that the two sets are identical. O
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The following lemma provides a more geometric representation of the sets Tg,: the intersection
of Spun(d) with the linear subspace. Let

1 , 1 .
F,, = (1 + 2€d+1€d+21(p)> ce <1 - 2€d+16d+22(a)> . (7)
Lemma 3.6. For a,p € RY, we have T,, = F,, N Spun(d).

Proof. Let x € F,, N Spun(d). Since x € Fyy, there exists § € C¢Y such that

1 . 1 . 1 . .
. (1 N 2@d+1ed+zz<p>> 5 (1 - Qedﬂemz(a)) =04 Leuncuse (D)~ Si(a)).  (8)

As in the proof of Theorem 3.3, since 2 € Spun(d) there exist 7, € Spin(d) and p, € i(R%)
such that = 7, + Seqt1€a+2 (P2¥e — Vwi(a)). Combining this with (8) implies that v, = § and
Pz = i(p). By Lemma 3.5 we get that « € Tg,. We conclude that Fy,, N Spun(d) C Tyy.

For the other direction, consider = € Ty,. By Lemma 3.5, there exists v € Spin(d) such that

1 . ) 1 ) 1 .
o=+ qeascasa ()1 = 7i(0) = (14 Jeancansit)) v (1 - jessrcasaita)) € By

That is T, C Fyp. By definition, we have that Tj,, C Spun(d). This implies Tg, C Spun(d) N Fgp

and completes the proof of the lemma. ]

4 Distinct distances in R?

In this section we prove Theorem 1.2 for the case of R3. The proof is based on the Spun(3) group
that was defined in Section 3. We note that Cfg is isomorphic to R* as a vector space. Specifically,
we consider the basis 1, ejeq, e1€3, e2e3 of Cﬂg and write

T =1 -1+ z2e162 + T3€1€63 + T4€2€3.

Lemma 4.1. For every x € Cl3 we have N(x) = 2?21 mjz -1

Proof. Using the above notation
T = at(r - 1+ zoeieg + x3€1€3 + T4€2€3)) = 1 - 1 — T2€1€9 — T3€1€3 — T4C2€3.

This immediately implies N(z) = 27 = 22 + 23 + 23 + 27 O

By combining Corollary 2.3 and Lemma 4.1, we get that

4
Spin(3) = { (1,22, 23,24) € CL3 : Zm’? =15. 9)
j=1
We are now ready to derive our reduction for distinct distances in R3.

Theorem 4.2. The problem of deriving a lower bound on the minimum number of distinct distances
spanned by n points in R3 can be reduced to the following problem:
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Let F be a set of n distinct 2-flats in R, such that every two flats intersect in at most
one point, every point of R? is contained in O(\/n) flats of F, and every hyperplane in
R® contains O(y/n) of these flats. Find an upper bound on the number of k-rich points,
for every 2 < k = O(n'/3+¢) (for some ¢ > 0).

nB/3

Deriving the bound O (W) for the number of k-rich points would yield the conjectured lower

bound of Q(n?/3) distinct distances.

Proof. Let P be a set of n points in R3. Let D denote the number of distinct distances that are
spanned by P, and denote these distances as d1,...,dp. Recalling that |uv| is the distance between
the points v and v, we set

Q = {(a,b,p,q) € P*: |ab|] = |pq| > 0} .

The quadruples of @ are ordered, so (a,b,p, q) and (b, a, p, q) are considered as two distinct elements
of Q. The proof is based on double counting |Q)|.

For every j € {1,...,D}, let E; = {(a,b) € P?: |ab| = §;}. Since every ordered pair of distinct
points (a,b) € P? appears in exactly one set E;, we have that ijzl |E;| = n? —n > n?/2. The
Cauchy-Schwarz inequality implies

2
4

D D
1 n
_ E 2 il E )
J= J=

For a,b,p,q € R with a # b, we have |ab| = |pq| if and only if there exists a proper rigid motion
in SE(3) that takes both a to p and b to q. Thus, for every (a,p) € P? we set

Rop ={y€SE(3): a” =p}.

To derive an upper bound for |Q| it suffices to bound the number of quadruples (a, b, p, q) € P*
that satisfy a # b and R, N Ryg # 0. Since we wish to work in Spun(3) rather than in SE(3), we
recall the following definition from (5).

Top = {x € Spun(3) : a® = p} = p~ (Rap)-

Recall from Theorem 3.3 that the homomorphism p is surjective with kernel {1, —1}. That is,
for every point of Ry, N Ryy there are two corresponding points in T, N Tp,. It thus suffices to
bound the number of quadruples (a, b, p,q) € P* that satisfy a # b and T,, N Ty, # 0.

Before getting to the more technical details of the proof, we provide a brief sketch of the rest
of the proof. We will show that Spun(3) can be embedded in R® as a well-behaved six-dimensional
variety (see Lemma 4.3). Under this embedding, each set Ty, is a three-dimensional variety that
corresponds to an intersection of the Spun(3) variety with a four-dimensional linear subspace. We
project the Spun(3) variety in R® from the origin onto the hyperplane defined by z1 = 1, and then
perform a standard projection by removing the coordinates x; and xsg.

Combining the above projections gives a map that is a bijection between most of the Spun(3)
variety and R®. This map takes each set 7, ap to a 3-flat in RS, and every two such 3-flats are either
disjoint or intersect in a line. Since the map is a bijection only after removing a small part of
Spun(3), we get that a quadruple (a,p, b, q) is in @ if and only if the two corresponding 3-flats in
RS are contained in a common hyperplane. By performing a generic projective transformation and
then intersecting the 3-flats with a hyperplane, we obtain an incidence problem between points and
2-flats in R.
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From Spun(3) to R. Recall that Spun(3) is contained in the eight-dimensional subspace Z§ C X3
generated by 1,ejea, e1es, eaes, e1eqes, eaeqes, eseqes, e1eaeseqes. We consider Zg as R by mapping
these basis elements to the standard basis vectors of R®. That is, we write z = z1 - 1 + z2e1ea +
x3e1es + wyeges + rseieqes + rgeaeqes + rregeqes + rgeieseseqes as the point (xq,xe, ..., x8) € RRS.
With this notation, we study the behavior of Spun(3) as a set in R®. Set

G = {x e R®: zixs — Tox7 + T3T6 — TaTs :O} and C= {xeRg: x%%—m%—kx%—i—xi = 1}.
Lemma 4.3. Spun(3) = GNC.
Proof. For every z € Z3 we have

F3

a(t(zy - 14 zoejeg + x3e1e3 + T4€9€3 + T5€1€4€5 + Tee2e4€5 + Trezeqes + Tgeieaezeqes))
x

11— x9e1e2 — x3€1€3 — Tg€2€3 — T5€1€4€5 — T€2€4€5 — TTE3€4€5 + Tge1€2€3€4€5,
and thus
— 2 2 2 2
N(z) =aT = (IL‘l + x5 + x5 + x4) 1+ 2 (z1x8 — X907 + T3T6 — T4x5) €1€2€3€4€5. (11)

That is, N(z) = 1 if and only if z € CNG. Combining this with (2) implies that Spun(3) C CNG.
For the other direction, consider z € CNG. By (11) we have that N(z) = 1. Note that we can
write z = 1 + esezy2 from some v; € Cf3 and 2 € CFL. We then get

1= N(z) = (71 + eses72) (71 + eaes572) = 1171 + eaes (172 + 7271)-

This implies that N(v1) = v171 = 1 and y172 = —y271. From (9) we get that v € Spin(3).
Since vo7y7 € C’Eé, there exist v € R? and A € R such that 97 = i(u) + Aejeges. Since
€1é2€3 = ejezes, we have 7977 = —i(u) + Aejeses. On the other hand, we have

Yo = Y12 = —Yey1 = —i(u) — Aejezes.

Thus, it must be that A = 0. This in turn implies that y77 € i(R3) and v17 = —y2771 € i(R3).
For every v € R3, we have

z (e5i(v) + e4) T = (71 + esesy2) (e5i(v) + eq) (1 + ese572)
= y1e5i(v)71 + (71 + esesy2)ea(T1 + eses72)
= e571i (V)71 + Y1€471 + V1446572 + ese5V2e41
= e5 (Mi(v)71 + 7271 — N2) + ea.

By the above, y1i(v)¥1 + 7271 — 172 € i(R®). From the definition in (2), we conclude that
x € Spun(3). That is, C N G C Spun(3), which in turn implies S NG = Spun(3). O

The proof of Lemma 4.3 also implies that Spun(3) = {z € Z§: N(z)=1}. We will not rely
on this observation.

We now perform a gnomonic projection®, although with the cylindrical hypersurface C rather
than a sphere. Let g : R® — R7 be the projection defined by mg(z1, z2, ..., 28) = (22, ..., 7). Let
Hy denote the hyperplane in R® defined by z1 = 0 and let H; denote the hyperplane defined by
x1 = 1. For each z € R8 \ Hy there exists a unique A\, € R such that the z-coordinate of A,z is 1.

3Recall that in a gnomonic projection we project the sphere S? onto a tangent plane, by shooting rays from the
center of S? onto the plane.
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We define 7 : R®\ Hy — R as 7(z) = mg(A\;2). That is, 7 projects = from the origin onto H; and
then removes the first coordinate of the resulting point.

For points a,p € P, let Fy, be defined as in (7). Note that Fp, C Zg is a four-dimensional
subspace of R®. Since F,, is ruled by lines incident to the origin, we have that m(F,, \ Hp) =
ns(Fup N Hy) and F,p € Hi. In the definition (7), by taking an element of C3 with a constant
term 1-1 we get that F,, N Hy; # (). Since Fyp is a 4-flat and H; is a hyperplane that intersects
F,, without containing it, the intersection Fy, N H; is a 3-flat. Since the restriction of 75 to Hj is
linear and injective, we get that w(F,, \ Hp) is a 3-flat in R”.

Note that C is a cylindrical hypersurface, and let C4 be set of points of C with a positive x1-
coordinate. By Lemmas 3.6 and 4.3 we have Tg, = F,, N C N G, which implies 7(T5, N C4) C
(Fap \ Ho). By (9) we have that Thy = Spin(3) = Foo N C. This implies

1 ‘ 1 ‘
Top = (1 + 264652(]7)) Tho (1 - 264652((1)>

— ((1 + ;64651'(]9)) Fo (1 - 364652'(@))) N <<1 + ;64651'(10)) C <1 - ;6465%'(@)))

— F,yNC.

Thus, for every v € HiNFyy, there exists r € R such that rv € C4.. That is, 7(F,,\Ho) C m(TpNCq),
which in turn implies m(T5, NC1) = w(Fap \ Ho). We conclude that m maps each set T,, N C onto
a 3-flat in R7.

Let g : R® — R be the map defined by g(x1,...,78) = 128 — X277 + 2376 — 2475. Note that
G = g~ %(0). For every v € G and r € R we have g(rv) = 72g(v), so rv € G. That is, G is ruled by
lines incident to the origin, which implies that 7(G \ Hy) = 7s(G N Hy). Let g7 : R” — R be the
map defined by g7(z2,...,r8) = T§ — x2x7 + x3x6 — r4x5 and note that 7(G \ Hp) = 9;1(0). We
set G7 = g7 '(0) € R”. Since each T,, NCy C Spun(3) C G, every 3-flat of the form 7(T,, N Cy)
is contained in G7. Given (za,...,28) € R7, let z = (1,,...,2g8). Then there exists » € R such
that y = rz is the unique point on C; that satisfies 7(y) = (x2,...,2s). That is, the restriction of
7 to C is a bijection between C; and R7. Moreover, m maps G to G7 (it is not injective in this
domain) and maps each Ty, N C; to a 3-flat contained in G7.

Let 77 : R” — R% be the projection that is defined by w7(xa, ..., 27, 28) = (22, ...,27). Since
g7(z2, ...,x7,28) = g7(x2, ..., 27, 25) implies xg = x§, the restriction of 77 to G7 is injective. Since
w7 is linear and every 3-flat of the form (75, NC4.) is contained in G7, we get that 77 (7w (75, NCy))
is a 3-flat in R®. Furthermore, since both the restriction of 77 to G7 and the restriction of 7 to C.
are bijections, the restriction of w7 o to C4 N G is injective. For every v € G \ Hy there exists
r € R such that v € C,. NG. That is, n = w7 o 7 is a bijection from G NC, to RS,

Studying intersections of 3-flats. Recall from Lemma 3.6 that Ty, = F, N Spun(3). To study
intersections of the 3-flats in R, we first study the intersections Fop N Fyg.

