Effects of membrane fatty acid composition on cellular metabolism and oxidative stress in dermal fibroblasts from small and large breed dogs.

3

5

6

7

8 9 By

Ana Gabriela Jimenez^{1*t}, Joshua D. Winward^{1t}, Kenneth E. Walsh², and Alex M. Champagne³

¹Colgate University, Biology department, 13 Oak Dr. Hamilton, NY

²University of Southern Indiana, Chemistry department, 8600 University Blvd., Evansville, IN

³University of Southern Indiana, Biology department, 8600 University Blvd., Evansville, IN

*Author for correspondence: ajimenez@colgate.edu

[†]These authors contributed equally to the manuscript

11 12

13 14

15

16

17 18

19

20

21

22

23

24

25

26

27

28

29

30

31

10

Abstract

There is ample evidence that cell membrane architecture contributes to metabolism and aging in animals, however the aspects of this architecture that determine the rate of metabolism and longevity are still being debated. The "membrane pacemaker" hypotheses of metabolism and aging, respectively, suggest that increased lipid unsaturation and large amounts of polyunsaturated fatty acids (PUFAs) in cell membranes increases the cellular metabolic rate as well as the vulnerability of the cell to oxidative damage, thus increasing organismal metabolic rate and decreasing longevity. Here, we test these hypotheses by experimentally altering the membrane fatty acid composition of fibroblast cells derived from small and large breed dogs by incubating them in a medium enriched in the monounsaturated fatty acid (MUFA) oleic acid (OA, 18:1) to decrease the total saturation. We then measured cellular metabolic parameters and correlated these parameters with membrane fatty acid composition and oxidative stress. We found that cells from small dogs and OA incubated cells had lower maximal oxygen consumption and basal oxygen consumption rates, respectively, which are traits associated with longer lifespans. Furthermore, although we did not find differences in oxidative stress, cells from small dogs and OA treated cells exhibited reduced ATP coupling efficiency, suggesting that these cells are less prone to producing reactive oxygen species. Membrane fatty acid composition did not differ between cells from large and small dogs, but cells incubated with OA had more monounsaturated fatty acids and a higher number of double bonds overall despite a decrease in PUFAs. Our results suggest that increasing the mono-unsaturation of dog cell membranes may alter some metabolic parameters linked to increases in longevity.

34 Introduction

 That metabolism and longevity are linked to cellular architecture is now becoming a commonly accepted tenet, however, the aspects of this architecture that determine metabolic rate and longevity are still being debated (Hulbert et al., 2007). Cellular membranes, including the plasma and mitochondrial membranes, serve as barriers for the flow of ions within and between cells, and thus govern the rate of many cellular processes (Hulbert et al., 2007). As a consequence, changes in the properties of these membranes can affect metabolic rate and impact processes associated with aging. A primary mechanism by which membrane properties are altered is through changes in lipid composition, including changes in the saturation of fatty acid tails (Hulbert, 2007). Differences in the composition of saturated fatty acids, monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) have wideranging effects on membrane fluidity and susceptibility to oxidative damage (Calhoon et al., 2015) Currently, two hypotheses attempt to explain the mechanism by which cell membrane composition determines metabolic rate and longevity – the membrane pacemaker hypothesis of metabolism and the membrane pacemaker hypothesis of aging.

The "membrane pacemaker hypothesis of metabolism" suggests that basal metabolism is closely associated with membrane protein activity such as the pumping of Na⁺-K⁺-ATPase across the plasma membrane and across the inner mitochondrial membrane (Rolfe and Brown 1997; Turner et al., 2003). In addition to inherently increasing Na⁺-K⁺-ATPase activity, lipid membranes with long fatty acid chains and high PUFA content exhibit a greater proportion of more fluid hexagonal phase domains. This greater fluidity increases activity of several membrane proteins that may increase metabolic rate (Escribá et al, 1995; Brookes et al, 1998; Calhoon et al, 2015). This pattern is demonstrated in a wide range of mammalian species, in which increases in chain length and the increases in the total number of double bonds in phospholipids correlate with higher tissue metabolic rates in some organs (Couture and Hulbert 1995a; Couture and Hulbert 1995b; Hulbert et al., 2007).

In addition to contributing to an elevated metabolic rate, higher levels of unsaturated fatty acids in cell membranes may also increase the susceptibility of the cell membrane to oxidative damage, and thus could lead to an accelerated rate of aging and decreased longevity, a proposed mechanism referred to as the membrane pacemaker hypothesis of aging (Pamplona et al., 1996; Pamplona et al., 1998; Pamplona et al., 2002; Portero-Otin et al., 2001; Hulbert et al., 2007; Calhoon et al., 2015). As animals produce adenosine triphosphate (ATP) through mitochondrial respiration, highly reactive molecules with an errant electron known as reactive oxygen/nitrogen species (ROS/RNS) are produced as a by-product of oxygen reduction

(Harman 1956). In small amounts, ROS are important for cell signaling and normal cellular function (Thannickal 2000). However, when there is an excess of ROS, they interact with other molecules, and can damage cellular components, including lipid membranes (Harman 1956; Hulbert 2007; Monaghan et al., 2009). As lipid peroxidation propagates across membranes, membrane composition and function are compromised, thus decreasing cellular function. In addition, lipid peroxidation damage initiates a complex chain reaction with highly reactive intermediaries which can propagate excess damage to proteins and DNA (Monaghan et al., 2009). Lipid membranes containing high amounts of PUFAs exhibit the greatest sensitivity to oxidative damage, as PUFAs contain multiple double bonds with an available electron to propagate damage across membranes (Pamplona et al., 1998). It is worth noting however, that associations between lipid membrane content and longevity may also be explained by the membrane pacemaker hypothesis of metabolism, as metabolism and longevity are correlated in bird and mammals (Hulbert, 2007).

To mitigate damage caused by ROS, animals have an endogenous defense system in the form of anti-oxidants (Harman 1994). These anti-oxidants are found in high concentrations in mitochondria, and in lower concentrations throughout the body. Anti-oxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), vitamin E, and glutathione act by binding to ROS molecules without turning into ROS themselves (Monaghan et al., 2009). Thus, management of ROS and anti-oxidants becomes a balancing act that must be closely monitored to prevent the pro-oxidant concentration from outweighing the concentration of anti-oxidants sufficient for ROS removal, a process known as oxidative stress (Halliwell and Gutterridge 2015). Additionally, antioxidant concentration is sometimes related to lipid membrane composition. In some species, higher levels of PUFAs are associated with higher levels of some antioxidants (Yamamoto et al., 2001), and animals may combat high levels of oxidative stress by lowering PUFAs while simultaneously increasing certain antioxidants (Girelli et al., 1992).

Membrane lipid composition is determined by the addition or transfer of fatty acids to phospholipids via deacylation and reacylation cycles (Hulbert et al., 2014). Prior to being added to phospholipids, fatty acids may undergo modifications such as elongation of the hydrocarbon chains or the addition of double bonds regulated by elongase and desaturase enzymes, respectively (Couture and Hulbert 1995a; Guillou et al., 2010; Pamplona et al., 1998). However, mammals cannot synthesize n-3 and n-6 essential fatty acids which are the precursors for long-chain polyunsaturated n-3 and n-6 acids, instead, these molecules are obtained from the diet (Pamplona et al., 1998). Therefore, extrinsic modifications to lipid composition can happen

through dietary changes or hormone regulation (Couture and Hulbert 1995a). Caloric restriction (CR) experiments have determined a decrease in cell membrane polyunsaturation is linked to a decrease in lipid peroxidation damage that leads, in some cases, to increased lifespan (Naudi et al., 2013; Lopez-Dominguez et al., 2014). However, cell membrane composition often changes little despite large differences in dietary lipid composition (Abbot et al., 2012), and most changes are limited to the relative percentage of n-6 and n-3 PUFAs (Hulbert et al., 2005; Valencak and Ruff, 2011). Furthermore, concomitant increases or decreases in oxidative stress with changes in membrane saturation and the effects on cellular metabolism and lifespan are not clear. Thus, a direct test of the "membrane as a pacemaker" hypothesis is still lacking.

