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THE CONTINUUM LIMIT OF
THE KURAMOTO MODEL ON SPARSE RANDOM GRAPHS⇤

GEORGI S. MEDVEDEV†

Abstract. In this paper, we study convergence of coupled dynamical systems on convergent
sequences of graphs to a continuum limit. We show that the solutions of the initial value problem for
the dynamical system on a convergent graph sequence tend to that for the nonlocal di↵usion equation
on a unit interval, as the graph size tends to infinity. We improve our earlier results in [Medvedev,
The nonlinear heat equation on W-random graphs, Arch. Rational Mech. Anal., 212(3): 781–803]
and extend them to a larger class of graphs, which includes directed and undirected, sparse and dense,
random and deterministic graphs.

There are three main ingredients of our approach. First, we employ a flexible framework for
incorporating random graphs into the models of interacting dynamical systems, which fits seamlessly
with the derivation of the continuum limit. Next, we prove the averaging principle for approximating
a dynamical system on a random graph by its deterministic (averaged) counterpart. The proof covers
systems on sparse graphs and yields almost sure convergence on time intervals of order logn, where n
is the number of vertices. Finally, we prove convergence of the averaged model to the continuum limit.

The analysis of this paper covers the Kuramoto model of coupled phase oscillators on a variety of
graphs including sparse Erdős-Rényi, small-world, and power law graphs.

Keywords. interacting dynamical systems; continuum limit; random graph; sparse graph; graph
limit.
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1. Introduction
Understanding principles of collective dynamics in large ensembles of interacting

dynamical systems is a fundamental problem in nonlinear science with applications
ranging from neuronal and genetic networks to power grids and the Internet. The key
distinction of coupled dynamical systems considered in this paper from classical spatially
extended systems such as partial di↵erential equations or lattice dynamical systems is
that the spatial domain of the former class of models is a general graph. Given an
enormous variety of graphs and their complexity, analyzing dynamical systems on large
and, in particular, on random graphs is a challenging problem.

In [10,11], we initiated a study of the continuum limit of systems of coupled phase
oscillators on convergent families of graphs. We used the fact that a large class of
(dense) graphs, including many of those of interest in applications, can be described
analytically by a measurable function on a unit square, called a graphon [7]. Roughly
speaking, a graphon represents a limit of the adjacency matrix of a graph as its size
tends to infinity. Using graphons, we were able to derive and justify the continuum limit
for the Kuramoto model (KM) on a great variety of graphs, which led to new studies
of the KM on nontrivial graphs [3, 12, 13, 15]. Importantly, the same approach can be
successfully applied to justify the mean field limit for coupled dynamical systems on
graphs [2, 6].

The analysis in [10,11] did not cover the KM on sparse graphs. The progress in this
direction became possible with the theory of Lp graphons used to define graph limits
for sparse graphs of unbounded degree [1]. Using the insights from [1], we addressed
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the problem of the continuum limit of the KM on sparse graphs in [5]. While we were
able to extend many of our techniques to the KM on a large class of sparse graphs
(including power-law graphs), some of the results in [5] apply only to systems with
linear di↵usion. In the present work, we unify and, in the case of the KM on random
graphs, significantly improve the results in [5, 10, 11]. The contribution of this paper is
twofold. First, we propose a flexible framework for describing directed and undirected,
sparse and dense, random and deterministic graphs to be used in interacting dynamical
systems models. This framework naturally leads to continuum models approximating
dynamical systems on large graphs. Second, we refine our techniques to obtain stronger
results on convergence to the continuum limit, which, in addition, apply to a wider
class of graphs than in [5, 11]. Even for the KM on dense graphs, our results are much
stronger: we show convergence of solutions on the time intervals of order logn, compared
to finite intervals in [11] (see also [9]). Furthermore, in the present work, convergence is
shown with probability 1 versus convergence in probability in the earlier papers [5, 11].
Finally, our results apply to the KM on sparse directed graphs, which have not been
considered in [5, 11]. Taken together, the results of this paper reveal a fuller potential
of our method for proving convergence of discrete problems on graphs to a continuum
limit.

As in [11], the main result of this work is the proof of convergence of solutions of
the initial value problems (IVPs) for the KM on graphs to the solution of that for the
limiting nonlocal di↵usion equation as the size of the graph tends to infinity. In its
most basic version, the result may be seen as convergence of numerical discretization
of a nonlocal di↵usion equation. The contribution of this paper, however, is much
deeper and more interesting. First, we consider dynamical problems on random graphs.
This situation is not treated in classical numerical analysis. More importantly, we use
minimal regularity assumptions on the limiting graphon W . The only assumption is
that W is a square integrable function on a unit square subject to technical conditions
(W-1), (W-2). This allows us to treat a huge class of graphs and a↵ords great flexibility
in applications. The fact that W does not require any regularity beyond integrability
means, in particular, that the order, in which vertices are sampled, is irrelevant. Last
but not least, the convergence problem analyzed in this work is motivated by concrete
questions about the dynamics of large networks [3, 14, 16].