Lemma 4.4. We have that Top N Ty = 0 if and only if F,p N Fyy = {0}.

Proof. By Lemma 3.6, Ty, = Fup N Spun(3) and Tyy = Fyy N Spun(3). Thus, F,, N Fyy = {0}
immediately implies T, N Tpq = 0.
Next, we assume that F,,NFy, # {0}. For any v € R® we have (1 + feqesi(v)) (1 — Jeqesi(v)) =
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1. Combining this with the definition of F,, gives
1 , 1 ‘ 1 . 1 .
FopNEpy= |1+ 564651(})) 1- 564652(}9) (Fap N Epg) [ 1+ 564652(0,) 1-— 564651(&)
1 , 1 .
= <1 + 26465Z(p)> (Cfg N F(b—a)(q—p)) <1 — 264652(&)) .

Since Fyp N Fypq # {0}, we have that C03 N Fp_gy(4—p) # {0}. That is, there exist 7,5 € C6§
such that

y = (1 + %(34652'((1 - p)> 5 <1 - %64651'(6 - a)> :

By comparing the terms that do not depend on es5, we get v = §. By then comparing the coefficient
of e5 on each side, we get i(q — p)y = vi(b — a).

Note that for any x € Cf3, the coefficient of 1 in 27 is equal to the coefficient of 1 in Tz (this
coefficient equals ||z||?> when thinking of = as a point in R*, as in the beginning of this section).
Recall that for any s € R? we have i(s)i(s) = i(s)i(s) = ||s||?-1. By taking z = i(¢—p)y = vi(b—a),
we get that the coefficient of 1 in Fi(q — p)i(q¢ — p)y = |lg — p||*77 is equal to the coefficient of 1 in
vi(b — a)i(b — a)¥ = ||b — a||*y7. Since the coefficients of 1 in 7y and ¥ are equal, it follows that
|b—all = |lg — p||- Since the vectors b —a,q — p € R3 have the same length, there exists a rotation
B € Spin(3) such that Bi(b—a)B3~! =i(q — p). By Lemma 3.5, we have

1 ) 1 ) 1 ) .
Bap = <1 + 264€5Z(p)> B <1 — 264e5z(a)> =06+ 56465(Z(p)ﬁ — Bi(a)) € Typ.
To prove that Ty, N Ty, # (0, we show that g, € T bg- Since Bqp € Tgp, we have that B, €

Spun(3). It remains to prove that S, takes b to ¢. Indeed, recalling that /5 takes b —a to ¢ — p
gives

Buplesi(6) + ey = (5 + geaes(i0)3 = i) esi(®) + e0) (B + geaes(iald - o))
— Blesi(b) + ea)B+ yes (Beaea(i(a)B — Bilp) + eali(p)B — Bila))esB)

= Blesi(b)F + 1+ es (~(8i(@)B — i(p) + (i(p) — Bi(a)7)

= e5(Bi(b— a)B) + eq + e5i(p) = esi(q — p) + eq + esi(p) = e5i(q) + e4.

We next study the case where F,, N Fy, # {0}.
Lemma 4.5. If Fy, # Fyy and F,p, N Fyq # {0}, then

1 1
Fop N EFypy = <1 + 264€5i(p)> B-Cl- o (1 - 2e4e5i(a)> ,

for any «, B € Spin(3) that satisfy azn(;)__jﬁa_l = e3 and fesf ! = hf:;’ﬁ.

Proof. By the assumptions and Lemma 4.4, we have that a # b and p # ¢, so ||b — al| and ||q¢ — p||
are nonzero. Thus, the definitions of av and 3 are valid. Let

1 1
Nop = (1 + 26465i(p)> B-CH -« <1 - 26465’i(a)> .

17



Since «, 8 € Cf3, we have 3-Cl3 -« C C’€g 50 Ngp C Fop. We note that

o <1 - ;(24651'((1)) —a (1 - %64652'(@ . b)> _a (1 _ %e4e5¢(a _ b)> <1 - ;e4e5i(b))
_ (a - 3646504(@ - b)a_la) (1 - ;e4e5z’(b))

= <1 +||b— a||;e4e563> a (1 - ;e4e5i(b)> . (12)
Similarly,
1 , 1 , 1 . 1 .
<1 + 264651(1?)) B = <1 +geaesi(p — g+ q)> B= (1 + 26465@((1)) <1 + jeaesi(p - Q)> 8
- <1 + ;64651'((1)) 8 (1 + geaess il - q)ﬁ)

1 . 1
= (1 + 264e5z(q)> 6] (1 — g — p||2€46563> . (13)
Combining (12) and (13) gives
1 , 0 1 ,
Nep= {1+ 56465l(p) B-Cly-a(l-— 564652(@)
=(1+ §€4€5Z(q) Bl1—1g— p\|§e4e5e3 Cly - (1+b— aH§e4e5eg all- 564657,([)) .

By Lemma 4.4, the assumption F,, N Fy, # {0} implies Ty, N Ty, # 0. That is, there exists a
rigid motion of SE(3) that takes both a to p and b to ¢, which in turn implies that ||[b—al| = [[¢—p]|.
Thus, for any v € Cf3 we have (1 — ||g — p||3eaeses) v (1 +||b— al|sesese3) = 4. Combining this
with the calculation above yields

Nop = <1 + ;e4e5i(q)) B-Cl -« <1 — ;6465i(b)) C Fy,.

We conclude that Ny, C F,, N Fy,. To prove the other direction, consider x € Fy, N Fyy. By
definition, there exist 7, € C#3 such that

T = (1 + ;e4e5z‘(p)) 7y (1 - ;e4e5i(a)) = (1 + ;e4e5i(q)> v (1 - ;e4e5i(b)> : (14)

The part of x that does not involve e5 needs to be identical in both definitions, so v = +/. The
part of x that does involve es also needs to be identical in both definitions, so i(p)y — vi(a) =
i(q)y — vi(b), or equivalently vi(b — a) = i(¢ — p)7y. This implies that

B yatai(b—a)a~t = p7li(g — p)BB va T,

which in turn implies S~ 'ya~tes = ez 1ya~!. Since e3 commutes with S~ 1va~!, we get that

B lya~t € C#Y. That is, v € - ClY - a. By combining this with the first equality of (14), we
conclude that x € Ny, and thus that F, N Fyy C© Nop. ]

1
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Let Lqp = 1(Tup\ Ho) be the 3-flat in RS that corresponds to T,,. Given points a,p, b, q € R?, we
now study the intersection Ly N Lyg. Let Lapprg = 1 ((Fap, Fuq) \ Ho). By comparing the definitions
of Fy, and Ly, we note that Ly, U Lyy C Lgpbg-

Note that the map n(x) is well-defined for every point # € R® \ Hy. Additionally, when we
restrict the domain of 1 to H; it becomes a linear map. Let 1’ : R® — RS be the standard linear
projection satisfying n'(x1, o, ...,28) = (z2,...,27). We think of 7’ as a linear extension of the
restricted 1 to R8. Denote by (Fap, Fvq) the linear subspace that is spanned by F, and Fp,.

Lemma 4.6. If T,, N Ty, € Hy and Top # Thyy, then Loy N Ly 45 a line.

Proof. ¥From Top, NTyy € Ho we have that Lgy N Lyg # 0. Since Lgp, and Ly, are distinct 3-flats
in RS, their intersection is a flat of dimension between zero and two. If dim (Lqp N Lp,) = 2 then
dim (Fop N Fyg N Hy) = 2, which in turn implies dim (Fg, N Fpy) = 3. This contradicts Lemma 4.5
which states that dim (Fg, N Fyy) = 2. Thus, it remains to prove that Lg, N Ly, is not a single
point.

For any v € (Fup, Fiq) N Hy, we have

Lapbg = n((Fap, Fog) \ Ho) = 77/(<Fap= Fypg) N Hy) = 77/(<Fap7 Fyg) N Ho) + n/(v).
This implies that
dim Lgppg = dim ((Fyp, Fig) N Ho) — dim ((Fyp, Fog) N Ho Nker(')) . (15)

By Lemma 4.5, dim(F,, N Fyy) = dim Cl9 = 2. Since dim F,, = dim Fyy = dim Cl) = 4, we
have dim ((Fop, Fyq) N Ho) =444 —2—1 =5 (by definition both Fy, and F}, intersect Hy but are
not contained in it). Combining this with (15) leads to dim Lgyp < 5. This completes the proof,
since the intersection of two 3-flats in a 5-dimensional space cannot be a single point. O

Next, we study what happens to L, and Ly, when T, N Tpy = 0.

Lemma 4.7. For any a,p,b,q € R3, any flat in RS that contains Loy and Lyg also contains Lappg -

Proof. Let W be a flat that contains Ly, and Ly,. Then there exists a linear subspace V' C RS such
that for any w € W we have W = w + V. Recall that F,, N H; # (). For any = € (Fgp, Fyy) N Hi,

Lapbg = 1 ((Fap, Fog) \ Ho) = 1 ((Fap, Fog) N H1) = 7 ((Fap, Fog) N Hy) = ' ((Fap, Fog) N Ho) +n(x).

For x € Fo, N Hy we have that W = n(z) + V and Ly, = n'(z + F,p N Ho) = n(x) + ' (Fap N
Hy). Combining this with Lo, € W gives n/(F,, N Hy) C V. Similarly, by taking y € Fp, N H;
we get W = n(y) + V, which in turn implies 7'(Fpy N Hp) € V. Combining the above yields
7' ((Fap, Fyg) N Ho) € V. We conclude that Lgu,, € W, as desired. dJ

Corollary 4.8. If Ty, N1y, = () then no hyperplane contains both Loy and Ly,.

Proof. Lemma 4.7 implies that Lg,, is the smallest flat that contains Lg,U Ly,. By Lemma 4.4, the
assumption Ty, NTy, = () implies that F,,NFy, = {0}. Since F,, and Fy, are 4-flats in 79 ~ RS that
intersect in a single point, we have (F,, Fy,) = Z3. That is, Lapbg = 1 ((Fap, Fog) \ Ho) = R6. O

We are now ready to state the connection between the distinct distances problem and the flats
Lap. Let Q' be the set of quadruples (a,p,b,q) € P* such that T,, N Ty, € Ho. The following
corollary is a special case of Corollary 5.16 that we will prove in Section 5.

Corollary 4.9. We have that Q' C Q and |Q'| > |Q|/2.
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Flats in R® and in R>. We set
L={Ls: a,p € P and a # p}.

Note that £ is a set of ©(n?) flats of dimension three in RS. By Corollary 4.9, to get an asymptotic
upper bound for the number of quadruples in @ it suffices to derive an upper bound for the number
of quadruples (a, p,b,q) € P* such that T,, N Tpy 0. By Lemma 4.6, for every such quadruple we
have that L, N Ly, is a line. On the other hand, when 75, N T}, € Hy we have that Ly, N Ly, = 0.
Thus, it remains to derive an upper bound on the number of pairs of flats of £ that intersect (in a
line).

Lemma 4.10. (a) Every point of RS is contained in at most n flats of L.
(b) Every hyperplane in R contains at most n flats of L.

Proof. Consider three distinct points a,p, ¢ € P and note that Tp,, N Ty, = 0, since a rigid motion
cannot simultaneously take a into two distinct points. This immediately implies part (a) of the
lemma. By Corollary 4.8, L,, and L, cannot be in the same hyperplane, which implies part
(b). O

Let H, be a generic hyperplane in RS, in the sense that every 3-flat of £ intersects Hyin a
2-flat, and every line of the form Ly, N Ly, (with a, b, p,q € P) intersects H, at a single point. Let
F ={LopyNHy: Ly € L} and consider H, as R®. Note that F is a set of ©(n?) distinct 2-flats.
Every two 2-flats of F are either disjoint or intersect in a single point. By Lemma 4.10, every point
of R? is incident to at most n of the 2-flats of F and every hyperplane in R® contains at most n of
the 2-flats of F.

For every integer k > 2, let my, denote the number of points of R? that are contained in exactly
k of the 2-flats of F. Similarly, let m>j denote the number of points of R that are contained in at
least k of the 2-flats of F. Then |@] is the number of pairs of intersecting flats of F, and

n n logn
k
k=2 k=2 k=1

nl0/3

If we had the bound mx>, = O (W) for some € > 0, then the above would imply |Q| =

O(n'%/3).  Combining this with (10) would imply that the points of P span (nz/ 3) distinct
distances.