Many previous tests of the membrane as a pacemaker hypothesis of metabolism and the membrane as a pacemaker hypothesis of aging are not only limited in their ability to manipulate membrane lipid composition, but are also often confounded by phylogenetic and body size considerations when comparing multiple species (Speakman, 2005; Calhoon et al., 2015). Here, we test these hypotheses by measuring cellular metabolism, membrane fatty acid composition, and antioxidants in fibroblast cells derived from a wide range of domestic dog breeds, and correlate these traits with lifespan and body size. Domestic dogs are a good study model for this question because artificial selection has rendered this species with a 44-fold variation in body size from the Chihuahua to the Great Dane. Similarly, aging rates are correlated with body size such that small dogs live significantly longer than large dogs (Jimenez 2016). Furthermore, mammalian fibroblasts cells in culture are known to readily take up lipids contained in the culture medium, (Glaser et al., 1974; Spector and Yorek, 1985) making them a good model cell type for this experiment. We cultured fibroblast cells of dogs in media enriched with Oleic acid, an 18:1 MUFA, to increase the proportion of MUFAs, and decrease PUFA content in cellular membranes. We then measured the effects of this altered membrane composition on cellular metabolism and oxidative stress. Overall, we predicted that a lesser degree of polyunsaturation in membrane fatty acids would result in a decrease in cellular metabolism, and a decrease in oxidative stress in cells from small and large breed dogs. We expected to see a more inflated response in cells from large breed dogs. To our knowledge this is the first time that cell membrane lipids have been quantified intraspecifically across a large range of dog breeds, and the first time there is a direct measurement of cellular metabolism and changes in cell membrane composition.

Materials and Methods

Advantages of using fibroblast cells

102

103

104

105106

107108

109

110

111

112113

114115

116

117118

119

120

121

122

123

124

125

126127

128

129

130131

132

133

Some advantages to using fibroblasts to address this question include the ability to culture cells from relatively non-invasive procedures, control of environmental nutrients, and the ability to measure multiple physiological parameters in the same cell lines, for example, cellular metabolic rate and oxidative stress. Others have demonstrated that there is a relationship between fibroblast membrane lipid composition, longevity and metabolic rate in birds (Calhoon et al., 2014). Though the "membrane as a pacemaker" hypothesis was postulated for mitochondrial membranes, we measured total phospholipids in whole cells because in mammals, allometric variation in fatty acyl composition is similar for all subcellular compartments and the total fraction of phospholipids has been used as a proxy for variation in mitochondrial membrane composition (Hulbert et al., 2002; Turner et al., 2005). *Isolation of dog fibroblasts*

We isolated fibroblast cells from puppies of two size classes. The small breed size class was composed of breeds with an adult body mass of 15 kg or less, and the large breed size class included breeds or mixes with an adult body mass of 20 kg or more (Table 1). These size classes are based on American Kennel club (AKC) standards of each breed, and described in Jimenez (2016). Puppy samples were obtained from routine tail docks, ear clips and dewclaw removals performed at veterinarian offices in Central New York and Michigan. The samples were placed in cold transfer medium (Dulbecco's modified Eagle medium [DMEM], with 4.5 g/L glucose, sodium pyruvate, and 4 mM L-glutamine supplemented with 10% heat-inactivated fetal bovine serum, and antibiotics [100 U/mL pen/strep], containing 10 mM HEPES) and transferred to Colgate University. To isolate fibroblast cells, skin samples were sterilized in 70% ethanol, and 20% bleach. Once any fat and bone were removed, skin was minced and incubated in sterile 0.5% Collagenase Type 2 (Worthington Chemicals, Cat. No. LS004176) overnight in an atmosphere of 37 °C, 5% CO₂ and 5% O₂. After incubation, the collagenase mixture was filtered through a 20 µm sterile mesh, and centrifuged at 1000 rpm for 5 min. The resulting supernatant was removed, and the pellet was resuspended with 7 mL of mammal media (Dulbecco's modified Eagle medium [DMEM], with 4.5 g/L glucose, sodium pyruvate, and 4 mM L-alutamine supplemented with 10% heat-inactivated fetal bovine serum, and antibiotics [100 U/mL pen/strep]). Cells were grown in corning T-25 culture flasks at 37 °C in an atmosphere of 5% CO₂ and 5% O₂. When cells reached 90% confluence, they were trypsinized (0.25%) and cryopreserved at 10⁶ cells/mL in DMEM supplemented with 40% fetal bovine serum and dimethylsulfoxide (DMSO) at a final concentration of 10%. We stored cells in liquid N₂ prior to any experiments.

Treatments

135

136

137

138139

140141

142143

144

145

146

147148

149150

151

152

153

154

155

156

157

158159

160

161

162

163

164

165

166167

For each individual dog, we split cells lines into a control (normal mammal media as listed above) and a treatment (oleic acid, OA) group. Resuspended cells at P1 were given 5 days to recover from freezing before passaging to P2. At P2, each sample was trypsinized again and evenly split. 0.25 mL of each sample were added to two T25 culture flasks. 5 mL of DMEM were added to one flask to serve as controls, and 5 mL of 5 mM OA media was added to the second flask to serve as experimental treatments. A 50 mM solution of OA was made by making a 10% solution of Bovine Serum Albumin (BSA), and a solution of oleic acid by dissolving 14.1235g of OA into 1L of 0.1M NaOH while heating. We used a final 5 mM concentration of OA in DMEM media for our treatment group (Pappas et al., 2002). The cells were then allowed to grow to confluence at 37 °C in an atmosphere of 5% CO₂ and 5% O₂. All measurements were conducted using cells at passage 3 (P3). All the procedures within this study were approved by the Colgate University's Institutional Care and Use Committee. It should be noted that OA at high concentrations has demonstrated toxicity in immune system cells such as lymphocytes (Cury-Boaventura et al. 2006) and in hen egg white lysozomes (Huang et al., 2019). However, to our knowledge, the toxicity of OA has not been demonstrated in dermal fibroblasts and we base our experimental design on studies that have previously used this concentration of OA in human dermal cells (Pappas et al., 2002).

Oxygen Consumption Rates (OCR) in fibroblast cells

169

170

171

172173

174175

176

177

178

179

180

181

182

183

184 185

186

187

188

189

190

191

192193

194

195

196

197

198

199200

201

202

Assays were performed prior to experiments to determine optimal cell seeding density, and optimal concentrations of each compound. We seeded 20,000 cells per well in duplicate per individual into XF-96 cell culture plates and allowed cells to attach overnight. OCR was determined using XF-96 FluxPaks from Agilent Technologies. We measured OCRs after cells were equilibrated to running media for 1 h, which contained 10 mM glucose, 1 mM sodium pyruvate and 2 mM glutamine, pH = 7.4. Baseline measurements of OCRs were made three times to establish basal OCR prior to injecting a final well concentration of 2 µM oligomycin, which inhibits ATP synthesis by blocking the proton channel of the Fo portion of the ATP synthase, causing OCR to fall. Thus, the decrease in OCR from basal levels represents ATP coupled respiration, whereas the remaining OCR is attributed to O₂ consumption required to overcome the natural proton leak across the inner mitochondrial membrane plus any nonmitochondrial O₂ consumption. We then injected a well concentration of 0.125 μM carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), an uncoupling agent that disrupts ATP synthesis by collapsing the proton gradient across the mitochondrial membrane leading to uncoupled consumption of energy and O₂ without generating ATP, providing a theoretical maximal OCR. Finally, we injected a final well concentration of 0.5 µM Antimycin A, a Complex

III inhibitor and rotenone, a Complex I inhibitor. This combination stops mitochondrial respiration and enables non-mitochondrial respiration to be evaluated (Gerenser et al., 2009, Brand and Nichols 2011, Hill et al., 2012). After measurements were completed, we used a Countess II FL cell counter to count the actual final concentration of cells in each well and normalized all rates to 20,000 cells. In addition to the OCR parameters we measured directly (as listed above), we also calculated spare respiratory capacity as the difference between maximal OCR and basal OCR, and ATP coupling efficiency as the percentage of basal OCR accounted for by ATP coupled respiration. For each OCR parameter, we followed equations supplied by Divakaruni et al., (2014). Though all cells were actively dividing, due to differing growth rates of each cell line, cells were counted after each experiment using a Countess II FL cell counter and data was normalized to a total of 20,000 cells per well.

