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Abstract

Identification of peptides in species lacking fully-sequenced genomes is challenging due to the
lack of prior knowledge. De novo sequencing is the method of choice, but its performance is less
than satisfactory due to algorithmic bias and interference in complex MS/MS spectra. The task
becomes even more challenging for endogenous peptides that do not involve an enzymatic
digestion step, such as neuropeptides. However, many neuropeptides possess common sequence
motifs that are conserved across members of the same family. Taking advantage of this feature to
improve de novo sequencing of neuropeptides, we have developed a method named PRESnovo
(prescreening precursors prior to de novo sequencing) to predict the motif from a MS/MS
spectrum. A neuropeptide sequence is broken into a motif with conserved amino acid residues
and the remaining partial sequence. By searching against a predefined motif database constructed
from known homologous sequences, PRESnovo assigns the most probable motif to each
precursor via a sophisticated scoring function. Performance analysis was conducted with 15
neuropeptide standards, and 11 neuropeptides were correctly identified with PRESnovo
compared to 1 identification by PEAKS only. We applied PRESnovo to assign motifs to peptide
sequences in conjunction with PEAKS for assigning the rest of the peptide sequence in order to
discover neuropeptides in tissue samples of green crab, C. maenas, and Jonah crab, C. borealis.
Collectively, a large number of neuropeptides were identified, including 13 putative
neuropeptides identified in green crab brain, 77 in Jonah crab brain, and 47 in Jonah crab sinus
glands for the first time. This PRESnovo strategy greatly simplifies de novo sequencing and
enhances the accuracy and sensitivity of neuropeptide  identification when common motifs are

present.



Introduction

With the advancement of high-throughput mass spectrometry (MS), shotgun proteomics has been
employed as the major tool for performing large-scale analysis of biological samples. With
current MS instruments and workflows, thousands of MS and MS/MS spectra are produced from
a single analysis [1-3]. With the large numbers of spectra being generated, traditional manual
analysis is no longer feasible, and numerous data analysis strategies have been developed to
identify proteins from the high volume of MS/MS spectra. The methods of choice for annotating
these spectra mainly include spectral matching, database searching, and de novo sequencing.
Spectral matching can be performed with a variety of software platforms, including SpectraST
[4], X1Hunter [5], and Bibliospec [6]. However, this method of analysis requires the generation
of spectral libraries, which can be time consuming and costly. Database searching employs
search engines such as Mascot, SEQUEST, OMSSA, MSFragger and X!Tandem [7-11] to
interpret tandem MS spectra by scoring the similarities between the experimental and theoretical
spectra generated through in silico prediction. The matches are then ranked such that the match
with the highest score is the best predicted peptide spectrum match. While this method has
proven to be highly effective for large-scale identifications, it requires prior knowledge of the
sequences of peptides in the sample, typically through the use of genomic data. This limits its
applicability to organisms with a fully-sequenced genome.

For those species without a fully-sequenced genome, no protein database is available, and
so de novo sequencing is the main approach employed for peptide identification. With de novo
sequencing, peptide sequences are derived from the masses of their fragment ions as shown in a

MS/MS spectrum. When performing de novo sequencing, no protein sequence database is used



for reference, and so no prior knowledge is required of peptides in the sample. A number of
algorithms and software packages have been developed recently for de novo peptide sequencing
[12-15]. Most software use “spectral graph” or "probabilistic model" to interpret MS/MS spectra.
A spectral graph is constructed from a MS/MS spectrum in which nodes represent fragment
peaks and two nodes are connected by an edge if the mass difference between these two nodes
matches a known amino acid residue. The algorithm tries to findt  he longest possible path of
connected edges from the N-terminus to the C-terminus in order to determine the combination of
amino acids that best represents the peptide sequence.  However, any incompleteness of
fragmentation can cause gaps which disconnect the longest path from N- to C-termini. In some
cases, the longest path fails to represent the correct sequence or partial sequences due to
interfering fragments. Instead of constructing spectral graphs, some algorithms such as PEAKS
[15] compute peptide sequences among all possible amino acid combinations and then map these
sequences directly onto each MS/MS spectrum to find the best sequence match, which improves
the likelihood of a correct sequence assignment despite interfering ions. While this method is
more computationally expensive, dynamic programming is always employed to increase the
computing efficiency. As a result, this method has been employed successfully for numerous de
novo sequencing methods. However, in comparison to the database search strategy, the accuracy
and sensitivity of de novo sequencing are far less satisfactory [16]. The combination of database
searching and de novo sequencing to some extent improves the accuracy of prediction [16, 17].
Although these hybrid methods enhance peptide prediction, they require protein databases
available for the species of interest. For species without available genomes, improving peptide

identification remains an unmet challenge.



One example of a group of species without a complete genome is crustaceans, which are
important model organisms for studying dynamic neural networks and neuromodulation.
Neuropeptides, or short endogenous peptides involved in neuronal signaling, are an important
class of molecules related to this system. Much effort has been placed on characterizing the
neuropeptides involved in these signaling pathways with MS [18-24] and in silico prediction
[25]. However, this class of molecules is particularly challenging to study because their
workflow does not involve a digestion step [26]. With tryptic digests from proteins, the search
space is able to be reduced based on how trypsin digests the proteins with well-defined amino
acid residue at the carboxyl-end of resulting tryptic peptides. With neuropeptides, no enzymatic
digestion parameters can be used to reduce the search space. However, highly-conserved peptide
sequences like neuropeptides share conserved motifs, which can aid de novo sequencing. Herein,
we focus on interpreting a part of a tandem MS spectrum to extract the conserved sequence motif
instead of sequencing the entire MS/MS fragmentation spectrum. The determination of a motif
will simplify de novo sequencing of the rest of the sequence and increase the accuracy of peptide
identification. In order to determine the neuropeptide sequence motif, a database search method
is employed similar to commonly-used methods previously described.  First, motifs are
derived from known peptide sequences from homologous species. Second, theoretical in silico
fragmentation is performed for these motifs. The resulting b- and y- ions as well as their neutral
loss fragments together with the corresponding motif are used to construct a motif database. This
database is then searched by inputting experimental fragments to find the best matched motif for
each precursor. A sophisticated scoring function, based on the sum of ratios of lengths of
fragments to total motif lengths, ensures the correct assignment of motif to a given precursor.

This strategy, named PRESnovo, simplifies the subsequent de novo sequencing step and



increases the accuracy and sensitivity of peptide identifications by performing a preprocessing

function prior to de novo sequencing.

Methods

Construction of Motif Database.