There are three main ingredients in our proof of convergence. First, as we com-
mented above, we construct convergent families of graphs in the spirit of W-random
graphs [8]. This description covers a broad class of graphs and fits seamlessly with the
analysis of convergence of the discrete models to the continuum limit. In particular, the
limit of the graph sequence, given by a measurable real-valued function W on the unit
square, is used later in the derivation of the continuum model as a kernel of a nonlocal
di↵usion term. Many random graph models like small-world, Erdős-Rényi, and even
power law graphs have relatively simple graph limits, which makes the corresponding
continuum models amenable to analysis [11, 14, 15]. The key tool for dealing with the
models on random graphs is the averaging principle, which justifies approximation of a
coupled system on a random graph by an averaged deterministic model on a complete
weighted graph. Finally, we prove convergence of the discrete averaged models to the
continuum limit.

The organization of the paper is as follows. In the next section, we define convergent
graph sequences that are used in the remainder of this paper and formulate the KM on
random graphs. In Section 3, we state the main result about the convergence of the
discrete model on graphs to the continuum model. Here, we also explain the main steps
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of the proof. In Section 4, we prove the averaging principle, the first main ingredient of
the proof of convergence to the continuum limit. It allows to approximate the KM on a
random graph by a deterministic model via averaging over all realizations of the random
graph model. The averaged model then suggests the continuum limit in the form of a
nonlinear nonlocal di↵usion equation. In Section 5, we establish the continuum limit for
the discrete averaged models. Together with the averaging principle and some auxiliary
estimates, this implies the convergence of the KM on (sparse) random graphs.

2. The KM on graphs
Let �n= hV (�n),Ed(�n),Ani be a weighted directed graph on n nodes. V (�n)= [n]

stands for the node set of �n. An=(an,ij) is an n⇥n weight matrix. The edge set

Ed(�n)=
�
(i,j)2 [n]2 : an,ij 6=0

 
.

An edge (i,j) is an ordered pair of nodes. We will also use j! i to denote the edge
(i,j). Loops are allowed.

We will also consider undirected weighted graphs �n= hV (�n),E(�n),Ani. In this
case, An is a symmetric matrix and the edges are unordered pairs of nodes

E(�n)=
�
{i,j}2 [n]2 : an,ij 6=0

 
.

We will use i⇠ j as a shorthand for {i,j}2E(�n).
Consider a system of coupled oscillators on a sequence of weighted (directed or

undirected) graphs �n

u̇n,i=f(un,i,t)+(n↵n)
�1

nX

j=1

an,ijD(un,j�un,i), i2 [n], (2.1)

un,i(0)=u
0
n,i. (2.2)

Here, un,i :R!T :=R/2⇡Z stands for the phase of oscillator i2 [n] as a function of
time. D is a 2⇡-periodic Lipschitz continuous function, Lip(D)=LD. Without loss of
generality,

max
u2T

|D(u)|=1. (2.3)

Function f(u,t) is Lipschitz continuous in u, Lipu(f)=Lf , and continuous in t. The
sum on the right-hand side of (2.1) models the interaction between oscillators. Finally,
unless otherwise specified ↵n=1. The scaling factor ↵n will be needed for the KM on
sparse random graphs, as explained below.

Equation (2.1) generalizes the original KM by allowing nonlinearity f(u,t) and
sequence {�n} as a spatial domain. We are interested in the large n limit of (2.1),
(2.2). One can expect a limiting behavior of solutions of (2.1), (2.2), only if the graph
sequence {�n} has a well-defined asymptotic behavior in the limit as n!1. We define
the asymptotic structure of {�n} using function W 2L

1(I2), called a graphon. To
define {�n}, we discretize the unit interval by points xn,j = j/n, j2{0}[ [n] and denote
In,i := (xn,i�1,xn,i], i2 [n]. We chose the uniform mesh {xn,i, i=0,1, . . . ,n}, n2N, for
simplicity, as this is su�cient for the applications we have in mind. In general, any
dense set of points from [0,1] can be used. In particular, one could use random points
sampled from the uniform distribution on [0,1], as was done in [11].

The following constructions are used to model a variety of dense and sparse, directed
and undirected, random and deterministic graphs.



886 THE KURAMOTO MODEL ON SPARSE RANDOM GRAPHS

(DDD) Deterministic dense directed graphs �n= hV (�n),Ed(�n),An=(an,ij)i:

an,ij = hW iIn,i⇥In,j :=n
2

Z

In,i⇥In,j

W (x,y)dxdy. (2.4)

(DDU) If W is a symmetric function, the same formula defines a deterministic dense
undirected graph �n= hV (�n),E(�n),Ani.