Oxidative stress measurements in fibroblast cells

For oxidative stress measurements, cells were seeded at 10,000 cells per well and allowed to attach for 24 h prior to any experiments. We used Thermo Scientific™ Nunc™ MicroWell™ 96-Well Optical-bottom black chimney plates with polymer base (Cat. No. 152028) for all fluorescent stains. After staining with each fluorescent stain (below) on a separate plate, cells were imaged using a Tecan Infinite M200 fluorescence microplate reader. Cells were counted after each experiment using a Countess II FL cell counter and data were normalized to a total of 20,000 cells per well.

Reduced glutathione

ThiolTrackerTM Violet Kit (Glutathione Detection Reagent, Molecular Probes®) was used to measure concentration of reduced glutathione (GSH). In brief, cells were rinsed with sterile PBS twice and 20 μM ThiolTracker was added to each well. Plates were incubated at 37 °C 5% CO₂ and 5%O₂ for 30 minutes. Cells were then washed another three times with sterile PBS, and imaged in phenol red-free FluoroBrite DMEM. Excitation and emission were measured in the violet spectrum at 404/526 nm, respectively (Mandavilli and Janes 2010; Roberts et al. 2017).

2011).

ROS production

CellROX ® Oxidative Stress Reagents kit (Molecular Probes ®) was used to measure ROS production. CellROX reagent was added directly to the serum-free medium at a concentration of 5 μM and cells were incubated at 37 °C 5% CO₂ 5% O₂ for 30 minutes. Cells were then washed three times with sterile PBS, and imaged in phenol red-free FluoroBrite DMEM. Excitation and emission were in the green spectrum at 488/530 nm, respectively (Gebhard et al., 2013; Choi et al., 2015). As a positive control, cells were treated with or without

 μ M menadione (Sigma cat no. M5625) prior to being stained with CellROX, this confirmed that the signal was due to ROS production.

Lipid peroxidation damage

Lipid peroxidation (LPO) damage was measured with the Image-iT® Lipid Peroxidation Kit based on the BODIPY® 581/591 reagent. The ratio between red to green indicates the degree of lipid peroxidation. Cells were stained with 10 μM of component A and incubated at 37 °C 5% CO₂ and 5%O₂ for 30 mins. Cells were then washed three times with sterile PBS and imaged in phenol red-free FluoroBrite DMEM. LPO damage red excitation and emission were 575/610 nm respectively and LPO damage green was 488/525, respectively (Leirós et al., 2015; Dezest et al., 2017). A final concentration of 100 μM cumene hydroperoxide was used as a positive control to induce lipid peroxidation.

Quantifying lipids in fibroblast cell extracts

We used a modified Bligh and Dyer method to extract lipids from control and OA incubated cells of each individual dog (Bligh and Dyer, 1959). Briefly, we suspended cells in 1 mL of sterile, distilled H₂O, and sequentially added 3.75 mL of 1:2 (v/v) chloroform: methanol, 1.25 mL of chloroform, and 1.25 mL of 1M NaCl, vortexing after adding each solvent. We then centrifuged the entire solution at 1000 rpm for 5 minutes at room temperature to separate aqueous and organic constituents, and recovered the lipids in the organic phase. We then added another 1.88 mL of chloroform to the remaining aqueous phase, centrifuged again, and combined the recovered organic phase with the first organic phase before discarding the aqueous phase. To prepare lipids for gas chromatography (GC), we methylated fatty acid chains via transesterification to produce fatty acid methyl esters (FAMEs). FAMEs were produced by heating the lipid extracts in 2.0 mL of anhydrous methanolic HCl (5%) for 90 mins. After cooling, the resultant FAMEs were extracted by adding 1 mL of hexanes and 1 mL distilled H₂O (Ichihara and Fukubayashi, 2010). The hexanes layer containing the FAMEs was recovered and evaporated, and we redissolved FAMEs in 20 μL 2:1 chloroform: methanol containing 50 mg/L butylated hydroxytoluene as an antioxidant.

We separated FAMEs on a HP 5890A gas chromatograph with flame ionization detector (FID) equipped with a DB-23 column (30 m, 0.25 mm i.d., 0.25 μ m film thickness, Agilent Technologies). The oven was programmed from an initial temperature of 50 °C to 194 °C at a rate of 25 °C/min, held for 1 min, followed by heating at 5 °C/min to 245 °C and holding for 3 minutes for a total run time of 20.5 min. A volume of 1 μ L of the FAME solution was injected with a split ratio of 50:1 (injector temperature, 250 °C). Helium was used as the carrier gas 1.0 mL/min, constant flow. Detector conditions were 40 mL/min hydrogen, 400 mL/min air and

make up gas 25 m/L min and the temperature was 280 °C (Zou and Wu, 2018). Identification of fatty acids was achieved by comparison of retention times with the Supelco 37 standard component FAME mix (CRM47885) and authentic individual FAME standards (MilliporeSigma, St. Louis, MO). We used the peak analyzer function of OriginPro19 (OriginLab Corporation, Northampton, MA) to identify each fatty acid and calculate peak areas on each chromatogram. The area of each peak was divided by the sum peak area to express each fatty acid as the mol % of total fatty acids.

Statistics

To analyze fatty acid composition, we calculated average chain length, double bond index, peroxidizability index, %PUFA, %MUFA, %saturated fatty acids, %PUFAn3, and %PUFAn6 (Pamplona et al, 1998). Because these variables were not normally distributed, we transformed the variables with a two-step procedure (Templeton 2011), and then used paired t-tests to compare control individuals with the same individuals treated with OA. To determine whether fatty acid composition correlates with lifespan, we ran Pearson correlations for each variable in the control group against lifespan. Finally, we used independent sample t-tests to compare fatty acid composition in large and small breeds from the control group. We applied a Bonferroni correction in all instances where multiple independent comparisons were made. All measures of fatty acid composition were analyzed with SPSS 24.0.

Data from each metabolic and oxidative stress assay were first analyzed for normality using a Shapiro-Wilke test. None of our variable were normally distributed and did not re-gain normality after log-transformations. Thus, we used the Schreier-Ray-Hare extension of the Kruskal-Wallis analysis of variance to account for multiple comparisons. The data were tested for differences between size (small and large) and treatment groups (control and OA) as well as for the interaction of the two groups. We used R to run non-parametric statistics. Results were considered significant if P<0.05.

296 Results

Table 1 includes each breed we isolated cells from, as well as adult body mass, and mean breed lifespan. We sampled a total of 114 dogs.

Quantifying lipids in fibroblast cell extracts

Collectively cells from all dogs treated with oleic acid had a higher double bond index overall compared with controls (p < 0.001). Table 2 shows these collective changes in fatty acid composition between treatment groups, and a breed-by-breed breakdown of fatty acid composition changes in response to treatment is presented in supplementary table 1. This difference was primarily driven by more MUFAs (p < 0.001) and fewer saturated fatty acids (p <

0.001) in the OA group, which offset the decrease in PUFAs in the OA group (p < 0.001). Because of this decrease in PUFAs, especially ones with high double bond content such as DHA and arachidonic acid, the OA treatment had a lower peroxidizability index (p = 0.014). We did not find a significant difference in any lipid variables between large and small breeds, nor did we find any significant correlations between average lifespan of each breed (from Jimenez, 2016) and any lipid variable. Within individuals in both treatments, we found that as average fatty acid chain length increased, double bond index, peroxidizabilty, and the percentage of MUFAs and PUFAs increased, whereas the percentage of saturated fatty acids decreased (p < 0.001 for all).

