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Abstract 

Identification of peptides in species lacking fully-sequenced genomes is challenging due to the 

lack of prior knowledge. De novo sequencing is the method of choice, but its performance is less 

than satisfactory due to algorithmic bias and interference in complex MS/MS spectra. The task 

becomes even more challenging for endogenous peptides that do not involve an enzymatic 

digestion step, such as neuropeptides. However, many neuropeptides possess common sequence 

motifs that are conserved across members of the same family. Taking advantage of this feature to 

improve de novo sequencing of neuropeptides, we have developed a method named PRESnovo 

(prescreening precursors prior to de novo sequencing) to predict the motif from a MS/MS 

spectrum. A neuropeptide sequence is broken into a motif with conserved amino acid residues 

and the remaining partial sequence. By searching against a predefined motif database constructed 

from known homologous sequences, PRESnovo assigns the most probable motif to each 

precursor via a sophisticated scoring function. Performance analysis was conducted with 15 

neuropeptide standards, and 11 neuropeptides were correctly identified with PRESnovo 

compared to 1 identification by PEAKS only. We applied PRESnovo to assign motifs to peptide 

sequences in conjunction with PEAKS for assigning the rest of the peptide sequence in order to 

discover neuropeptides in tissue samples of green crab, C. maenas, and Jonah crab, C. borealis. 

Collectively, a large number of neuropeptides were identified, including 13 putative      

neuropeptides identified in green crab brain, 77 in Jonah crab brain, and 47 in Jonah crab sinus 

glands for the first time. This PRESnovo strategy greatly simplifies de novo sequencing and 

enhances the accuracy and sensitivity of neuropeptide      identification when common motifs are 

present.      
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Introduction 

With the advancement of high-throughput mass spectrometry (MS), shotgun proteomics has been 

employed as the major tool for performing large-scale analysis of biological samples. With 

current MS instruments and workflows, thousands of MS and MS/MS spectra are produced from 

a single analysis [1-3]. With the large numbers of spectra being generated, traditional manual 

analysis is no longer feasible, and numerous data analysis strategies have been developed to 

identify proteins from the high volume of MS/MS spectra. The methods of choice for annotating 

these spectra mainly include spectral matching, database searching, and de novo sequencing. 

Spectral matching can be performed with a variety of software platforms, including SpectraST 

[4], X1Hunter [5], and Bibliospec [6]. However, this method of analysis requires the generation 

of spectral libraries, which can be time consuming and costly. Database searching employs 

search engines such as Mascot, SEQUEST, OMSSA, MSFragger and X!Tandem [7-11] to 

interpret tandem MS spectra by scoring the similarities between the experimental and theoretical 

spectra generated through in silico prediction. The matches are then ranked such that the match 

with the highest score is the best predicted peptide spectrum match. While this method has 

proven to be highly effective for large-scale identifications, it requires prior knowledge of the 

sequences of peptides in the sample, typically through the use of genomic data. This limits its 

applicability to organisms with a fully-sequenced genome.  

For those species without a fully-sequenced genome, no protein database is available, and 

so de novo sequencing is the main approach employed for peptide identification. With de novo 

sequencing, peptide sequences are derived from the masses of their fragment ions as shown in a 

MS/MS spectrum. When performing de novo sequencing, no protein sequence database is used 
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for reference, and so no prior knowledge is required of peptides in the sample. A number of 

algorithms and software packages have been developed recently for de novo peptide sequencing 

[12-15]. Most software use “spectral graph” or "probabilistic model" to interpret MS/MS spectra. 

A spectral graph is constructed from a MS/MS spectrum in which nodes represent fragment 

peaks and two nodes are connected by an edge if the mass difference between these two nodes 

matches a known amino acid residue. The algorithm tries to find t     he longest possible path of 

connected edges from the N-terminus to the C-terminus in order to determine the combination of 

amino acids that best represents the peptide sequence.      However, any incompleteness of 

fragmentation can cause gaps which disconnect the longest path from N- to C-termini. In some 

cases, the longest path fails to represent the correct sequence or partial sequences due to 

interfering fragments. Instead of constructing spectral graphs, some algorithms such as PEAKS 

[15] compute peptide sequences among all possible amino acid combinations and then map these 

sequences directly onto each MS/MS spectrum to find the best sequence match, which improves 

the likelihood of a correct sequence assignment despite interfering ions. While this method is 

more computationally expensive, dynamic programming is always employed to increase the 

computing efficiency. As a result, this method has been employed successfully for numerous de 

novo sequencing methods. However, in comparison to the database search strategy, the accuracy 

and sensitivity of de novo sequencing are far less satisfactory [16]. The combination of database 

searching and de novo sequencing to some extent improves the accuracy of prediction [16, 17]. 

Although these hybrid methods enhance peptide prediction, they require protein databases 

available for the species of interest. For species without available genomes, improving peptide 

identification remains an unmet challenge.  



 

5 

One example of a group of species without a complete genome is crustaceans, which are 

important model organisms for studying dynamic neural networks and neuromodulation. 

Neuropeptides, or short endogenous peptides involved in neuronal signaling, are an important 

class of molecules related to this system. Much effort has been placed on characterizing the 

neuropeptides involved in these signaling pathways with MS [18-24] and in silico prediction 

[25]. However, this class of molecules is particularly challenging to study because their 

workflow does not involve a digestion step [26]. With tryptic digests from proteins, the search 

space is able to be reduced based on how trypsin digests the proteins with well-defined amino 

acid residue at the carboxyl-end of resulting tryptic peptides. With neuropeptides, no enzymatic 

digestion parameters can be used to reduce the search space. However, highly-conserved peptide 

sequences like neuropeptides share conserved motifs, which can aid de novo sequencing. Herein, 

we focus on interpreting a part of a tandem MS spectrum to extract the conserved sequence motif 

instead of sequencing the entire MS/MS fragmentation spectrum. The determination of a motif 

will simplify de novo sequencing of the rest of the sequence and increase the accuracy of peptide 

identification. In order to determine the neuropeptide sequence motif, a database search method 

is employed similar to commonly-used methods previously described.      First, motifs are 

derived from known peptide sequences from homologous species. Second, theoretical in silico 

fragmentation is performed for these motifs. The resulting b- and y- ions as well as their neutral 

loss fragments together with the corresponding motif are used to construct a motif database. This 

database is then searched by inputting experimental fragments to find the best matched motif for 

each precursor. A sophisticated scoring function, based on the sum of ratios of lengths of 

fragments to total motif lengths, ensures the correct assignment of motif to a given precursor. 