(RDD) W-random graphs. Let W : I2! I be a nonnegative measurable function. �n=
Gd(n,W ) is a directed random graph on n defined as follows:

P(j! i)= hW iIn,i⇥In,j . (2.5)

(RDU) If W is a symmetric function, define a random dense undirected random graph
�n=G(n,W ) as follows

P(i⇠ j)= hW iIn,i⇥In,j . (2.6)

(RSD) Sparse directed W-random graph �n=Gd(n,W,↵n). Here, we assume that
W 2L

1(I2) is a nonnegative function and 1�↵n&0 such that n↵n!1 as
n!1. The probability of connection between two nodes is defined as follows1

P(j! i)=↵nhW̃niIn,i⇥In,j , W̃n(x,y) :=↵
�1
n ^W (x,y). (2.7)

(RSU) The undirected sparse W-random graph �n=G(n,W,↵n) is defined in exactly
the same way

P(i⇠ j)=↵nhW̃niIn,i⇥In,j , (2.8)

assuming that W is a symmetric nonnegative function.

In the KM (2.1) on random graphs , we assume that an,ij are Bernoulli random variables
with the probability of success defined by (2.5)-(2.8). For undirected graphs, we assume
that an,ij =an,ji.

Remark 2.1. The sequences of undirected graphs constructed above are convergent
in the sense of convergence of dense graphs [7] and its generalization to sparse random
graphs of unbounded degree [1]. In this paper, we will refer to any of the graph sequence
constructed above as a convergent sequence of graphs. The graphon W determines the
asymptotic properties of each of these graph sequences. For this reason, W is called a
graph limit.

Example 2.1.

(1) Sparse power law graph. Let 0<�<�<1, ↵n=n
�� and

W (x,y)=(1��)2(xy)��
. (2.9)

Then the probability of connections in �n=G(n,W,↵n) is given by

P(i⇠ j)=n
��hn� ^W iIn,i⇥In,j . (2.10)

The expected degree Edeg(i)=C(�,�,n)i�� for some positive constant C(�,�,n) [5,
Lemma 2.2]. Thus, this is a power law graph. On the other hand the expected edge
density is O(n��). Thus, {�n} is a sparse sequence.

1Throughout this paper, a^b :=min{a,b}.
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If (2.10) is replaced by

P(j! i)=n
��hn�^W iIn,i⇥In,j ,

we obtain a sequence of sparse directed graphs with power law distribution.

(2) Sparse Erdős-Rényi graph. Let ↵n=n
��

, 0<�<1 and W ⌘1. �n=G(n,W,↵n) is
a graph on n nodes with the probability of edges being

P(i⇠ j)=n
��

. (2.11)

The expected value of the edge density in this case is n
�� and it is vanishing as

n!1. However, the expected degree n
1�� remains unbounded.

If (2.11) is replaced by

P(j! i)=n
��

.

we obtain a sequence of sparse directed Erdős-Rényi graphs.

Let �n=G(n,W,↵n) be a random sparse directed graph (cf. (RSD)). The number
of directed edges pointing to i2 [n] is called an in-degree of i:

d
+
n,i=

nX

j=1

1{j!i}. (2.12)

Similarly,

d
�
n,i=

nX

j=1

1{i!j} (2.13)

is called an out-degree of i2 [n].
From the definition of �n=G(n,W,↵n), we immediately have

Ed
+
n,i=

nX

j=1

↵nhW̃ iIn,i⇥In,j =↵nn

Z 1

0
W̄n(x,y)dy, x2 In,i, (2.14)

Ed
�
n,i=

nX

j=1

↵nhW̃ iIn,j⇥In,i =↵nn

Z 1

0
W̄n(y,x)dy, x2 In,i, (2.15)

where W̄n=
Pn

i,j=1hW̃ iIn,i⇥In,j1In,i⇥In,j .

In the remainder of this paper, we will assume that W 2L
1(I2) satisfies

esssupx2I

Z

I
|W (x,y)|dyW1 (W-1)

and

esssupy2I

Z

I
|W (x,y)|dxW2. (W-2)

For the nonnegativeW used in the definitions of random graphs (RDD) -(RSU) above,
(W-1) and (W-2) imply

sup
n2N

sup
x2I

Z

I
W̄n(x,y)dyW1, sup

n2N
sup
y2I

Z

I
W̄n(x,y)dxW2. (2.16)
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Indeed, for arbitrary n2N, i2 [n] and x2 In,i, we have

Z

I
W̃n(x,y)dy=

Z

I

X

j2[n]

hW̃niIn,i⇥In,j1In,j (y)dy

=n

X

j2[n]

Z

In,i⇥In,j

W̃ndxdy

n

Z

In,i

⇢Z

I
|W (x,y)|dy

�
dx

 esssupx2In,i

Z

I
|W (x,y)|dyW1.

