
Time-Sliced Quantum Circuit Partitioning
for Modular Architectures

Jonathan M. Baker
jmbaker@uchicago.edu
University of Chicago

Casey Duckering
cduck@uchicago.edu
University of Chicago

Alexander Hoover
alex8@uchicago.edu
University of Chicago

Frederic T. Chong
chong@cs.uchicago.edu
University of Chicago

ABSTRACT

Current quantum computer designs will not scale. To scale beyond

small prototypes, quantum architectures will likely adopt a modu-

lar approach with clusters of tightly connected quantum bits and

sparser connections between clusters. We exploit this clustering

and the statically-known control flow of quantum programs to cre-

ate tractable partitioning heuristics which map quantum circuits

to modular physical machines one time slice at a time. Specifically,

we create optimized mappings for each time slice, accounting for

the cost to move data from the previous time slice and using a

tunable lookahead scheme to reduce the cost to move to future time

slices. We compare our approach to a traditional statically-mapped,

owner-computes model. Our results show strict improvement over

the static mapping baseline. We reduce the non-local communica-

tion overhead by 89.8% in the best case and by 60.9% on average. Our

techniques, unlike many exact solver methods, are computationally

tractable.

CCS CONCEPTS

· Computer systems organization→ Quantum computing; ·

Software and its engineering → Compilers.

ACM Reference Format:

Jonathan M. Baker, Casey Duckering, Alexander Hoover, and Frederic T.

Chong. 2020. Time-Sliced Quantum Circuit Partitioning for Modular Archi-

tectures. In 17th ACM International Conference on Computing Frontiers (CF

’20), May 11ś13, 2020, Catania, Italy. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3387902.3392617

1 INTRODUCTION

Quantum computing aims to provide significant speedup to many

problems by taking advantage of quantum mechanical properties

such as superposition and entanglement [6, 53, 59]. Important appli-

cations such as Shor’s integer factoring algorithm [69] and Grover’s

unordered database search algorithm [26] provide potentially ex-

ponential and quadratic speedups, respectively.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CF ’20, May 11ś13, 2020, Catania, Italy

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7956-4/20/05. . . $15.00
https://doi.org/10.1145/3387902.3392617

Current quantum hardware of the NISQ era [61], which has on

the order of tens to hundreds of physical qubits, is insufficient to

run these important quantum algorithms. Scaling these devices

even to a moderate sizes with low error rates has proven extremely

challenging. Manufacturers of quantum hardware such as IBM and

IonQ have had only limited success in extending the number of

physical qubits present on a single contiguous piece of hardware.

Issues on these devices such as crosstalk error scaling with the

number of qubits or increased difficulty in control will limit the

size this single-chip architecture can achieve [10, 11].

Due to these challenges, as well as developing technology for

communicating between different quantum chips [7, 75], we ex-

pect quantum hardware to scale via a modular approach similar

to how a classical computer can be scaled increasing the number

of processors not just the size of the processors. Two of the lead-

ing quantum technologies, ion trap and superconducting physical

qubits, are already beginning to explore this avenue and experi-

mentalists project modularity will be the key to moving forward

[3, 9, 18, 22, 32, 43, 44]. One such example for ion traps is shown

in Figure 2 where many trapped ion devices are connected via a

single central optical switch. Technology such as resonant busses

in superconducting hardware or optical communication techniques

in ion trap devices will enable a more distributed approach to quan-

tum computing, having many smaller, well-connected devices with

sparser and more expensive non-local connections between them.

Optimistically, due to current technology in the near term, we ex-

pect these non-local communication operations to be somewhere

between 5-100x higher latency than in-cluster communication.

With cluster-based approaches becoming more prominent, new

compiler techniques for mapping and scheduling of quantum pro-

grams are needed. As the size of executable computations increase

it becomes more and more critical to employ program mappings

exhibiting both adaptivity of dynamic techniques and global opti-

mization of static techniques. Key to realizing both advantages is to

simplify the problem. Since non-local communication is dominant,

we focus on only non-local costs. This simplification, along with

static knowledge of all control flow, allows us to map a program

in many timeslices with substantial lookahead for future program

behavior. This approach would not be computationally tractable

on a non-clustered machine.

For devices with many modular components mapping quan-

tum programs translates readily to a graph partitioning problem

with a goal of minimizing edge crossings between partitions. This

approach is standard in many classical applications such as high

98

Time-SlicedQuantum Circuit Partitioning for Modular Architectures CF ’20, May 11ś13, 2020, Catania, Italy

q0 •
q1 • •
q2 • · · ·
q3
q4

q0 q2

q1 q3

q48 4

8

4

q0 q2

q1 q3

q4

q0 q2

q1 q3

q4

q0 q2

q1 q3

q4

t = 1 t = 2 t = 3

Figure 3: (Top) An example of a quantum program with

single-qubit gates not shown. The inputs are on the left and

time flows to the right toward the outputs. The two-qubit

operations here are CNOT (controlled-NOT). (Bottom) The

graph representations of the quantum circuit of the above

circuit. On the far left is the total interaction graph where

each edge is weighted by the total number of interactions

for the whole circuit. To the right is the sequence of time

slice graphs, where an edge is only present if the qubits in-

teract in the time slice. The sum of all time slice graphs is

the total interaction graph.

expensive communication between the clusters, referred to as non-

local communication. These devices naturally lend themselves to

mapping techniques which utilize partitioning algorithms.

Quantum programs are often represented as circuit diagrams, for

example the one in Figure 3a. We define a time slice in a quantum

program as a set of operations which are parallel in the circuit

representation of the program. We express time slices as a function

of both the circuit representation and limitations of the specific

architecture. We also define a time slice range as a set of contiguous

time slices; we also refer to them as slices and when no length is

specified, it will be assumed to be of length 1.

For evaluation, we consider two primary metrics: the width and

the depth of a circuit. The width is the total number of qubits

used and the depth, or the run time, is the total number of time

slices required to execute the program. Qubit movement operations

which are inserted in order to move interacting qubits into the same

partition contribute to the overall depth of the circuit.

We consider two abstract representations of quantum programs:

the total interaction graph and a sequence of time slice interaction

graphs, examples of which are found in Figure 3b. In both represen-

tations, each qubit is a vertex and edges between qubits indicate

two-qubit operations acting on these qubits. In the total interaction

graph, edges are weighted by the total number of interactions be-

tween pairs of qubits. In time slice graphs, an edge with weight 1

exists only if the pair of qubits interact at that time slice.