This strategy, named PRESnovo, simplifies the subsequent de novo sequencing step and 
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increases the accuracy and sensitivity of peptide identifications by performing a preprocessing 

function prior to de novo sequencing.  

 

Methods 

Construction of Motif Database.  

A motif database is required to run PRESnovo. Here, motif refers to a representation of the 

similarity of different sequences in the same peptide family. For accurate results, it is 

recommended that all possible motifs for the peptides of interest are included. In this study, 

previously known neuropeptides from invertebrate species, mainly crustaceans, were collected 

from public databases including Uniprot knowledgebase and publications [25, 27-29]. In order to 

estimate the false positive rate,      some vertebrate motifs were also included as decoy motifs 

because these motifs were not observed in crustacean neuropeptides     . As the targeted 

neuropeptide sequences in most cases contain fewer than 20 amino acid residues, longer 

sequences such as proteins or receptors were excluded from the list. Figure 1 shows how a motif 

database is constructed.      The known neuropeptides collected from the various sources were 

clustered according to their family names followed by a multiple alignment procedure with 

ClustALW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) for each family. Afterwards, the most 

aligned region was truncated to extract motifs with WebLogo3 

(http://weblogo.threeplusone.com/). Longer peptides whose motifs were not easily determined 

were removed from the list, such as Bursicon, crustacean hyperglycemic hormone (CHH), molt 

inhibiting hormone (MIH), etc. When using WebLogo3, multiple motifs were adopted to 

represent each family. For example, all 5 C-terminal motifs, YAFGL, YDFGL, YNFGL, 

YEFGL, and YSFGL, were used to represent allatostatin A-type (AST-A) peptides.  

http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://weblogo.threeplusone.com/
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The PRESnovo method works by mapping tandem MS spectra onto a home-built motif database 

in order to find the best suitable motif for each precursor. The practical implementation is to 

compare the experimental fragments associated with a precursor to those theoretical fragments 

associated with a motif. Therefore, a list of theoretical fragments must be created for each motif. 

The extracted motifs were in silico fragmented by MS-Product 

(http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msproduct), and the resulting b 

ion set (including b ions and neutral losses, b- H2O and b-NH3) were adopted as the theoretical 

fragments for N-terminal motifs while y ion set (including y ions and neutral losses, y- H2O and 

y-NH3) were adopted as the theoretical fragments for C-terminal motif. Post-translational 

modifications (PTM) were also included when fragmenting these motifs. For example, for motif 

YXFGLamide, C-terminal amidation was considered for the production of theoretical fragments. 

These were selected based on common PTMs observed for neuropeptide families [27, 30]. 

We used these extracted motifs and the associated theoretical fragments to construct our motif 

database (see supplemental file) in which 87 motifs covering 25 families were compiled for 

crustacean neuropeptides (2 families of 7 mammalian neuropeptides (Angiotensinogen (5) and 

Arg_vasopressin (2) were also included for test only, to be used as decoys to assess the false 

positive rate). The distribution of the motifs is shown in Figure 2.  

Scoring Function and Motif Assignment.   

Accurately assigning a motif to a given precursor is crucial. A well-defined scoring function can 

ensure the unbiased assignment of a motif in most cases. As such, a score is needed to evaluate 

the comparison between experimental and theoretical fragments within PRESnovo. Several 

considerations must be taken to generate a scoring function. These factors include significance of 

different-length theoretical fragments, the number of matches between experimental and 

http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msproduct
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theoretical fragments, and the percentage of the total number of experimental fragments with 

respect to the total number of theoretical fragments. We first define the score of a theoretical 

fragment via dividing the length of fragment by the total length of the motif. This definition is 

suitable because the significance of longer fragments is higher than that of shorter fragments 

[31]. This score definition is also beneficial to the interpretation of non-informative tandem MS 

spectra because any high-scoring longer fragments can ensure a reliable motif assignment 

without consideration of gaps. After computing scores for fragments, these fragment scores were 

used to evaluate the motif assignment. Given that the more theoretical fragments are matched by 

experimental fragments the more reliable the corresponding motif assignment is, the score for a 

motif assignment is defined by the following formula:  

∑
∑=

))(|(
))(|(

))(~)((
TTT

TEE
TE FMFS
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FMFPS 


  
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 is the score for motif M（ )( TFM


）assigned to a precursor（ )( EFP


）, 

∑ ))(|( TEE FMFS
  is the sum of the scores of all matched experimental fragments while 

∑ ))(|( TTT FMFS
  is the sum of the scores of all theoretical fragments. In our motif database, 

the scores of fragments were calculated in advance and stored along with motifs. The neutral loss 

fragments share the same score as the associated b or y ions.  

The workflow for using PRESnovo to assign the best matched motif to a given precursor 

is shown in Figure 3. The user-defined mass error tolerance was set to 0.5 Da for QTOF data 

and 0.02 Da for Orbitrap data for both precursor and fragments. The experimental fragments 

were compared to the theoretical fragments associated with each motif and the matched pairs 

were stored. If a neutral loss ion pair and the corresponding b or y ion pair were both found, only 
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one pair was kept for the following calculation. In the list of matched fragment pairs, all the 

matched theoretical fragment scores were used to calculate the score of each motif assignment. 

As a result, for a given precursor, all motifs were tentatively assigned to it with calculated scores. 

These motifs were then ranked in descending order based on the score for each motif assignment 

and the first five ranked motifs were reported.  

NanoLC-ESI-QTOF Analysis for Peptide Standards and Tissue Sample.  