An incidence result of Solymosi and Tao [13] implies that the number of incidences between m
points and n 2-flats in R?, with every two 2-flats intersecting in at most one point, is O(mZ/ 3+e'p2/34
m+n) (for any ¢’ > 0). Every incidence bound of this form has a dual formulation involving k-rich
points (for example, see [12, Chapter 1]). In this case, the dual bound is: Given n? 2-flats in R®

such that every two intersect in at most one point, for every k > 2 the number of k-rich points
is O (% + %2) By taking ¢’ to be sufficiently small with respect to €, we obtain the bound
n4+€

m>p = 0 ( =t %2) This bound is stronger than the required bound when k = Q(n?/3+¢). That

is, it remains to consider the case where k = O(n?3%¢). This completes the proof of Theorem
4.2. O
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5 Distinct distances in R

In this section we prove Theorem 1.2 in every dimension. While the general outline of the proof
remains the same as in the proof of Theorem 4.2, several steps become significantly more involved.
As before, we embed Spun(d) in a real space and then perform several projections to lower dimen-
sional spaces. Since Corollary 2.3 does not hold for d > 6, we do not have a simple description of
Spun(d) as in Lemma 4.3. This leads us to study Spun(d) in a more indirect way.

Recall that Spun(d) is contained in the subspace Zg C X4 generated by 1 and by products of
an even number of elements from {ej, e, ..., eq,e4r1€4+2}. Note that Zg has a basis of size 2°.

We consider Zg as R? by mapping the above basis elements to the standard basis vectors of R2”.
With this notation, we study the behavior of Spun(d) as a set in R,

5.1 Studying m-terms

For an even integer m > 0, an m-term of Cfg is a product of m distinct elements from {ej, ea,...,e4}
(together with a real coefficient). Similarly, an m-term of Zg is a product of m distinct elements from
{e1,€9,...,e4,eq11€4+2} (together with a real coefficient). In both cases a O-term is 1 multiplied
some real number. In this section we study several basic properties of m-terms. Since these are
just straightforward calculations, the reader might prefer to skip this section and refer to it when
necessary.

Lemma 5.1. For a fized even m, let x € CL9\{0-1} consist entirely of m-terms and let v € Spin(d).
Then vz~ also consists entirely of m-terms.

Proof. Let z € C¢% and v € Spin(d). We think of C¢J as R2" and write ||z|| for the Euclidean
norm of z in R2. Note that the first coordinate of 2% is lz|]| and so is the first coordinate of
Zz (since ||z|| = ||Z]|). Since 2y '2y~1 = 2774z = 2%, by considering the first coordinate of
these expressions we get that ||z|| = |[zy~!||. That is, multiplication by y~! from the right is an
orthogonal transformation (with respect to the Euclidean norm). Similarly, 7Zyz = Zz implies
that multiplication by ~ from the left is also an orthogonal transformation. We conclude that the

conjugation z — yzy~! is orthogonal with respect to the Euclidean norm. Combining this with
1

v1~y~! = 1 implies that z and yzy~! have the same first coordinate.
For uy, ..., %, € R the product i(uy)---i(uy,) cannot contain /-terms for any ¢ > m. More-
over, for any m-term ey, ey, - - - e, we have that e, ep, -+ ex, 7' = yer, v eyt .. ver, YL

This implies that vzy~! cannot contain /-terms for any ¢ > m.

We write yzy~! = § +¢’, where § consists entirely of m-terms and ¢ consists entirely of smaller
terms. We have

Nz —18'y) = N(@) = Ny 0'7) = (2 = ')z = 7 1677) — a7 — 71657
= — (xm—i— 7715/,@) . (16)
For any y,z € Cﬁg, the first coordinate of yz is the dot product of y and z as vectors in

R2", Since 718’y consists entirely of f-vector terms with £ < m, the first coordinate of (16) is
zero. Since conjugation by v preserves the first coordinate, we have that the first coordinate of
(x — 7 10"y)(x — y~16'y) — 2T — y~16'6’y is the same as the first coordinate of

v (@ =y 0@ —77197) — a7 = 455y ) !
=@ =y )y e )y ey Ty 8
=066 — (66 + 80"+ 60" +06'6) — 0’0" = — (66" + 60 +20'5) .
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Since ¢ and ¢’ do not have terms of the same size, the first coordinates of §6’ and ¢’6 are both
zero. This implies that first coordinate of ¢’d’ is zero. Since this first coordinate equals [|¢’||, we
get that ¢’ = 0 and complete the proof. O

Lemma 5.2. For a fixed even m, let x € 05271 consist entirely of m-terms. Then for every a € R?
the expression xeq(i(a)+eq) consists entirely of m-terms and (m+ 2)-terms. It the d’th coordinate
of a is not —1, then zey(i(a) + eq) contains at least one m-term.

Proof. Let aq be the d’th coordinate of a and let a’ = a — (0,...,0,a4). We have that
zeq(i(a) + eq) =z ((—1 — ag)l + eqi(a’)) = —(1 + aq)z — zi(d)eq.

Since xi(a') € Cly_1 consists entirely of (m —1)-terms and (m+ 1)-terms, we have that zi(a')eq
consists entirely of m-terms and (m + 2)-terms, as desired. Since no term of x contains e; and
every term of zi(a’)eq contains ey, if ag # —1 then the m-terms from —(1 + a4)z are nonzero and
do not get canceled by other terms. O

Lemma 5.3. For a fized even m, let z € Z9\ {0-1} contain only m-terms and let a,p € R%. Then
(14 3eqi1€a42i(p))2(1— Feqi1eqt0i(a)) contains only m-terms and (m+2)-terms. This expression
contains at least one nonzero m-term.

Proof. We write z = 21 + 22€4+1€442 Where 21 € Cﬁg and z9 € C'Eé. We then have

1 . 1 . 1 . .
(1 + 2€d+1€d+22(p)> z <1 - 2ed+1ed+gz(a)> =z+ S Cd+1€d+2 (i(p)z1 — z1i(a)) .

We observe that both i(p)z; and zji(a) contain only (m + 1)-terms and (m — 1)-terms, and
do not contain egyieqio. This implies that Seqiieqats (i(p)z1 — 214(a)) contains only (m + 2)-
terms and m-terms. Additionally, the part of z + eq+1€eq42 (i(p)21 — 21i(a)) that does not involve
ed+1€d+2 18 exactly z;. Thus, if 21 # 0 - 1 then we have at least one m-term. If z; = 0 -1 then
z+ eqy1eqra (i(p)z1 — z1i(a)) = 2z, and we again have an m-term. O

5.2 Proof of Theorem 1.2.

Let P be a set of n points in R%. Let D denote the number of distinct distances that are spanned
by P and denote these distances as d1,...,0p. We set

Q = {(a,b,p,q) € P*: |ad| = |pg| > 0} .

The quadruples of @ are ordered, so (a, b, p, q) and (b, a, p, q) are considered as two distinct elements
of Q. Our proof is based on double counting |Q)|.

For every j € {1,...,D}, let E; = {(a,b) € P? : |ab] = §;}. Since every ordered pair of distinct
points (a,b) € P? appears in exactly one set E;, we have that Zle |E;| = n% —n > n?/2. The
Cauchy-Schwarz inequality implies

2
D D 4

1
Q=Y 1EP =5 [ Y IBl] > 5 (17)

j=1 j=1

For a,b,p,q € R? with a # b, we have |ab| = |pq| if and only if there exists a proper rigid motion
in SE(d) that takes both a to p and b to gq. Thus, for every (a,p) € P? we set

R,p ={y € SE(d) : a” = p}.
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To derive an upper bound for |Q| it suffices to bound the number of quadruples (a, b, p, q) € P*
that satisfy a # b and R,y N Ry # 0. Since it would be simpler to work in Spun(d) rather than in
SE(d), we recall the following definition from (5).

Top = {z € Spun(d) : a” =p} = pgl(Rap).

From Spun(d) to R(“2"). In Section 4 we studied the bijection 7 from the set of points of Spun(3)
that have a positive z1-coordinate to RS. We now generalize this bijection to the case of Spun(d).
Let Spun(d)4 be the set of points of Spun(d) that have a positive first coordinate (the coordinate
that corresponds to the coefficient of 1).

Let m : R2" — R2‘~1 be the projection defined by mi(x1, T2, ..., T9a) = (T2,...,T9a). Let Hy
denote the hyperplane in R2 defined by x1 = 0 and let H; denote the hyperplane defined by z; = 1.
For each z € R \ Hy there exists a unique A, € R such that the z;-coordinate of A,z is 1. We

define 7 : R’ \ Hy — R2'~1 a5 7(x) = m1(Ayx). We think of elements of R2'~1 ag corresponding to
elements of Zg, except for the coefficient of 1 (which was removed by 7). Let 7’ : R2-1 5 (1)

be the projection that keeps only the (d;rl) coordinates corresponding to 2-terms of Zg. We will
see that we do not lose information of elements of Spun(d); by keeping only these coordinates.
Finally, let g = 7’ o 1. Note that 73 is indeed the map 7 from Section 4.

We first claim that the restriction of 71 to Spun(d), is injective. Indeed, assume that m(z) =y
for x € Spun(d) 4+ and write y = (Y2, ...,Y9d) € R2’~1, This implies that A,z = (1,92, ..., Yga). Since
x € Spun(d),, we have that N(z) = 27 = 1 and thus N(\;x) = A2 - 1. That is, the value of A,
is determined up to a sign by N(A,x). This sign has to be positive, since the first coordinate of
x must be positive. We conclude that for every y € R2’~1 there exists at most one z € Spun(d) +
such that m(z) = y.

Set

Gg={r-veCly: rcR\ {0} and v € Spin(d)},
Jy={r-xe€ZY: reR\ {0} and z € Spun(d)}.

Note that G4 is a group under the product operation of C’E?l. Similarly, J; is a group under the
product operation of Zg. By studying these groups, we will obtain information about 74 and about
the structure of Spun(d).

The following lemma provides a consistent form for writing elements of Gy. Below we will rely
on this lemma to prove various claims by induction on d.

Lemma 5.4. (a) For every element g € Gy there exists h € Gq_1 that satisfies the following.
Either g = heg_1eq or there exists u € ST1\ {i~(—eq)} such that g = h (eqi(u) — 1).
(b) For every z € Jy there exist v € R and g € Gq such that z = g (1 — Jeqr1€a42i(v)).

Proof. (a) By definition, for every g € G4 there exists r € R\ {0} such that ¢g/r € Spin(d). This
implies that (g/r)~! = g/r, so (g/7)(g/r) = 1. That is, g~! = g/r?. We define the group action of

g on v € R? to be
igi()g ) =it <ii@)(i)) s <ii(v) (i)1> .

Since this is the action of g/r € Spin(d) on v, it is a rotation of SO(d). Thus, the action of g maps
some point u € ST to i~ (ey).
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We first assume that u # i~ !(—eq). We write s = |[u+ (0,...,0,1)| and note that s # 0. Since
1
iY(eq), uti” ea) ¢ §d-1 we get that o = eg (eq +i(u)) /s € Spin(d). Since u € S, we note that

S
the vectors u + i1 (eq),u — i~ !(eq) € RY are orthogonal. By Lemma 2.4 we have

vi(w)z ™t = ed(eq+i(u))i(u) (eq+i(u))eq ©d (i(u) + ea) (i(u);ed + i(u)2_6d> (eq +i(u)) eq
— - _ 2

S

eq (i(u) + ea)® ((i(u) + ea) = (i(u) — eq)) ea _ —€q-2ea-ea _
252 2

S

€d.

The above implies that gz~! is in the stabilizer of i~!(e;). We observe that the stabilizer of
i~ Y(eq) is Gq_1. Setting h = (g-271/s) € G4_1, we get that

9 =gz~ 'w = hey(eq+i(u)) = hlegi(u) — 1).

The above completes the proof of the case where u # i~!(—eq). We now assume that u =
i~'(—eq). That is, that geqg~! = —e4. Let h = —geq_1e4 and note that h™! = —egeg_1g~!. This
implies that heqh™! = e4. As before, since h is in the stabilizer of e; we have h € G4_1. We get
that g = —geq_1eqeq_1eq = heq_1eq4, as asserted.