2.2 Graph Partitioning

Static Partitioning. Finding graph partitions is a well studied

problem [23, 31, 37, 57] and is used frequently in classical archi-

tecture. In this paper, we consider a variant of the problem which

fixes the total number of partitions and bounds the total number of

elements in each partition. Specifically, given a fixed number of par-

titions k , a maximum partition size p, and an undirected weighted

graph G with
�

�V (G)
�

� ≤ k · p we want to find a k-way assignment

of the vertices to partitions such that the weight of edges between

vertices in different partitions is minimized. This can be rephrased

in terms of statically mapping a quantum circuit to the aforemen-

tioned architectures. Let the total interaction graph be G and let

k and p fixed by the topology of the architecture. Minimizing the

edge weight between partitions corresponds to minimizing the total

number of swaps which must be executed.

Solving for an optimal k-way partition is known to be hard [12],

but there exist many algorithms which find approximate solutions

[23, 37, 57]. There are several heuristic solvers such as in [35, 36]

which can be used to find approximate k-way partition of a graph.

However, they often cannot make guarantees about the size of the

resulting partitions, preventing us from using them for the fixed

size partitioning problem.

Partitioning Over Time. Rather than considering a single graph

to be partitioned we instead consider the problem of generating a

sequence of assignments of qubits to clusters, one for each moment

of the circuit. We want to minimize the total number of differ-

ences between consecutive assignments, naturally corresponding

to minimizing the total number of non-local communications be-

tween clusters. This problem is much less explored than the prior

approach. Partitioning in this way guarantees interacting qubits

will be placed in the same partition making the schedule for the

input program immediate. In the case of a static partition, which

gives only the initial mapping, a further step is needed to generate

a schedule.

Optimal Compilation and Exact Solvers. It is too computation-

ally expensive to find a true optimal solution for even reasonably

sized input programs. Use of constraint-based solvers has been used

recently to look for optimal and near-optimal solutions [47, 51, 52].

Unfortunately, these approaches will not scale in the near-term

let alone to larger, error-corrected devices. We explored the use

of these solvers but found them to be too slow. Finding a static

mapping with SMT is impractical with more than 30 to 40 qubits,

and SMT partitioning over time is impractical when number of

qubits times the depth became more than 40.

3 MAPPING QUBITS TO CLUSTERS

We define an assignment as a set of partitions of the qubits, usually

at a specific time slice. We present algorithms which take a quantum

circuit and output a path, defined as a sequence of assignments of

the qubits with the condition that every partitioning in the sequence

is valid. An assignment is valid if each pair of interacting qubits in

a time slice are located within the same partition. Finally, we define

the non-local communication between consecutive assignments as

the total number of operations which must be executed to transition

the system from the first assignment to the second assignment. The

total communication of a path is the sum over all communication

along the path.

3.1 Computing Non-local Communication

To compute the non-local communication overhead between con-

secutive assignments of n qubits, we first construct a directed graph

with multiple edges where the nodes in the graph are the partitions

and the edges indicate a qubit moving from partition i to partition

j. We extract all 2-cycles from this graph and remove those edges

from the graph. We proceed extracting all 3-cycles, and so on and

100

CF ’20, May 11ś13, 2020, Catania, Italy Jonathan M. Baker, Casey Duckering, Alexander Hoover, and Frederic T. Chong

q0 q2

q1 q3

q4

q0 q2

q1 q3

q4∞ + 7 ∞ + 3

4

8

Figure 4: An example of a time slice graph with lookahead

weights based on the circuit in Figure 3. We take the graph

from the left and add weight to the edges of qubits that in-

teract in the future. In this case, we take the weight equal to

the number of times the qubits will interact in the future.

record the number of k-cycles extracted as ck . When there are no

cycles remaining, the total number of remaining edges is r , and the

total communication overhead C is given by

C = r +

n
∑

k=2

(k − 1) · ck

The remaining edges indicate a qubit swapping with an unused

qubit. We repeat this process for every pair of consecutive assign-

ments in the path to compute the total non-local communication

of the path. These cycles specify where qubits will be moved with

non-local communication.

3.2 Baseline Non-local Communication

As a baseline we consider using a Static Mapping using an owner

computes model, which takes into account the full set of qubit in-

teractions for the circuit, providing a generally good assignment of

the qubits for the entire duration of the program, called the static

assignment. At each time step in the circuit, a good static assign-

ment ensures, on average, qubits are not too far from other qubits

they will interact with frequently. We find the assignment which

requires the fewest number of swaps from the static assignment but

has each pair of interacting qubits in a common partition. These as-

signments form a path for the computation. We refer to this method

of path generation in conjunction with a partitioning algorithm,

for example Static Mapping with OEE (Overall Extreme Exchange,

discussed further later) is referred to as Static-OEE.

3.3 Fine Grained Partitioning

The primary approach we developed to dynamically map a circuit

to hardware is Fine Grained Partitioning (FGP). In this algorithm,

we find an assignment at every time slice using the time slice

graphs. By default, these time slice graphs give only immediately

local information about the circuit but have no knowledge about

upcoming interactions. Alone, they only specify the constraints of

which qubits interact in that time slice. The key advantage for this

method is using lookahead weights. The main idea is to construct

modified time slice graphs capturing more structure in the circuit

than the default time slice graphs. We refer to these graphs as time

slice graphs with lookahead weights, or lookahead graphs.

To construct the lookahead graph at time t , we begin with the

original time slice graph and give the edges present infinite weight.

For every pair of qubits we add the weight

wt (qi ,qj) =
∑

t<m≤T

I (m,qi ,qj) · D(m − t)

to their edge, where D is some monotonically decreasing, non-

negative function, whichwe call the lookahead function, and I (m,qi ,qj)

is an indicator that is 1 if qi and qj interact in time slicem and 0

otherwise, andT is the number of time slices in the circuit. The new

time slice graphs consider the remainder of the circuit, more heav-

ily weighting sooner interactions. The effectively infinite weight

on edges between interacting qubits is present to guarantee any

assignment will place interacting qubits into the same partition. An

example is shown in Figure 4.

The final mapping of the qubits in our model is obtained by

partitioning each of these time slices. Iteratively, we find the next

assignment with a partitioning algorithm, seeded with the assign-

ment obtained from the previous time slice. The first can choose a

seed randomly or use the static assignment (presented in 3.2). The

new weights in the time slice graphs will force any movement nec-

essary in the partitioning algorithm. Together, these assignments

give us a valid path for the circuit to be mapped into our hardware.