A motif database is required to run PRESnovo. Here, motif refers to a representation of the
similarity of different sequences in the same peptide family. For accurate results, it is
recommended that all possible motifs for the peptides of interest are included. In this study,
previously known neuropeptides from invertebrate species, mainly crustaceans, were collected
from public databases including Uniprot knowledgebase and publications [25, 27-29]. In order to
estimate the false positive rate,  some vertebrate motifs were also included as decoy motifs
because these motifs were not observed in crustacean neuropeptides . As the targeted
neuropeptide sequences in most cases contain fewer than 20 amino acid residues, longer
sequences such as proteins or receptors were excluded from the list. Figure 1 shows how a motif
database is constructed. = The known neuropeptides collected from the various sources were
clustered according to their family names followed by a multiple alignment procedure with

ClustALW?2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) for each family. Afterwards, the most

aligned region was truncated to extract motifs with WebLogo3

(http://weblogo.threeplusone.com/). Longer peptides whose motifs were not easily determined

were removed from the list, such as Bursicon, crustacean hyperglycemic hormone (CHH), molt
inhibiting hormone (MIH), etc. When using WebLogo3, multiple motifs were adopted to
represent each family. For example, all 5 C-terminal motifs, YAFGL, YDFGL, YNFGL,

YEFGL, and YSFGL, were used to represent allatostatin A-type (AST-A) peptides.
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The PRESnovo method works by mapping tandem MS spectra onto a home-built motif database
in order to find the best suitable motif for each precursor. The practical implementation is to
compare the experimental fragments associated with a precursor to those theoretical fragments
associated with a motif. Therefore, a list of theoretical fragments must be created for each motif.
The extracted motifs were in silico fragmented by MS-Product

(http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msproduct), and the resulting b

ion set (including b ions and neutral losses, b- H2O and b-NH3) were adopted as the theoretical
fragments for N-terminal motifs while y ion set (including y ions and neutral losses, y- H2O and
y-NH3) were adopted as the theoretical fragments for C-terminal motif. Post-translational
modifications (PTM) were also included when fragmenting these motifs. For example, for motif
YXFGLamide, C-terminal amidation was considered for the production of theoretical fragments.
These were selected based on common PTMs observed for neuropeptide families [27, 30].

We used these extracted motifs and the associated theoretical fragments to construct our motif
database (see supplemental file) in which 87 motifs covering 25 families were compiled for
crustacean neuropeptides (2 families of 7 mammalian neuropeptides (Angiotensinogen (5) and
Arg_vasopressin (2) were also included for test only, to be used as decoys to assess the false
positive rate). The distribution of the motifs is shown in Figure 2.

Scoring Function and Motif Assignment.

Accurately assigning a motif to a given precursor is crucial. A well-defined scoring function can
ensure the unbiased assignment of a motif in most cases. As such, a score is needed to evaluate
the comparison between experimental and theoretical fragments within PRESnovo. Several
considerations must be taken to generate a scoring function. These factors include significance of

different-length theoretical fragments, the number of matches between experimental and
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theoretical fragments, and the percentage of the total number of experimental fragments with
respect to the total number of theoretical fragments. We first define the score of a theoretical
fragment via dividing the length of fragment by the total length of the motif. This definition is
suitable because the significance of longer fragments is higher than that of shorter fragments
[31]. This score definition is also beneficial to the interpretation of non-informative tandem MS
spectra because any high-scoring longer fragments can ensure a reliable motif assignment
without consideration of gaps. After computing scores for fragments, these fragment scores were
used to evaluate the motif assignment. Given that the more theoretical fragments are matched by
experimental fragments the more reliable the corresponding motif assignment is, the score for a

motif assignment is defined by the following formula:

S (Fy | M(F,))

S(P(F,) ~ M(F,)) = S5, (F, | M(F,)

S(P(F,) ~ M(F,))s the score for motif M ( y7(£ ) ) assigned to a precursor ( p(f )) ,
z S, (F, | M(F,)) is the sum of the scores of all matched experimental fragments while
z S, ( ﬁT | M( FT ) is the sum of the scores of all theoretical fragments. In our motif database,

the scores of fragments were calculated in advance and stored along with motifs. The neutral loss
fragments share the same score as the associated b or y ions.

The workflow for using PRESnovo to assign the best matched motif to a given precursor
is shown in Figure 3. The user-defined mass error tolerance was set to 0.5 Da for QTOF data
and 0.02 Da for Orbitrap data for both precursor and fragments. The experimental fragments
were compared to the theoretical fragments associated with each motif and the matched pairs

were stored. If a neutral loss ion pair and the corresponding b or y ion pair were both found, only



one pair was kept for the following calculation. In the list of matched fragment pairs, all the
matched theoretical fragment scores were used to calculate the score of each motif assignment.
As a result, for a given precursor, all motifs were tentatively assigned to it with calculated scores.
These motifs were then ranked in descending order based on the score for each motif assignment
and the first five ranked motifs were reported.

NanoLC-ESI-QTOF Analysis for Peptide Standards and Tissue Sample.

A peptide standard mixture containing 15 neuropeptides (Supplemental Table S1) was subjected
to nano-LC-ESI-QTOF (Waters Corp., Milford, MA) and the resulting MS data were used to test
the performance of PRESnovo. Furthermore, PRESnovo was used for real tissue sample to
identify endogenous neuropeptides. Tissue samples were extracted from the brain of European
green crabs, C. maenas and brain and sinus glands of Jonah crabs, C. borealis. Green crab tissue
was offline HPLC fractionated, and the collected fractions were analyzed on a nano-LC-ESI-
QTOF (Waters Corp., Milford, MA). The Jonah crab tissue was analyzed on a nano-LC-ESI Q
Exactive Orbitrap mass spectrometer (Thermo Scientific, Bremen, Germany). The details about
experimental protocols including animal dissection, tissue extraction, offline HPLC fractionation
and MS analysis can be found in the Supporting Information and followed those previously
described [32]. After MS analysis, the QTOF raw data were converted into pkl formatted data
with ProteinLynx (Waters Corp., Milford, MA). Parameters for ProteinLynx were set with
default settings except noise reduction threshold at 10%. The Orbitrap raw data was converted
into mzXML format using MSConvert with default settings [33].

De novo Sequencing with the Aid of PRESnovo.

The resulting pkl and mzXML files were used as input to PRESnovo. The current version of

PRESnovo supports pkl and mzXML formats. Parsing of mzXML data was performed with



jmzReader [34]. Other data formats need to be converted into one of these two formats. Mass
tolerances for both precursor and fragments were set to 0.5 Da for QTOF data and 0.02 Da for
Orbitrap data. PRESnovo outputs a .csv file in which each precursor is assigned five motifs as
the default setting according to a descending order of score. The number of motif assignments
can be changed by the user. The scored fragments associated with each motif are also included in
the output. By setting a motif score threshold, the user can filter out low-confidence motif
assignments. Once a motif is obtained, the rest of the sequence can be determined by either
manual sequencing or PEAKS. Given that PEAKS can report high-confidence sequence tags
with individual positional confidence scores [15], it is very useful to combine PEAKS and
PRESnovo together to sequence a peptide.