A peptide standard mixture containing 15 neuropeptides (Supplemental Table S1) was subjected 

to nano-LC-ESI-QTOF (Waters Corp., Milford, MA) and the resulting MS data were used to test 

the performance of PRESnovo. Furthermore, PRESnovo was used for real tissue sample to 

identify endogenous neuropeptides. Tissue samples were extracted from the brain of European 

green crabs, C. maenas and brain and sinus glands of Jonah crabs, C. borealis. Green crab tissue 

was offline HPLC fractionated, and the collected fractions were analyzed on a nano-LC-ESI-

QTOF (Waters Corp., Milford, MA). The Jonah crab tissue was analyzed on a nano-LC-ESI Q 

Exactive Orbitrap mass spectrometer (Thermo Scientific, Bremen, Germany). The details about 

experimental protocols including animal dissection, tissue extraction, offline HPLC fractionation 

and MS analysis can be found in the Supporting Information and followed those previously 

described [32]. After MS analysis, the QTOF raw data were converted into pkl formatted data 

with ProteinLynx (Waters Corp., Milford, MA). Parameters for ProteinLynx were set with 

default settings except noise reduction threshold at 10%. The Orbitrap raw data was converted 

into mzXML format using MSConvert with default settings [33]. 

De novo Sequencing with the Aid of PRESnovo.  

The resulting pkl and mzXML files were used as input to PRESnovo. The current version of 

PRESnovo supports pkl and mzXML formats. Parsing of mzXML data was performed with 
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jmzReader [34]. Other data formats need to be converted into one of these two formats. Mass 

tolerances for both precursor and fragments were set to 0.5 Da for QTOF data and 0.02 Da for 

Orbitrap data. PRESnovo outputs a .csv file in which each precursor is assigned five motifs as 

the default setting according to a descending order of score. The number of motif assignments 

can be changed by the user. The scored fragments associated with each motif are also included in 

the output. By setting a motif score threshold, the user can filter out low-confidence motif 

assignments. Once a motif is obtained, the rest of the sequence can be determined by either 

manual sequencing or PEAKS. Given that PEAKS can report high-confidence sequence tags 

with individual positional confidence scores [15], it is very useful to combine PEAKS and 

PRESnovo together to sequence a peptide.  

As a comparison, raw MS/MS data was also processed with PEAKS. The raw data were 

directly loaded into PEAKS (PEAKS 7, Bioinformatics Solutions Inc., Waterloo, ON) for de 

novo sequencing. The setting for PEAKS were as follows: mass error tolerances for both 

precursor and fragments 0.5 Da for QTOF data and 0.02 Da for Orbitrap data, no enzyme 

digestion, and pyro-glutamine (pQ), pyro-glutamic acid (pE), oxidation of methionine, and C-

terminal amidation as variable PTMs. 

 

Results and Discussion 

Performance of PRESnovo.   

In order to evaluate the performance of PRESnovo, a standard mixture comprised of 15 peptides 

was analyzed with LC-MS/MS on a Waters QTOF instrument. The data were processed with 

both PRESnovo and PEAKS de novo sequencing to compare performance. As five predictions 

were output from both software packages, it was important to differentiate which was the most 
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suitable. The predicted sequences from each software were compared to the actual sequences of 

the standards. Interestingly, in most cases, the first prediction was the best one in the PRESnovo 

results. In the PEAKS results, this was not always the case, as other sequence predictions rather 

than the first one were the best prediction for some peptides. Table 1 summarizes the results 

obtained from PRESnovo and PEAKS. Five output sequences are provided from both software, 

and the sequence matching the standard the closest is displayed. As shown, 11 out of 15 peptides 

were predicted correctly by PRESnovo while only 1 was computed correctly by PEAKS with at 

least six consecutively correct residues. The 11 peptides identified by PRESnovo produced 

doubly-charged precursors leading to an almost even number of b and y ions, which facilitated 

the detection of fragments associated with their motifs by PRESnovo. Two examples are shown 

in Figure 4, from which it can be seen that almost all motif-related fragments were produced, 

although some of them were at low intensities. Consequently, two motifs were confidently 

assigned to the precursors, respectively. However, PEAKS lacks specificity for identification of 

these endogenous peptides because PEAKS is originally designed for general use in bottom-up 

proteomics where tryptic peptides are the main targets. With tryptic peptides, certain patterns 

exist that inform the resulting de novo sequences obtained. As a result, PEAKS by itself is not 

optimal for non-tryptic peptide prediction [15]. Because PRESnovo is designed to recognize 

patterns specific to endogenous neuropeptides, it provides improved accuracy in sequencing 

these signaling peptides when used in conjunction with PEAKS. 

The 4 peptides not identified correctly by PRESnovo fall into two categories: AST-A 

peptides (GDGRLYAFGLa and APSGAQRLYGFGLa) and disulfide bond bridging peptides 

(PFCNAFTGCa and CYFQNCPRGa). AST-A peptides are generally ionized as singly charged 

precursors which tend to produce predominantly N-terminal (primarily b-series) fragments. 
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These fragments (a/b/c ions) dominate the MS/MS spectrum, as shown in Figure 5A. However, 

the characteristic motif of AST-A peptides, YXFGLamide (X is a variable residue), is located at 

the C-terminus, which causes the motif database to deduce y-series fragments from this motif. As 

a result, the mismatch between the experimental b-series fragments and in silico y-series 

fragments leads to misidentification of these peptides. Although this demonstrates a limitation of 

PRESnovo’s predicting power, it is not difficult to manually sequence AST-A peptides with the 

aid of PEAKS, given that most peptides belonging to this family have a simple pattern of b-ions 

dominating fragmentation. Disulfide bond bridging peptides are prone to producing complicated 

internal fragments that suppress the production of b/y ions (Figure 5B). As a result, not enough 

motif-associated b/y ions are available for PRESnovo to determine the motif for the precursor. 

While the inability to predict disulfide bond bridging peptide sequences is a limitation of 

PRESnovo, the same is true across many de novo sequencing software. Disulfide bond bridging 

peptides are relatively uncommon amongst neuropeptides, and only 4 possible sequences with a 

characteristic motif are present in the crustacean neuropeptide database. Therefore, this 

limitation is not expected to substantially impede the identification of crustacean neuropeptides. 

 

The Factors Impacting on the Performance of PRESnovo. 