Oxygen Consumption Rates (OCR) in fibroblast cells

305

306

307

308 309

310311

312313

314

315

316

317318

319320

321

322

323

324

325

326

327

328329

330331

332

333334

335

336

When measuring the effects of body size (small breed and large breed), treatment (Control and OA), and the interaction of size and treatment on basal OCR, we found that large breed puppies had a higher basal OCR than small breed puppies (size: H-value, 6.6, p = 0.001; Table 3). We found no differences between treatments, nor did we find a significant interaction between treatment and body size. When measuring the effects of the same variables on maximal respiration, the OA treatment had a significantly lower maximal respiration than controls (H-value = 3.8, p = 0.051; Fig. 1A), but no differences were found between sizes or an interaction (Table 3). Small breed OA treated cells showed a decrease in spare respiratory capacity, indicating a smaller difference between basal and maximal OCR in this group (H-value = 6.6, p = 0.01; Fig. 1B). However, we found no differences between size groups or the interaction between size and treatment (Table 3). With respect to ATP coupling, large breed puppies had a significantly higher ATP coupled respiration (H-value = 9.3, p = 0.002; Table 3). However, there were no significant differences between treatments or interactions. We also found no differences between size, treatments or interaction effects in proton leak. In line with their higher levels of ATP coupled respiration, large breeds also showed marginal significance for a higher coupling efficiency compared with small breeds (H-value = 3.6, p = 0.059; Fig. 1C). Additionally, OA treated cells had a lower coupling efficiency than control cells (H-value = 10.1, p = 0.002; Fig. 1C), but we found no interaction between body size and treatment. All results can be found in Supplementary Table 2.

Oxidative stress measurements in fibroblast cells

ROS production, LPO damage, and GSH showed no differences in size, treatment or an interaction (Table 3; Supplementary Table 2).

337 Discussion

Many studies have tracked the correlation between levels of membrane unsaturation, body size, and lifespan; However, direct measurement of the oxidative stress system and cellular metabolism following a cell membrane manipulation is lacking (Pamplona et al., 2000; Hulbert et al., 2006). We have directly tested the membrane as a pacemaker hypothesis of metabolism by comparing components of cellular metabolism with membrane fatty acid composition in fibroblast cells of dogs of different body sizes and lifespans. Additionally, we altered membrane fatty acid composition in these cells and measured subsequent changes in metabolic parameters. Finally, we indirectly tested the membrane pacemaker hypothesis of aging by assessing oxidative stress as a function of membrane fatty acid composition. We found that small dogs demonstrated lower basal cellular oxygen consumption rates and reduced ATP coupling efficiency compared with large dogs, but we found no differences in membrane fatty acid composition between these size classes. We also found that cells supplemented with oleic acid (OA) had lower maximal respiration and reduced coupling efficiency compared with controls in small and large breed dogs, and that spare respiratory capacity decreased in OA treated cells in small breed dogs, but not large breed dogs. These measurements may be linked to membrane lipid properties, as the OA group had more MUFAs and fewer PUFAs. These findings demonstrate that increasing the monounsaturation of dog membranes may alter cellular phenotypic traits that may be linked to their lifespan.

338

339

340

341342

343344

345346

347

348349

350

351

352353

354

355

356

357

358

359

360

361

362363

364

365

366367

368

369370

371

The negative correlation between body size and lifespan in dogs has been attributed to faster rates of aging in large dogs (Kraus et al., 2013; Jimenez 2016), and the differences in various measures of oxygen consumption that we find here suggest a metabolic mechanism for these different rates of aging, in line with previous studies (Jimenez 2016; Jimenez et al., 2018). The high ATP coupling efficiency we observed in fibroblasts from large dogs allows them to maximize energy efficiency and dedicate more energy toward growth, reproduction, and external work (Rolfe and Brown 1997). Because our cells were isolated from puppies, it is likely that the increased efficiency largely contributes to growth. Indeed, puppies have demonstrated lower proton leak than older dogs, indicating that a high degree of ATP coupling is important during growth (Jimenez et al., 2018). Furthermore, deliberate uncoupling of ATP synthesis has been shown to impair growth in other vertebrates (Bolser et al., 2018). Thus, increased coupling efficiency in the cells of large dogs may aid them in attaining larger body size. However, increased ATP coupling efficiency may also exert a metabolic cost on organisms. In general, a high degree of coupling efficiency is associated with an increase in mitochondrial membrane potential as more protons collect in the intermembrane space of the mitochondria, and this increased membrane potential is associated with greater production of ROS (Korshunov et al.,

1997; Salin et al., 2018). Therefore, the enhanced degree of ATP coupling efficiency we observed in fibroblasts from large dogs may result in a higher degree of ROS production than in smaller dogs. Although we did not detect higher amounts of ROS or oxidative damage in large dogs, a multitude of factors may account for this apparent discrepancy, as discussed later in this section.

372

373

374

375376

377378

379380

381

382

383

384

385

386 387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403 404

405

Despite the lower basal OCR and lower ATP coupling efficiency in small dog breeds compared with large dog breeds, (here and Jimenez et al., 2018), we did not find differences in membrane fatty acid chain composition between large and small dogs. These results are in contrast with previous correlations between metabolic rate and lipid unsaturation, in which high numbers of double bonds and PUFAs are associated with high proton leak and increased transmembrane ion pumping, leading to elevated metabolic rates (Brookes et al., 1998; Hulbert and Else 1999; Pamplona et al., 1999). The discrepancies between our results and previous studies may be attributed to a variety of factors. First, because we measured the lipid composition of all membranes and did not separate mitochondrial and plasma membranes, it is possible that contrasting fatty acid compositions between the mitochondrial membrane and the plasma membrane offset such that we detected no difference in lipid composition between size classes (Calhoon et al., 2015). Indeed, our metabolic measurements support this assertion, as the high degree of ATP coupling in large dogs suggests a relatively impermeable inner mitochondrial membrane with fewer double bonds, whereas the high basal OCR overall suggests a more fluid, permeable plasma membrane with lots of double bonds and a high degree of transmembrane ion pumping. Follow-up studies that isolate the mitochondrial and plasma membrane prior to analysis could test this assertion. An additional explanation for the discrepancy between our metabolic measurements and fatty acid composition is that the effect of fatty acid tails on membrane permeability is often influenced by the phospholipid head groups associated with these tails. For example, certain n-3 PUFAs exhibit different effects on membrane structure when incorporated into phosphotidylcholines as opposed to phosphotidylethanolamines (Shaikh et al., 2015). Thus, measuring phospholipid content would add more insight into the relationship between membrane lipid composition and cellular metabolic rates in large and small dogs. Additionally, induced proton leak from uncoupling proteins (UCPs) also reduce ATP coupling efficiency (Brookes 2005; Mori et al., 2008; Mailloux and Harper, 2012), and it is thus possible that small dogs have more active UCPs than large dogs. Lastly, our comparison is intra-specific whereas previous comparisons of membrane composition and body size and lifespan have focused in inter-species correlations (Hulbert et al., 2007).