As a comparison, raw MS/MS data was also processed with PEAKS. The raw data were
directly loaded into PEAKS (PEAKS 7, Bioinformatics Solutions Inc., Waterloo, ON) for de
novo sequencing. The setting for PEAKS were as follows: mass error tolerances for both
precursor and fragments 0.5 Da for QTOF data and 0.02 Da for Orbitrap data, no enzyme
digestion, and pyro-glutamine (pQ), pyro-glutamic acid (pE), oxidation of methionine, and C-

terminal amidation as variable PTMs.

Results and Discussion

Performance of PRESnovo.

In order to evaluate the performance of PRESnovo, a standard mixture comprised of 15 peptides
was analyzed with LC-MS/MS on a Waters QTOF instrument. The data were processed with
both PRESnovo and PEAKS de novo sequencing to compare performance. As five predictions

were output from both software packages, it was important to differentiate which was the most
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suitable. The predicted sequences from each software were compared to the actual sequences of
the standards. Interestingly, in most cases, the first prediction was the best one in the PRESnovo
results. In the PEAKS results, this was not always the case, as other sequence predictions rather
than the first one were the best prediction for some peptides. Table 1 summarizes the results
obtained from PRESnovo and PEAKS. Five output sequences are provided from both software,
and the sequence matching the standard the closest is displayed. As shown, 11 out of 15 peptides
were predicted correctly by PRESnovo while only 1 was computed correctly by PEAKS with at
least six consecutively correct residues. The 11 peptides identified by PRESnovo produced
doubly-charged precursors leading to an almost even number of b and y ions, which facilitated
the detection of fragments associated with their motifs by PRESnovo. Two examples are shown
in Figure 4, from which it can be seen that almost all motif-related fragments were produced,
although some of them were at low intensities. Consequently, two motifs were confidently
assigned to the precursors, respectively. However, PEAKS lacks specificity for identification of
these endogenous peptides because PEAKS is originally designed for general use in bottom-up
proteomics where tryptic peptides are the main targets. With tryptic peptides, certain patterns
exist that inform the resulting de novo sequences obtained. As a result, PEAKS by itself is not
optimal for non-tryptic peptide prediction [15]. Because PRESnovo is designed to recognize
patterns specific to endogenous neuropeptides, it provides improved accuracy in sequencing
these signaling peptides when used in conjunction with PEAKS.

The 4 peptides not identified correctly by PRESnovo fall into two categories: AST-A
peptides (GDGRLYAFGLa and APSGAQRLYGFGLa) and disulfide bond bridging peptides
(PFCNAFTGCa and CYFQNCPRGa). AST-A peptides are generally ionized as singly charged

precursors which tend to produce predominantly N-terminal (primarily b-series) fragments.
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These fragments (a/b/c ions) dominate the MS/MS spectrum, as shown in Figure 5A. However,
the characteristic motif of AST-A peptides, YXFGLamide (X is a variable residue), is located at
the C-terminus, which causes the motif database to deduce y-series fragments from this motif. As
a result, the mismatch between the experimental b-series fragments and in silico y-series
fragments leads to misidentification of these peptides. Although this demonstrates a limitation of
PRESnovo’s predicting power, it is not difficult to manually sequence AST-A peptides with the
aid of PEAKS, given that most peptides belonging to this family have a simple pattern of b-ions
dominating fragmentation. Disulfide bond bridging peptides are prone to producing complicated
internal fragments that suppress the production of b/y ions (Figure 5B). As a result, not enough
motif-associated b/y ions are available for PRESnovo to determine the motif for the precursor.
While the inability to predict disulfide bond bridging peptide sequences is a limitation of
PRESnovo, the same is true across many de novo sequencing software. Disulfide bond bridging
peptides are relatively uncommon amongst neuropeptides, and only 4 possible sequences with a
characteristic motif are present in the crustacean neuropeptide database. Therefore, this

limitation is not expected to substantially impede the identification of crustacean neuropeptides.

The Factors Impacting on the Performance of PRESnovo.

The performance of PRESnovo is impacted mainly by the motif database being searched and the
quality of tandem MS spectra being queried. The construction of a motif database is crucial to
PRESnovo, as accurate, detailed compilation of motifs improves the likelihood of confident
identifications being made. A motif database consists of two parts: a string of amino acids
comprising each motif and its associated fragments. Motifs are generally collected from known

peptide sequences present in homologous species. There is a tradeoff between the number of

12



motifs incorporated in a motif database and the prediction power of PRESnovo. If too few motifs
are included such that all forms of a neuropeptide motif are not sufficiently represented, the
search may return results with low specificity or inaccurate identifications. Conversely, having
an excess number of motifs included in the database inflates the false positive rate and decreases
the sensitivity of the assignment [35].  In order to maximize the detection of neuropeptides in
tissue samples, a motif library containing at least 80 motifs is satisfactory, as indicated in Figure
Sla. To avoid these issues, only biologically-related species should be considered when
extracting motifs for a species of interest. For example, in this study, motifs were only extracted
from known peptide sequences in other crustacean species. If the interest is in peptide
identifications from a vertebrate species such as human or mouse, a vertebrate peptide motif
database can be created specifically for the species of interest that only includes those from
similar species. In this way, effort can be made to exclude interference from other motifs that are
not likely to be present in the species of interest. Another possible solution is to use long motifs,
which would reduce the likelihood of false positive prediction and would also simplify the
subsequent de novo sequencing. In silico fragments associated with motifs also impact on the
performance of PRESnovo. In our current motif database, only b and y series ions (i.e., b, y, and
neutral loss ions) are included for each motif while no a/c or x/z ions are considered. The reason
for this specification is that b and y ions are sufficient for determining a motif even though some
of them may have low abundance in some cases.

The quality of tandem MS spectra also has significant impact on the performance of
PRESnovo. Different from many automated de novo algorithms, PRESnovo can predict correct
motifs for relatively low-quality MS/MS spectra provided that enough motif-associated

fragments are present in the spectra. However, in the case of processing less informative spectra,
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if the experimental fragments associated with motif are insufficient or high-score fragments (i.e.
large fragments) are missed, PRESnovo will report low-confidence motifs, resulting in high false
negative rate for peptide prediction. On the other hand, if a tandem MS spectrum contains too
much noise and these interferences are not effectively removed, it will lead to the wrong motif
assignment and thus increase the false positive rate [36-38]. Therefore, an efficient and effective
preprocessing algorithm is needed to clean up tandem MS spectra. In this study we used
ProteinLynx (Waters Co.) to remove noise or background signals from QTOF data prior to
processing. ProteinLynx adopts Savitzky-Golay method to smooth the data and thus ensure
fewer interfering signals are contained in the final pkl data files. While the quality of MS/MS
spectra is important, the mass accuracy of MS/MS spectra does not appear to substantially
impact the performance of PRESnovo, as shown in Figure S1b, where the search was run with
alternating mass error tolerances and, except for very high mass errors (e.g. greater than 1,000

ppm), the results remained consistent.