(b) Since z € Jy, there exists r € R such that z/r € Spun(d). By Lemma 3.2, there exist
v € Spin(d) and u € R? such that z/r = v (1 + egroe411i(u)). The assertion of the lemma is
obtained by setting g = ry and v = —2u. O

The following two lemmas will help us to show that the restriction of 74 to Spun(d) is injective.

Lemma 5.5. If g,g € G4 have the same nonzero first coordinate and the same 2-terms, then
9=y

Proof. We prove the lemma by induction on d. For the induction basis, note that the claim is
trivial when d < 3. We now assume that the claim holds for G4_; and prove it for Gy.

Consider g, ¢’ € G4 that satisfy the assumption of the lemma. As in the proof of Lemma 5.4(a),
if g(—eq)g~! =i~ !(eq) then there exists h € G4_1 such that g = hegeq_1. This contradicts g having
a nonzero first coordinate, so we must have g(—eg)g~" # i~'(eq). A symmetric argument implies
that ¢'(—eq)(¢') " # i~ '(eq). By Lemma 5.4(a), there exist h,h' € G4_1 and u,u’ € S\ {—eq}
such that g = h (eqi(u) — 1) and ¢ = b/ (eqi(u’) — 1).

We write h = r -1+ ho + hy such that r € R, every term of hs is a 2-term, and A, contains no
0-term and 2-terms. That is, we have

g =h(eqi(u) —1) = hegi(u) —r-1—hg — hy.
Let u; be the j'th coordinate of u, and set u, =u — (0,...,0,uq). Then
g = hegi(uy) —r(1+ug) -1 —ho(1+ug) —hy(l4 ug).
A symmetric argument gives
g =Neqi((u)e) — (14 uy) - 1 — hy(1 4 uy) — B (1 + ul).

By the assumption on v and ', we have that uq # —1 and u/, # —1. Since g and ¢’ have
nonzero first coordinates, we have that r # 0 and r’ # 0. Since these first coordinates are identical,
r(1 4+ ug) = 7'(1 4+ u};). By the assumption on the 2-terms of g and ¢/, we have that (1 + ug)he =
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(1+ul,)hh (the expressions hegi(u.) and h'eqi((u'),) may also contain 2-terms, but these all involve
eq and thus do not affect the terms of hg, b, € Cfgfl).

By setting £ = (1 +uq)/(1+ u);) we get that ' = r # 0 and hfy = £hy. We may thus apply the
induction hypothesis on h,/h’ € G4_1, to obtain that A’ = ¢h. That is,

g =hegi(us) — h(l +ug) and ¢ = Lhegi((u')s) — Ch(1 + ul).

We write hy = Zl§j<k§d_1 Ajkejex, where the coefficients A;; are in R. Consider the terms of
the form ejeq for some 1 < j < d — 1. By the assumption about 2-terms in g and ¢’, we have

redi(u*) + Z )\j,kejek(ujedej + ukedek)
1<j<k<d—1

= lrpeqi((u)s) + £ Z )\j7k€j€k(’u;‘€d€j + ujeqer).-
1<j<k<d—1

Simplifying, we have

redi(u*) + Z )\j,k(—ujeked + ukejed)
1<j<k<d—1
= Llreqi((u')s) + £ Z Aje(—ujereq + upejeq).
1<j<k<d—1

This leads to the following system of linear equations.

/
r A1,2 A3 Ald—t uy — fuy
!
—A12 r A2z o Agg—1 ug — luy
/
_/\1,3 _/\2,3 r ce )\3,d71 ug — €u3 =0.
!
—Ad—1 —A24d-1 —A34-1 - r Ug—1 — buly_,

After placing zeros in every cell of the main diagonal, the above matrix becomes skew-symmetric.
Recall that the eigenvalues of a skew-symmetric matrix are pure imaginary, and that adding a
constant ¢ to every element of the main diagonal adds ¢ to every eigenvalue. Since r is a nonzero
real number, we get that the above matrix has no zero eigenvalues, and is thus invertible. This
implies that the only solution to the above system is u; = Eu; forevery 1 < j <d—1.

By recalling that £ = (14 uq)/(1 + u};) we get

uj = (014 ul) — 1)% = (1 + 2ul; + (u}))?) — 20(1 + uly) + 1.

Combining the above with u,u’ € S¥! leads to
1=|ul?= Zu —262 )2+ (14 2u) + (ul))?) — 20(1 +ufy) + 1

= 20% 4 207w, — 20 — 20ul, + 1.

Tidying up the above gives £ + (u), = 1+ u;, so £ = 1. We thus get that h = A’ and v = v/, and
conclude that g = ¢'. O

Lemma 5.6. If x,y € J; have the same nonzero first coordinate and the same 2-terms, then x = y.
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Proof. By Lemma 5.4(b), there exist g, h € G4 and u,,u, € R? such that z = g (1 — %ed+1ed+2i(ug€))
and y = h (1 - %€d+1ed+2i(Ury)). We write g = 1, - 1 + g2 + ¢’ where 7, € R, every term of g is
a 2-term, and ¢’ contains no 0-term and no 2-terms. We symmetrically write h = r, - 1 + hg + /.
That is, we have

1 . / ]- .
r=g|1- §6d+16d+21(%) =(re+g2+g)|1- §6d+16d+2z(ua:)

1 .
=rp-1+g+g — §g€d+1€d+22(um),

1 ) 1 .
y=~h (1 - 2€d+1€d+2l(uy)> = (Ty +hy + h/) <1 - 2€d+1€d+22(uy)>

1 ,
=ry-1+hy+h'— 5h6d+1ed+22(uy).

Since = and y have the same first coordinate, we have that r, = r,. Since ng(x) = 74(y), we
have go = ho. By lemma 5.5, we get that ¢ = h. We thus have

1

. 1 .
=9 §9€d+1€d+21(uaz)a and y=g-— §9€d+1€d+2’6(uy)-

We write g3 = Zl§j<k§d Ajrkejex, where the coefficients \; ;. are in R. Also, let u, ; denote the
j’th coordinate of u,. We now consider the terms of the form ejeqyieq42 with 1 < j < d. Since x
and y have the same 2-terms, we have

Tzedy1€d+21(Uz) + E Ajkejer(Ug jed1€d2€) + Uy k€dt1€4+2€k)
1<j<k<d

= Tpedr1€d+20(uy) + E Ajk€jer(Uy j€dt1€d4+2€) + Uy k€dt1€d+2€k)-
1<j<k<d

Simplifying, we have

Tw€d+1€d+20(Usz) + Z Nk (—Ug jeredr1€dr2 + Uy k€jedr1€d+2)
1<j<k<d

= roearieas2i(uy) + > Njr(—Uy ereariCarn + Uy keiear1€ayn).
1<j<k<d

This leads to the following system of linear equations.

T A2 A3 o Aig Ugp,1 — Uyl
A2 Ty A2z Aag | | ua2 —uye
A3 X3 e o A3a | | ua3z—uy3 | = 0.
—AMd —A2d —A34 Tz Up,d — Uyd

By repeating the eigenvalues argument from the proof of Lemma 5.5, we get that the only
solution to this system is u,; = u, ; for every 1 < j < d. Since u, = u,, we conclude that
T =1y. O

Corollary 5.7. The restriction of ng to Spun(d); is injective.
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Proof. Consider two elements x,y € Spun(d)+ such that ng(x) = n4(y). Let z1 be the first coor-
dinate of z and let y; be the first coordinate of y. We set 2/ = x/z1 and v’ = y/y’, and note that
a',y' € Hy. Moreover, we have that ng(z) = ng(2’) = 7’ o m(2') and n4(y) = na(v') = 7" o m1(y/').
This also implies that n4(z") = n4(y’), which in turn implies that 2’ and y’ have the same 2-terms.
Since 2’ and 3’ also have the same first coordinate, Lemma 5.6 states that 2’ = /. By the definition
of Spun(d), there is a unique r € R such that r -z’ € Spun(d);. We thus conclude that x =y. O

We next show that the restriction of 3 to Spun(d)y is surjective in a similar manner.

Lemma 5.8. Consider r € R and elements A\, € R for every 1 < j < k < d, such that v # 0.
Then there exists g € G4 such that the first coordinate of g is v and the coefficient of the term eje,
in g is Ajk.

Proof. We prove the lemma by induction on d. For the induction basis, note that the claim is
trivial when d = 1. For the induction step, we assume that the claim holds for G4_1 and consider
the case of Gjy.

By the induction hypothesis, there exists h € G4_1 with first coordinate r and the term A; pe;ex
forevery 1 < j <k <d—1. Weset g = h—hegi(u) € Gg, for some u € R?~! that will be determined
below. Note that the first coordinate of g is r and the coefficient of the term ejey in g is A;, for
1<j<k<d—1. Wenow consider the terms of the form ejey in g, and observe that these are all
in —hegi(u). Let u; denote the j'th coordinate of u. Since for every 1 < j < d — 1 we would like g
to contain the term A; ge;jeq, we get the following system of linear equations.

r A2 —A13 o —Aga Uy AM,d
A12 r —Xo3 o —A2g-1 U A2.d
A13 A2.3 r o = A34-1 uz | = | Asq

AMd—1 A2d—1 A3d—1 - r Ug—1 Ad—1,d

By repeating the eigenvalues argument from the proof of Lemma 5.5, we get that the above
matrix is invertible. Thus, there exists a choice of u1,...,uq_1 such that the above system holds.
That is, there exists u € R?~! such that ¢ satisfies the assertion of the lemma. O

Lemma 5.9. Consider r € R and elements A\, € R for every 1 < j <k < d+ 1, such that r # 0.
Then there exists g € Jy such that the first coordinate of g is r and the coefficient of the term ejey,
in g is \ji (when k = d+ 1 we consider the term ejeqiieqyo instead).

Proof. By lemma 5.8, there exists h € G4 such that the first coordinate of h is r and the coefficient
of the term ejey, is Aj i, for every 1 < j < k < d. We set g = h — hegiieq42i(u) € Jg, for a vector
u € R? that will be determined below. Note that the first coordinate of ¢ is r and the coefficient of
the term eje in g is Ajx, for 1 < j < k < d. We now consider the terms of the form ejeqi1e442 in
g, and observe that these are all in —hegy1eq42i(u). Let u; denote the j'th coordinate of u. Since
for every 1 < j < d we would like g to contain the term ;g y1€eje441€442, we get the following
system of linear equations.

ro—=A2 —A3 o —Aig uy A,d+1
A1,2 r =23 0 —Aag Uz A2.d+1
A3 A3 v =A3g | Jus | = | Azaqt
AMd  Aod Azg - r Uq Ad,d+1
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By repeating the eigenvalues argument from the proof of Lemma 5.5, we get that the above
matrix is invertible. Thus, there exists a choice of ui,...,ug such that the above system holds.
That is, there exists u € R? such that g satisfies the assertion of the lemma. O

Theorem 5.10. The map ng : Spun(d)+ — R is a bijection.
Proof. By Corollary 5.7 the restriction of 1y to Spun(d)+ is injective. It remains to show that this

restriction is surjective on ]R(dgl). Consider v € ]R(dgl). By Lemma 5.9, there exists g € Jy such
that 14(g) = v and the first coordinate of g is 1. By the definition of Jg, there exists » € R\ {0}
such that rg € Spun(d). We have that n4(rg) = n4(g) = v. Thus, the restriction of 1y to Spun(d)4+

d+1
is surjective on R("2"). O

Now that we established that the restriction of 7y to Spun(d)+ is a bijection, we move to study
the image of Tg, N Spun(d)4 under ny. In particular, we will show that this image is a (g)—ﬂat.
Similarly to Spun(d), let Spin(d)4 be the set of elements of Spin(d) where the term 1 has a positive
coefficient. We also recall the definition of F, from (7).

Lemma 5.11. For a,p € RY, we have n4(Ty, N Spun(d)+) = 1 (Fup \ Ho).

Proof. By Lemma 3.6 we have T,, NSpun(d)+ C Fg, \ Ho, which implies that 74(75, NSpun(d)4.) C
na (Fap \ Ho). For the other direction, we consider z € Fy, \ Ho. To complete the proof, we will
show that there exists z € T,, N Spun(d) such that n4(z) = n4(x).

We recall that (1 — %ed+1ed+2i(p)) (1 + %ed+1ed+2i(p)) = 1. Since z € Fy,, we have

1 , 1 ,
<1 - 2ed+1ed+21(p)> z (1 + 2ed+1ed+22(a)> € o1,

Since Cfg is contained in Zg, we can also think of G4 as contained in Zg. Then, by Lemma 5.8
there exists v € Spin(d)4 such that

na(y) = Nd <<1 — ;ed+1ed+2i(p)> z (1 + ;ed+1ed+2i(a)>> .