In addition to the differences in coupling efficiency we found when comparing small and large dog breeds, we also found that treatment with OA decreases coupling efficiency in both small and large breeds. Here, differences in fatty acid composition between treatment and control groups suggest that coupling efficiency may be attributed in part to differences in lipids and attendant protein activities that increase mitochondrial membrane permeability in OA treated cells. Because our OA cells had fewer PUFAs with high numbers of double bonds than controls, a high mitochondrial membrane permeability seems counterintuitive. However, membrane fluidity is most influenced by the addition of the first two double bonds to a saturated lipid chain and each additional double bond has less effect on overall membrane fluidity (Brenner 1984; Pamplona et al., 2002). Therefore, because the OA cells had more double bonds overall than control cells, they may be able to exhibit greater mitochondrial membrane fluidity despite a lack of highly unsaturated PUFAs. Furthermore, the MUFA that increased the most in OA cells relative to controls was oleic acid, and oleic acid disproportionately increases membrane fluidity relative to its chain length and level of unsaturation (Epand et al., 1991). Previous studies further demonstrate the importance of MUFAs in determining membrane fluidity and influencing metabolic parameters. For example, decreased efficiency of ATP synthesis has also been found in rats with greater amounts of MUFAs and reduced PUFAs in mitochondrial membranes (Piquet et al., 2004). Additionally, whereas some studies experimentally manipulating the concentration of n-3 PUFAs in mitochondrial membranes have found mitochondrial respiration to not change (Lemieux et al., 2008), decrease (Yamaoka et al., 1987), or increase (McMillin et al., 1992), these studies exhibited different patterns in MUFA concentration with respect to PUFA concentration. Furthermore, none of these studies exhibited the large increase in MUFA paired with a large decrease in saturated fatty acids that we observed in the OA incubated cells compared with controls. Overall, our data suggest that MUFA concentration may play a large role in determining cell membrane properties and thus controlling metabolic parameters.

406

407

408

409 410

411412

413 414

415 416

417

418 419

420 421

422

423

424

425

426

427

428

429

430

431

432

433

434 435

436

437 438

439

The high degree of ATP coupling in cells from large dogs and in control cells compared with cells from small dogs and OA treated cells, respectively, combined with a higher peroxidizability in control cells suggest greater amounts of ROS production and oxidative damage in these cells. However we found no differences in ROS production, LPO damage, and GSH concentration for our cells. Overall, studies correlating cellular membrane fatty acid composition with ROS production have produced mixed results, with ROS production sometimes increasing as unsaturated fatty acids within tissues increases (Pamplona et al., 2000) and sometimes decreasing or remaining unchanged (Ramsey et al., 2005; Hagopian et

al., 2010). There may be four reasons why our results and the results of other studies are inconsistent in their correlations between metabolic parameters, lipid membrane composition, and ROS production. First, enzymatic antioxidants such as SOD and CAT are sometimes upregulated in response to enhanced ATP coupling efficiency, and are able to quench excess ROS (Brookes 2005). Second, whereas the mechanistic detail has not been elucidated, there seems to be strong support for the idea that UCP2 and UCP3 (found in fibroblasts) play a role in protection from ROS damage, thus changes in the activity or amounts of UCPs could mitigate ROS damage (Echtay and Brand 2007; Mori et al., 2008). Third, damaged PUFAs on membrane phospholipids are very quickly replaced by undamaged PUFAs by deacylation/reacylation remodeling to repair LPO damage (Hulbert et al., 2014). Finally, our cells were isolated from medically discarded tissues from puppies, and therefore may have been less susceptible to LPO damage, as during senescence membranes become more rigid and the process of LPO damage becomes accentuated (Hulbert 2005).

It has been shown that ROS production and LPO damage increase as a function of the degree of unsaturation of the fatty acid substrates in tissues (Pamplona et al., 2000). In a cross-sectional study were mice were fed caloric restricted diets with differing fatty acids, the group of mice that were fed the lower polyunsaturated diet demonstrated a significant reduction of ROS production through complex III (Lopez-Dominguez et al., 2014). In rats consuming fish oil, liver mitochondrial H₂O₂ production either decreased or remained unchanged when there was no increase in mitochondrial oxidative damage (Ramsey et al., 2005; Hagopian et al., 2010). In rats chronically fed diets with different fatty acid unsaturation, the double bond content of liver and brain was successfully manipulated. LPO damage product malondialdehyde (MDA) and mitochondrial DNA oxidative damage significantly increased in rats fed an unsaturated diet compared with control diets in both tissues (Pamplona et al., 2004). Thus, it seems that LPO damage can increase, decrease or stay the same during lipid membrane manipulations.

It is noteworthy to point out that large breeds show a decrease in maximal respiratory capacity in OA treated cells with no change in spare respiratory capacity. Spare respiratory capacity allows cells to meet increased energy demands under conditions of severe stress, including detoxification of ROS and repairing cellular damage (Hill et al., 2009). Therefore, our results suggest that treatment with OA may especially benefit large dog breeds by reducing maximal respiration, which is associated with longer lifespans (Hulbert et al., 2007) while maintaining spare respiratory capacity to respond to cellular stress.

In conclusion, we have found that metabolic parameters in dog fibroblasts vary between large and small dogs, and that these parameters may be altered by changing membrane fatty

- acid composition. Cells from small dogs exhibited lower ATP coupling efficiency than cells from
- 475 large dogs, and reduced ATP coupling efficiency is often associated with reduced ROS
- 476 production (Brookes 2005; Salin et al., 2018). Although we did not find differences in membrane
- 477 fatty acid composition between small and large dogs, we found that when we altered fatty acid
- 478 composition such that cell membranes contained more MUFAs and fewer PUFAs. We were
- able to experimentally reduce ATP coupling efficiency and reduce maximal respiration. Taken
- 480 together, our results suggest that increasing the monounsaturation of fatty acids in dog cell
- 481 membranes may alter metabolic function in a way that is associated with greater longevity
- 482 Although we find some inconsistencies between variables in our data, separation of lipid
- 483 membranes and direct measurements of membrane fluidity, phospholipid composition, and UCP
- activity, among other variables, may account for these inconsistencies (Calhoon et al., 2015).
- 485 Such future studies would allow us to build a cohesive model of the role of cellular membranes
- 486 as pacemakers of metabolism and longevity.

487 References

- Abbott, S. K., Else, P. L., Atkins, T. A., & Hulbert, A. J. (2012). Fatty acid composition of membrane bilayers: importance of diet polyunsaturated fat balance. *Biochimica Et Biophysica*
- 490 Acta (BBA)-Biomembranes, 1818(5), 1309-1317.

491

- Bolser, D.G., Dreier, D.A., Li, E., Kroll, K.J., Martyniuk, C.J., and Denslow, N.D. (2018). Toward an adverse outcome pathway for impaired growth: Mitochondrial dysfunction impairs growth in early life stages of the fathead minnow (Pimephales promelas). Comparative Biochemistry and
- 495 Physiology Part C: Toxicology & Pharmacology. 209. 46-53.

496

- 497 Brand MD, Nicholls DG (2011) Mitochondrial dysfunction in cells. Biochem J 435: 297–312
- 498 Cortopassi, G. A., & Wang, E. (1996). There is substantial agreement among interspecies
- estimates of DNA repair activity. Mechanisms of ageing and development, 91(3), 211–218.

500 501

502

- Brand, M. D., Turner, N., Ocloo, A., & Hulbert, A. J. (2003). Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds. *Biochemical*
- 503 Journal, 376(3), 741-748.

504 505

- Brenner, R. (1984). Effect of unsaturated acids on membrane structure and enzyme kinetics.
- 506 Prog. Lipid Res. 23, 69–96.

507

Brookes, P.S., (2005). Mitochondrial H+ leak and ROS generation: An odd couple. Free Radical Biology and Medicine. 38(1), 12-23.

510

- 511 Calhoon, E.A., Jimenez, A.G., Harper, J.M., Jurkowitz, M.S., and Williams, J.B. (2014).
- 512 Linkages between mitochondrial lipids and life history in temperate and tropical birds.
- 513 Physiological and Biochemical Zoology 87(2): 265-275.

- 515 Calhoon, E. A., Ro, J., & Williams, J. B. (2015). Perspectives on the membrane fatty acid
- 516 unsaturation/pacemaker hypotheses of metabolism and aging. Chemistry and physics of
- 517 lipids, 191, 48-60.

519 Choi, H., Yang, Z., and Weisshaar, J. C. 2015. Single-cell, real-time detection of oxidative stress

520 induced in Escherichia coli by the antimicrobial peptide CM15. Proc. Natl. Acad. Sci.

521 U.S.A. 112(3): E303-E310.

522

523 Couture, P., & Hulbert, A. J. (1995a). Membrane fatty acid composition of tissues is related to 524 body mass of mammals. The Journal of membrane biology, 148(1), 27-39.