The second inequality in (2.16) is proved similarly.

Remark 2.2. Conditions (2.16) apply to directed and undirected random graphs. In
the undirected case, the two conditions are equivalent, since W is a symmetric function.
Furthermore, by setting ↵n⌘1 and restricting to W 2L

1(I2), both conditions apply to
directed and undirected dense W-random graphs. With these conventions, below it will
be always assumed that conditions (2.16) hold for any of the above types of graphs.

Conditions (2.16) mean that the (in-) and out-degree of any node in �n are O(↵nn).
The uniformity here is the key. Both conditions clearly hold for all dense graphs (i.e.,
W 2L

1(I2)) and many sparse graphs. For instance, sparse Erdős-Rényi and small-
world graphs satisfy this condition. However, not every �n=Gd(n,W,↵n) satisfies
(2.16). For instance, the power law graph defined in Example 2.1 does not satisfy
(2.16). At the end of the next section, we show that the KM on the power law graphs,
after a suitable rescaling of the coupling term, can still be analyzed with the techniques
of this paper.

The dynamical model on random graphs can be generalized in the following way.
The nonnegativity assumption on W can be dropped. Indeed, writing W =W

+�W
�,

assume that positive and negative parts of W , W
+ and W

�
, satisfy (W-1), (W-2).

Then one can define graphs on n nodes, �+
n and ��

n , whose edge sets are defined using
the graphons W+ and W

� respectively. Thus, the original model can be rewritten as

u̇n,i=f(un,i,t)+(n↵n)
�1

0

@
nX

j=1

a
+
n,ijD(un,j�un,i)�

nX

k=1

a
�
n,ikD(un,k�un,i)

1

A, i2 [n],

(2.17)
where (a+n,ij) and (a�n,ij) are weighted adjacency matrices of �+

n and ��
n . The derivation

and analysis of the continuum limit for (2.1) with nonnegative W translates verbatim
for (2.17). To simplify presentation, we restrict to the case of nonnegative W .

3. The main result
Having defined the discrete model (2.1), (2.2), we now present the main result of

this work. Our goal is to describe the limiting behavior of the coupled system as n!1.
Specifically, we are going to compare the solutions of the discrete model (2.1), (2.2) for
large n with the solution of the IVP for the continuum model

@tu(t,x)=f(u,t)+

Z

I
W (x,y)D(u(t,y)�u(t,x))dy, x2 I, (3.1)

u(0,x)=g(x). (3.2)
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For simplicity of exposition, we state our main result for the KM on a sparse directed
graph. Clearly, the statement of the theorem translates easily to the KM on sparse
undirected graphs, as well as both directed and undirected dense random graphs, as
explained in Remark 2.2.

Below, we use the bold font to denote vector-valued functions. In particular, u(t)
stands for the map t 7!u(t, ·)2L

2(I). Further, given the solution of the IVP for the KM
(2.1), (2.2) un(t)=(un,1(t),un,2(t), . . . ,un,n(t)) , we define

un(t,x)=
nX

i=1

un,i(t)1In,i(x), (3.3)

where 1In,i stands for the characteristic function of In,i, i2 [n]. The corresponding
vector-valued function is denoted by un(t).

Theorem 3.1. Let un(t)=(un,1(t),un,2(t), . . . ,un,n(t)) be the solution of the IVP for
the KM (2.1), (2.2) on �n=Gd(n,W,n

��), 0<�<0.5, with nonnegative W 2L
2(I2)

satisfying (W-1) and (W-2) and subject to the initial condition (2.2) with

u
0
n,i= hgiIn,i , i2 [n],

and g2L
2(I).

Then for any T >0,

lim
n!1

kun�ukC(0,T ;L2(I))=0 a.s.,

where u(t) is the solution of the IVP for the continuum limit (3.1), (3.2) and un(t) is
defined by (3.3).

Theorem 3.1 establishes convergence of the discrete models on graphs to the con-
tinuum limit under the minimal assumptions on W . We only ask that the graphon
W 2L

2(I2) satisfies technical conditions (W-1) and (W-2). This allows us to treat the
KM on a variety of graphs in a uniform fashion. In particular, Theorem 3.1 contains
as special cases convergence of the KM on dense deterministic and random graphs an-
alyzed in [10, 11], as well as convergence of the KM on sparse graphs considered in [5].
In the case of the KM on random graphs, in this paper the convergence is proved in the
almost sure sense compared to the convergence in probability in [5,11]. In addition, the
setting of this paper includes the KM on directed graphs, while the even symmetry of
W was used in certain arguments in [5]. All in all, the main result of this paper shows
convergence of the KM to the continuum limit in the stronger sense and for a more
general class of graphs than in the previous work on this subject.