Application of PRESnovo in conjunction with PEAKS to identify neuropeptides in C. maenas
and C. borealis.

While PRESnovo accurately predicts the sequence motif of a neuropeptide, its use in conjunction
with PEAKS de novo software enables improved detection of neuropeptides present in real
biological samples. An important characteristic of PEAKS is its ability to report the positional
confidence for each amino acid in the predicted sequence [11]. This feature can be used to
identify the rest of the sequence after PRESnovo predicts the motif. For instance, peptide
TNFAFSPRLa shown in Figure 2 was predicted with high confidence to possess the motif of

FSPRLa (score: 0.93) by PRESnovo. Meanwhile, PEAKS reports a confident N-terminal
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sequence tag TNFAFSP (as in Table 1) for the same peptide. By combining these two
predictions, one can easily determine the sequence with manual verification.

PRESnovo and PEAKS were employed collectively to identify neuropeptides in tissue samples
of green crab, C. maenas, and Jonah crab, C. borealis. These animals were chosen because they
are well-characterized model organisms whose nervous systems have been previously studied
using electrophysiology and immunohistochemistry [39-42]. However, while their dynamic
neural networks are well-understood, there is currently no fully-sequenced genome available for
either species, and so their neuropeptidomes are not yet fully characterized. Furthermore, with
the inherent difficulties associated with MS characterization of neuropeptides, even detecting
known neuropeptides remains challenging. To address these challenges and uncover more of the
neuropeptides underlying neural modulation in these organisms, PRESnovo was employed in
conjunction with PEAKS. First, PRESnovo was used to identify a motif for each precursor. The
motif score threshold was set to 0.60 to filter out low-scoring motif assignments and the
corresponding precursors. For high-score precursors, the PRESnovo results were compared to
their corresponding PEAKS predictions. Manual sequencing was then used to combine this
information and determine the final sequence for each precursor.

Brain extract from green crab was analyzed on a Waters QTOF instrument and pre-
processed with ProteinLynx prior to PRESnovo analysis. The resulting data included 77
neuropeptides, summarized in Table 2, of which 13 sequences are putative  neuropeptides that
have never before been identified in green crab [43]. Of the 13 novel sequences, 7 of them have
previously been identified in other invertebrate species, such as Callinectes sapidus and
Homarus americanus, and all were only identified with the assistance of PRESnovo. Both brain

and sinus gland tissue extracts from Jonah crab were analyzed on a Thermo Q Exactive Orbitrap
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instrument, and the raw files were converted to the open-source mzXML format. After analysis
with PRESnovo and PEAKS, 100 neuropeptides were identified in the brain sample, 77 of these
being putative novel neuropeptides never before identified in previous literature. The
repeatability across technical replicates and overlap between biological replicates from distinct
brain samples are shown in Figure S2. A total of 76 neuropeptides were identified in the sinus
glad extract, with 47 of these sequences being putative novel neuropeptides not previously
identified in any species. Table 3 summarizes the neuropeptides detected in Jonah crab that
match the crustacean database, while Table 4 lists the putative novel neuropeptides identified in
Jonah crab, 24 of which were only identified with the assistance of PRESnovo. Figures 6a and
6b show MS/MS spectra of novel neuropeptides identified in brain and sinus gland tissue,
respectively. Figures S3  -S5  show the MS/MS spectra of all novel neuropeptides
identified. As can be seen, PRESnovo predicted the characteristic sequence motif that led to the
full neuropeptide sequence shown. Figure 6¢ shows a neuropeptide identified that is present in
the crustacean database but was incorrectly assigned by PEAKS, demonstrating the improvement
in identification afforded by PRESnovo pre-screening. The originally-predicted sequence in
PEAKS scrambled the last three amino acids, but PRESnovo was able to assign them based on
mapping the fragment ions to a common sequence motif. This example demonstrates the
improved accuracy offered by combining PRESnovo with PEAKS for de novo sequencing, as
identifying fragment ions characteristic of neuropeptide sequence motifs increases the likelihood
of correct identifications.

Of the neuropeptides identified in the two species, the most common families were AST-
A, FMRFamide-related peptide (FaRP), RYamide, orcokinin, tachykinin, and pyrokinin. AST-A

and AST-B neuropeptides are distributed throughout the nervous and neuroendocrine system of
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crustaceans and have been found to be inhibitors of neuromodulation [44, 45]. Several novel
peptides belonging to these families were identified in both the brain and sinus glands, indicating
that these peptides may also exhibit inhibitory effects. FaRP neuropeptides have been found to
have a variety of functions within the nervous and neuroendocrine system, including as
autocrines, paracrines, and circulating hormones [46-48]. Therefore, it is expected that these
neuropeptides would be identified in both the sinus glands where they may be released as
circulating hormones and in the brain, where they may serve a more local function within the
neuropil . While there have not been many studies on the function of pyrokinins in
crustaceans, they were found to have an effect on the gastric mill [49]. As the brain sends
neuronal projection to innervate the stomach movement of the crab, pyrokinin neuropeptides
were mostly identified in the brain tissue and the putatively identified novel pyrokinin peptides
may also have a role in gastric activity. Tachykinin and orcokinin peptides are also more
prominent in the stomatogastric nervous system, with a variety of functions including hindgut
contractions [50-52]. In this study, putative novel tachykinin and orcokinin peptides were
identified in the brain that may also have a role in modulating some stomach activity.
Additionally, 3 tachykinin peptides were identified in the sinus gland, indicating that they may
have a different modulatory role. Putative novel RYamide neuropeptides were identified in the
brain and sinus glands as well. The biological activity of RYamides is not fully understood, but
they have been previously identified in neuroendocrine tissue and central neuropil, suggesting
functions both locally and as circulating hormones [53, 54].

Follow-up experiments will need to be performed in order to confirm the putative peptide
identifications and determine their biological activities. = However, these results demonstrate

the great potential PRESnovo has for both facilitating the discovery of novel neuropeptides and
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improving detection coverage of the crustacean neuropeptidome identified in analyses. This
application provided here indicates that PRESnovo can greatly improve the discovery of
neuropeptides across a variety of other species and indicates potential for improving
identification of other endogenous peptides across a variety of other sample types, provided that

commonly-shared sequence motifs exist.

Conclusions

In this work, a prescreening strategy, namely PRESnovo, was developed to improve the
accuracy, specificity and sensitivity of peptide identification. In conjunction with de novo
sequencing algorithms such as PEAKS, this method is powerful for identification of highly
conserved peptides such as neuropeptides. The strategy we proposed in this manuscript can be
easily extended to other species of interest, provided that a well-constructed motif database is
obtained. Future directions may include incorporation of more sophisticated algorithms for
sequencing disulfide bond bridging peptides and peptides with motifs that are difficult to detect,
such as AST-A. The software and motif database used in this work can be freely downloaded via

the following link: https://www.lilabs.org/resources.