The performance of PRESnovo is impacted mainly by the motif database being searched and the 

quality of tandem MS spectra being queried. The construction of a motif database is crucial to 

PRESnovo, as accurate, detailed compilation of motifs improves the likelihood of confident 

identifications being made. A motif database consists of two parts: a string of amino acids 

comprising each motif and its associated fragments. Motifs are generally collected from known 

peptide sequences present in homologous species. There is a tradeoff between the number of 
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motifs incorporated in a motif database and the prediction power of PRESnovo. If too few motifs 

are included such that all forms of a neuropeptide motif are not sufficiently represented, the 

search may return results with low specificity or inaccurate identifications. Conversely, having 

an excess number of motifs included in the database inflates the false positive rate and decreases 

the sensitivity of the assignment [35].      In order to maximize the detection of neuropeptides in 

tissue samples, a motif library containing at least 80 motifs is satisfactory, as indicated in Figure 

S1a. To avoid these issues, only biologically-related species should be considered when 

extracting motifs for a species of interest. For example, in this study, motifs were only extracted 

from known peptide sequences in other crustacean species. If the interest is in peptide 

identifications from a vertebrate species such as human or mouse, a vertebrate peptide motif 

database can be created specifically for the species of interest that only includes those from 

similar species. In this way, effort can be made to exclude interference from other motifs that are 

not likely to be present in the species of interest. Another possible solution is to use long motifs, 

which would reduce the likelihood of false positive prediction and would also simplify the 

subsequent de novo sequencing. In silico fragments associated with motifs also impact on the 

performance of PRESnovo. In our current motif database, only b and y series ions (i.e., b, y, and 

neutral loss ions) are included for each motif while no a/c or x/z ions are considered. The reason 

for this specification is that b and y ions are sufficient for determining a motif even though some 

of them may have low abundance in some cases.      

The quality of tandem MS spectra also has significant impact on the performance of 

PRESnovo. Different from many automated de novo algorithms, PRESnovo can predict correct 

motifs for relatively low-quality MS/MS spectra provided that enough motif-associated 

fragments are present in the spectra. However, in the case of processing less informative spectra, 
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if the experimental fragments associated with motif are insufficient or high-score fragments (i.e. 

large fragments) are missed, PRESnovo will report low-confidence motifs, resulting in high false 

negative rate for peptide prediction. On the other hand, if a tandem MS spectrum contains too 

much noise and these interferences are not effectively removed, it will lead to the wrong motif 

assignment and thus increase the false positive rate [36-38]. Therefore, an efficient and effective 

preprocessing algorithm is needed to clean up tandem MS spectra. In this study we used 

ProteinLynx (Waters Co.) to remove noise or background signals from QTOF data prior to 

processing. ProteinLynx adopts Savitzky-Golay method to smooth the data and thus ensure 

fewer interfering signals are contained in the final pkl data files. While the quality of MS/MS 

spectra is important, the mass accuracy of MS/MS spectra does not appear to substantially 

impact the performance of PRESnovo, as shown in Figure S1b, where the search was run with 

alternating mass error tolerances and, except for very high mass errors (e.g. greater than 1,000 

ppm), the results remained consistent.      

 

Application of PRESnovo in conjunction with PEAKS to identify neuropeptides in C. maenas 

and C. borealis. 

While PRESnovo accurately predicts the sequence motif of a neuropeptide, its use in conjunction 

with PEAKS de novo software enables improved detection of neuropeptides present in real 

biological samples. An important characteristic of PEAKS is its ability to report the positional 

confidence for each amino acid in the predicted sequence [11]. This feature can be used to 

identify the rest of the sequence after PRESnovo predicts the motif. For instance, peptide 

TNFAFSPRLa shown in Figure 2 was predicted with high confidence to possess the motif of 

FSPRLa (score: 0.93) by PRESnovo. Meanwhile, PEAKS reports a confident N-terminal 
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sequence tag TNFAFSP (as in Table 1) for the same peptide. By combining these two 

predictions, one can easily determine the sequence with manual verification.  

PRESnovo and PEAKS were employed collectively to identify neuropeptides in tissue samples 

of green crab, C. maenas, and Jonah crab, C. borealis. These animals were chosen because they 

are well-characterized model organisms whose nervous systems have been previously studied 

using electrophysiology and immunohistochemistry [39-42]. However, while their dynamic 

neural networks are well-understood, there is currently no fully-sequenced genome available for 

either species, and so their neuropeptidomes are not yet fully characterized. Furthermore, with 

the inherent difficulties associated with MS characterization of neuropeptides, even detecting 

known neuropeptides remains challenging. To address these challenges and uncover more of the 

neuropeptides underlying neural modulation in these organisms, PRESnovo was employed in 

conjunction with PEAKS. First, PRESnovo was used to identify a motif for each precursor. The 

motif score threshold was set to 0.60 to filter out low-scoring motif assignments and the 

corresponding precursors. For high-score precursors, the PRESnovo results were compared to 

their corresponding PEAKS predictions. Manual sequencing was then used to combine this 

information and determine the final sequence for each precursor.  

Brain extract from green crab was analyzed on a Waters QTOF instrument and pre-

processed with ProteinLynx prior to PRESnovo analysis. The resulting data included 77 

neuropeptides, summarized in Table 2, of which 13 sequences are putative      neuropeptides that 

have never before been identified in green crab [43]. Of the 13 novel sequences, 7 of them have 

previously been identified in other invertebrate species, such as Callinectes sapidus and 

Homarus americanus, and all were only identified with the assistance of PRESnovo. Both brain 

and sinus gland tissue extracts from Jonah crab were analyzed on a Thermo Q Exactive Orbitrap 



 

16 

instrument, and the raw files were converted to the open-source mzXML format. After analysis 

with PRESnovo and PEAKS, 100 neuropeptides were identified in the brain sample, 77 of these 

being putative novel neuropeptides never before identified in previous literature. The 

repeatability across technical replicates and overlap between biological replicates from distinct 

brain samples are shown in Figure S2. A total of 76 neuropeptides were identified in the sinus 

glad extract, with 47 of these sequences being putative novel neuropeptides not previously 

identified in any species. Table 3 summarizes the neuropeptides detected in Jonah crab that 

match the crustacean database, while Table 4 lists the putative novel neuropeptides identified in 

Jonah crab, 24 of which were only identified with the assistance of PRESnovo. Figures 6a and 

6b show MS/MS spectra of novel neuropeptides identified in brain and sinus gland tissue, 

respectively. Figures S3     -S5      show the MS/MS spectra of all novel neuropeptides 

identified. As can be seen, PRESnovo predicted the characteristic sequence motif that led to the 

full neuropeptide sequence shown. Figure 6c shows a neuropeptide identified that is present in 

the crustacean database but was incorrectly assigned by PEAKS, demonstrating the improvement 

in identification afforded by PRESnovo pre-screening. The originally-predicted sequence in 

PEAKS scrambled the last three amino acids, but PRESnovo was able to assign them based on 

mapping the fragment ions to a common sequence motif. This example demonstrates the 

improved accuracy offered by combining PRESnovo with PEAKS for de novo sequencing, as 

identifying fragment ions characteristic of neuropeptide sequence motifs increases the likelihood 

of correct identifications.  