525

- Couture, P., & Hulbert, A. J. (1995b). Relationship between body mass, tissue
- 526 527 metabolic rate, and sodium pump activity in mammalian liver and kidney. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 268(3), R641-R650. 528

529

530 Cury-Boaventura, M. F., Gorjão, R., De Lima, T. M., Newsholme, P., & Curi, R. (2006).

Comparative toxicity of oleic and linoleic acid on human lymphocytes. Life sciences, 78(13),

1448-1456. 532

533 534

531

- 535 Dezest, M., Chavatte, L., Bourdens, M., Quinton, D., Camus, M., Garrigues, L., Descargues, P.,
- Arbault, S., Burlet-Schiltz, O., Casteilla, L., Clément, F., Planat, V., and Clément, F. 2017. 536
- 537 Mechanistic insights into the impact of Cold Atmospheric Pressure Plasma on human epithelial cell lines. Sci. Rep. 7: 41163. 538

539

- 540 Divakaruni A. S., Paradyse A., Ferrick D. A., Murphy A. N., & Jastroch M. (2014). Analysis and
- interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol, 547, 541
- 542 309-354.

543

- 544 Echtay, K. S., & Brand, M. D. (2007). 4-hydroxy-2-nonenal and uncoupling proteins: an
- 545 approach for regulation of mitochondrial ROS production. Redox Report, 12(1-2), 26-29.

546

- Epand, R.M., Epand, R.F., Ahmed, N., Chen, R., 1991. Promotion of hexagonal phase 547
- 548 formation and lipid mixing by fatty acids with varying degrees of unsaturation.
- 549 Chem. Phys. Lipids 57, 75–80

550

- 551 Escribá, P.V., Sastre, M., Garcia-Sevilla, J.A. (1995). Disruption of cellular signaling pathways
- by daunomycin through destabilization of nonlamellar membrane structures. Proceedings of the 552
- 553 National Academy of Sciences, USA. 92, 7595-7599.

554

- 555 Gebhard A. W., Jain P., Nair R. R., Emmons M. F., Argilagos R. F., Koomen J. M., et al., (2013).
- 556 MTI101 (cyclized HYD1) binds a CD44 containing complex and induces necrotic cell death in
- multiple myeloma. Molecular cancer therapeutics, 12(11), 2446–2458. 557

558

- 559 Girelli, D., Lupo, A., Trevisan, M.T., Oliveri, O, Bernich, P., Zorzan, P., Bassi, A., Stanzial, A.M.,
- 560 Ferrari, S., and Corrocher, R. (1992). Red blood cell susceptibility to lipid peroxidation,
- 561 membrane lipid composition, and antioxidant enzymes in continuous ambulatory peritoneal
- dialysis patients. Peritoneal Dialysis International, 12, 205-210. 562

563

- 564 Glaser, M., Ferguson, K. A., & Vagelos, P. R. (1974). Manipulation of the phospholipid
- composition of tissue culture cells. *Proceedings of the National Academy of Sciences*, 71(10), 565
- 566 4072-4076.

- Guillou, H., Zadravec, D., Martin, P.G.P., Jacobsson, A. (2010). The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog. Lipid Res. 49, 186–199.
- Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford University
 Press, USA.

579

587

591

598

601

605

608

611

614

- Hagopian, K., Weber, K. L., Hwee, D. T., Van Eenennaam, A. L., López-Lluch, G., Villalba, J. M., ... & Chen, Y. (2010). Complex I-associated hydrogen peroxide production is decreased and electron transport chain enzyme activities are altered in n-3 enriched fat-1 mice. *PloS one*, *5*(9), e12696.
- Hill, B. G., Dranka, B. P., Zou, L., Chatham, J. C., & Darley-Usmar, V. M. (2009). Importance of the bioenergetic reserve capacity in response to cardiomyocyte stress induced by 4hydroxynonenal. *Biochemical Journal*, *424*(1), 99-107.
- Hill B.G., Benavides G.A., Lancaster J.R., Ballinger S., Dell'Italia L, Zhnag J., et al. (2012).
 Integration of cellular bioenergectics with mitochondrial quality control and autophagy. Biol
 Chem 393, 1485–1512.
- Huang, Q., Sun, D., Hussain, M. Z., Liu, Y., Morozova-Roche, L. A., & Zhang, C. (2019). HEWL interacts with dissipated oleic acid micelles, and decreases oleic acid cytotoxicity. *PloS* one, 14(2).
- Hulbert, A. J. (2005). On the importance of fatty acid composition of membranes for aging. *Journal of theoretical biology*, *234*(2), 277-288.
- Hulbert, A. J., Rana, T., & Couture, P. (2002). The acyl composition of mammalian phospholipids: an allometric analysis. *Comparative Biochemistry and Physiology Part B:* Biochemistry and Molecular Biology, 132(3), 515-527.
- Hulbert, A. J., Turner, N., Storlien, L. H., & Else, P. L. (2005). Dietary fats and membrane function: implications for metabolism and disease. *Biological Reviews*, *80*(1), 155-169.
- Hulbert, A. J., Pamplona, R., Buffenstein, R., & Buttemer, W. A. (2007). Life and death: metabolic rate, membrane composition, and life span of animals. *Physiological reviews*, 87(4), 1175-1213.
- Hulbert, A. J., Kelly, M. A., & Abbott, S. K. (2014). Polyunsaturated fats, membrane lipids and animal longevity. *Journal of Comparative Physiology B*, *184*(2), 149-166.
- lchihara K, Fukubayashi Y. (2010) Preparation of fatty acid methyl esters for gas-liquid chromatography. *Journal of Lipid Research*. 51(3), 635-640.
- Jimenez, A.G. (2016). Physiological underpinnings in life-history trade-offs in man's most popular selection experiment: the dog. *Journal of Comparative Physiology B*, 186 (7), 813-827.
- Jimenez, A. G., Winward, J., Beattie, U., & Cipolli, W. (2018). Cellular metabolism and oxidative stress as a possible determinant for longevity in small breed and large breed dogs. *PloS* one, 13(4), e0195832.

- Korshunov, S.S., Skulachev, V.P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett. 416. 15-18.
- Leiro's M., Alonso E., Rateb M. E., Houssen W. E., Ebel R., Jaspars M., . . . & Botana L.
- 623 M.(2014). Bromoalkaloids Protect Primary Cortical Neurons from Induced Oxidative Stress.
- ACS chemical neuroscience, 6(2), 331–338.
- Lemieux, H., Blier, P. U., & Tardif, J. C. (2008). Does membrane fatty acid composition
- modulate mitochondrial functions and their thermal sensitivities?. *Comparative Biochemistry and*
- 628 Physiology Part A: Molecular & Integrative Physiology, 149(1), 20-29.
- López-Domínguez, J. A., Ramsey, J. J., Tran, D., Imai, D. M., Koehne, A., Laing, S. T., ... &
- Villalba, J. M. (2014). The influence of dietary fat source on life span in calorie restricted
- mice. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 70(10),
- 633 1181-1188.