Abbreviations:
AKH/RPCH: Adipokinetic hormone/red pigment concentrating hormone; AST-A: Allatostatin
A; AST-B: Allatostatin B; AVP: Arginine vasopressin; CCAP: Crustacean cardioactive peptide;

FalLP: FMRFamide-related peptide
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Figure Legends

Figure 1. The diagram illustrates the construction of a motif database. Three resources including
public databases (e.g. NCBI), previous publications and the neuropeptide discoveries by our lab
are used to generate a collection of crustacean neuropeptides which are clustered into families
according to their conserved motifs. Then each family of neuropeptides are aligned with

WebLogo (version 3.0, http://weblogo.threeplusone.com/) to extract detailed motifs followed by

in silico fragmentation of these extracted motifs with MS-product

(http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msproduct). Finally, the motif

and the corresponding b- or y- series fragments are compiled into a motif database.

Figure 2. The distribution of motifs according to their families. The number represents the total

number of motifs associated with each family.

Figure 3. The schematic representation of motif assignment. The experimental fragments
associated with the precursor (in .pkl file) are searched against a predefined motif database in
which each motif contains y-series ions (y, y-NH3, y-H20) or b-series ions (b, b-NHs, -H20). The
scores from the matched experimental and theoretical fragments (S1, S2, S3, S4) are used to
calculate the overall score for motif assignment as shown in Output file. The motif with the

highest score is assigned to the precursor.
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Figure 4. The representative tandem MS spectra and PRESnovo output. A) MS/MS spectrum of
TNFAFSPRLa. PRESnovo found four motif-associated fragments (y2, y3, y4 and y5) and then
assigned C-terminal motif of FSPRLa to this precursor; B) MS/MS spectrum of
NFDEIDRSGFGFN. PRESnovo found six motif-associated fragments (b2, b3, b4, b5, b6 and

b7) and then assigned N-terminal motif of NFDEIDR to this precursor.

Figure 5. PRESnovo fails to interpret tandem MS spectra of AST-A peptide and disulfide bond
bridging peptide. A) a/b/c ions dominate in MS/MS spectrum of GDGRLYAFGLa; B)

incomplete motif-associated fragments in MS/MS spectrum of CYFQNCPRGa.

Figure 6. MS/MS spectra of putative novel neuropeptides detected in (A) brain and (B) sinus
gland of Jonah crab, C. borealis, as well as a neuropeptide matching the crustacean neuropeptide
database that PEAKS failed to assign correctly. In all 3 cases, PRESnovo was able to identify

fragment ions indicative of common motifs.
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Table 1. The identified peptide standards by PRESnovo and PEAKS 7, with the displayed

sequence being the output from each software that most closely matches the correct sequence.

Family Mass Real Sequence PRESnovo PEAKS 7

(Motif)
CCAP 955.37 PFCNAFTGCa FIRFa MCSAAGACAAT
RYamide 975.44 SGFYANRYa FYANRYa GRNTAAGGGDT
Pyrokinin 1036.53  SGGFAFSPRLa FSPRLa SGGFAFM(O)AFFFGT
Pyrokinin 1050.55  TNFAFSPRLa FSPRLa GSFAFSPVGla
AST-A 1066.54  GDGRLYAFGLa FGPRLa TGGAQPEQLPAa
AVP 1083.44  CYFQNCPRGa NSELINSILG M(O)SQEPAAHM(O)Ga
FLP 1104.57  GAHKNYLRF NYLRFa HQGAGGVPMRPa
AST-B 1106.50  QWSSMRGAWa WSSMRGAWa  TGRSSGAAAGADS
AST-B 1259.64  SGKWSNLRGAWa WSNLRGAWa QCARSVAGGSASAPa
Angiotension 1281.65 DRVYVHPFHL DRVYVHPF SAGPVEGGDLMLH
AST-A 133470  APSGAQRLYGFGLa  pQVNFSPNWa APSGATCSSMGVGVLa
AST-B 1469.68  VPNDWAHFRGSWa  WAHFRGSWa VMDLGSAGSGNGMQM(O)
Orcokinin 1472.66 ~ NFDEIDRSGFGFAa NFDEIDR NFDELDAGSGSFGGT
Orcokinin 1473.64  NFDEIDRSGFGFA NFDEIDR CTGDELDAGPGGAPGGT
Orcokinin 1516.65  NFDEIDRSGFGFN NFDEIDR GCTDENNNM(O)EGGCGT

*the bold font type refers to the correct identifications. a: amide. The underlined residues are the
correctly identified by PEAKS 7. 11 were identified by PRESnovo while 1 by PEAKS 7
(NFDEIDRSGFGFAa, based on criteria of six consecutively correct residues)
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Table 2. Identified neuropeptides in brain tissue of green crab, C. maenas

Family Mass Sequence
AST-A 768.38 EAYAGFLa
AST-A 779.39 NPYAFGLa
AST-A 779.39 GGPYAFGLa
AST-A 780.38 DPYAFGLa
AST-A 793.41 AGPYAFGLa
AST-A 794.39 EPYAFGLa
AST-A 807.43 AAPYAFGLa
AST-A 809.40 AGPYSFGLa
AST-A 823.42 ASPYAFGLa
AST-A 850.47 GKPYAFGLa
AST-A 852.40 EPYEFGLa
AST-A 878.47 RGPYAFGLa
AST-A 896.44 FSGASPYGLa
AST-A 908.48 ARPYSFGLa
AST-A 924.50 LKAYDFGLa
AST-A 925.46 ATGQYAFGLa
AST-A 938.49 TRPYSFGLa
AST-A 922.52 KLPYSFGLa
AST-B 1106.57 QWSSMRGAWa
AST-B 1259.70 SGKWSNLRGAWa
AST-B 1292.62 STNWSSLRSAWa
AST-B 1469.69 VPNDWAHFRGSWa
CCAP 956.38 PFCNAFTGCa
FaRPs 734.40 GPFLRFa
FaRPs 850.49 RNFLRFa
FaRPs 886.55 PSLRLRFa
FaRPs 904.50 PSMRLRFa
FaRPs 920.50 PSM(O)RLRFa
FaRPs 937.52 NRSFLRFa
FaRPs 953.52 SRNYLRFa
FaRPs 964.53 NRNFLRFa
FaRPs 965.52 DRNFLRFa
FaRPs 976.51 PQGNFLRFa
FaRPs 1021.55 GNRNFLRFa
FaRPs 1022.53 GDRNFLRFa
FaRPs 1047.56 APQGNFLRFa
FaRPs 1103.60 GAHKNFLRFa
FaRPs 1104.62 SMPSLRLRFa