Of the neuropeptides identified in the two species, the most common families were AST-

A, FMRFamide-related peptide (FaRP), RYamide, orcokinin, tachykinin, and pyrokinin. AST-A 

and AST-B neuropeptides are distributed throughout the nervous and neuroendocrine system of 
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crustaceans and have been found to be inhibitors of neuromodulation [44, 45]. Several novel 

peptides belonging to these families were identified in both the brain and sinus glands, indicating 

that these peptides may also exhibit inhibitory effects. FaRP neuropeptides have been found to 

have a variety of functions within the nervous and neuroendocrine system, including as 

autocrines, paracrines, and circulating hormones [46-48]. Therefore, it is expected that these 

neuropeptides would be identified in both the sinus glands where they may be released as 

circulating hormones and in the brain, where they may serve a more local function within the 

neuropil     . While there have not been many studies on the function of pyrokinins in 

crustaceans, they were found to have an effect on the gastric mill [49]. As the brain sends 

neuronal projection to innervate the stomach movement of the crab, pyrokinin neuropeptides 

were mostly identified in the brain tissue and the putatively identified novel pyrokinin peptides 

may also have a role in gastric activity. Tachykinin and orcokinin peptides are also more 

prominent in the stomatogastric nervous system, with a variety of functions including hindgut 

contractions [50-52]. In this study, putative novel tachykinin and orcokinin peptides were 

identified in the brain that may also have a role in modulating some stomach activity. 

Additionally, 3 tachykinin peptides were identified in the sinus gland, indicating that they may 

have a different modulatory role. Putative novel RYamide neuropeptides were identified in the 

brain and sinus glands as well. The biological activity of RYamides is not fully understood, but 

they have been previously identified in neuroendocrine tissue and central neuropil, suggesting 

functions both locally and as circulating hormones [53, 54].  

Follow-up experiments will need to be performed in order to confirm the putative peptide 

identifications and determine their biological activities.      However, these results demonstrate 

the great potential PRESnovo has for both facilitating the discovery of novel neuropeptides and 
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improving detection coverage of the crustacean neuropeptidome identified in analyses. This 

application provided here indicates that PRESnovo can greatly improve the discovery of 

neuropeptides across a variety of other species and indicates potential for improving 

identification of other endogenous peptides across a variety of other sample types, provided that 

commonly-shared sequence motifs exist.  

 

Conclusions 

In this work, a prescreening strategy, namely PRESnovo, was developed to improve the 

accuracy, specificity and sensitivity of peptide identification. In conjunction with de novo 

sequencing algorithms such as PEAKS, this method is powerful for identification of highly 

conserved peptides such as neuropeptides. The strategy we proposed in this manuscript can be 

easily extended to other species of interest, provided that a well-constructed motif database is 

obtained. Future directions may include incorporation of more sophisticated algorithms for 

sequencing disulfide bond bridging peptides and peptides with motifs that are difficult to detect, 

such as AST-A. The software and motif database used in this work can be freely downloaded via 

the following link: https://www.lilabs.org/resources.  

Abbreviations:  

AKH/RPCH: Adipokinetic hormone/red pigment concentrating hormone; AST-A: Allatostatin 

A; AST-B: Allatostatin B; AVP: Arginine vasopressin; CCAP: Crustacean cardioactive peptide; 

FaLP: FMRFamide-related peptide 
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Figure Legends 

Figure 1. The diagram illustrates the construction of a motif database. Three resources including 

public databases (e.g. NCBI), previous publications and the neuropeptide discoveries by our lab 

are used to generate a collection of crustacean neuropeptides which are clustered into families 

according to their conserved motifs. Then each family of neuropeptides are aligned with 

WebLogo (version 3.0, http://weblogo.threeplusone.com/) to extract detailed motifs followed by 

in silico fragmentation of these extracted motifs with MS-product 

(http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msproduct). Finally, the motif 

and the corresponding b- or y- series fragments are compiled into a motif database.  

 

Figure 2. The distribution of motifs according to their families. The number represents the total 

number of motifs associated with each family.    

 

Figure 3. The schematic representation of motif assignment. The experimental fragments 

associated with the precursor (in .pkl file) are searched against a predefined motif database in 

which each motif contains y-series ions (y, y-NH3, y-H2O) or b-series ions (b, b-NH3, -H2O). The 

scores from the matched experimental and theoretical fragments (S1, S2, S3, S4) are used to 

calculate the overall score for motif assignment as shown in Output file. The motif with the 

highest score is assigned to the precursor.  

 

http://weblogo.threeplusone.com/
http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msproduct
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Figure 4. The representative tandem MS spectra and PRESnovo output. A) MS/MS spectrum of 

TNFAFSPRLa. PRESnovo found four motif-associated fragments (y2, y3, y4 and y5) and then 

assigned C-terminal motif of FSPRLa to this precursor; B) MS/MS spectrum of 

NFDEIDRSGFGFN. PRESnovo found six motif-associated fragments (b2, b3, b4, b5, b6 and 

b7) and then assigned N-terminal motif of NFDEIDR to this precursor. 

 

Figure 5. PRESnovo fails to interpret tandem MS spectra of AST-A peptide and disulfide bond 

bridging peptide. A) a/b/c ions dominate in MS/MS spectrum of GDGRLYAFGLa; B) 

incomplete motif-associated fragments in MS/MS spectrum of CYFQNCPRGa.  

 

Figure 6. MS/MS spectra of putative novel neuropeptides detected in (A) brain and (B) sinus 

gland of Jonah crab, C. borealis, as well as a neuropeptide matching the crustacean neuropeptide 

database that PEAKS failed to assign correctly. In all 3 cases, PRESnovo was able to identify 

fragment ions indicative of common motifs. 
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Table 1. The identified peptide standards by PRESnovo and PEAKS 7, with the displayed 

sequence being the output from each software that most closely matches the correct sequence.  