Thus, there exists A € R\ {0} such that (1 — %ed+1ed+2z’(p)) z (1 + %ed+1ed+2i(a)) — Ay contains
no O-term and no 2-terms. By Lemma 5.3, multiplying from the left by (1 + %ed+1ed+2i(p)) and
from the right by (1 — %ed+1ed+2i(a)) cannot create any O-terms and 2-terms. That is, setting
y = A (14 3eqr1eqi2i(p)) v (1 — 2eqi1eq12i(a)), the expression z — y contains no O-terms and 2-
terms. Equivalently, z and y have the same the same O-terms and 2-terms. Note that y has a
nonzero first coordinate, so 74 (y) = n4(2).

Set x = y/A. By Lemma 3.5, we have

1 . 1 . 1 . .
T = (1 + 2€d+1€d+22(p)) y (1 - 2€d+16d+2l(a)) =7+ Sedrieds2 (i(p)y — vi(a)) € Typ.

Since v € Spin(d)4, we get that € Spun(d)4. Finally, n4(z) = 14 (y) = n4(2), as required. O

Note that the map ny(z) is well-defined for every point x € R2 \ Hy. Additionally, when we

d+1
restrict the domain of 4 to H; it is a linear map. Let 1), : R2 R(“) be the standard projection
that keeps only the coordinates corresponding to basis elements of Zg that are 2-terms. We can
think of 7/, as a linear extension of the restricted 7q to R2",
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Lemma 5.12. The projection 1n4(T,, N Spun(d)+) is a (g) -flat.

Proof. Since F,, is ruled by lines that are incident to the origin, we get that n4(F,, \ Ho) =
na(Fap N Hy). Since Fop N Hy is a flat and the restriction of ng to Hj is a linear map, Lemma 5.11

implies that 7g(Tap N Spun(d)4) is a flat in R(“2"). It remains to establish the dimension of this
flat.

From the definition of Fy, in (7) we notice that F,,NH; # 0 (for example, by taking the element
1 from Cﬂg in this definition). We also note that every v € F,,NH; satisfies F,,NH; = v+ (FopNHp).

For such a v we have
na(Fap \ Ho) = na(Fap N H1) = 113(v + Fap N Ho) = na(v) + n(Fap N Ho).
Combining the above with Lemma 5.11 implies that
dim(ng(Tap N Spun(d)4)) = dim(nj(Fap N Ho)) = dim(Fu, N Ho) — dim (ker 5 N Fop N Ho) -

Since dim F,, = dim(Cég) = 29-1 and F,;, properly intersects the hyperplane Hj, we get that
dim(F,, N Hy) = 24=1 _ 1. Note that the elements of ker ny, N Fyp N Hy do not have 2-terms and 0-
terms. Let 7, : Z9 — Z9 be the map defined by 7op(z) = (14 3eqi1e412i(p)) (1 — Seqrieqi2i(a)).
By Lemma 5.3, we have that ker n, N F,, N Hy is the subspace generated by

{7ap(z) : z is an element of the standard basis of C/Y that is an m-term for some m > 4}.
Since a_pl (z) = (1 — %ed+1ed+2i(p)) T (1 + %ed+1ed+2i(a)), we note that 7, is a linear bijection.
This implies that the above generating set is linearly independent, so dim (ker 1, N Fy, N Hy) =
241 _ (g) — 1. We conclude that

dim(ng(Tup N Spun(d)4)) = 2471 —1 — (2“ — (Z) - 1) = (‘;)
O

Studying the flats in ]R(dgl). Let Lqp = na(Tap \ Ho) be the (g)—ﬂat in R(dgl) that corresponds
to T,p. Given points a,p, b, q € R?, we now study what happens to Ly and Ly, when T, N Ty, # 0.
This part is mostly identical to the case of R? that was presented in Section 4. In particular, the
proofs of Lemma 4.4, Lemma 4.5, Lemma 4.7, and Corollary 4.8 easily extend to R? (by changing
eqes to egi1eq42 and other such straightforward revisions).

The proof of Lemma 4.6 does not immediately extend to R?. Instead of that lemma, we rely on
the three following ones. Let T}, be the set of points of T}, that have a positive first coordinate.

Lemma 5.13. If Ty, NTpq € Ho then Lap N Lpg = ng (Fap N Fpg N Hy).
Proof. By Lemma 3.6 we have T,y N Tpqq C (Fup N Fyy) \ Ho. This implies that
77d(Tap+ N qu+) C N ((Fap N qu) \ Ho) = na (Fap N Fpg N Hy).

By Lemma 5.11 we have that ng(Top+) = na(Fap \ Ho) = n4(Fap N Hy), and symmetrically
Nd(Tpg+) = Na(Fyqg N Hy). Combining this with Theorem 5.10 implies that

Na(Tap+ N Tog+) = Na(Tap+) N Na(Tog+) = na(Fap N H1) N na(Fog N H1) 2 na (Fap N Fog N Hy)
Combining the above, we conclude that
N (Fap N Fog N H1) = na(Tap+ N Tog+) = Lap N Ly,

as asserted. O
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In Lemma 5.15 below, we will study L, N Lyg when T, N Ty € Ho. Handling the case where
TopNThy # 0 and Top,NTyy C Hy is more difficult. The following lemma shows that this problematic
case cannot happen too often.

Lemma 5.14. Assume that Top N Tyy # 0. Then Top N Ty, € Ho if and only if a —b = q — p.

Proof. By the (straightforward) extension of Lemma 4.5 to Spun(d), we have

1 1 )
Fop N Fyq = <1 + §€d+1€d+2Z( )) 6C€d e’ < 26d+1ed+22(a)> , (18)

for any «, 8 € Spin(d) that satisfy a”(b I? I = e, and BegB~! = ﬁ. Combining this with
Lemma 5.3 implies that

1 1 .
(1 + 56d+1€d+2@( )) BCLY o ( 2ed+1ed+22(a)> C Hy (19)

if and only if BC@g_la C Hy. By lemma 5.1 we have that € Hy if and only if S~ '8 € Hy, so
ﬁC’ngla C Hj if and only if C’nglaﬁ C H,.

Assume that @ — b = ¢ — p. For an arbitrary 8 € Spin(d) such that Be 87! = H(g Ifﬁ, et
v = eg_1eq and a = yB~L. Since 7 is the product of two elements from i(S%~!), we have that

v € Spin(d), which in turn implies that « € Spin(d). We get that

i(b—a _ 1 (ilb—a _
oz(( )>a1=761<( )>B L=—yp” <( )>67 = —very ' =eq  (20)
[b—all [b—all lg — pll
We can thus use these a and 3 in (19). This implies that C¢Y_ ;a8 = C9_ eq_1eq C Hp, which in

turn implies that (19) is false. Combining this with (18) and with Lemma 3.6 implies Tapﬂqu C Hy.
Next, assume that a — b # ¢ — p. For an arbitrary 8 € Spin(d) such that Beg8~! = LG )

= la—pll”
b
B =3~ “H(b Z“B We have that —ey # B, so we may set v = ||ed+B||ed (eq+ B) and a = v3~ 1.
Since v is the product of two elements from i(S%~1), we have that v € Spin(d), which in turn implies
that « € Spin(d). Performing a calculation similar to the one in the proof of lemma 5.4, we have
that « (i(b_a)) a~! = e4. We can thus use these o and 3 in (18).

[o—all
Let

T = <1 + ;6d+1€d+2i(p)> B1yB~! (1 - ;€d+1€d+2i(a>) - (21)

Note that © € Fy, N Fpy. By Lemmas 5.1, 5.2, and 5.3 we have that « ¢ Hy. Since x is a product of
elements of Spun(d), we have that x € Spun(d). Lemma 3.6 implies T, N Ty, = F,p N Fyq N Spun(d),
so x € Ty, N Tyy. We conclude that Ty, N1y, € Hoy, which completes the proof. O
Lemma 5.15. If Ty, # Thy and Toy N Ty € Ho, then dim (Lap N Lyg) = (451).

Proof. By the assumption Lap N Ly, # (0. Let v € Loy N Ly, and note that it suffices to prove that
dim ((Lap — v) N (Lpg — v)) = (dgl). By Lemma 5.13,

(Lap — ’U) N (qu — U) +v= Lap N qu =14 (Fap N qu N Hl) = 7721 (Fap N qu N H()) + v.

By the extension of Lemma 4.5 to R?, we have that dim (F,, N Fy,) = dim(Cly_q) = 2472,
The assumption Tj,, N Ty, € Hy implies that F,, N Fy, properly intersects Hp. This in turn
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implies dim (F,, N Fy, N Ho) = 2472 — 1. It remains to show that dim (Fy, N Fy,, N Ho Nker (1})) =
d-2 _ (d—1
272 - () - 1. | |
For an arbitrary 3 € Spin(d) that satisfies fegB3~ 1 = Ua=p) ot g = g-1ilb=a) g By Lemma,

= la—p] [[o—all
5.14, the assumption T, N Ty, € Hp implies @ — b # g — p, which in turn implies that B # —eq4.
Let v = men (en + B) and let o = y8~L. Since 7 is the product of two elements from i(S?~1),

we have that v € Spin(d), which in turn implies that « € Spin(d). By repeating the argument in

(20), we get that aﬁoﬁl = ey4. By the extension of Lemma 4.5 to R%, we have

1 . _ 1 ,
Fop N Fyy = (1 + 2ed+1ed+22(p)> ey Bt (1 - 2ed+1ed+22(a)> . (22)

Consider the map 74, : Zg — Zd0 defined by

1 , 1 .
Tap(T) = (1 + 2€d+1€d+21(p)) Bra (1 - 26d+16d+22(a)) .

L we note that Tap 18 a linear

Since lepl(x) = g1 (1 — %ed+1ed+2i(p)) x (1 + %ed+1ed+2i(a)) o~
bijection.

We claim that Fyy, N Fpg N Ho N ker (7};) is generated by
{T(f) . fis an element of the standard basis of CY_; and an m-term for some m > 4}. (23)

Indeed, for any such m-term f, Lemmas 5.1, 5.2, and 5.3 imply that

T(f) = (1 + ;€d+1€d+2i(10)) Bfa (1 - ;6d+1€d+2i(a)) € Hy Nker(n)).

By (22), this expression is also in F,y, N F,.

If fe Zg contains a O-term or a 2-term, then Lemmas 5.1, 5.2, and 5.3 imply that 7,,(f) ¢
Fup N Fyg N Ho Nker(n);). That is, if g € Fup N Fyq N Ho Nker(n);) then 7,.'(g) contains no 0-
term or 2-terms. We conclude that (23) generates Fgp, N Fpy N Ho N ker(n);). Since 7(f) is a
bijection, the set (23) is a linearly independent subset of Fy, N Fy,, N HoNker(n};). This implies that

dim(F,p N Fypg N Ho Nker (1)) = 20-2 _ (dgl) — 1, which completes the proof. O

We are now ready to state the connection between the distinct distances problem and the flats
Lqp. Let Q' be the set of quadruples (a,p, b, q) € P* such that T,y N Tpy € Ho. In particular, note
that (a,p,b,q) € Q' implies that T, N Ty, # 0.

Corollary 5.16. We have that Q' C Q and |Q'| > |Q|/2.

Proof. Recall that a quadruple (a,p,b,q) € P4 is in Q if and only if T,, N Ty, # 0. Since TopNTh, €
Hy implies T,, N Ty, # 0, we have that @ C Q. It remains to show that at least half of the
quadruples of @ are also in @’. Consider Ty, # Ty, such that T,, N Ty, € Hyp. By Lemma 5.14 we
have that a — b = ¢ — p. This implies that b — a # p — ¢, so Ty, N Tuqy € Hop (since |ab| = |pq|, we
get that Ty, NToq # 0). That is, for every quadruple (a,p, b,q) € @ not in @’ there exists a distinct
quadruple (b, p, a, q) that is in Q' O

Flats in R(’ﬁ;) and in R24-1, We set

L={Ls: a,p € P and a # p}.
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Note that £ is a set of ©(n?) flats of dimension (g) in R("3), By Corollary 5.16, to get an
asymptotic upper bound for the number of quadruples in @ it suffices to derive an upper bound
for the number of quadruples (a,p, b, q) € P* such that T,, N Tpy € Ho. By Lemma 5.15 every such
quadruple satisfies dim Lqp N Lpg = (dgl). On the other hand, when Ty, N1y, € Hy we have that
Lgp N Lyg = 0. Thus, it remains to derive an upper bound on the number of pairs of flats of £ that
intersect (in a (dgl)—ﬂat).