The proof of Theorem 3.1 follows the scheme developed in [11]. The first step of
the proof is estimating proximity between the solution on the IVP (2.1), (2.2) and that
for the averaged equation:

v̇n,i=f(vn,i,t)+n
�1

nX

j=1

W̄n,ijD(vn,j�vn,i), i2 [n], (3.4)

vn,i(0)=u
0
n,i. (3.5)

Here, we replaced an,ij ,i,j2 [n], with their expected values. In Theorem 4.1 below, we
prove that the solutions of the original and averaged models with probability 1 become
closer and closer in the appropriate norm for increasing values of n. On the other hand,
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(3.4) has the form of a Cartesian discretization of the continuum limit (3.1). Thus, the
second step in the proof is to show that the averaged model approximates the nonlocal
Equation (3.1).

The new challenges in implementing this plan are twofold. On the one hand, we
significantly relaxed the assumptions on W , compared to W 2L

1(I2) used in [10, 11].
On the other hand, we consider the nonlinear interaction function D compared to the
linear di↵usion in [5]. To overcome these problems we refined our techniques, in partic-
ular, the use of the concentration inequalities in the proof of Theorem 4.1 to obtain finer
estimates on the solutions of the averaged model. While the overall approach remains
the same as in [11], the analysis in the present paper reflects a better understanding of
the method of the proof of convergence to the continuum limit, and fuller reveals its
potential.

4. Averaging
For KM on random graphs, the key step in the derivation of the continuum limit is

the averaging procedure, when a stochastic model is approximated by a deterministic
(averaged) system. In this section, we focus on the justification of the averaging.

Throughout this section, we consider the KM on random graphs (cf. RDD, RDU,
RSD, RSU). Without loss of generality, we consider the KM on a random sparse
directed graph �n=Gd(n,W,↵n), as it represents the most general case2.

For convenience, we rewrite the KM on �n=Gd(n,W,↵n) :

u̇n,i=f(un,i,t)+
1

↵nn

nX

j=1

an,ijD(un,j�un,i), i2 [n], (4.1)

Taking the expected value of the right-hand side of (4.1) on �n

Ean,ij =P(j! i)=↵nhW̃niIn,i⇥In,j ,

we arrive at the following averaged model

v̇n,i=f(vn,i,t)+
1

n

nX

j=1

W̄n,ijD(vn,j�vn,i), i2 [n], (4.2)

where W̄n,ij := hW̃niIn,i⇥In,j .

To compare the solutions of the IVPs for the original and the averaged KMs, we
adopt the discrete L

2-norm:

kun�vnk2,n=

0

@n
�1

nX

j=1

(un,i�vn,i)
2

1

A
1/2

. (4.3)

Theorem 4.1. Let nonnegative W 2L
1(I2) satisfy (W-1), (W-2), and ↵n=n

�� ,
�2 (0,0.5), and

L=Lf +LD

✓
2+

3

2
W1+

1

2
W2

◆
+

1

2
. (4.4)

2For the KM on an undirected graph, assume, in addition, that W is symmetric. In the dense case,
restrict to 0W 1 and set ↵n⌘1.
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Then for solutions of the original and averaged Equations (4.1) and (4.2) subject to the
same initial conditions and any T C lnn, 0C< (1�2�)L�1, we have

lim
n!1

sup
t2[0,T ]

kun�vnk2,n=0 almost surely (a.s.). (4.5)

Proof. Recall that f(u,t) and D are Lipschitz continuous functions in u with
Lipschitz constants Lf and LD respectively. In addition, f(u,t) is a continuous function
of t and D(u) is 2⇡–periodic function satisfying (2.3).

Further, an,ij , are Bernoulli random variables

P(an,ij =1)=↵nW̄n,ij . (4.6)

Denote  n,i :=vn,i�un,i. By subtracting (4.1) from (4.2), multiplying the result by
n
�1
 n,i, and summing over i2 [n], we obtain

1

2

d

dt
k nk22,n=n

�1
nX

i=1

(f(vn,i,t)�f(un,i,t)) n,i

| {z }
I1

+n
�2
↵
�1
n

nX

i,j=1

(↵nWn,ij�an,ij)D(vn,j�vn,i) n,i

| {z }
I2

+n
�2
↵
�1
n

nX

i,j=1

an,ij [D(vn,j�vn,i)�D(un,j�un,i)] n,i

| {z }
I3

=:I1+I2+I3, (4.7)

where k ·k22,n is the discrete L
2-norm (cf. (4.3)).