3.4 Choosing the Partitioning Algorithm

We assume full connectivity within clusters and the ability to move

between clusters. These assumptions give us the liberty to tap

into well studied partitioning algorithms. The foundation of many

partitioning algorithms is largely considered to be the Kernighan-

Lin heuristic for partitioning graphs with bounded partition sizes

[23, 37, 57]. The KL heuristic selects pairs of vertices in a graph

to exchange between partitions based on the weights between the

vertices themselves and the total weight between the vertices and

the partitions.

We consider a natural extension of the KL algorithm, Overall

Extreme Exchange presented by Park and Lee [57]. The OEE algo-

rithm finds a sequence of pairs of vertices to exchange and makes

as many exchanges as give it an overall benefit. Using OEE, the

Fine Grained Partitioning scheme often over corrects (see Figure 7).

If a qubit needs to interact in another partition, then it can łdrag

alongž a qubit it is about to interact with because OEE attempts

to minimize weight between partitions regardless of its relation

to the previous or next time slice graphs. Choosing an optimal

partitioning algorithm would not give better solutions to our non-

local communication based mapping problem. Instead, we consider

a more relaxed version of a partitioning algorithm using the KL

heuristic.

Relaxing the Partitioning Algorithm. We provide relaxed ver-

sion of the algorithm better suited to generating a path over time,

called relaxed-OEE (rOEE). We run OEE until the partition is valid

for the time slice (all interacting qubits are in the same partition)

and then make no more exchanges. This is similar in approach to

finding the time slice partitions in our Static Mapping approaches.

It is critically important we make our exchange choices using looka-

head weights applied to the time slice graphs. Choosing without

information about the upcoming circuit provides no insight into

which qubits are beneficial to exchange. As a side benefit, making

this change strictly speeds up OEE, an already fast heuristic algo-

rithm. Although a strict asymptotic time bound for OEE is difficult

to prove, rOEE never took more than a few seconds on any instance

it was given.

101

Time-SlicedQuantum Circuit Partitioning for Modular Architectures CF ’20, May 11ś13, 2020, Catania, Italy

No lookahead Const Expon Gauss

0

50

100

150

N
u
m
b
er

o
f
O
p
er
at
io
n
s
A
d
d
ed

Comparison of lookahead weight functions

σ=1/2 σ=1 σ=5 σ=20

Figure 5: The effect of different lookahead functions with

various σ on non-local communication in the Cuccaro adder,

a very regular circuit, with 76 data and 24 ancilla qubits

using FGP-rOEE. We see the exponential function outper-

forms the others for a circuit of highly regular structure.

With such a significant non-local communication overhead im-

provement (see Figure 7), this relaxed KL partitioning algorithm is

much better suited for the problem at hand. It has the ability to take

into account local structure in the circuit and avoid over correcting

and swapping qubits unnecessarily.

4 LOOKAHEADWEIGHTS

Finding a suitable lookahead weight function to use in Fine Grained

Partitioning is necessary tomaximize the benefit gained from choos-

ing our swaps appropriately between time slices. We only require

the lookahead function to be monotonically decreasing and non-

negative. Throughout this section, we denote our lookahead weight

function as D.

4.1 Natural Candidates

We explore a few natural candidate weighting functions from the

huge space of possible functions. In each of the functions we explore

below, we vary a stretching factor or scale σ which can be tuned

for the given circuit, providing a trade-off between local and global

information.

Constant Function.

D(n) =

{

1 n ≤ σ

0 n > σ

A constant function captures a fixed amount of local information in

the circuit. This is just the number of times the pair of qubits interact

in the next σ time slices. For σ = 0, this function corresponds to no

lookahead applied.

Exponential Decay.

D(n) = 2−n/σ

An exponential is a natural way to model a decaying precedence.

When σ ≤ 1, any interaction will always have a weight at least as

high as the sum of interactions after it.

Gaussian Decay.

D(n) = e−n
2/σ 2

Similar to an exponential, a Gaussian is natural to model decaying

precedence with more weight given to local interactions.

4.2 Evaluating Lookahead Functions

To evaluate the choice of lookahead function as well as choice of σ ,

we study Fine Grained Partitioning using rOEE with all of the above

candidate functions with varying σ on benchmarks of various types:

those with lots of local structure (a quantum ripple carry adder),

those with very little structure (a random circuit), and those which

lie somewhere in between (a Generalized Toffoli decomposition).

In Figure 5, we show an example of a circuit which benefits from

having a large scale σ , the Cuccaro Adder [15]. In contrast, all of the

random benchmarks benefit from having small σ values, functions

which decay quickly even for small n.

We also compare the different natural lookahead functions we de-

scribed in the previous section on some representative benchmarks

in Figure 6. In these figures, we see the exponential decay has a clear

benefit over the rest in the structured circuits of the Multi-Control

gate and the Cuccaro Adder. In random circuits, there seems to be

no clear benefit to any of the lookahead functions, so long as they

have some small lookahead scaling factor. So, we use exponential

decay with σ = 1 for our primary benchmarks in Section 5.

5 EXPERIMENTAL SETUP

All experiments were run on an Intel(R) Xeon(R) Silver 4100 CPU at

2.10 GHzwith 128 GB of RAMwith 32 cores running Ubuntu 16.04.5.

Each test was run on a single core. Our framework runs on Python

3.6.5 using Google’s Cirq framework for circuit processing and for

implementing our benchmarks [1]. For testing exact solvers, we

used the Z3 SMT solver [16], though results could not be obtained

for the size of benchmarks tested because Z3 never completes on

problems this size.

5.1 Benchmarks

We benchmark the performance of our circuit mapping algorithms

on some common sub-circuits used in many algorithms (for exam-

ple Shor’s and Grovers) and, for comparison, on random circuits.

Our selection of benchmarks covers a wide variety of internal struc-

ture. For every benchmark, we use a representative cluster-based

architecture with 100 qubits with 10 clusters each containing 10

qubits but our methods are not limited to any size. We sweep over

the number of qubits used from 50 to 100, when in the cases of a

few benchmarks the remaining qubits are available for use as either

clean or dirty ancilla1 A selected cross section of our benchmarks

is shown in Table 1.

Generalized Toffoli Gate. The Generalized Toffoli gate (CnU) is

an n-controlled U gate for any single qubit unitary U and is well

studied [8, 21, 25, 28, 50, 72]. A CnX gate works by performing

an X gate on the target conditioned on all control qubits being in

the |1⟩ state. There are many known decompositions [4, 24, 29]

both with and without the use of ancilla. A complete description of

generating these circuits is given by [2], which provides a method

for using clean ancilla.