The proof of the following lemma is identical to the proof of Lemma 4.10.
Lemma 5.17. (a) Every point of R("3") is contained in at most n flats of L.

(b) Every hyperplane in R(2) contains at most n flats of L.

Note that (d'gl) - (dgl) = 2d —1 and that (g) - (dgl) =d—1. Let H, be a generic (2d — 1)-flat
in R(dgl , in the sense that:

e Every (g)—ﬂat of £ intersects Hy in a (d — 1)-flat.

e Every (dgl)—ﬂat of the form Ly, N Lyg (with a,b,p,q € P) intersects H, at a single point.

Let F = {LqyNHy: Lgp € L} and consider H, as R?4~1. Note that F is a set of ©(n?) distinct
(d — 1)-flats. Every two (d — 1)-flats of F are either disjoint or intersect in a single point. By
Lemma 5.17, every point of R?¢~1 is incident to at most n of the flats of F and every hyperplane
in R2%~! contains at most n of the flats of F.

For every integer k > 2, let my denote the number of points of R2¢~! that are contained in
exactly k of the (d — 1)-flats of F. Similarly, let m>j, denote the number of points of R24=1 that
are contained in at least k of the (d — 1)-flats of F. Then |Q’| is the number of pairs of intersecting
(d — 1)-flats of F, and

n n logn
k
Q<223 m-2(3) <23 =0 (E :22’“m22k).
k=2 k=2 k=1

n(4d—2)/d

If we had the bound m>; = O (W) for some € > 0, then the above would imply |Q| =

O(n(*?=2)/4) " This would in turn imply that the points of P span (n2/ d) distinct distances.

An incidence result of Solymosi and Tao [13] implies that the number of incidences between m
points and n flats of dimension d — 1 in R24~!, with every two flats intersecting in at most one
point, is O(m?/3+¢'n2/3 4 m 4+ n) (for any &’ > 0). Every incidence bound of this form has a dual
formulation involving k-rich points (for example, see [12, Chapter 1]). In this case, the dual bound

is: Given n? flats of dimension d —1 in R??~! such that every two intersect in at most one point, for
% + %) By taking €’ to be sufficiently small
n4+e

with respect to €, we obtain the bound m>; = O (W + ”—,:) for the number of k-rich points. This

every k > 2 the number of k-rich points is O (

bound is stronger than the required bound when k£ = Q(nQ/ d+e) . That is, it remains to consider
the case where k = O(n?/4+¢).

6 The structure of the flats L,,
In this section we study the structure of the (g)—ﬂats Ly in R(d?). In particular, we derive the
equations that define such a flat. This structure is useful for deriving additional properties of the
flats, which may be required for solving the incidence problem in Theorem 1.2.

Recall that we think of every coordinate of R(dy) as corresponding to a 2-term in the standard
basis of Zcol. We denote the coordinate corresponding to ejer as xjy, for every 1 < j < k < d.
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Similarly, we denote the coordinate corresponding to ejeqii1e442 as xjq41. For a € R?, we denote
by a; the j’th coordinate of a.

Theorem 6.1. Given a,p € R?, the flat ng(Ta, N Spun(d) ) is defined by the following system of

ons i - (1)
d equations in the coordinates of R\ 2 /.

ar —p1 =(az +p2)r12 + (a3 + p3)x13 + - - + (aqg + pa)T1,a + 271,441,
az —p2 = — (a1 +p1)r12 + (a3 +p3)raz + -+ + (ag + pa)T2,q + 222,411,

aqg —pa=— (a1 +p1)x1n — (a2 +p2)xog — - — (@g—1 + Pd—1)Td—1.d + 2Td,d+1-

Proof. In the following proof, every reference to orthogonal elements is with respect to the standard

inner product (-,-) of R2". For a vector v € R2", we denote the dual of v as v*. That is, v* is the

map v*(u) = (v, u). For linear maps f, g : R2 — R2", we denote by f!(¢)(v) the transpose g(f(v)).
Consider the linear map 74 : Zg — Zg defined by

1 . 1 .
Ta;n(x) =1+ §€d+1€d+22(p) z|(1-— §€d+1€d+2ﬁ(a) .

We also observe that
_1 1 . 1 .
Tap () = (1 — §€d+1€d+22(p) |1+ 56d+1€d+2@(a) ) (24)

Thus, 7, is a linear bijection.

Lemma 6.2. Foru,w € Z9, we have that u is orthogonal to Tap(w) if and only if u = ((T@l)t o v*)*

for some v € R2 orthogonal to w.

Proof. Let v € R2" be orthogonal to w. We have that*

() o v?) " raplw)) = (1) 0 v7) ) (Taplw)) = ((72g1)" 0 0°) (Fap(a0))

= (v" 075,") (Tap(w)) = v*(w) = (v,w) = 0.

That is, ((7,,')" o v*)" is orthogonal to 7,,(w), as required.

For the other direction, assume that u is orthogonal to 7,,(w) and note that
w= (u*)* _ ((T(z_pl)t (((Tc;l)t)_l o u*)) .

That is, u = ((15,)" o v*)" for v = (((r)H) 1o u*)". We also have that

w,w) = () ow) w) = () ou)) (@) = ()~ o) (w)
(rhp)) () = u* (Tap(w)) = (u, Tap(10)) = 0.

O]

4Strictly speaking, (u*)™ is not equal to u. With a slight abuse of notation, we apply here the natural isomorphism
between the space (R2d ) and R,
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Let VC? be the orthogonal complement of Cﬂg in Zg. Note that every term of every element of
V9 contains eqi1eq+2. Lemma 6.2 implies that ((Ta_pl)t o (Vdo)*)* is the orthogonal complement of
Tap (Cﬂg). Let Ia—1 be the 2971 x 29-1 identity matrix. We can express (T@l)t as a 2% x 2¢ matrix
of the form®

Izd—l C

Indeed, recall that taking the transpose of a linear transformation corresponds to taking the trans-
pose of the matrix of this transformation. Note that the columns of (25) with index greater than
2471 form a basis of (,,')! o (V).

We denote the coordinates of Z) = R2 as y1,. .. yYod. Let (v1,...,v9a)" € (Zg)* be one of
the basis vectors of (7,.')" o (V))* that are columns of (25). We associate with this vector the
equation vy + ...+ vVoaysa = 0. Let Sy, be the system of 24=1 homogeneous linear equations
that are obtained in this way from the column vectors of (25) with index greater than 2¢=1. Since
((Ta_pl)t o (Vdo)*)* is the orthogonal complement of 7,, (Cﬁg), the set of solutions to Sy is T4p (Cﬂg).

We construct a system of homogeneous linear equations Sép by taking a subset of the equations
of Sgp, as follows. Let v1y1 + ... + vaysa = 0 be an equation of Su,. We add this equation to S,
if for every nonzero coefficient v; the variable y; corresponds either to a O-term or to a 2-term. Let
Fy,, be the set of solutions to the system Sy,.

Lemma 6.3. nd(F(;p \ Ho) = nd(Tap(ng) \Ho)

Proof. As stated above, the set of solutions to Sgp is 74p(C¢). Since Stp C Sap, we get that
Tap(CLY) C F,. This immediately implies 7q(7a,(C€5) \ Ho) € na(Fy, \ Ho). It remains to prove
that 14(Fy, \ Ho) € 14(1ap(CEG) \ Ho).

For a linear equation wiy;+. . .+ wgiysa = 0, we set w = (w1, ..., wqa)* and u = (ug, ..., Uqd)* =
ow. If z € Zg is a solution to wyys + ...+ wgiyge = 0 then w* is orthogonal to z, which in turn
implies that (7}, w)* is orthogonal to 7! (z). That is, 7,.! (2) is a solution to uiyy +. .. +ugaypa =
0. Conversely, if z € Z9 is a solution to u1ys + ...+ ugaysa = 0 (that is, u* is orthogonal to z) then
Tap(2) is orthogonal to ((7.,')" o u)" = ((rL,)to u)" = w*. We conclude that T, is a bijection
from the solutions to wiy; + ... + weiysa = 0 to the solutions to uiy; + ... + Ugdyga = 0.

Recall that every equation of S, is defined by a dual vector v € (R?)* of the form (Tap )t ©
(vedr1€d+2)*, where yegi1eq42 is a basis vector of Vd0 (that is, v is in the standard basis of C@é).
Every non-zero term of such a vector corresponds to a O-term or a 2-term if and only if v* € R? is
orthogonal to every vector corresponding to an m-term for some m > 4. Let w € R? be a vector
that corresponds to such an m-term. If 7 = e; for some 1 < j < d, then Lemma 5.3 implies that
Top (W) is orthogonal to yeqy1€q+2. Lemma 6.2 states that ((7,,')" o (ejeqy1e442)*)* is orthogonal
t0 Tap((75, ) (w)) = w. That is, when v = e; the equation defined by v is in S,,.

Next, assume that yeqyieq442 is an m-term with m > 4, and write u = yegy1€44+2. Lemma 5.3
implies that 74,(u) contains neither 2-terms nor a 0-term. If ((7,,;')" o u*)* is orthogonal to 7qp(u)
then by (the other direction of) Lemma 6.2 we get that u is orthogonal to u. This contradiction
implies that ((7,,")" o u*)* is not orthogonal to 7 (u), so in this case the equation defined by v is
not in Sy,,.

Combining the two preceding paragraphs implies that the equations of S{lp are determined by

the vectors (T@l)t o ((ejeqtiedt2)*) for 1 < j < d. It follows that the equations of S, are obtained

t
Tap

5To write this matrix, we must choose a specific ordering of the dual elements of the standard basis of Z%. As
long as the elements dual to the basis elements involving eji1e4+2 come after those dual to those that do not, the
details of the ordering do not matter.
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from those defining S(’lp by applying Tép to the coefficient vectors. By the second paragraph of this
proof, for every v € F,, we have that 7,.!(v) € Fy.

When a = p = 0, we have that (25) is the identity matrix. Thus, each equation of Sy consists of
a single term. This in turn implies that F{, is the subspace defined by having 0 in every coordinate
that corresponds to a 2-term of the form ejeqiieqyo (where 1 < j < d). For v € Fép \ Hy, we
obtain that Ta_pl (v) contains no terms of the form ejeqiieq442. By Lemmas 5.6 and 5.9, there is a
unique z € Jy with the property that = — Tcg,l (v) contains no O-term and no 2-terms. Note that z
also contains no terms of the form ejeqii€442, so Lemma 5.8 implies that x € G4. Since x € Cﬁg,
we have that 7op(2) € 7ap (Cf)). By Lemma 5.3, the expression 7, (z — 7., (v)) also contains
no 0-term and no 2-terms, so n4(7(x)) = nq(v). That is, there exists 74,(2) € 74, (CL9) such that
Na(Tap(2)) = n4(v). Since v ¢ Hy, we have that 7' (v) ¢ Ho, which in turn implies that = ¢ Ho and
that 7(z) ¢ Ho. This implies that nq(F,, \ Ho) C n4(7ap(Cy) \ Ho) and completes the proof. [

By Lemma 6.3, to complete the proof of Theorem 6.1 it suffices to study nd(Fép\Ho). We move
from the coordinate system y; to the coordinate system z;, as described before the statement of
the theorem. We denote by x; the coordinate corresponding to the coefficient of 1 (that is, y).

We now study the equations of S’,’Ip. As discussed in the proof of Lemma 6.3, these equations
correspond to the dual vectors (T(l_pl)to(ejedHedJrg)* for1 < j <d. If ejeqiieq42 is the k’th element
in our ordering of the basis of ZJ, then (T,;pl)t o (ejeqy1ed4+2)” is the k’th column of the matrix (25).
Since the transpose of a linear transformation corresponds to the transpose of the matrix of the
transformation, the above is also the k’th row of the matrix of T@l. To get this row, we apply TC;}
to the basis vectors of Zg and then keep the coefficient of ejeqi1eq12 (recall that 7'a_p1 is defined in
(24)). The only basis vectors of Z9 for which this coefficient is nonzero are 1 and 2-terms involving
ej. Repeating this process for every 1 < j < d leads to the following system.