625

629

634

637

640

644

647

651

655

660

664

- Mailloux, R.J. and Harper, M. (2012). Mitochondrial proticity and ROS signaling: lessons from
- the uncoupling proteins. Trends in Endocrinology and Medicine. 23(9). 451-458.
- Mandavilli B. S., & Janes M. S. (2010). Detection of intracellular glutathione using ThiolTracker violet stain and fluorescence microscopy. Curr Protoc Cytom, 9(9), 35.
- McMillin, J. B., Bick, R. J., & Benedict, C. R. (1992). Influence of dietary fish oil on mitochondrial function and response to ischemia. *American Journal of Physiology-Heart and Circulatory*
- 643 Physiology, 263(5), H1479-H1485.
- Monaghan, P., Metcalfe, N. B., & Torres, R. (2009). Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. *Ecology letters*, *12*(1), 75-92.
- Mori, S., Yoshizuka, N., Takizawa, M., Takema, Y., Murase, T., Tokimitsu, I., & Saito, M. (2008).
- 649 Expression of uncoupling proteins in human skin and skin-derived cells. *Journal of Investigative*
- 650 Dermatology, 128(8), 1894-1900.
- Naudí, A., Jové, M., Ayala, V., Portero-Otín, M., Barja, G., & Pamplona, R. (2013). Membrane
- lipid unsaturation as physiological adaptation to animal longevity. Frontiers in physiology, 4,
- 654 372.
- Pamplona, R., Prat, J., Cadenas, S., Rojas, C., Perez-Campo, R., Torres, M. L., & Barja, G.
- 657 (1996). Low fatty acid unsaturation protects against lipid peroxidation in liver mitochondria from
- long-lived species: the pigeon and human case. *Mechanisms of ageing and development*, 86(1),
- 659 53-66.
- Pamplona R, Portero-Otin M, Riba D, Ruiz C, Prat J, Bellmunt MJ, Barja G. 1998. Mitochondrial
- membrane peroxidizability index is inversely related to maximum lifespan in mammals. J Lipid
- 663 Res 39:1989–94.
- Pamplona, R., Portero-Otin, M., Riba, D., Ledo, F., Gredilla, R., Herrero, A., & Barja, G. (1999).
- Heart fatty acid unsaturation and lipid peroxidation, and aging rate, are lower in the canary and
- the parakeet than in the mouse. Aging Clinical and Experimental Research, 11(1), 44-49.

- Pamplona, R., Portero-Otín, M., Riba, D., Requena, J. R., Thorpe, S. R., López-Torres, M., &
- Barja, G. (2000). Low fatty acid unsaturation: a mechanism for lowered lipoperoxidative
- 671 modification of tissue proteins in mammalian species with long life spans. The Journals of
- 672 Gerontology Series A: Biological Sciences and Medical Sciences, 55(6), B286-B291.

Pamplona, R., Barja, G., & PORTERO-OTÍN, M. A. N. U. E. L. (2002). Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation?. *Annals of the New York Academy of Sciences*, *959*(1), 475-490.

677

Pamplona, R., Portero-Otin, M., Sanz, A., Requena, J., & Barja, G. (2004). Modification of the longevity-related degree of fatty acid unsaturation modulates oxidative damage to proteins and mitochondrial DNA in liver and brain. *Experimental gerontology*, *39*(5), 725-733.

681

Pappas, A., Anthonavage, M., & Gordon, J. S. (2002). Metabolic fate and selective utilization of major fatty acids in human sebaceous gland. *Journal of investigative dermatology*, *118*(1), 164-171.

685

Portero-Otín, M., Bellumunt, M. J., Ruiz, M. C., Barja, G., & Pamplona, R. (2001). Correlation of fatty acid unsaturation of the major liver mitochondrial phospholipid classes in mammals to their maximum life span potential. *Lipids*, *36*(5), 491-498.

689

Ramsey, J. J., Harper, M. E., Humble, S. J., Koomson, E. K., Ram, J. J., Bevilacqua, L., & Hagopian, K. (2005). Influence of mitochondrial membrane fatty acid composition on proton leak and H2O2 production in liver. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology*, *140*(1), 99-108.

694

Roberts, J.S., Atanasova, K.R., Lee, J., Diamond, G., Deguzman, J., Hee Choi, C., and Yilmaz, Ö. 2017. Opportunistic pathogen Porphyromonas gingivalis modulates danger signal ATP-mediated antibacterial NOX2 pathways in primary epithelial cells. Front. Cell. Infect. Microbiol. 7: 291.

699

Salin, K., Villasevil, E. M., Anderson, G. J., Auer, S. K., Selman, C., Hartley, R. C., Mullen, W., Chinopoulos, C. and Metcalfe, N. B. (2018). Decreased mitochondrial metabolic requirements in fasting animals carry an oxidative cost. Funct. Ecol. 32(9). 2149-2157.

703

Sanz, A., Pamplona, R., & Barja, G. (2006). Is the mitochondrial free radical theory of aging intact?. *Antioxidants & redox signaling*, *8*(3-4), 582-599.

706

Shaikh, S.R., Kinnun, J.J., Leng, X., Williams, J.A., Wassall, S.R., 2015. How polyunsaturated fatty acids modify molecular organization in membranes: insight from NMR studies of model systems. Biochim. Biophys. Acta 1848, 211–219.

710

Speakman, J. R. (2005). Correlations between physiology and lifespan–two widely ignored problems with comparative studies. *Aging cell*, *4*(4), 167-175.

713

Spector, A. A., & Yorek, M. A. (1985). Membrane lipid composition and cellular function. *Journal of lipid research*, *26*(9), 1015-1035.

- 717 Templeton, Gary F. (2011) "A Two-Step Approach for Transforming Continuous Variables to
- Normal: Implications and Recommendations for IS Research," Communications of the
- 719 Association for Information Systems: Vol. 28, Article 4.

Thannickal, V. J., & Fanburg, B. L. (2000). Reactive oxygen species in cell signaling. *American Journal of Physiology-Lung Cellular and Molecular Physiology*, 279(6), L1005-L1028.

723

Turner, N., Else, P. L., & Hulbert, A. J. (2003). Docosahexaenoic acid (DHA) content of membranes determines molecular activity of the sodium pump: implications for disease states and metabolism. *Naturwissenschaften*, *90*(11), 521-523.

727

Turner, N., Haga, K. L., Hulbert, A. J., & Else, P. L. (2005). Relationship between body size,
Na⁺-K⁺-ATPase activity, and membrane lipid composition in mammal and bird kidney. *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology*, 288(1), R301-R310.

731

Rolfe, D. F., & Brown, G. C. (1997). Cellular energy utilization and molecular origin of standard metabolic rate in mammals. *Physiological reviews*, *77*(3), 731-758.

734

Valencak, T. G., & Ruf, T. (2011). Feeding into old age: long-term effects of dietary fatty acid
 supplementation on tissue composition and life span in mice. *Journal of Comparative Physiology B*, *181*(2), 289-298.

738 739

740

741

Yamamoto, Y., Fujisawa, A., Hara, A., and Dunlap, W.C. (2001). An unusual vitamin E constituent (α-tocomonoenol) provides enhanced antioxidant protection in marine organisms adapted to cold-water environments. *Proceedings of the National Academy of Sciences*, *98(23)*, 13144-13148.

742 743

Yamaoka, S., Urade, R., & Kito, M. (1988). Mitochondrial function in rats is affected by modification of membrane phospholipids with dietary sardine oil. *The Journal of nutrition*, *118*(3), 290-296.

Acknowledgements

We are grateful to the following veterinarians and veterinary practices for providing us with samples: Drs. Kerri Hudson, James Gilchrist, and Heather Culbertson at Waterville Veterinary Clinic (New York); Dr. Louis Calebrese at Adirondack Vet (New York); Dr. Patricia Clark and Walt Ostasz at German Flatts Veterinary Clinic (New York); Dr. Heather Highbrown at Hamilton Animal Hospital (New York); Pet Street Station Animal Hospital (New York); Dr. Jim Bader at Mapleview Animal Hospital (Michigan). We are also grateful to the following breeders for participating in our study: Jennifer Messer, Rhonda Poe, Bob Stauffer, Allison Mitchell, Nancy Secrist, Valeria Rickard, Joanne Manning, Linda Barchenger, Lita Long, Betsy Geertson, Susan Banovic, Lisa Uhrich, Romy Shreve, Sheryl Beitch, Jesse-Len Rouse, Al Farrier, and Rachel Sann. Dr. Tim McCay from Colgate University helped us with statistical analysis in this paper. We are grateful for his expertise and guidance. Funding for this project was provided by Colgate University's Research Council Major Grant to A.G.J. The Seahorse XF96e oxygen flux analyzer was purchased via a National Science Foundation Major Research Instrument grant (NSF MRI 1725841 to AGJ).