1An ancilla is a temporary quantum bit used often to reduce the depth or gate count of
a circuit. łCleanž indicates the initial state of the ancilla is known while łdirtyž means
the state is unknown.

102

CF ’20, May 11ś13, 2020, Catania, Italy Jonathan M. Baker, Casey Duckering, Alexander Hoover, and Frederic T. Chong

50 60 70 80 90

100

200

300

N
u
m
b
er

o
f
O
p
er
at
io
n
s
A
d
d
ed

Clean multi-control

60 80 100

50

100

Number of Qubits

Cuccaro adder

60 80 100

200

400

600

800

1,000

Random 0.4

FGP-rOEE const-1 FGP-rOEE expon-1 FGP-rOEE gauss-1

Figure 6: The non-local communication, measured in number of operations between clusters added, for our representative

benchmark circuits mapped by each FGP-rOEE using different lookahead functions, each with σ = 1. The x-axis is the number

of input/output qubits. The remainder are used as ancilla for clean multi-control. The exponential function is better on all

instances of Clean multi-control and Cuccaro adder, and there is no substantial advantage of one function over the others in

the random circuit.

Table 1: Depth and operation counts for a subset of our benchmarks

Clean multi-control Clean multi-target Dirty multi-target Cuccaro adder

Data Qubits 50 76 87 50 76 100 50 76 100 50 76 100

Depth 82 265 846 17 22 99 26 34 99 435 669 885

Two Qubit Op Count (Unmapped) 760 2040 2488 57 85 99 103 157 99 505 778 1030

Non-local Comm. Ops (Static-OEE) 288 1297 1928 35 60 169 34 31 169 159 243 365

Non-local Comm. Ops (FGP-rOEE expon-1) 55 218 299 21 31 72 17 19 72 19 42 76

QFT adder Random 0.2 Random 0.4 Random 0.8

Data Qubits 50 76 100 50 76 100 50 76 100 50 76 100

Depth 72 111 147 15 23 30 28 41 54 46 67 86

Two Qubit Op Count (Unmapped) 625 1444 2500 246 588 995 477 1156 1997 965 2260 3944

Non-local Comm. Ops (Static-OEE) 512 1144 2542 180 486 863 344 993 1795 682 1944 3462

Non-local Comm. Ops (FGP-rOEE expon-1) 131 329 541 96 275 498 181 552 1028 386 1070 1964

Multi-Target Gate. The multi-target gate performs a single-qubit

gate on many targets conditioned on a single control qubit being in

the |1⟩ state. This is useful in several applications such as one quan-

tum adder design [25] and can also be used in the implementation

of error correcting codes [17]. These circuits can be generated with

different numbers of ancilla (both clean and dirty), as given by [2].

Arithmetic Circuits. Arithmetic circuits in quantum computing

are typically used as subcircuits of much larger algorithms like

Shor’s factoring algorithm and are well studied [21, 25, 41]. Many

arithmetic circuits, such as modular exponentiation, lie either at the

border or beyond the range of NISQ era devices, typically requiring

either error correction or large numbers of data ancilla to execute.

We examine two types of quantum adders - the Cuccaro Adder and

the QFT Adder - as representatives of a class of highly structured

and highly regular arithmetic circuits [15, 63].

Random Circuit. The gates presented above have a lot of regular

structure when decomposed into circuits. We want to contrast this

with circuits with less structure. We create these random circuits

by picking some probability p and some number of samples and

generate an interaction between two qubits with probability p for

each sample. These circuits have the same structure as QAOA solv-

ing a min-cut problem on a random graph with edge probability p,

so these circuits are a realistic benchmark.

5.2 Circuit to Hardware

We begin with a quantum program which is specified at the gate

level, consisting of one and two qubit gates. We then generate the

total interaction and time slice graphs, where we assume gates are

inserted at the earliest possible time. Any further optimization, such

as via commutivity or template matching, should be done prior to

mapping the program to hardware. We also take the specifications

of the hardware, such as number of clusters and the maximum size

of the clusters, which constrain possible mappings.

We use our rOEE as our algorithm for Fine Grained Partitioning.

Therefore, we pass the total interaction graph to a static partitioning

algorithm to obtain a good starting assignment. This serves as

a seed to rOEE rather than starting with a random assignment

which may introduce unnecessary starting communication. To the

time slice graphs, we apply the lookahead function to obtain the

lookahead graphs. We run rOEE on this set of graphs to obtain an

assignment sequence such that at every time slice qubits which

interact appear in the same bucket. This assignment describes what

non-local communication is added before each slice. Finally, we

compute the cost and insert the necessary movement operations

into the circuit to move interacting qubits into the same partition,

this is a path. As a byproduct, by generating a partitioning over

time, we obtain a schedule of operations to be performed.

103

Time-SlicedQuantum Circuit Partitioning for Modular Architectures CF ’20, May 11ś13, 2020, Catania, Italy

6 RESULTS AND DISCUSSION

We run our mapping algorithms on each of our benchmark circuits.

The results are shown in Figure 7.

Baseline mapping and the original version of OEE performworse

than our best scheme on any benchmark tested. Baseline mapping

uses global structure of the graph, but often maintains this struc-

ture too much throughout the execution of the circuit. This lack of

local awareness and rigid nature of the Static Mapping limits its

usefulness. Most out of the box graph partitioning algorithms are

designed to only minimize the edge weight between partitions; this

will tend to over correct for local structure in the circuit. FGP can

overcome this limitation with its choice of partitioning algorithm.

By relaxing the partitioning algorithm and not requiring local opti-

mality, we only move qubits until all interacting pairs are together,

we require far fewer non-local operations.

The most noticeable changes between FGP-OEE and FGP-rOEE

are on the clean multi-control gate with many controls and on

the Cuccaro adder. Here, there are often consecutive, overlapping

operations with little parallelism. With this structure, after the first

operation is performed, the original OEE algorithm will exchange

qubits to comply with the next time slice for the next operation.

OEE is required to separate qubits which will later interact. To

minimize the total crossing weight between partitions, more qubits

are shuffled around, usually towards this displaced qubit. In rOEE,

this reshuffle optimization never takes place because we terminate

once each pair of interacting qubits in a time slice is placed in a

common partition. The reshuffling detriments the overall non-local

communication when running the circuit because of how often

qubits will be displaced from their common interaction partners.

In rOEE, not reshuffling keeps the majority of the qubits in suffi-

ciently good spots and the displaced qubit has the opportunity to

immediately move back with its interaction partners later.