Family Mass Real Sequence PRESnovo 
(Motif) 

PEAKS 7 

CCAP 955.37 PFCNAFTGCa FIRFa MCSAAGACAAT 

RYamide 975.44 SGFYANRYa FYANRYa GRNTAAGGGDT 

Pyrokinin 1036.53 SGGFAFSPRLa FSPRLa SGGFAFM(O)AFFFGT 

Pyrokinin 1050.55 TNFAFSPRLa FSPRLa GSFAFSPVGIa 

AST-A 1066.54 GDGRLYAFGLa FGPRLa TGGAQPEQLPAa 

AVP 1083.44 CYFQNCPRGa NSELINSILG M(O)SQEPAAHM(O)Ga 

FLP 1104.57 GAHKNYLRF NYLRFa HQGAGGVPMRPa 

AST-B 1106.50 QWSSMRGAWa WSSMRGAWa TGRSSGAAAGADS 

AST-B 1259.64 SGKWSNLRGAWa WSNLRGAWa QCARSVAGGSASAPa 

Angiotension 1281.65 DRVYVHPFHL DRVYVHPF SAGPVEGGDLMLH 

AST-A 1334.70 APSGAQRLYGFGLa pQVNFSPNWa APSGATCSSMGVGVLa 

AST-B 1469.68 VPNDWAHFRGSWa WAHFRGSWa VMDLGSAGSGNGMQM(O) 

Orcokinin 1472.66 NFDEIDRSGFGFAa NFDEIDR NFDELDAGSGSFGGT 

Orcokinin 1473.64 NFDEIDRSGFGFA NFDEIDR CTGDELDAGPGGAPGGT 

Orcokinin 1516.65 NFDEIDRSGFGFN NFDEIDR GCTDENNNM(O)EGGCGT 

*the bold font type refers to the correct identifications. a: amide. The underlined residues are the 
correctly identified by PEAKS 7. 11 were identified by PRESnovo while 1 by PEAKS 7 
(NFDEIDRSGFGFAa, based on criteria of six consecutively correct residues) 
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Table 2. Identified neuropeptides in brain tissue of green crab, C. maenas 

Family Mass Sequence 
AST-A 768.38  EAYAGFLa 
AST-A 779.39  NPYAFGLa 
AST-A 779.39  GGPYAFGLa 
AST-A 780.38  DPYAFGLa 
AST-A 793.41  AGPYAFGLa 
AST-A 794.39  EPYAFGLa 
AST-A 807.43  AAPYAFGLa 
AST-A 809.40  AGPYSFGLa 
AST-A 823.42  ASPYAFGLa 
AST-A 850.47  GKPYAFGLa 
AST-A 852.40  EPYEFGLa 
AST-A 878.47  RGPYAFGLa 
AST-A 896.44  FSGASPYGLa 
AST-A 908.48  ARPYSFGLa 
AST-A 924.50  LKAYDFGLa 
AST-A 925.46  ATGQYAFGLa 
AST-A 938.49  TRPYSFGLa 
AST-A 922.52  KLPYSFGLa 
AST-B 1106.57  QWSSMRGAWa 
AST-B 1259.70  SGKWSNLRGAWa 
AST-B 1292.62  STNWSSLRSAWa 
AST-B 1469.69  VPNDWAHFRGSWa 
CCAP 956.38  PFCNAFTGCa 

     FaRPs 734.40  GPFLRFa 
FaRPs 850.49  RNFLRFa 
FaRPs 886.55  PSLRLRFa 
FaRPs 904.50  PSMRLRFa 
FaRPs 920.50  PSM(O)RLRFa 
FaRPs 937.52  NRSFLRFa 
FaRPs 953.52  SRNYLRFa 
FaRPs 964.53  NRNFLRFa 
FaRPs 965.52  DRNFLRFa 
FaRPs 976.51  PQGNFLRFa  
FaRPs 1021.55  GNRNFLRFa 
FaRPs 1022.53  GDRNFLRFa 
FaRPs 1047.56  APQGNFLRFa 
FaRPs 1103.60  GAHKNFLRFa 
FaRPs 1104.62  SMPSLRLRFa 
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FaRPs 1123.62  GLSRNYLRFa 
FaRPs 1136.58  DGNRNFLRFa 
FaRPs 1157.61  YGNRSFLRFa 
FaRPs 1207.62  DQNRNFLRFa 
FaRPs 1270.64  pQDLDHVFLRFa 
FaRPs 1270.67  PELDHVFLRFa 
FaRPs 1287.67  QDLDHVFLRFa 
FaRPs 1288.62  QDNDHVFLRFa 
FaRPs 1313.77  DARTAPLRLRFa 
Orcokinin 936.42  DEIDRSGFa 
Orcokinin 1197.54  NFDEIDRSGFa 
Orcokinin 1227.55  NFDEIDRSSFa 
Orcokinin 1255.54  NFDEIDRSGFG 
Orcokinin 1269.55  NFDEIDRSGFA 
Orcokinin 1285.55  NFDEIDRSSFG 
Orcokinin 1299.57  NFDEIDRSSFA 
Orcokinin 1473.65  NFDEIDRSGFGFA 
Orcokinin 1546.67  NFDEIDRSSFGFN 
Orcomyotropin 1185.51  FDAFTTGFGHS 
Others 843.47  HIGSLYRa 
Others 915.53  KIFEPLVA 
Others 1371.78  KIFEPLRDKNL 
PDH 1926.01  NSELINSLLGIPKVMNDAa 
Pyrokinin 877.51  LYFAPRLa 
Pyrokinin 1023.55  TSFAFSPRLa 
Pyrokinin 1108.56  TDGFAFSPRLa 
RPCH 929.43  pQLNFSPGWa 
SIFamide 1160.64  RKPPFNGSIFa 
SIFamide 1380.73  GYRKPPFNGSIFa 
Tachykinin 765.39  SGFLGMRa 
Tachykinin 862.45  PSGFLGMRa 
Tachykinin 878.44  PSGFLGM(O)Ra  
Tachykinin 933.48  APSGFLGMRa 
Tachykinin 934.46 APSGFLGMR  
Tachykinin 949.48  APSGFLGM(O)Ra 
Tachykinin 963.49  TPSGFLGMRa 
Tachykinin 979.49  TPSGFLGM(O)Ra 
Tachykinin 991.49  APSGFLGMRG 
Tachykinin 1007.48  APSGFLGM(O)RG  