(a1 — p1)xr =(a2 + p2)x12 + (a3 +p3)r13 + - - + (aq + Pa)T1,d + 221,441,
(ag —p2)x1 = — (a1 + p1)x12 + (a3 + p3)ra3 + - - + (aqg + pa)r2,d + 2202 441,

(ag — pa)r1 = — (a1 + p1)x1,a — (a2 + p2)x2 g — - — (@g—1 + Pd—1)Td—1,d + 2Td,d+1-

Recall from the beginning of Section 5 that 1y = 7’ o m;. Since the above is a system of
homogeneous linear equations, F;p is spanned by lines that are incident to the origin. This implies
that m(Fy, \ Ho) = 7(F,, N H1). Thus, w(Fy, \ Ho) is the set of solutions to the system obtained
by setting x; = 1:

(a1 —p1) =(az + p2)x12 + (a3 + p3)r13 + - - + (aqg + pa)®1,qa + 221,441,
(a2 —p2) = — (a1 +p1)z12 + (a3 + p3)xe3 + - + (aq + Pa)T2,a + 272,441,

(26)

(ag —pa) = — (a1 +p1)x14 — (a2 + p2)x2g — - — (@d—1 + Pd—1)Td—1,d + 2% q,d+41-

Since none of the variables x; correspond to elements of R2’~1 that are in the kernel of 7/ , We
get that n4(Fy,) is the solution set of (26). O

7 Properties of the 2-flats in R°

In this section we study the 2-flats in R® that are obtained from our reduction of the three-
dimensional distinct distances problem. In particular, we show how one can bound the number of
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2-flats contained in constant-degree three- and four-dimensional varieties. We also show how one
can bound the number of 2-flats that have a one-dimensional intersection with a constant-degree
two-dimensional variety. Deriving these results requires several definitions and tools from Algebraic
Geometry, and these are described in Section 7.1.

7.1 Algebraic Geometry preliminaries

In the following, F could be taken to be either C or R. The wvariety defined by the polynomials
flv"'7fk € F[-’L’l,...,.’ﬂd] is

V(fl,...,fk):{(al,...,ad)eFd:fj(al,...,ad):0fora111gjgk:}.

There are several non-equivalent definitions for the degree of a variety in R%. For our purposes,
we define the degree of a variety U C R? as
min max deg f;.
f1eees frER[ZY, .0y zql 1<i<k g fl
V(f1sesf)=U
That is, the degree of U is the minimum integer D such that U can be defined with a finite set of
polynomials of degree at most D.
A variety U C F? is reducible if there exist two proper subvarieties U’,U” C U such that
U=U'JU". Otherwise, U is irreducible. An irreducible component of U is an irreducible variety
that is contained in U, and not contained in any other irreducible subvariety of U.

Lemma 7.1. Let U C R? be a variety of degree k. Then the number of irreducible components of
U is Ogr(1).

Intuitively, we say that a variety U C R? has dimension k if there exists a subset of U that is
homeomorphic to the open k-dimensional cube, but no subset of U is homeomorphic to an open
cube of a larger dimension. For more information about varieties in R¢ and a more precise definition
of dimension, see for example [2].

Singular points, regular points, and tangent flats. The ideal of a variety U C R%, denoted
I(U), is the set of polynomials in R[z1,...,z4] that vanish on every point of U. We say that a
set of polynomials fi,..., fr € R[x1,...,z4] generate I(U) if every element of I(U) can be written
as Zﬁ:l fjg; for some g1,...,9; € Rlz1,...,24]. We also write (fi,..., fe) = I(U) to state that
fi,-.., fo generate I(U).

The Jacobian matriz of a set of polynomials f1,..., fr € Rlz1,...,24] is
9fh 9h ... 9N
ory 0xa Ozg
J . Oxr1 Oxo Oxy
flv“wfk -
8331 81‘2 8Qfd

Consider a variety U C R? of dimension k, and let fi, ..., fo € Rlz1, ..., x4 satisfy (f1,..., fo) =
I(U). We say that p € U is a singular point of U if rankJ(p) < d — k. A point of U that is not
singular is said to be a regular point of U. We denote the set of singular points of U as Usjyg, and
the set of regular points of U as U,es. A k-dimensional variety has a unique well-defined tangent
k-flat at every regular point. We denote the tangent k-flat at p € U as T,U, and think of it as a
linear subspace (that is, as incident to the origin). At singular points of a real variety, a unique
well-defined tangent flat may or may not exist.

36



Theorem 7.2. Let U C R? be a variety of degree k and dimension d'. Then Using s a variety of
dimension smaller than d' and of degree Oy 4(1).

References for the above claims and additional information can be found, for example, in [2].

Complexification. Given a variety U C R?, the complezification U* C C% of U is the smallest
complex variety that contains U, in the sense that any other complex variety that contains U also
contains U* (for example, see [9, 16]). As shown in [16, Lemma 6], such a complexification always
exists, and U is precisely the set of real points of U*.

As shown in [16, Section 10], there is a bijection between the irreducible components of U and the
irreducible components of U*, such that each real component is the real part of its corresponding
complex component. In particular, the complexification of an irreducible variety is irreducible.
The real dimension of a real irreducible component in R? is equal to the complex dimension of the
corresponding complex component in C?.

Constructible sets, semi-algebraic sets, and projections. As before, F could be taken to
be either C or R. If U C F? is a set, the Zariski closure U is the smallest variety in F? that contains
U. A set X C F? is constructible if there exist non-empty varieties X1,..., X, C F? such that
dim X1 < dim X for every 1 < j </ and

X = (((Xl\Xg) UX3)\ Xy .. ) (27)

We define dim(X) = dim(X) = dim(X;). We define the complerity of X to be min(deg(X7) +
deg(X2) + ... + deg(Xy)), where the minimum is taken over all representations of X of the form
(27). This definition is not standard. However, since we are interested only in constructible sets of
bounded complexity, any reasonable definition of complexity would work equally well. For further
details, see for example [8, Chapter 3].

A semi-algebraic set in R? is the set of points in R¢ that satisfy a given finite Boolean combi-
nation of polynomial equations and inequalities in d coordinates. Every constructible set in R¢ is
semi-algebraic. On the other hand, a semicircle in R? is semi-algebraic but not constructible.

Let S € R? be a semi-algebraic set defined by a Boolean combination of equations and inequal-
ities involving the polynomials f1,..., fr € Rlz1,...,2z4| (that is, the j'th equation or inequality
has zero on one side and f; on the other). The dimension of S is the dimension of the real variety
S. The complexity of S is min{deg fi + - - - +deg fi}, where the minimum is taken over all Boolean
combinations that define S. Note that the degree of the variety S is at most the complexity of S.

One can also include the quantifiers V and 3 in the definition of a semi-algebraic set, each quan-
tifying an additional variable that is not a coordinate of the points in the set. For every definition
of a semi-algebraic set using quantifiers, there exists a definition that does not use quantifiers. For
example, the formula V¢ : (t > 0) V (x + y > t) defines an open half-plane in R?, which can easily
be defined without the V quantifier. In the above definition of the complexity, one may only use
definitions of S that do not include such quantifiers. For the following, see for example [1, Section
11.3].

Lemma 7.3. Let S C R? be a semi-algebraic set using k quantified variables, and s polynomials of
degree at most D. Then S is of complexity Oy s p a(1).

Both in R? and in C¢, the projection of a variety is not necessarily a variety. In R?, the projection
of a constructible set is not necessarily constructible. The following result states properties that are
satisfied by every projection. For part (a), see for example [8, Theorem 3.16] (this reference only
says that the projection of a constructible set is constructible. However, the proof is constructive
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and thus gives us a bound on the complexity of the projection.) Part (b) is implied by Lemma 7.3,
noting that the projection of a semi-algebraic set can be obtained by adding 3 quantifiers to its
definition.

Theorem 7.4.

(a) Let X C C? be a constructible set of dimension d' and complexity k. Let 7 : R — R® be a
projection on e out of the d coordinates of R%. Then w(X) is a constructible set of dimension at
most d' and of degree Oy q(1).

(b) Let U C RY be a semi-algebraic set of dimension d' and complexity k. Let 7 : R — R® be a
projection on e out of the d coordinates of RY. Then w(U) is a variety of dimension at most d' and
of degree Oy 4(1).

For d > d', let X C C% be a constructible set and let Y ¢ C¥ be an irreducible variety. Let
7: C? = C¥ be a projection onto d’ coordinates. We say that 7: X — Y is dominant if m(X)=Y.
The following is a corollary of Chevalley’s upper semi-continuity theorem (for example, see [8,
Corollary 11.13] and the paragraph following it; for the claim that the set is constructible, see also
[8, Theorem 3.16]).

Theorem 7.5. Let X C C% and Y C C¥ be irreducible varieties of degrees at most k, and suppose
7: X — Y is dominant. Then exists a variety Y' C C? of degree O(1) such that dimY’ < dimY
and for every y € Y \'Y' we have that 7=1(y) is a constructible set of dimension dim X — dimY
and degree Oy, q(1).

We require a real variant of Theorem 7.5.

Corollary 7.6. Let U be a variety of dimension d in RS, let m : R® — R3 be the projection on
the first three coordinates, and let Us = w(U) be of dimension ds. Then there exists a variety
W C R3 of degree Oy (1) such that dim W < dg and for every u € U3 \ W we have that 7=1(u) is a
constructible set of dimension at most d — ds and degree Oy(1).

Proof. Consider the complexification U* of U and the complexification U3 of Us. Note that U™ is of
dimension d and that U is of dimension d3. We extend the projection 7 : R — R3 to 7 : C® — C3.
As before, this is the projection on the first three coordinates.

Set U’ = w(U*). By Theorem 7.4(a), the variety U’ is of degree Oy (1). Since Us is the
smallest complex variety containing Us, we have that U; C U’. Consider the cylindrical variety
C = n71(U}) C C5, and note that U is contained in the real part of C. Since U* is the smallest
variety in C% that contains U, we have that U* C C. This in turn implies that U’ C Ui, soU' =Uj.
In particular, dim U’ = d3.

By Theorem 7.5, there exists a variety W* C C? of degree Oy (1) such that dim W* < d3 and for
every u € U'\ W* we have that 77! (u) is a constructible set of dimension d — d3 and degree Oy (1).
We set W C R3 to be the real part of W*, and note that dim W < ds. Since (Us\ W) C (U'\ W*),
for every u € Uz \ W we have that 7=1(u) C R® is a constructible of dimension at most d — d3 and
degree Og(1). O

7.2 Flats in R°.

Theorem 6.1 implies the following for the case of distinct distances in R3. Given two points
a = (a1,az,a3) and p = (p1,p2,p3) in R3, the corresponding 3-flat L, C RS is defined by
—(a1 + p1)z2 — (a2 + p2)z3 + 276 = a3 — ps,
—(a1 +p1)z1 + (a3 + p3)zs + 275 = az — p2,
(ag + p2)z1 + (a3 + p3)r2 + 274 = a1 — p1. (28)
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Note that {Lgp, : a,p € R3} is a six-dimensional family of 3-flats in RS.
Let P be a set of n points in R3, and let H be a hyperplane in RS, chosen generically with
respect to P. For a,p € R? we write Fop = Lap N H. We consider the sets

F=A{Fup: a,pec R3} and Fp={Fu,: a,p€ P}

Since H is chosen generically, Fp is a set of n? distinct 2-flats in H. We think of H as R®, so Fp
becomes a set of 2-flats in R®. As shown in Section 4, every pair of flats in Fp intersect in at most
one point.

Theorem 7.7. Let U be an irreducible three-dimensional variety in R® of degree k. Then either U
contains Oy, (n2/3) flats of Fp or there exists a curve in R® of degree O (1) that contains S, (n2/3)
points of P.

It is not difficult to show that n2?/3 points on a constant-degree curve in R3 span (n2/ 3)
distinct distances. This is exactly the conjectured number of distances in R3, so we may assume
that no constant-degree curve in R® contains n?/® points of P. Then, Theorem 7.7 implies that
every constant-degree three-dimensional variety in R® contains O(n2/ 3) flats of Fp.