27



FaRPs
FaRPs
FaRPs
FaRPs
FaRPs
FaRPs
FaRPs
FaRPs
FaRPs
Orcokinin
Orcokinin
Orcokinin
Orcokinin
Orcokinin
Orcokinin
Orcokinin
Orcokinin
Orcokinin
Orcomyotropin
Others
Others
Others
PDH
Pyrokinin
Pyrokinin
Pyrokinin
RPCH
SIFamide
SIFamide
Tachykinin
Tachykinin
Tachykinin
Tachykinin
Tachykinin
Tachykinin
Tachykinin
Tachykinin
Tachykinin
Tachykinin

1123.62
1136.58
1157.61
1207.62
1270.64
1270.67
1287.67
1288.62
1313.77
936.42
1197.54
1227.55
1255.54
1269.55
1285.55
1299.57
1473.65
1546.67
1185.51
843.47
915.53
1371.78
1926.01
877.51
1023.55
1108.56
929.43
1160.64
1380.73
765.39
862.45
878.44
933.48
934.46
949.48
963.49
979.49
991.49
1007.48

GLSRNYLRFa
DGNRNFLRFa
YGNRSFLRFa
DQNRNFLRFa
pQDLDHVFLRFa
PELDHVFLRFa
QDLDHVFLRFa
QDNDHVFLRFa
DARTAPLRLRFa
DEIDRSGFa
NFDEIDRSGFa
NFDEIDRSSFa
NFDEIDRSGFG
NFDEIDRSGFA
NFDEIDRSSFG
NFDEIDRSSFA
NFDEIDRSGFGFA
NFDEIDRSSFGFN
FDAFTTGFGHS
HIGSLYRa
KIFEPLVA
KIFEPLRDKNL

NSELINSLLGIPKVMNDAa

LYFAPRLa
TSFAFSPRLa
TDGFAFSPRLa
pQLNFSPGWa
RKPPFNGSIFa
GYRKPPFNGSIFa
SGFLGMRa
PSGFLGMRa
PSGFLGM(O)Ra
APSGFLGMRa
APSGFLGMR
APSGFLGM(O)Ra
TPSGFLGMRa
TPSGFLGM(O)Ra
APSGFLGMRG
APSGFLGM(O)RG

*Red color represents novel neuropeptides identified in green crab. “a” indicates C-terminal

amidation. “p” indicates pyroglutamate Gln. “O” stands for oxidation of Met.
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Table 3. Identified neuropeptides matching to the database in brain and sinus gland tissue of

Jonah crab, C. borealis

Family Mass Sequence Tissue
AST-B 1106.5081 AGWSSMRGAWa Brain, SG
AST-B 1106.5081 QWSSMRGAWa Brain, SG
AST-B 1292.6262 STNWSSLRSAWa Brain, SG
Corazonin 1368.6211 pQTFQYSRGWTNa Brain
FaRP 1146.6411 APQRNFLRFa SG

FaRP 965.5195 DRNFLRFa Brain, SG
FaRP 961.5246 ERNFLRFa Brain
FaRP 1103.5989 GAHKNYLRFa SG

FaRP 1021.5569 GNRNFLRFa Brain, SG
FaRP 1145.5981 GYSKNYLRFa Brain, SG
FaRP 816.4758 HVFLRFa Brain
FaRP 1103.6353 KHKNYLRFa Brain
FaRP 694.3915 NFLRFa Brain, SG
FaRP 964.5355 NRNFLRFa Brain, SG
FaRP 1270.6458 pQDLDHVFLRFa Brain, SG
FaRP 1287.6724 QDLDHVFLRFa Brain, SG
FaRP 850.4926 RNFLRFa Brain
FaRP 1180.6101 SENRNFLRFa Brain, SG
Proctolin 648.3595 RYLPT SG
Pyrokinin 835.4704 FAFSPRLa Brain
Pyrokinin 877.5174 LYFAPRLa Brain, SG
Pyrokinin 1036.5454 SGGFAFSPRLa SG
Pyrokinin 1050.561 TNFAFSPRLa Brain
Ryamide 1029.4668 EGFYSQRYa SG
RYamide 783.4028 FVGGSRYa SG
RYamide 861.4133 FYSQRYa SG
RYamide 1113.5679 RSSFVGGSRYa SG
RYamide 975.4562 SGFYANRYa Brain, SG
Ryamide 1113.5679 SSRFVGGSRYa SG
Tachykinin 933.4854 APSGFLGMRa Brain, SG
Tachykinin 621.3421 FLGMRa SG
Tachykinin 765.3956 SGFLGMRa Brain, SG
Tachykinin 963.496 TPSGFLGMRa Brain, SG

[P 4) 66 9

a” represents C-terminal amidation. “p” means pyroglutamate Gln or Glu. “SG” indicates sinus
gland.
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Table 4. Identified putative novel neuropeptides in the brain and sinus gland tissue of Jonah

crab, C. borealis

Family Mass Sequence Tissue
AST-A 1065.55 APTDLYAFGLa Brain
AST-A 1065.55 PATDLYAFGLa Brain
AST-A 983.4824 QRDYSFGLa Brain
AST-A 939.4926 RQAYSFGLa SG
AST-B 1259.652 KGSWSNLRGAWa Brain
AST-B 1292.608 MGNWSSLRSAWa Brain
FaRP 964.5242 AAQNFLRFa SG

FaRP 1103.599 AGHKNYLRFa SG

FaRP 1146.641 APAGRNFLRFa Brain
FaRP 1146.641 APGARNFLRFa Brain, SG
FaRP 1146.641 APGRANFLRFa Brain, SG
FaRP 1006.535 APGSNFLRFa Brain
FaRP 976.5242 APNNFLRFa Brain
FaRP 1267.624 CAENRNFLRFa Brain
FaRP 1267.607 CCPGGRNFLRFa Brain
FaRP 1267.607 CCPNRNFLRFa Brain
FaRP 1324.646 DGMGNRNFLRFa Brain
FaRP 1270.639 DHVCHVFLRFa SG

FaRP 1394.567 DSGPDDYGHMRFa SG

FaRP 1394.567 DSPGDDYGHMRFa Brain
FaRP 1180.61 DTNRNFLRFa SG

FaRP 1394.567 pEGTSDDYGHMRFa SG

FaRP 1267.624 EACNRNFLRFa Brain
FaRP 1222.621 EERNNFLRFa Brain
FaRP 1532.762 EESAEVPPNFLRFa Brain
FaRP 1022.53 EGAANFLRFa Brain
FaRP 1233.589 EQANDNFLRFa Brain
FaRP 1769.896 EQQPHAGLSAGNFLRFa Brain
FaRP 1180.61 ESNRNFLRFa SG