*Red color represents novel neuropeptides identified in green crab. “a” indicates C-terminal 
amidation. “p” indicates pyroglutamate Gln. “O” stands for oxidation of Met.  
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Table 3. Identified neuropeptides matching to the database in brain and sinus gland tissue of 

Jonah crab, C. borealis 

Family  Mass Sequence Tissue 
AST-B 1106.5081 AGWSSMRGAWa Brain, SG 
AST-B 1106.5081 QWSSMRGAWa Brain, SG 
AST-B 1292.6262 STNWSSLRSAWa Brain, SG 
Corazonin 1368.6211 pQTFQYSRGWTNa Brain 
FaRP 1146.6411 APQRNFLRFa SG 
FaRP 965.5195 DRNFLRFa Brain, SG 
FaRP 961.5246 ERNFLRFa Brain 
FaRP 1103.5989 GAHKNYLRFa SG 
FaRP 1021.5569 GNRNFLRFa Brain, SG 
FaRP 1145.5981 GYSKNYLRFa Brain, SG 
FaRP 816.4758 HVFLRFa Brain 
FaRP 1103.6353 KHKNYLRFa Brain 
FaRP 694.3915 NFLRFa Brain, SG 
FaRP 964.5355 NRNFLRFa Brain, SG 
FaRP 1270.6458 pQDLDHVFLRFa Brain, SG 
FaRP 1287.6724 QDLDHVFLRFa Brain, SG 
FaRP 850.4926 RNFLRFa Brain 
FaRP 1180.6101 SENRNFLRFa Brain, SG 
Proctolin 648.3595 RYLPT SG 
Pyrokinin 835.4704 FAFSPRLa Brain 
Pyrokinin 877.5174 LYFAPRLa Brain, SG 
Pyrokinin 1036.5454 SGGFAFSPRLa SG 
Pyrokinin 1050.561 TNFAFSPRLa Brain 
Ryamide 1029.4668 EGFYSQRYa SG 
RYamide 783.4028 FVGGSRYa SG 
RYamide 861.4133 FYSQRYa SG 
RYamide 1113.5679 RSSFVGGSRYa SG 
RYamide 975.4562 SGFYANRYa Brain, SG 
Ryamide 1113.5679 SSRFVGGSRYa SG 
Tachykinin 933.4854 APSGFLGMRa Brain, SG 
Tachykinin 621.3421 FLGMRa SG 
Tachykinin 765.3956 SGFLGMRa Brain, SG 
Tachykinin 963.496 TPSGFLGMRa Brain, SG 

“a” represents C-terminal amidation. “p” means pyroglutamate Gln or Glu. “SG” indicates sinus 
gland. 
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Table 4. Identified putative novel neuropeptides in the brain and sinus gland tissue of Jonah 