Proof of Theorem 7.7. For any a,p € R3, by (28) we have the parametrization
Lop = {(s,t, r, (a1 — p1 — (ag+p2)s — (a3 + p3)t) /2, (a2 — p2 + (a1 + p1)s — (a3 + p3)r) /2,
(a3 —p3 + (a1 + p1)t + (a2 + p2)r)/2) €R® : s,t,r € R}- (29)

To parameterize Lq, N H, we isolate 3 in the linear equation defining H and use this to eliminate
the parameter r (since H is generic, its defining equation contains xz3). This parametrization of
Lap N H consists of five linear functions in the two variables s,t € R, with coefficients that are
polynomials of degree at most two in the coordinates of a and p.

We identify H with R5. Equivalently, let 7z : H — R® be a the map that takes H to R®.
Since my can be seen as a translation followed by a rotation and a projection, we can write mgy as
five linear polynomials in x1, ...,z Combining this with the above parametrization, we obtain a
parametrization of F, = 7 (Lqp N H) using five linear functions in the two variables s, € R and
coefficients that are polynomials of degree at most two in the coordinates of a and p.

Let f € R[zy,...,x5] be a polynomial of degree 2k such that V(f) = U (if U is defined as
V(fi,..., fm) where each f; is of degree at most k, then we take f = fZ + --- + f2). We think
of f |z (Lapnm) @s @ polynomial of degree at most 2k in R[s, ] and coefficients that depend on the
coordinates of a and p. Note that F,, C U if and only if fl,, Lopna) 1 identically zero. That
is, if and only if the coefficient of every monomial of f|r, (r,,nm) is zero. There are Ok (1) such
monomials, and the coefficient of each is a polynomial of degree at most 4k in the coordinates of a
and p. This implies that the set

]:U:{(a,p)E]RG: F., CU}

is a variety of degree Og(1). We use the notation Fi; to refer both to the above set of points in RS
and to the set of corresponding 2-flats in R®.

Let u be a regular point of U, and let Fy,, F,/,y C U be 2-flats of F incident to u. Since any pair
of 2-flats of F intersect in at most one point, we have F,, N Fyy = {u}, so T,,F,, and T, Fy,y span
a 4-flat in R®. This is impossible, since both Ty F,p and T, F,,y are contained in the 3-flat T;,U.
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This contradiction implies that every regular point of U is incident to at most one 2-flat of Fy;. By
Theorem 7.2, the set of singular points Using is a two-dimensional variety of degree Oy (1). Thus,
the number of 2-flats of F contained in Using is Og(1), and in particular there are Oy (1) flats of Fp
in Using. Every 2-flat of Fp that is not contained in Usjyg intersects Using in a variety of dimension
at most one. That is, excluding O(1) flats, every flat of Fy; intersects Uyeg in a constructible set
of dimension two. If Fy is of dimension at least two then U contains a two-dimensional union of
disjoint two-dimensional constructible sets, which in turn implies that U is of dimension at least
four. This contradicts the assumption that U is three-dimensional, so Fy is of dimension at most
one.

Let m : R — R3 be the projection on the first three coordinates and let 7 : R¢ — R? be
the projection on the last three coordinates. That is, for points a,p € R® we have 7 (a,p) = a
and ma(a,p) = p. By Theorem 7.4(b), the variety 71 = m (Fy) C R? is of degree Oy(1) and of
dimension at most one. We symmetrically define vyo = ma(Fpr).

Set P1 = PN~y and Py = PNy If |P1] = Q (n2/3) then we are done, since we found a constant-
degree curve in R? containing many points of P. We may thus assume that |P;| = O (nz/ 3), and

symmetrically that |Ps| = O (n2/ 3). If v; is of dimension zero, then by Lemma 7.1 it is a set of
O (1) points. Since |P2| = O (n2/3), we get that Oy (n2/3) flats of Fp are contained in U. This
completes the proof, so we may assume that 7 is of dimension one.

By Corollary 7.6, excluding Og(1) exceptional points, for every a € v; there are Ok (1) points
w € Fy such that 71 (w) = a. Since |P2| = O (n2/3), the exceptional points correspond to Oy, (n2/3)
flats of Fp in U. Since |P;| = O (n2/ 3), the non-exceptional points also correspond to Oy (n2/ 3)
flats of Fp in U. We conclude that |P? N Fy| = O (n2/3), which completes the proof. O

We now study the number of 2-flats of Fp in a four-dimensional constant-degree variety in R®.

Theorem 7.8. Let P be a set of n points in R? and let U be an irreducible four-dimensional variety
in R of degree k. Then either U contains Oy, (n4/3) flats of Fp or there exists a surface in R3 that

contains (n2/3) points of P.

Proof. The case where U is a hyperplane was already handled in Section 3, so we may assume that
U is not a hyperplane. We begin by imitating the proof of Theorem 7.7. As in that proof, we define

Fo={(a,p) €R®: Fy C U},

and note that Fy; is a variety of degree Og(1).

By Theorem 7.2, the set of singular points Using is a three-dimensional variety of degree Oy(1).
By Lemma 7.1, the set Uging consists of O (1) irreducible components. We apply Theorem 7.7 to
each of these components, obtaining that either there exists a one-dimensional variety containing
Q (n2/3) points of P, or that the total number of flats from Fy; contained in Uging is O (n2/3). We
may assume that we are in the latter case, since otherwise we are done.

Let w be a regular point of U, and let F,, be a set of 2-flats of F that are contained in U and
incident to w. Note that for every Fy, € F, we have Fy, € U N (w + T,,U). Since U is not a
hyperplane, the intersection C' = U N (w + T,,U) is a variety of degree at most k and dimension
at most three. Since every pair of 2-flats of F,, intersect in at most one point, every point of
C'\ {w} is incident to at most one such flat. It is not difficult to verify that the points in Fyy that
correspond to flats of F,, form a variety. If this variety is of dimension at least two, then C' contains
a two-dimensional family of 2-flats that intersect only at w, so dim C' = 4. This contradicts the
above claim that dim C' < 3, so the points of Fyy that correspond to 2-flats in F,, form a subvariety
of Fyy of dimension at most one.
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Every 2-flat of Fy; that is not contained in Ugg intersects Ureg in a constructible set of degree
O(1) and dimension two. Since U is four-dimensional and every point of Useg is incident to a
family of 2-flats of dimension at most one, we conclude that Fy; is of dimension at most three.

Let m; : RS — R3 be the projection on the first three coordinates and let m : RS — R? be the
projection on the last three coordinates. As in the proof of Theorem 7.7, we set v; = 71 (Fy) and
v2 = ma(Fr). These are two varieties of degree O (1) and dimension at most three. We partition
the rest of the analysis according to the dimension of ;.

If dim~; = 0 then by Lemma 7.1 it consists of O (1) points. Each such point can participate
in at most n points of P? N Fp, and this sums up to a total of Ox(n) flats of Fp in U.

If dim~; = 1 then we may assume that v; contains O (nQ/ 3) points of P, since otherwise we
are done. By Corollary 7.6, excluding O (1) exceptional points, for every a € 7 the set of points
w € Fy satisfying 71 (w) = a is contained in a variety of dimension two and of degree O (1). Since
the set of exceptional points is zero-dimensional, it can be handled as in the case of dim~; = 0.

Consider a non-exceptional point a € v, and set v, = mo(m] 1(a)). Note that v, C R? is a variety
of degree Oj(1) and dimension at most two. If |y, N P| = Q (n?/?) then we are done. We may thus
assume that every non-exceptional point a € v; NP satisfies |y, NP| = O (n2/ 3). This gives a total
of Oy (n4/3) flats of Fp in U.

If dim y; = 2 then we may assume that ~; contains O (nz/ 3) points of P, since otherwise we are
done. By Corollary 7.6, there exists a variety W C R3 of dimension at most one and degree O (1)
such that for every a € v1 \ W we have that 7~ (a) is a constructible set of dimension at most one
and degree O (1). Since dim W < 1, points on W can be handled as in the case of dim~; = 1. For
a point a € y; \ W we set v, = ma(7] *(a)). Note that 7, C R? is a variety of degree O (1) and of
dimension at most one. If |y, N P| = Q (n2/ 3) then we are done. We may thus assume that every
non-exceptional point a € v, NP satisfies |y, N P| = O (n2/ 3). This gives a total of Oy (n4/ %) flats
of .7:73 in U.

Finally, consider the case where dim~y; = 3. By Corollary 7.6, there exists a variety W C R?
of dimension at most two and degree Ox(1) such that for every a € 1 \ W we have that 7~ 1(a) is
a set of Ok (1) points. Since dim W < 2, it can be handled as in the cases of dim~y; < 2. For every
non-exceptional a € v, we have that Fyy contains Og(1) points of {a} x P. By summing this over
every a € P\ W we get a total of Oy, (n4/3) flats of Fp in U. 0

We conclude this section by studying the number of 2-flats of Fp that have a one-dimensional
intersection with a given two-dimensional variety.

Theorem 7.9. Let P be a set of n points in R3 and let U be an irreducible two-dimensional variety
in RS of degree k. Then either U has a one-dimensional intersection with Oy, (n4/3) flats of Fp or
there exists a two dimensional variety of degree Oy (1) in R? that contains Qy (n2/3) points of P.

Proof. Set
Fu = {(a,p) €R®: dim(F,, NU)=1}.

By Lemma 7.1, if a 2-flat in R® has a zero-dimensional intersection with U, then this intersection
consists of Oy (1) points. Denote this maximum number of intersection points as ay. A 2-flat in R®
intersects U in a variety of dimension at least one if and only if this intersection consists of at least
ap + 1 points. That is, (a,p) € Fy if and only if F,, # U and there exist oy + 1 distinct points of
R® that are contained in U N F,,. This is a semi-algebraic condition, so Fy is semi-algebraic. By
Lemma 7.3, the complexity of Fr is Og(1).
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By Theorem 7.2, the set of singular points Usjyg is a one-dimensional variety of degree Oy(1).
Thus, for a 2-flat to have a one-dimensional intersection with Uging, the 2-flat must contain a one-
dimensional component of Uging. Since any pair of 2-flats of F intersect in at most one point, the
number of 2-flats of F that have a one-dimensional intersection with Using is O(1).

Let w be a regular point of U, and let F,, be a set of 2-flats of Fy; such that w is contained in
a one-dimensional component of their intersection with U. Note that for every F,, € F,, we have
that Fop N (w + T,,U) is a line (or equal to Fgp). Since every pair of 2-flats of F,, intersect in at
most one point, every point of (w + T3,U) \ {w} is incident to at most one such line. Thus, F, is
of dimension at most one. Since U is two-dimensional and every regular point of U is incident to
a one-dimensional subset of flats of Fi7, we conclude that F; is of dimension at most two.

Let m; : R — R3 be the projection on the first three coordinates and let 7 : R® — R3 be
the projection on the last three coordinates. As in the preceding proofs, let v = 7 (Fy) and
~vo = mo(Fy). By Theorem 7.4, both ~1 and 7, are varieties of degree Ok (1) and dimension at most
two. If |y NP| = Q(n?3) or |y9 N P| = Q(n*?), then we are done. We may thus assume that
lv1 NP| = O(n?/3) and |2 N P| = O(n?/3). We partition the rest of the analysis according to the
dimension of ~y;.

If dimv; = 0 then by Lemma 7.1 it consists of Oy(1) points. Since |2 N P| = O (n%?), every

point of =1 corresponds to O (nQ/ 3) elements of Fr;. By summing this over every point of vy, we

get O (n2/ 3) flats of Fp that have a one-dimensional intersection with U.

If dim~; = 1, then we apply Corollary 7.6 to it. We obtain that, excluding O(1) exceptional
points, for every a € v; we have that 7=1(a) is contained in a variety of dimension at most one
and degree O (1). We denote such a variety as 7,4, and set 7/, = m2(7,). By Theorem 7.4, v/ C R3
is a variety of dimension at most one and of degree Ok(1). If |7, N P| = Q (n%3) then we are

done. It remains to handle the case where for every non-exceptional a we have [y, NP| = O (n2/ 3).
Recalling also that |[y3 NP| = O (n2/ 3), we get that O (n4/ 3) flats of Fp have a one-dimensional
intersection with U.

If dim~y; = 2, we again apply Corollary 7.6 to it. This implies that there exists a variety W
of dimension at most one and degree Oy(1), such that for every a € v; \ W we have that 7= (a)
consits of Og(1) points. Since dim W < 1, it can be handled as the cases of dim~; < 1. Recalling
that [y1NP| = O (nQ/ 3), we conclude that O (n2/ 3) flats of Fp have a one-dimensional intersection
with U. O]
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