We include the algorithm Fixed Length Slicing as an alternative

not presented in this paper. It is a method with slower computation

which explores grouping time slices at fixed intervals. Fixed Length

Slicing was consistently the best performing time slice range based

mapping algorithm, so we present it in our results. FLS-OEE only

beats FGP-rOEE on some instances of the multi-target benchmarks

and consistently performs worse on all other benchmarks.

In Figure 1, we show the percentage of operations used for non-

local communication for each of the benchmark circuits, and in

Table 2 we show the percent improvement of our algorithm over

the baseline. On average, we save over 60% of the non-local com-

munication operations added. When each non-local communica-

tion operation is implemented in hardware, the amount of time

each takes is significantly longer than the operations between the

qubits in the clusters [46]. Based on current communication tech-

nology, we expect these non-local communication operations to

take anywhere from 5x to 100x longer than local in-cluster opera-

tions. Furthermore, the choice in technology limits how many of

these expensive operations can be performed in parallel.

In Table 3 we compute the estimated running time (two-qubit

gates take 300ns [33] and the multiplier indicates how many times

longer non-local communication operations take) based on this

ratio of costs and show that by substantially reducing the non-local

communication via FGP-rOEE, we can drastically reduce the run

Table 2: Comparison of Static-OEE against FGP-rOEE

% Reduction min max gmean

Clean multi-control 78.1 84.9 81.9

Clean multi-target 30.8 59.6 44.7

Dirty multi-target 22.6 65.1 39.9

Cuccaro adder 79.1 89.8 85.0

QFT adder 76.6 84.5 81.5

Random 0.2 52.4 57.8 55.3

Random 0.4 53.6 59.0 57.0

Random 0.8 57.0 60.4 59.1

Aggregate 22.6 89.8 60.9

Table 3: Estimated execution times of the clean multi-

control benchmark with 76 data qubits and 24 ancilla

Sequential Comm. Parallel Comm.

Multiplier Static-OEE FGP-rOEE Static-OEE FGP-rOEE

5x 2.0 ms 0.41 ms 0.67 ms 0.26 ms

10x 4.0 ms 0.73 ms 1.3 ms 0.43 ms

100x 39 ms 6.6 ms 12 ms 3.6 ms

time. We compare our algorithm to the baseline when non-local

communication can be performed in parallel (such as in optically

connected ion trap devices) and when it is forced to occur sequen-

tially (as when using a resonant bus in superconducting devices).

Based on current technology, a 5-10x multiplier is optimistic while

100x is realistic in the near term.

7 RELATED WORK

Current quantumhardware is extremely restricted and has prompted

research aimed at making the most of current hardware conditions.

This usually amounts to a few main categories of optimization. Cir-

cuit optimization at a high level to reduce the number of gates or

depth via template matching as in [42, 65] or via other optimization

techniques as in [49, 79]. Other work focuses on optimization at the

device level, such as by breaking the circuit model altogether as in

[68] or by simply improving pulses via Quantum Optimal Control

[76].

At an architectural level, optimization has been studied for many

different types hardware with various topologies. The general strat-

egy in most of these works is to reduce SWAP counts with the

same motivation as this work, as in [27, 56, 71, 74, 77, 79, 80]. Much

of this work focuses primarily on linear nearest neighbor (LNN)

architectures or 2D lattice architectures as in [58, 60, 62, 64, 67].

Some work has focused on ion trap mappings as in [20] though

the architecture of this style of device closely resembles a 2D archi-

tecture. Some work has recently focused on optimization around

specific error rates in near term machines as in [40, 47]. Many of

these techniques promise an extension to arbitrary topologies but

are not specifically designed to accommodate cluster-based archi-

tectures. Work by [13] has explored using graph partitioning to

reduce swap counts in near term machines, but their focus is on

LNN architectures exclusively. Other work focuses on architectures

of the more distant future with error correction [38, 54, 55].

104

CF ’20, May 11ś13, 2020, Catania, Italy Jonathan M. Baker, Casey Duckering, Alexander Hoover, and Frederic T. Chong

50 60 70 80 90

0

1,000

2,000

3,000

Clean multi-control

50 60 70 80 90 100

50

100

150

Clean multi-target

60 80 100
0

100

200

Dirty multi-target

60 80 100
0

200

400

N
u
m
b
er

o
f
O
p
er
at
io
n
s
A
d
d
ed

Cuccaro adder

60 80 100
0

1,000

2,000

QFT adder

Static-OEE

FLS-OEE

FGP-OEE

FGP-rOEE

60 80 100

200

400

600

800

1,000

Random 0.2

60 80 100

500

1,000

1,500

Number of Qubits

Random 0.4

60 80 100

1,000

2,000

3,000

Random 0.8

Figure 7: The non-local communication overhead for our benchmark circuits mapped by each mapping algorithm. The x-axis

is the number of qubits that are used in the circuit. The y-axis is the number of non-local communication operations inserted

to make the circuit executable in our hardware model. In Clean multi-control, Clean multi-target, and Dirty multi-target, the

remainder of the 100 qubits are used as ancilla (clean or dirty determined by the circuit name). FGP-rOEE outperforms all

other mapping algorithms on all but the multi-target circuits, and shows substantial improvement over the static baseline. As

the size of the circuit increases, rOEE tends to outperform by a greater margin, indicating scales better into the future.

8 CONCLUSION

Alternative to using near-optimal graph partitioning algorithms

to find a single static assignment for an entire circuit, we show

considering the locality in a circuit during a mapping gives a reduc-

tion in the total non-local communication required when running

a quantum circuit. There is a natural restriction in using static map-

pings suggesting the problem of mapping qubits to cluster-based

architectures has a different structure than partitioning a single

graph for minimum weight between the partitions. Our modifica-

tion to OEE no longer attempts to optimize the weights at every

time slice. It is much more effective in practice to guide the parti-

tioning based on heuristics and not to find the optimal value for

every time slice. Optimality at every time slice does not correspond

to a global reduction in non-local communication overhead.

We propose to use similar schemes for other cluster-based quan-

tum hardware, especially those based on internally connected clus-

ters. In our model, the different clusters of the architecture are also

very well connected, but is not limited to only this specific instance

of a clustered architecture. Our proposed algorithm produces parti-

tions based on a simplifying assumption about the connectivity of

the clusters because the cost of non-local communication is substan-

tially more expensive than any in-cluster operations. Our method

can be adapted to other cluster-based architectures by first applying

our partitioning algorithm to obtain good clusters of operations and

then adding a device-specific scheduling algorithm for scheduling

much cheaper in-cluster operations.