crab, C. borealis 

Family  Mass  Sequence Tissue 
AST-A 1065.55 APTDLYAFGLa Brain 
AST-A 1065.55 PATDLYAFGLa Brain 
AST-A 983.4824 QRDYSFGLa Brain 
AST-A 939.4926 RQAYSFGLa SG 
AST-B 1259.652 KGSWSNLRGAWa Brain 
AST-B 1292.608 MGNWSSLRSAWa Brain 
FaRP 964.5242 AAQNFLRFa SG 
FaRP 1103.599 AGHKNYLRFa SG 
FaRP 1146.641 APAGRNFLRFa Brain 
FaRP 1146.641 APGARNFLRFa Brain, SG 
FaRP 1146.641 APGRANFLRFa Brain, SG 
FaRP 1006.535 APGSNFLRFa Brain 
FaRP 976.5242 APNNFLRFa Brain 
FaRP 1267.624 CAENRNFLRFa Brain 
FaRP 1267.607 CCPGGRNFLRFa Brain 
FaRP 1267.607 CCPNRNFLRFa Brain 
FaRP 1324.646 DGMGNRNFLRFa Brain 
FaRP 1270.639 DHVCHVFLRFa SG 
FaRP 1394.567 DSGPDDYGHMRFa SG 
FaRP 1394.567 DSPGDDYGHMRFa Brain 
FaRP 1180.61 DTNRNFLRFa SG 
FaRP 1394.567 pEGTSDDYGHMRFa SG 
FaRP 1267.624 EACNRNFLRFa Brain 
FaRP 1222.621 EERNNFLRFa Brain 
FaRP 1532.762 EESAEVPPNFLRFa Brain 
FaRP 1022.53 EGAANFLRFa Brain 
FaRP 1233.589 EQANDNFLRFa Brain 
FaRP 1769.896 EQQPHAGLSAGNFLRFa Brain 
FaRP 1180.61 ESNRNFLRFa SG 
FaRP 1180.61 ESRNNFLRFa Brain, SG 
FaRP 1324.664 ESSNGRNFLRFa Brain 
FaRP 1032.598 FALAGRPRFa Brain 
FaRP 1180.614 FGAPNNFLRFa Brain 
FaRP 1103.599 HAGKNYLRFa Brain, SG 
FaRP 1270.639 HDVCHVFLRFa Brain 
FaRP 1146.594 HEVSNFLRFa Brain 
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FaRP 1249.647 HFDRNFLRFa Brain 
FaRP 1248.663 HFNRNFLRFa Brain 
FaRP 1146.594 HSDLNFLRFa Brain 
FaRP 1532.832 KAAPSNRNNFLRFa Brain 
FaRP 1146.666 KAPRNFLRFa SG 
FaRP 1498.746 KCSTDGRGNFLRFa Brain 
FaRP 1146.666 KGAPVNFLRFa SG 
FaRP 966.5399 KGSNFLRFa Brain 
FaRP 1103.599 KHAGNYLRFa SG 
FaRP 1103.599 KHQNYLRFa SG 
FaRP 1146.666 KLPNNFLRFa Brain 
FaRP 1146.678 KPARNFLRFa SG 
FaRP 1248.709 KQQLGNFLRFa Brain 
FaRP 1146.678 KRAPNFLRFa SG 
FaRP 1305.749 KRMVPNFLRFa Brain 
FaRP 1145.598 KSGYNYLRFa Brain, SG 
FaRP 1333.737 KSPNGRNFLRFa Brain 
FaRP 1145.598 KSYGNYLRFa SG 
FaRP 1146.666 KVPQNFLRFa SG 
FaRP 1333.737 LQAGNRNFLRFa Brain 
FaRP 1021.553 MVPNFLRFa Brain 
FaRP 976.5242 NPANFLRFa Brain 
FaRP 992.5192 NSPNFLRFa Brain 
FaRP 1544.748 NSYSERNNFLRFa Brain 
FaRP 1146.641 PAGARNFLRFa SG 
FaRP 976.5242 PAGGNFLRFa Brain 
FaRP 1006.535 PNTNFLRFa Brain 
FaRP 1146.605 pQGQRNFLRFa SG 
FaRP 1222.625 pQQAAFNFLRFa Brain 
FaRP 1551.78 PVMEMRNNFLRFa Brain 
FaRP 1103.599 QHKNYLRFa Brain, SG 
FaRP 1180.599 QKDDNFLRFa Brain 
FaRP 1333.737 QLAGNRNFLRFa Brain 
FaRP 1146.641 QPARNFLRFa SG 
FaRP 1248.695 QRNRNFLRFa Brain 
FaRP 1146.641 RAGAPNFLRFa SG 
FaRP 965.5195 RDNFLRFa Brain, SG 
FaRP 964.5355 RGGNFLRFa Brain, SG 
FaRP 1021.557 RGNNFLRFa SG 
FaRP 1180.61 RNDTNFLRFa Brain 
FaRP 1180.61 RNESNFLRFa Brain, SG 
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FaRP 1021.557 RNGNFLRFa Brain, SG 
FaRP 964.5355 RNNFLRFa Brain, SG 
FaRP 1180.61 RNSENFLRFa SG 
FaRP 3692.954 RPGQLLLAEASSWLPTQQEGTKRGYSKNYLRFa Brain 
FaRP 1248.695 RQNRNFLRFa Brain 
FaRP 1276.679 SAGPNRNFLRFa Brain 
FaRP 1219.658 SAPNRNFLRFa Brain 
FaRP 1394.567 SDGPDDYGHMRFa Brain 
FaRP 1180.61 SERNNFLRFa SG 
FaRP 1483.71 STDEPYPNFLRFa Brain 
FaRP 1180.599 STPNSNFLRFa SG 
FaRP 1180.61 TDRNNFLRFa SG 
FaRP 1180.635 TSAQVNFLRFa SG 
FaRP 1544.729 TSDELTTCNFLRFa Brain 
FaRP 1180.599 TSPNSNFLRFa SG 
FaRP 1180.599 TSSNPNFLRFa SG 
FaRP 1532.836 VPGFAPNRNFLRFa Brain 
FaRP 1004.523 YFNFLRFa Brain 
FaRP 1145.598 YGSKNYLRFa SG 
Pyrokinin 2380.269 FNGPKPLAKYVDTNFAFSPRLa Brain 
Pyrokinin 2379.252 FNPGKLPKSQMTTNFAFSPRLa Brain 
Pyrokinin 1036.545 GSGFAFSPRLa Brain 
Pyrokinin 1050.561 QSFAFSPRLa Brain, SG 
RYamide 1029.467 pEGFYSQRYa SG 
RYamide 975.4562 GSFYANRYa Brain, SG 
RYamide 1029.467 pQGFYSQRYa Brain 
RYamide 2133.035 SADRTQLTERSGFYANRYa Brain 
RYamide 1113.568 SRSFVGGSRYa SG 
RYamide 2133.035 TGARDGTLTERSGFYANRYa Brain 
Tachykinin 1143.622 APPLSGFLGMRa SG 
Tachykinin 1175.623 KNAPSGFLGMRa Brain 
Tachykinin 1145.613 KSAHTFLGMRa SG 
Tachykinin 1145.576 KSDHGFLGMRa SG 
Tachykinin 1253.547 NCCAPSGFLGMRa Brain 

“a” represents C-terminal amidation. “p” means pyroglutamate Gln or Glu. “SG” indicates sinus 
gland. 
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Figure 1. The diagram illustrates the construction of a motif database. Three resources including 

public databases (e.g. NCBI), previous publications and the neuropeptides discovered by our lab 

are used to generate a collection of crustacean neuropeptides which are clustered into families 

according to their conserved motifs. Then each family of neuropeptides are aligned with 

WebLogo (version 3.0, http://weblogo.threeplusone.com/) to extract detailed motifs followed by 

in silico fragmentation of these extracted motifs with MS-product 

(http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msproduct). Finally, the motif 

and the corresponding b- or y- series fragments are compiled into a motif database.  

 

 

http://weblogo.threeplusone.com/
http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msproduct
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Figure 2. The distribution of motifs according to their families. The number represents the total 

number of motifs associated with each family.    
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Figure 3. The schematic representation of motif assignment. The experimental fragments 

associated with the precursor (in .pkl file) are searched against a predefined motif database in 

which each motif contains y-series ions (y, y-NH3, y-H2O) or b-series ions (b, b-NH3, b-H2O). 

The scores from the matched experimental and theoretical fragments (S1, S2, S3, S4) are used to 

calculate the overall score for motif assignment as shown in Output file. The motif with the 

highest score is assigned to the precursor.  

 

 

 

 

 

 

 

 

 

 



 

38 

 

Figure 4. The representative tandem MS spectra and PRESnovo output. A) MS/MS spectrum of 

TNFAFSPRLa. PRESnovo found four motif-associated fragments (y2, y3, y4 and y5) and then 

assigned C-terminal motif of FSPRLa to this precursor; B) MS/MS spectrum of 

NFDEIDRSGFGFN. PRESnovo found six motif-associated fragments (b2, b3, b4, b5, b6 and 

b7) and then assigned N-terminal motif of NFDEIDR to this precursor. 
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Figure 5. PRESnovo fails to interpret tandem MS spectra of AST-A peptide and disulfide bond 

bridging peptide. A) a/b/c ions dominate in MS/MS spectrum of GDGRLYAFGLa; B) 

incomplete motif-associated fragments in MS/MS spectrum of CYFQNCPRGa.  
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Figure 6. MS/MS spectra of putative novel neuropeptides detected in (A) brain and (B) sinus 

gland of Jonah crab, C.borealis, as well as a neuropeptide matching the crustacean neuropeptide 

database that PEAKS failed to assign correctly. In all 3 cases, PRESnovo was able to identify 

fragment ions indicative of common motifs. 
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