Author contributions

AGJ and JDW conceived the research idea, AGJ and JDW collected tissues to grow cells, and developed the methods, JDW collected cell metabolism data and ran statistical analysis on cell metabolism data, AMC and KEW developed the gas chromatography methods and collected lipid data, AMC ran statistical analysis on lipid data, AGJ wrote a first draft of the paper, AMC, KEW and JDW edited this first draft to completion. AGJ procured funding for the cell metabolism aspect of this study.

770 Competing Interests

 The authors declare no competing interests

Materials and correspondence

Correspondence should be addressed to Dr. Ana G. Jimenez (ajimenez@colgate.edu).

776 Tables

Table 1- Breeds, sample sizes, adult body mass, mean breed lifespan (Jimenez 2016), and range of COV across variables of each breed included in the present study. Our study included data from primary fibroblast cells obtained from 17 breeds/mixes of large sized puppies and 10 breeds/mixes of small sized puppies, totalling 114 dogs sampled.

Breed	Size	N	Adult	Mean Range COV Range		
	Class		body	breed	for all	for all OA
			mass	lifespan	control	variables
			(Kg)	(yrs)	variables	
Airedale	Large	5	27.21	9.81	0.3-0.78	0.26-1.41
Boxer/Pittbull Mix	Large	3	38.92	8.89	0.017-1.01	0.08-1.1
Boxer	Large	7	32.88	8.89	0.36- 1.28	0.37- 1.46
Cane Corso/Rottweiler	Large	1	46.88	9.9	N/A	N/A
Doberman	Large	4	36.28	9.36	0.60- 1.29	0.43- 1.07
English Mastiff	Large	3	79.38	6.9	0.18- 0.7	0.23- 0.86
Great Dane	Large	5	71.44	7.8	0.36- 0.94	0.36- 0.96
German Short Haired Pointer	Large	5	26	10.25	0.32- 1	0.23- 1
German Wire Haired Pointer	Large	5	29.5	8.8	0.32- 0.87	0.7- 1.4
Labrador Retriever	Large	5	30.5	10.7	0.58- 1.82	0.61- 1.57
Labradoodle	Large	5	26.1	13	0.16- 1.33	0.32- 1.14
Old English Sheep Dog	Large	4	36	10	0.37- 1.15	0.47- 1
Rottweiler	Large	8	48.76	8.87	0.47- 1.32	0.41- 0.94
Standard Poodle	Large	5	26.1	9.6	0.33- 1.19	0.36- 1.24

Bracco Italiano	Large	1	32.5	12.5	N/A	N/A
Cane Corso	Large	4	45	11	0.32- 0.92	0.26- 1.14
Large Munsterlander	Large	5	27.5	9.04	0.06- 0.72	0.17- 0.66
King Charles Cavalier	Small	5	7	10	0.15- 1.17	0.15- 0.9
Chihuahua	Small	4	2.2	11.5	0.37- 1.21	0.22- 0.97
Corgi	Small	6	12	10.29	0.44- 1.11	0.35- 1.21
Miniature Poodle	Small	3	9.1	10.2	0.29- 0.67	0.15- 0.83
Miniature Schnauzer	Small	2	7.25	8.9	0.05- 0.9	0.15- 0.88
Pomeranian	Small	2	2.7	8.9	0.08- 0.81	0.09- 0.91
Soft Coated Wheaten Terrier	Small	5	14	8.75	0.7 - 1.49	0.29 -1.54
Toy Poodle	Small	6	3.4	12.36	0.44- 1.08	0.47- 1.55
Yorkshire terrier	Small	5	2.5	10.9	0.46- 0.99	0.40- 0.98
Havanese	Small	1	5.8	11.1	N/A	N/A

Table 2-Mol percentages of membrane fatty acids (Top) and parameters derived from these measurements (Bottom) in control cells and cells incubated with oleic acid. Values represent means ± standard error for all individuals for which pairwise comparisons were available between treatments (n=112).

Fatty Acid	Control	Oleic Acid	Significance
16:0	29.78 ± 0.72	22.11 ± 0.70	<0.001
16:1	2.90 ± 0.13	1.43 ± 0.07	<0.001
18:0	27.23 ± 0.68	17.68 ± 0.61	<0.001
18:1	18.87 ± 0.72	40.05 ± 0.96	<0.001
18:2	1.39 ± 0.05	0.94 ± 0.04	<0.001
18:3	0.76 ± 0.11	0.50 ± 0.06	0.748
20:0	1.04 ± 0.15	0.56 ± 0.10	0.004
20:1	0.63 ± 0.03	1.78 ± 0.07	<0.001
20:2	1.98 ± 0.14	2.57 ± 0.12	<0.001
20:3	1.02 ± 0.05	0.81 ± 0.03	0.001
20:4	5.03 ± 0.23	3.67 ± 0.13	<0.001
20:5	0.08 ± 0.01	0.07 ± 0.01	0.579
22:0	1.53 ± 0.16	0.72 ± 0.07	<0.001
22:1	0.54 ± 0.04	0.87 ± 0.04	<0.001
22:2	0.19 ± 0.06	0.06 ± 0.02	<0.001
22:6	2.08 ± 0.10	1.52 ± 0.07	<0.001
24:0	2.01 ± 0.14	0.89 ± 0.06	<0.001
24:1	2.94 ± 0.16	3.77 ± 0.20	<0.001
Lipid Parameter			
Average Chain Length	18.01 ± 0.03	18.13 ± 0.03	0.012
Double Bond Index	71.31 ± 1.86	83.13 ± 1.70	<0.001
Peroxidizability	50.80 ± 1.76	45.45 ± 1.17	0.014
% Saturated	61.60 ± 1.01	41.96 ± 1.19	<0.001
% MUFA	25.88 ± 0.94	47.90 ± 1.07	<0.001
% PUFA	12.52 ± 0.41	10.14 ± 0.27	<0.001
% PUFA n3	2.16 ± 0.11	1.60 ± 0.07	<0.001
% PUFA n6	10.36 ± 0.34	8.54 ± 0.22	<0.001

Table 3- Means and S.E.M results for cellular metabolism and oxidative stress parameters between control and treated cells. Significant results can be found in Fig. 1.

Parameter (units)	Size	Treatment	Mean ± SEM	Treatment	Mean ± SEM
Basal OCR (pmole/min/20K cells)		Control	239.56 ± 24.09	OA	196.02 ± 21.39
Basal OCR (pmole/min/20K cells)		Control	195.80 ± 40.22	OA	178.40 ± 29.15
Proton leak (pmole/min/20K cells)		Control	72.33 ± 7.33	OA	66.89 ± 7.24
Proton leak (pmole/min/20K cells)		Control	68.23 ± 13.94	OA	77.23 ± 13.64
ATP coupled respiration (pmole/min/20K cells)	Large	Control	167.23 ± 18.63	OA	130.10 ± 15.13
ATP coupled respiration (pmole/min/20K cells)	Small	Control	127.32 ± 28.21	OA	103.09 ± 18.64
GSH (fluorescence/20K cells)	Large	Control	34883.24 ± 5477.71	OA	22489.51 ± 3807.21
GSH (fluorescence/20K cells)	Small	Control	43345.24 ± 10531.52	OA	34760.70 ± 8743.65
ROS production (flurescence/20K cells)	Large	Control	29732.47 ± 4815.45	OA	23407.39 ± 2242.45
ROS production (flurescence/20K cells)	Small	Control	21144.09 ± 3550.62	OA	23260.78 ± 5301.86
LPO damage (fluorescence/20K cells)	Large	Control	1.76 ± 0.20	OA	1.76 ± 0.22
LPO damage (fluorescence/20K cells)	Small	Control	2.13 ± 0.43	OA	2.04 ± 0.36

Figure legends Figure 1- Maximal respiration showed a marginal significant difference between treatment groups, but no differences were found between sizes. Spare respiratory capacity showed significant differences between treatment groups, however, no differences between size groups. Coupling efficiency showed a marginal significant difference between size, a significant difference between treatments. Asterisks indicate significant differences. Samples sizes can be found on Table 1.