FaRP 1180.61 ESRNNFLRFa Brain, SG
FaRP 1324.664 ESSNGRNFLRFa Brain
FaRP 1032.598 FALAGRPRFa Brain
FaRP 1180.614 FGAPNNFLRFa Brain
FaRP 1103.599 HAGKNYLRFa Brain, SG
FaRP 1270.639 HDVCHVFLRFa Brain
FaRP 1146.594 HEVSNFLRFa Brain
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FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP
FaRP

1249.647
1248.663
1146.594
1532.832
1146.666
1498.746
1146.666
966.5399
1103.599
1103.599
1146.666
1146.678
1248.709
1146.678
1305.749
1145.598
1333.737
1145.598
1146.666
1333.737
1021.553
976.5242
992.5192
1544.748
1146.641
976.5242
1006.535
1146.605
1222.625
1551.78

1103.599
1180.599
1333.737
1146.641
1248.695
1146.641
965.5195
964.5355
1021.557
1180.61

1180.61

HFDRNFLRFa
HFNRNFLRFa
HSDLNFLRFa
KAAPSNRNNFLRFa
KAPRNFLRFa
KCSTDGRGNFLRFa
KGAPVNFLRFa
KGSNFLRFa
KHAGNYLRFa
KHQNYLRFa
KLPNNFLRFa
KPARNFLRFa
KQQLGNFLRFa
KRAPNFLRFa
KRMVPNFLRFa
KSGYNYLRFa
KSPNGRNFLRFa
KSYGNYLRFa
KVPQNFLRFa
LQAGNRNFLRFa
MVPNFLRFa
NPANFLRFa
NSPNFLRFa
NSYSERNNFLRFa
PAGARNFLRFa
PAGGNFLRFa
PNTNFLRFa
pQGQRNFLRFa
pPQQAAFNFLRFa
PVMEMRNNFLRFa
QHKNYLRFa
QKDDNFLRFa
QLAGNRNFLRFa
QPARNFLRFa
QRNRNFLRFa
RAGAPNFLRFa
RDNFLRFa
RGGNFLRFa
RGNNFLRFa
RNDTNFLRFa
RNESNFLRFa

Brain
Brain
Brain
Brain

SG

Brain

SG

Brain

SG

SG

Brain

SG

Brain

SG

Brain
Brain, SG
Brain

SG

SG

Brain
Brain
Brain
Brain
Brain

SG

Brain
Brain

SG

Brain
Brain
Brain, SG
Brain
Brain

SG

Brain

SG
Brain, SG
Brain, SG
SG

Brain
Brain, SG
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FaRP 1021.557 RNGNFLRFa Brain, SG

FaRP 964.5355 RNNFLRFa Brain, SG
FaRP 1180.61  RNSENFLRFa SG
FaRP 3692.954 RPGQLLLAEASSWLPTQQEGTKRGYSKNYLRFa Brain
FaRP 1248.695 RQNRNFLRFa Brain
FaRP 1276.679 SAGPNRNFLRFa Brain
FaRP 1219.658 SAPNRNFLRFa Brain
FaRP 1394.567 SDGPDDYGHMRFa Brain
FaRP 1180.61  SERNNFLRFa SG
FaRP 1483.71  STDEPYPNFLRFa Brain
FaRP 1180.599 STPNSNFLRFa SG
FaRP 1180.61  TDRNNFLRFa SG
FaRP 1180.635 TSAQVNFLRFa SG
FaRP 1544.729 TSDELTTCNFLRFa Brain
FaRP 1180.599 TSPNSNFLRFa SG
FaRP 1180.599 TSSNPNFLRFa SG
FaRP 1532.836 VPGFAPNRNFLRFa Brain
FaRP 1004.523 ' YFNFLRFa Brain
FaRP 1145.598 YGSKNYLRFa SG
Pyrokinin 2380.269 FNGPKPLAKYVDTNFAFSPRLa Brain
Pyrokinin 2379.252 FNPGKLPKSQMTTNFAFSPRLa Brain
Pyrokinin 1036.545 GSGFAFSPRLa Brain
Pyrokinin 1050.561 QSFAFSPRLa Brain, SG
RYamide 1029.467 pEGFYSQRYa SG
RYamide 975.4562 GSFYANRYa Brain, SG
RYamide 1029.467 pQGFYSQRYa Brain
RYamide 2133.035 SADRTQLTERSGFYANRYa Brain
RYamide 1113.568 SRSFVGGSRYa SG
RYamide 2133.035 TGARDGTLTERSGFYANRYa Brain
Tachykinin ~ 1143.622 APPLSGFLGMRa SG
Tachykinin  1175.623 KNAPSGFLGMRa Brain
Tachykinin ~ 1145.613 KSAHTFLGMRa SG
Tachykinin ~ 1145.576 KSDHGFLGMRa SG
Tachykinin = 1253.547 NCCAPSGFLGMRa Brain

[P 4) 66 9

a” represents C-terminal amidation. “p” means pyroglutamate Gln or Glu. “SG” indicates sinus
gland.
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Figure 1. The diagram illustrates the construction of a motif database. Three resources including
public databases (e.g. NCBI), previous publications and the neuropeptides discovered by our lab
are used to generate a collection of crustacean neuropeptides which are clustered into families
according to their conserved motifs. Then each family of neuropeptides are aligned with

WebLogo (version 3.0, http://weblogo.threeplusone.com/) to extract detailed motifs followed by

in silico fragmentation of these extracted motifs with MS-product

(http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msproduct). Finally, the motif

and the corresponding b- or y- series fragments are compiled into a motif database.
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ETH, 1

Enkephalin, 1 FMRFamide, 11

Corazonin, 1 HIGSLYRa, 1
CAPA-like, 2 Insect kinin, 1
Caeridin, 2 RYamide, 4
Bombesin, 3 ..
Pyrokinin, 7 SIFamide, 1
AST-C, 2 Other, 30
AST-B, 7 ..
Tachykinin-related
Proctolin, 1 peptide, 8
AST-A, 6
. Orcokinin, 1
Arg_vasopressin, 2
Angiotensinogen, 5 Pigment dispersing Orcomyotropin, 1
hormone, 2
Allatotropin, 1~ ADH/RPCH, 11 Periviscerokinin, 5

Figure 2. The distribution of motifs according to their families. The number represents the total

number of motifs associated with each family.
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384.2452 0.60
287.2190 0.40
2)...

This is the assigned
motif for precursor
526.2756, score is 0.93

Figure 3. The schematic representation of motif assignment. The experimental fragments

associated with the precursor (in .pkl file) are searched against a predefined motif database in

which each motif contains y-series ions (y, y-NHs, y-H20) or b-series ions (b, b-NHs, b-H20).