Using Lipschitz continuity of f in u, we have

|I1|Lfk nk22,n. (4.8)

Using Lipschitz continuity of D and the triangle inequality, we have

|I3|LDn
�2
↵
�1
n

nX

i,j=1

an,ij (| n,i|+ | n,j |) | n,i|

LDn
�2
↵
�1
n

0

@3

2

nX

i,j=1

an,ij 
2
n,i+

1

2

nX

i,j=1

an,ij 
2
n,j

1

A. (4.9)

Choose 0< �<1�2� and denote

An,i=

8
<

:Sn,i�↵n

nX

j=1

W̄n,ij+n
1+�
2

9
=

; , n2N, i2 [n], (4.10)

An=
n[

i=1

An,i, n2N, (4.11)
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where

Sn,i=
nX

j=1

an,ij , i2 [n]. (4.12)

Noting 0an,ij 1, ESn,i=↵n
Pn

j=1W̄n,ij , we apply Cherno↵-Hoe↵ding inequal-

ity3 to bound

P(An,i) e
�2n�

. (4.13)

By the union bound,

P(An)ne
�2n�

. (4.14)

By Borel-Cantelli lemma, with probability 1 there exists N� 2N such that

Sn,i<↵n

nX

j=1

W̄n,ij+n
1+�
2 , (4.15)

for all n�N� and i2 [n]. Below, we restrict to the subset of probability 1, where (4.15)
holds.

With (4.15) in hand, we return to bounding the right–hand side of (4.9)

n
�2
↵
�1
n

nX

i,j=1

an,ij 
2
n,in

�1
nX

i=1

2

4n
�1+�

2 ↵
�1
n +n

�1
nX

j=1

W̄n,ij

3

5 2
n,i

 (1+W1)k k2n,2, (4.16)

where we used n
�1+�

2 ↵
�1
n =n

�1+2�+�
2 1 and the definition of W1 (cf. (2.16)).

Similarly,

n
�2
↵
�1
n

nX

i,j=1

an,ij 
2
n,j  (1+W2)k k2n,2. (4.17)

By plugging (4.16) and (4.17) into (4.9), we have

|I3|LD

✓
2+

3

2
W1+

1

2
W2

◆
k k2n,2. (4.18)

It remains to bound I2. To this end, we will need the following definitions:

Zn,i(t)=n
�1

nX

j=1

bn,ij(t)⌘n,ij ,

bn,ij(t)=D(vn,j(t)�vn,i(t)) ,

3 Here and below, we are using

P
 

NX

i=1

Xi�
NX

i=1

EXi+ t

!
 e

�2t2PN
i=1(bi�ai)

2
, and P

 �����

NX

i=1

Xi�
NX

i=1

EXi

������ t

!
2e

�2t2PN
i=1(bi�ai)

2
,

which hold for collectively independent random variables aiXi bi, i2 [N ] [4].
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⌘n,ij =an,ij�↵nW̄n,ij ,

and Zn=(Zn,1,Zn,2, . . . ,Zn,n). With these definitions in hand, we estimate I2 as follows:

|I2|= |n�1
↵
�1
n

nX

i=1

Zn,i n,i|2�1
↵
�2
n kZnk22,n+2�1k nk22,n. (4.19)

The combination of (4.7), (4.8), (4.18) and (4.19) yields

d

dt
k n(t)k22,nLk n(t)k22,n+

1

↵2
n

kZn(t)k22,n, (4.20)

where L is defined in (4.4).
Using the Grönwall’s inequality, we have

k n(t)k22,n↵�2
n e

Lt

Z ⌧

0
e
�LskZn(s)k22,nds.

and

sup
t2[0,T ]

k n(t)k22,n↵�2
n e

LT

Z 1

0
e
�LskZn(s)k22,nds. (4.21)

Our next goal is to estimate
R1
0 e

�LskZn(s)k22,nds. To this end, note

E⌘n,ij =E(an,ij�↵nW̄n,ij)=0, (4.22)

E⌘2n,ij =E(an,ij�↵nW̄n,ij)
2=↵nW̄n,ij�(↵nW̄n,ij)

21. (4.23)

Further,

Z 1

0
e
�Ls

Zn,i(s)
2
ds=n

�2
nX

k,l=1

cn,ikl⌘n,ik⌘n,il, (4.24)

where

cn,ikl=

Z 1

0
e
�Ls

bn,ik(s)bnil(s)ds and |cn,ikl|L
�1

. (4.25)

Further, from (4.24) and (4.25), we have

Z 1

0
e
�LskZn(s)k22,nds=n

�3
nX

i,k,l=1

cn,ikl⌘n,ik⌘n,il. (4.26)

Our final goal is to bound the sum on the right–hand side of (4.26). To this end,
we write

nX

i,k,l=1

cn,ikl⌘n,ik⌘n,il=
nX

i,k=1

cn,ikk⌘
2
n,ik+2

nX

i=1

X

1l<kn

cn,ikl⌘n,ik⌘n,il. (4.27)

Both sums on the right–hand side of (4.27) are formed of independent bounded random
random variables. By Cherno↵-Hoe↵ding inequality, for an arbitrary �>0, we have