A relaxed version with well chosen lookahead functions of a

heuristic outperforms a well selected initial static mapping. Using

lookahead weights has been explored previously, as in [80], and

more can be done to better choose the lookahead function, for

example based on a metric of circuit regularity. Techniques for

mapping which attempt to solve for near optimal mappings will

not scale and instead heuristics will be the dominant approach. Our

approach is computationally tractable and adaptable to changes in

machine architecture, such as additional or varied size clusters.

Non-local communication overhead in quantum programsmakes

up a large portion of all operations performed, therefore, minimiz-

ing communication is critical. In recent hardware [46], the cost of

moving between clusters makes non-trivial computation impossible

with current standards for mapping qubits to hardware. Reducing

this bottleneck or finding algorithms to reduce the non-local com-

munication are critical for quantum computation. We reduce this

cost substantially in cluster-based architectures (see Table 3).

ACKNOWLEDGMENTS

This work is funded in part by EPiQC, an NSF Expedition in Com-

puting, under grants CCF-1730449/1832377; in part by STAQ under

grant NSF Phy-1818914; and in part by DOE grants DE-SC0020289

and DE-SC0020331.

105

Time-SlicedQuantum Circuit Partitioning for Modular Architectures CF ’20, May 11ś13, 2020, Catania, Italy

REFERENCES
[1] 2018. Cirq: A python framework for creating, editing, and invoking Noisy

Intermediate Scale Quantum (NISQ) circuits. https://github.com/quantumlib/cirq.
[2] Jonathan M. Baker, Casey Duckering, Alexander Hoover, and Frederic T. Chong.

2019. Decomposing Quantum Generalized Toffoli with an Arbitrary Number of
Ancilla. arXiv:arXiv:1904.01671

[3] Aniruddha Bapat, Zachary Eldredge, James R Garrison, Abhinav Deshpande, Fred-
eric T Chong, and Alexey V Gorshkov. 2018. Unitary entanglement construction
in hierarchical networks. Physical Review A 98, 6 (2018), 062328.

[4] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Nor-
man Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter.
1995. Elementary gates for quantum computation. Phys. Rev. A 52 (Nov 1995),
3457ś3467. Issue 5. https://doi.org/10.1103/PhysRevA.52.3457

[5] A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Negnevitsky, P. Schindler,
T. Monz, U. G. Poschinger, C. Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk, R.
Blatt, S. Benjamin, and M. Müller. 2017. Assessing the progress of trapped-ion
processors towards fault-tolerant quantum computation. Phys. Rev. X 7, 041061
(2017). (2017). https://doi.org/10.1103/PhysRevX.7.041061 arXiv:arXiv:1705.02771

[6] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, NathanWiebe,
and Seth Lloyd. 2016. Quantum Machine Learning. Nature 549, 195-202
(2017). Nature 549 (13 Sep 2016), 195 EP ś. https://doi.org/10.1038/nature23474
arXiv:arXiv:1611.09347

[7] Brad R Blakestad, Aaron Vandevender, Christian Ospelkaus, Jason Amini,
Joseph W Britton, Dietrich G Leibfried, and David J Wineland. 2009. High
Fidelity Transport of Trapped-Ion Qubits through an X-Junction Trap Array|
NIST. Nature Physics 102, Nature Physics (2009).

[8] Alex Bocharov, Martin Roetteler, and Krysta M. Svore. 2017. Factoring with
qutrits: Shor’s algorithm on ternary and metaplectic quantum architectures. Phys.
Rev. A 96 (Jul 2017), 012306. Issue 1. https://doi.org/10.1103/PhysRevA.96.012306

[9] Teresa Brecht, Wolfgang Pfaff, Chen Wang, Yiwen Chu, Luigi Frunzio, Michel H
Devoret, and Robert J Schoelkopf. 2016. Multilayer microwave integrated quan-
tum circuits for scalable quantum computing. npj Quantum Information 2 (2016),
16002.

[10] Kenneth R Brown, Jungsang Kim, and Christopher Monroe. 2016. Co-designing a
scalable quantum computer with trapped atomic ions. npj Quantum Information
2 (2016), 16034.

[11] Colin D Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M Sage.
2019. Trapped-ion quantum computing: Progress and challenges. Applied Physics
Reviews 6, 2 (2019), 021314.

[12] Thang Nguyen Bui and Curt Jones. [n.d.]. Finding good approximate vertex and
edge partitions is NP-hard. 42, 3 ([n. d.]), 153 ś 159. https://doi.org/10.1016/0020-
0190(92)90140-Q

[13] Amlan Chakrabarti, Susmita Sur-Kolay, and Ayan Chaudhury. 2011. Lin-
ear Nearest Neighbor Synthesis of Reversible Circuits by Graph Partitioning.
arXiv:arXiv:1112.0564

[14] Kevin S. Chou, Jacob Z. Blumoff, Christopher S.Wang, Philip C. Reinhold, Christo-
pher J. Axline, Yvonne Y. Gao, L. Frunzio, M. H. Devoret, Liang Jiang, and R. J.
Schoelkopf. 2018. Deterministic teleportation of a quantum gate between two
logical qubits. Nature 561, 7723 (2018), 368ś373. https://doi.org/10.1038/s41586-
018-0470-y

[15] StevenA. Cuccaro, Thomas G. Draper, Samuel A. Kutin, andDavid PetrieMoulton.
2004. A new quantum ripple-carry addition circuit. arXiv e-prints, Article
quant-ph/0410184 (Oct 2004), quant-ph/0410184 pages. arXiv:quant-ph/quant-
ph/0410184

[16] Leonardo de Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337ś340.

[17] Simon J. Devitt, Kae Nemoto, and William J. Munro. 2009. Quantum Error
Correction for Beginners. Rep. Prog. Phys. 76 (2013) 076001. (2009). https:
//doi.org/10.1088/0034-4885/76/7/076001 arXiv:arXiv:0905.2794

[18] Michel H Devoret and Robert J Schoelkopf. 2013. Superconducting circuits for
quantum information: an outlook. Science 339, 6124 (2013), 1169ś1174.