The scores from the matched experimental and theoretical fragments (S1, S2, S3, S4) are used to

calculate the overall score for motif assignment as shown in Output file. The motif with the

highest score is assigned to the precursor.
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Figure 4. The representative tandem MS spectra and PRESnovo output. A) MS/MS spectrum of

TNFAFSPRLa. PRESnovo found four motif-associated fragments (y2, y3, y4 and y5) and then

assigned C-terminal motif of FSPRLa to this precursor; B) MS/MS spectrum of

NFDEIDRSGFGFN. PRESnovo found six motif-associated fragments (b2, b3, b4, b5, b6 and

b7) and then assigned N-terminal motif of NFDEIDR to this precursor.
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Figure 5. PRESnovo fails to interpret tandem MS spectra of AST-A peptide and disulfide bond
bridging peptide. A) a/b/c ions dominate in MS/MS spectrum of GDGRLYAFGLa; B)

incomplete motif-associated fragments in MS/MS spectrum of CYFQNCPRGa.
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Figure 6. MS/MS spectra of putative novel neuropeptides detected in (A) brain and (B) sinus
gland of Jonah crab, C.borealis, as well as a neuropeptide matching the crustacean neuropeptide
database that PEAKS failed to assign correctly. In all 3 cases, PRESnovo was able to identify

fragment ions indicative of common motifs.
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	Abstract
	Identification of peptides in species lacking fully-sequenced genomes is challenging due to the lack of prior knowledge. De novo sequencing is the method of choice, but its performance is less than satisfactory due to algorithmic bias and interference...
	Introduction
	With the advancement of high-throughput mass spectrometry (MS), shotgun proteomics has been employed as the major tool for performing large-scale analysis of biological samples. With current MS instruments and workflows, thousands of MS and MS/MS spec...
	For those species without a fully-sequenced genome, no protein database is available, and so de novo sequencing is the main approach employed for peptide identification. With de novo sequencing, peptide sequences are derived from the masses of their f...
	One example of a group of species without a complete genome is crustaceans, which are important model organisms for studying dynamic neural networks and neuromodulation. Neuropeptides, or short endogenous peptides involved in neuronal signaling, are a...
	Methods
	Construction of Motif Database.
	A motif database is required to run PRESnovo. Here, motif refers to a representation of the similarity of different sequences in the same peptide family. For accurate results, it is recommended that all possible motifs for the peptides of interest are...
	The PRESnovo method works by mapping tandem MS spectra onto a home-built motif database in order to find the best suitable motif for each precursor. The practical implementation is to compare the experimental fragments associated with a precursor to t...
	We used these extracted motifs and the associated theoretical fragments to construct our motif database (see supplemental file) in which 87 motifs covering 25 families were compiled for crustacean neuropeptides (2 families of 7 mammalian neuropeptides...
	Scoring Function and Motif Assignment.
	Accurately assigning a motif to a given precursor is crucial. A well-defined scoring function can ensure the unbiased assignment of a motif in most cases. As such, a score is needed to evaluate the comparison between experimental and theoretical fragm...
	is the score for motif M（）assigned to a precursor（）,  is the sum of the scores of all matched experimental fragments while  is the sum of the scores of all theoretical fragments. In our motif database, the scores of fragments were calculated in advanc...
	The workflow for using PRESnovo to assign the best matched motif to a given precursor is shown in Figure 3. The user-defined mass error tolerance was set to 0.5 Da for QTOF data and 0.02 Da for Orbitrap data for both precursor and fragments. The exper...
	NanoLC-ESI-QTOF Analysis for Peptide Standards and Tissue Sample.
	A peptide standard mixture containing 15 neuropeptides (Supplemental Table S1) was subjected to nano-LC-ESI-QTOF (Waters Corp., Milford, MA) and the resulting MS data were used to test the performance of PRESnovo. Furthermore, PRESnovo was used for re...
	De novo Sequencing with the Aid of PRESnovo.
	The resulting pkl and mzXML files were used as input to PRESnovo. The current version of PRESnovo supports pkl and mzXML formats. Parsing of mzXML data was performed with jmzReader [34]. Other data formats need to be converted into one of these two fo...
	As a comparison, raw MS/MS data was also processed with PEAKS. The raw data were directly loaded into PEAKS (PEAKS 7, Bioinformatics Solutions Inc., Waterloo, ON) for de novo sequencing. The setting for PEAKS were as follows: mass error tolerances for...
	Results and Discussion
	Performance of PRESnovo.
	In order to evaluate the performance of PRESnovo, a standard mixture comprised of 15 peptides was analyzed with LC-MS/MS on a Waters QTOF instrument. The data were processed with both PRESnovo and PEAKS de novo sequencing to compare performance. As fi...
	The 4 peptides not identified correctly by PRESnovo fall into two categories: AST-A peptides (GDGRLYAFGLa and APSGAQRLYGFGLa) and disulfide bond bridging peptides (PFCNAFTGCa and CYFQNCPRGa). AST-A peptides are generally ionized as singly charged prec...
	The Factors Impacting on the Performance of PRESnovo.
	The performance of PRESnovo is impacted mainly by the motif database being searched and the quality of tandem MS spectra being queried. The construction of a motif database is crucial to PRESnovo, as accurate, detailed compilation of motifs improves t...
	The quality of tandem MS spectra also has significant impact on the performance of PRESnovo. Different from many automated de novo algorithms, PRESnovo can predict correct motifs for relatively low-quality MS/MS spectra provided that enough motif-asso...
	Application of PRESnovo in conjunction with PEAKS to identify neuropeptides in C. maenas and C. borealis.
	While PRESnovo accurately predicts the sequence motif of a neuropeptide, its use in conjunction with PEAKS de novo software enables improved detection of neuropeptides present in real biological samples. An important characteristic of PEAKS is its abi...
	PRESnovo and PEAKS were employed collectively to identify neuropeptides in tissue samples of green crab, C. maenas, and Jonah crab, C. borealis. These animals were chosen because they are well-characterized model organisms whose nervous systems have b...
	Brain extract from green crab was analyzed on a Waters QTOF instrument and pre-processed with ProteinLynx prior to PRESnovo analysis. The resulting data included 77 neuropeptides, summarized in Table 2, of which 13 sequences are putative      neuropep...
	Of the neuropeptides identified in the two species, the most common families were AST-A, FMRFamide-related peptide (FaRP), RYamide, orcokinin, tachykinin, and pyrokinin. AST-A and AST-B neuropeptides are distributed throughout the nervous and neuroend...
	Follow-up experiments will need to be performed in order to confirm the putative peptide identifications and determine their biological activities.      However, these results demonstrate the great potential PRESnovo has for both facilitating the disc...
	Conclusions
	In this work, a prescreening strategy, namely PRESnovo, was developed to improve the accuracy, specificity and sensitivity of peptide identification. In conjunction with de novo sequencing algorithms such as PEAKS, this method is powerful for identifi...
	Abbreviations:
	AKH/RPCH: Adipokinetic hormone/red pigment concentrating hormone; AST-A: Allatostatin A; AST-B: Allatostatin B; AVP: Arginine vasopressin; CCAP: Crustacean cardioactive peptide; FaLP: FMRFamide-related peptide
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