P

0

@
nX

i,k=1

cn,ikk⌘
2
n,ik�

nX

i,k=1

cn,ikkE⌘2n,ik+n
2

1

A e
�n2L2

, (4.28)
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P

0

@

������

nX

i=1

X

1l<kn

cn,ikl⌘n,ik⌘n,il

������
�n

3
2+�

1

A2e�n2�L2

, (4.29)

where we used the bound on cn,ikl (see (4.25)). By Borel-Cantelli lemma, we now have

nX

i,k=1

cn,ikk⌘
2
n,ik

nX

i,k=1

cn,ikkE⌘2n,ik+n
2
< (L�1+1)n2

, (4.30)

������

nX

i=1

X

1l<kn

cn,ikl⌘n,ik⌘n,il

������
<n

3
2+�

, (4.31)

for su�ciently large n a.s.. Plugging in these bounds into (4.27) and (4.26), we obtain

↵
�2
n

Z 1

0
e
�LskZn(s)k22,nds↵�2

n

⇣
(L�1+1)n�1+2n

�3
2 +�

⌘
C1↵

�2
n n

�1 (4.32)

for some C1�0 a. s..
Using (4.32), from (4.21) we have

sup
t2[0,T ]

k n(t)k22,nC1e
LT
↵
�2
n n

�1
. (4.33)

For ↵n=n
��

, 0<�< 1
2 the right–hand side of (4.33) tends to zero on the time interval

with T C lnn for any 0<C<
1�2�
L .

If we restrict to finite time intervals then (4.33) yields the rate of convergence
estimate.

Corollary 4.1. For fixed T >0, we have

lim
n!1

n
1
2���� sup

t2[0,T ]
k n(t)k2,n=0 a.s., (4.34)

where 0< �< 1
2 �� is arbitrary.

Remark 4.1. Theorem 4.1 and Corollary 4.1 clearly apply to the KM on undirected
sparse graphs. Furthermore, by setting �=0, these results translate to the KM on dense
W–random graphs.

Remark 4.2. As we pointed out earlier, not every sparse random graph defined in
(RSD, RSU) meets (2.16). However, the averaging can still be justified for the KM
on such graphs if the original model is suitably rescaled. For simplicity, we explain the
new scaling for the KM on undirected graphs.

Let �n=G(n,W,↵n), where W 2L
1(I2) is a symmetric nonnegative function and

↵n&0, ↵nn!1 as before. Consider

u̇n,i=f(un,i,t)+d
�1
n,i

nX

j=1

an,ijD(un,j�un,i), i2 [n], (4.35)

where dn,i :=d
+
n,i=d

�
n,i is a degree of node i2 [n]. We claim that the conclusion of

Theorem 4.1 holds for the rescaled model (4.35) for any nonnegative symmetric W 2
L
1(I2). Indeed, the averaged system in this case takes the following form

v̇n,i=f(vn,i,t)+n
�1

nX

j=1

Un,ijD(vn,j�vn,i), i2 [n], (4.36)
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where

Un,ij =
W̄n,ij

n�1
Pn

k=1W̄n,ki
, (i,j)2 [n]2. (4.37)

Using W̄n,ij =W̄n,ji and (4.37), we have

n
�1

nX

k=1

Un,kj =n
�1

nX

k=1

Un,ik=1 8i,j2 [n].

Thus, the bounds in (4.16) and (4.17) hold with W1=W2=1. The rest of the proof
remains unchanged.

5. The continuum limit
We now turn to the IVP for the continuum model (3.1), (3.2). Throughout this

section, we assume that W 2L
2(I2) is subject to (W-1) and (W-2). With these assump-

tions, the proof of Theorem 3.1 of [5] can be easily modified to yield the existence of
a unique classical solution u2C

1(R,L2(I)) of the IVP (3.1), (3.2). We continue to use
the bold font to denote vector-valued functions, e.g., u(t) :=u(t, ·)2L

2(I).
The goal of this section is to show that the solutions of the averaged discrete prob-

lems (3.4), (3.5) converge to that of the continuous problem (3.1), (3.2). To this end, it
is convenient to recast the former problems as

@tvn(t,x)=f(vn(t,x),t)+

Z

I
W̄n(x,y)D(vn(t,y)�vn(t,x))dy, (5.1)

vn(0,x)=gn(x), (5.2)

where

gn(x)=
nX

i=1

gn,i1In,i(x), gn,i= hgiIn,i :=n

Z

In,i

g(x)dx, (5.3)

W̄n(x,y)=
nX

i,j=1

W̄n,ij1In,i⇥In,j (x,y). (5.4)

The two IVPs (3.4), (3.5) and (5.1), (5.2) are equivalent. Indeed, take vn,i(t), i2 [n],
the solution of (3.4), (3.5), and form

vn(t,x)=
nX

i=1

vn,i(t)1In,i(x). (5.5)

It is straightforward to check that vn(t,x) solves (5.1), (5.2). Conversely, the time
dependent coe�cients of the step functions 1In,i , i2 [n], in the representation (5.5) of
the solution of (5.1), (5.2) yield the solution of the discrete problem (3.4), (3.5).