[19] C. H. Q. Ding and H. D. Simon. 2001. A min-max cut algorithm for graph
partitioning and data clustering. In Proceedings 2001 IEEE International Conference
on Data Mining. 107ś114. https://doi.org/10.1109/ICDM.2001.989507

[20] Mohammad Javad Dousti and Massoud Pedram. 2012. Minimizing the Latency of
Quantum Circuits During Mapping to the Ion-trap Circuit Fabric. In Proceedings
of the Conference on Design, Automation and Test in Europe (Dresden, Germany)
(DATE ’12). EDA Consortium, San Jose, CA, USA, 840ś843. http://dl.acm.org/
citation.cfm?id=2492708.2492917

[21] Thomas G. Draper. 2000. Addition on a Quantum Computer. arXiv:arXiv:quant-
ph/0008033

[22] L-M Duan and Christopher Monroe. 2010. Colloquium: Quantum networks with
trapped ions. Reviews of Modern Physics 82, 2 (2010), 1209.

[23] Charles M Fiduccia and Robert M Mattheyses. 1982. A linear-time heuristic
for improving network partitions. In 19th Design Automation Conference. IEEE,
175ś181.

[24] Craig Gidney. 2015. Constructing Large Controlled Nots. http://algassert.com/
circuits/2015/06/05/Constructing-Large-Controlled-Nots.html

[25] Craig Gidney. 2017. Factoring with n+2 clean qubits and n-1 dirty qubits.
arXiv:arXiv:1706.07884

[26] Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search.
In ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING. ACM, 212ś219.

[27] Gian Giacomo Guerreschi and Jongsoo Park. 2017. Two-step approach to sched-
uling quantum circuits. arXiv:arXiv:1708.00023

[28] Thomas Häner, Martin Roetteler, and Krysta M. Svore. 2017. Factoring Using 2N
+ 2 Qubits with Toffoli Based Modular Multiplication. Quantum Info. Comput. 17,
7-8 (June 2017), 673ś684. http://dl.acm.org/citation.cfm?id=3179553.3179560

[29] Y. He, M.-X. Luo, E. Zhang, H.-K. Wang, and X.-F. Wang. 2017. Decompositions
of n-qubit Toffoli Gates with Linear Circuit Complexity. International Journal of
Theoretical Physics 56 (July 2017), 2350ś2361. https://doi.org/10.1103/PhysRevA.
75.022313

[30] Bruce Hendrickson and Robert Leland. 1995. An improved spectral graph parti-
tioning algorithm for mapping parallel computations. SIAM Journal on Scientific
Computing 16, 2 (1995), 452ś469.

[31] Bruce Hendrickson and Robert Leland. 1995. A multi-level algorithm for parti-
tioning graphs. (1995).

[32] David Hucul, Justin E Christensen, Eric R Hudson, and Wesley C Campbell. 2017.
Spectroscopy of a synthetic trapped ion qubit. Physical review letters 119, 10
(2017), 100501.

[33] ibm0 [n.d.]. IBM Quantum Devices. https://quantumexperience.ng.bluemix.net/
qx/devices. Accessed: 2019-03-16.

[34] F. M. Johannes. 1996. Partitioning of VLSI circuits and systems. In 33rd Design
Automation Conference Proceedings, 1996. 83ś87. https://doi.org/10.1109/DAC.
1996.545551

[35] George Karypis and Vipin Kumar. 1998. Multilevel k-way Partitioning Scheme
for Irregular Graphs. J. Parallel and Distrib. Comput. 48, 1 (1998), 96 ś 129.
https://doi.org/10.1006/jpdc.1997.1404

[36] George Karypis and Vipin Kumar. 2009. MeTis: Unstructured Graph Partitioning
and Sparse Matrix Ordering System, Version 4.0. http://www.cs.umn.edu/~metis.

[37] Brian W Kernighan and Shen Lin. 1970. An efficient heuristic procedure for
partitioning graphs. Bell system technical journal 49, 2 (1970), 291ś307.

[38] L. Lao, B. van Wee, I. Ashraf, J. van Someren, N. Khammassi, K. Bertels, and
C. G. Almudever. 2018. Mapping of Lattice Surgery-based Quantum Circuits on
Surface Code Architectures.

[39] B. Lekitsch, S. Weidt, A. G. Fowler, K. Mùlmer, S. J. Devitt, C. Wunderlich, and
W. K. Hensinger. 2015. Blueprint for a microwave trapped-ion quantum computer.
Science Advances Vol. 3, no. 2 (2017). (2015). https://doi.org/10.1126/sciadv.
1601540 arXiv:arXiv:1508.00420

[40] Gushu Li, Yufei Ding, and Yuan Xie. 2018. Tackling the Qubit Mapping Problem
for NISQ-Era Quantum Devices. arXiv:arXiv:1809.02573

[41] Igor L. Markov and Mehdi Saeedi. 2012. Constant-Optimized Quantum Circuits
for Modular Multiplication and Exponentiation. Quantum Information and
Computation, Vol. 12, No. 5&6, pp. 0361-0394, 2012. (2012). arXiv:arXiv:1202.6614

[42] D. Maslov, G. W. Dueck, D. M. Miller, and C. Negrevergne. 2008. Quantum
Circuit Simplification and Level Compaction. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 27, 3 (March 2008), 436ś444.
https://doi.org/10.1109/TCAD.2007.911334

[43] Dmitri Maslov, Yunseong Nam, and Jungsang Kim. 2018. An outlook for quantum
computing [point of view]. Proc. IEEE 107, 1 (2018), 5ś10.

[44] Christopher Monroe and Jungsang Kim. 2013. Scaling the ion trap quantum
processor. Science 339, 6124 (2013), 1164ś1169.

[45] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and
J. Kim. 2014. Large-scale modular quantum-computer architecture with atomic
memory and photonic interconnects. Phys. Rev. A 89 (Feb 2014), 022317. Issue 2.
https://doi.org/10.1103/PhysRevA.89.022317

[46] Emily Mount, Daniel Gaultney, Geert Vrijsen, Michael Adams, So-Young Baek,
Kai Hudek, Louis Isabella, Stephen Crain, Andre van Rynbach, Peter Maunz, et al.
2016. Scalable digital hardware for a trapped ion quantum computer. Quantum
Information Processing 15, 12 (2016), 5281ś5298.

[47] Prakash Murali, Jonathan M. Baker, Ali Javadi Abhari, Frederic T. Chong, and
Margaret Martonosi. 2019. Noise-Adaptive Compiler Mappings for Noisy
Intermediate-Scale Quantum Computers. arXiv:arXiv:1901.11054

[48] R. K. Naik, N. Leung, S. Chakram, Peter Groszkowski, Y. Lu, N. Earnest, D. C.
McKay, Jens Koch, and D. I. Schuster. [n.d.]. Random access quantum information
processors using multimode circuit quantum electrodynamics. 8, 1 ([n. d.]), 1904.
https://doi.org/10.1038/s41467-017-02046-6

[49] YunseongNam, Neil J. Ross, Yuan Su, AndrewM. Childs, and Dmitri Maslov. [n.d.].
Automated optimization of large quantum circuits with continuous parameters.
4, 1 ([n. d.]), 23. https://doi.org/10.1038/s41534-018-0072-4

[50] Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computation and
Quantum Information: 10th Anniversary Edition (10th ed.). Cambridge University
Press, New York, NY, USA.