The following theorem establishes the continuum limit for the IVP for the averaged
Equation (5.1), (5.2).

Theorem 5.1. Let W 2L
2(I2) satisfy (W-1), (W-2) and g2L

2(I). Recall that f(u,t)
and D(u) are Lipschitz continuous functions in u. In addition, f(u,t) is a continuous
function of t. Then for any given T >0

lim
n!1

kvn�ukC(0,T ;L2(I))=0,
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where u(t) is the solution of the IVP for the continuum limit (3.1), (3.2) and vn(t)=
vn(t, ·) is the solution of the IVP (5.1), (5.2).

Remark 5.1. Theorem 5.1 combined with Theorem 4.1 implies Theorem 3.1, and,
thus, provides a rigorous justification for the continuum limit of the KM on sparse
graphs.

Proof. Denote the di↵erence between the solutions of the original IVP (3.1), (3.2)
and the averaged IVP (5.1), (5.2)

wn(t,x)=u(t,x)�vn(t,x). (5.6)

By subtracting (5.1) from (3.1), multiplying the resultant equation by wn, and integrat-
ing over I, we obtain
Z

I
@twn(t,x)wn(t,x)dx=

Z

I
(f(u(t,x),t)�f(vn(t,x),t))wn(t,x)dx

+

Z

I

Z

I
W (x,y)[D(u(t,y)�u(t,x))�D(vn(t,y)�vn(t,x))]wn(t,x)dydx

+

Z

I

Z

I
(W (x,y)�Wn(x,y))D(vn(t,y)�vn(t,x))wn(t,x)dydx. (5.7)

By Lipschitz continuity of f(u,t) in u, we have
����
Z

I
(f(u(t,x),t)�f(vn(t,x),t))wn(t,x)dx

����Lfkwn(t, ·)k2. (5.8)

Here and below, k ·k stands for the norm in L
2(I) or in L

2(I2) depending on the context.
Using the bound for D (2.3) and Young’s inequality, we obtain

����
Z

I

Z

I
(W (x,y)�Wn(x,y))D(vn(t,y)�vn(t,x))wn(t,x)dydx

����

1

2
kW �Wnk2+

1

2
kwn(t, ·)k2 . (5.9)

Finally, using Lipschitz continuity of D and Young’s inequality, we estimate
����
Z

I

Z

I
W (x,y)[D(u(t,y)�u(t,x))�D(vn(t,y)�vn(t,x))]wn(t,x)dydx

����

LD

Z

I

Z

I
W (x,y)(|wn(t,y)|+ |wn(t,x)|) |wn(t,x)|dydx

LD

Z

I

Z

I
W (x,y)

✓
1

2
|wn(t,y)|2+

3

2
|wn(t,x)|2

◆
dydx

3LD

2

Z

I

Z

I
W (x,y)|wn(t,x)|2dydx+

LD

2

Z

I

Z

I
W (x,y)|wn(t,y)|2dydx

2�1
LD(3W1+W2)kwn(t, ·)k2 , (5.10)

where we also used Fubini’s theorem, (W-1) and (W-2) to get the bound in the last line.
By combining (5.7)-(5.10), we arrive at

d

dt
kwn(t, ·)k2Lkwn(t, ·)k2+kWn�Wk2, (5.11)
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where L=2Lf +1+LD(3W1+W2).
By Grönwall’s inequality, we have

sup
t2[0,T ]

kwn(t, ·)ke
LT/2 (kg�gnk+kWn�Wk) .

It remains to show that kWn�Wk!0 as n!1. To this end, let Pn denote the
L
2-projection from L

2(I2) onto the subspace of L
2(I2) generated by step functions

{1In,i⇥In,j , i,j2 [n]}. Recall that W̄n=PnW̃n.
Thus, by the triangle inequality, we have

kW �W̄nkkW �W̃nk+kW̃n�PnW̃nk. (5.12)

Using the triangle inequality again, we have

kW̃n�PnW̃nkkW̃n�Wk+kW �PnWk+kPn(W �W̃n)k
2kW̃n�Wk+kW �PnWk. (5.13)

From the definition of W̃n, W̃n!W a.e. on I
2. By the dominated convergence theorem

kW̃n�Wk!0. Further, kW �PnWk!0 as n!1 by the L2–Martingale Convergence
Theorem (cf. [5, Lemma 5.3]). Thus, from (5.12) and (5.13), we have kW �W̄nk!0.
This concludes the proof.
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