[51] Tony Nowatzki, Newsha Ardalani, Karthikeyan Sankaralingam, and Jian Weng.
2018. Hybrid Optimization/Heuristic Instruction Scheduling for Programmable

106

CF ’20, May 11ś13, 2020, Catania, Italy Jonathan M. Baker, Casey Duckering, Alexander Hoover, and Frederic T. Chong

Accelerator Codesign. In Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques (Limassol, Cyprus) (PACT ’18).
ACM, New York, NY, USA, Article 36, 15 pages. https://doi.org/10.1145/3243176.
3243212

[52] Tony Nowatzki, Michael Sartin-Tarm, Lorenzo De Carli, Karthikeyan Sankar-
alingam, Cristian Estan, and Behnam Robatmili. 2014. A Scheduling Frame-
work for Spatial Architectures Across Multiple Constraint-Solving Theories.
ACM Trans. Program. Lang. Syst. 37, 1, Article 2 (Nov. 2014), 30 pages. https:
//doi.org/10.1145/2658993

[53] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends,
J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro,
A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M.
Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White,
P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis. 2016.
Scalable Quantum Simulation of Molecular Energies. Phys. Rev. X 6 (Jul 2016),
031007. Issue 3. https://doi.org/10.1103/PhysRevX.6.031007

[54] Alexandru Paler, Simon J. Devitt, Kae Nemoto, and Ilia Polian. 2014. Mapping of
Topological Quantum Circuits to Physical Hardware. Scientific Reports 4 (11 Apr
2014), 4657 EP ś. http://dx.doi.org/10.1038/srep04657 Article.

[55] Alexandru Paler, Ilia Polian, Kae Nemoto, and Simon J. Devitt. 2015. Fault-Tolerant
High Level Quantum Circuits: Form, Compilation and Description. Quantum
Science and Technology, 2, 025003 (2017). (2015). https://doi.org/10.1088/2058-
9565/aa66eb arXiv:arXiv:1509.02004

[56] Alexandru Paler, Alwin Zulehner, and Robert Wille. 2018. NISQ circuit compilers:
search space structure and heuristics. arXiv:arXiv:1806.07241

[57] Taehoon Park and Chae Y Lee. 1995. Algorithms for partitioning a graph. Com-
puters & Industrial Engineering 28, 4 (1995), 899ś909.

[58] M. Pedram and A. Shafaei. 2016. Layout Optimization for Quantum Circuits with
Linear Nearest Neighbor Architectures. IEEE Circuits and Systems Magazine 16,
2 (Secondquarter 2016), 62ś74. https://doi.org/10.1109/MCAS.2016.2549950

[59] Alejandro Perdomo-Ortiz, Alexander Feldman, Asier Ozaeta, Sergei V. Isakov,
Zheng Zhu, Bryan O’Gorman, Helmut G. Katzgraber, Alexander Diedrich,
Hartmut Neven, Johan de Kleer, Brad Lackey, and Rupak Biswas. 2017. On
the readiness of quantum optimization machines for industrial applications.
arXiv:arXiv:1708.09780

[60] Paul Pham and Krysta M. Svore. 2013. A 2D Nearest-neighbor Quantum Archi-
tecture for Factoring in Polylogarithmic Depth. Quantum Info. Comput. 13, 11-12
(Nov. 2013), 937ś962. http://dl.acm.org/citation.cfm?id=2535639.2535642

[61] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum
2 (Aug. 2018), 79. https://doi.org/10.22331/q-2018-08-06-79

[62] D. Ruffinelli and B. Baran. 2016. A multiobjective approach to linear nearest
neighbor optimization for 2D quantum circuits. In 2016 XLII Latin American
Computing Conference (CLEI). 1ś8. https://doi.org/10.1109/CLEI.2016.7833378

[63] Lidia Ruiz-Perez and Juan Carlos Garcia-Escartin. 2014. Quantum arithmetic
with the Quantum Fourier Transform. Quantum Inf Process (2017) 16: 152. (2014).
https://doi.org/10.1007/s11128-017-1603-1 arXiv:arXiv:1411.5949

[64] Mehdi Saeedi, Robert Wille, and Rolf Drechsler. 2011. Synthesis of Quantum Cir-
cuits for Linear Nearest Neighbor Architectures. Quantum Information Processing
10, 3 (June 2011), 355ś377. https://doi.org/10.1007/s11128-010-0201-2

[65] Masahide Sasaki, Alberto Carlini, and Richard Jozsa. 2001. Quantum template
matching. Phys. Rev. A 64 (Jul 2001), 022317. Issue 2. https://doi.org/10.1103/
PhysRevA.64.022317

[66] Kirk Schloegel, George Karypis, and Vipin Kumar. 2003. Sourcebook of Parallel
Computing. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, Chapter

Graph Partitioning for High-performance Scientific Simulations, 491ś541. http:
//dl.acm.org/citation.cfm?id=941480.941499

[67] Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. 2013. Optimization of
Quantum Circuits for Interaction Distance in Linear Nearest Neighbor Ar-
chitectures. In Proceedings of the 50th Annual Design Automation Conference
(Austin, Texas) (DAC ’13). ACM, New York, NY, USA, Article 41, 6 pages.
https://doi.org/10.1145/2463209.2488785

[68] Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I. Schuster, Henry
Hoffman, and Fred T. Chong. 2019. Optimized Compilation of Aggregated In-
structions for Realistic Quantum Computers. (2019). https://doi.org/10.1145/
3297858.3304018 arXiv:arXiv:1902.01474

[69] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (Oct. 1997),
1484ś1509. https://doi.org/10.1137/S0097539795293172

[70] H.D. Simon. 1991. Partitioning of unstructured problems for parallel processing.
Computing Systems in Engineering 2, 2 (1991), 135 ś 148. https://doi.org/10.1016/
0956-0521(91)90014-V Parallel Methods on Large-scale Structural Analysis and
Physics Applications.

[71] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange, and
Fernando Magno Quintao Pereira. 2018. Qubit Allocation. In Proceedings of the
2018 International Symposium on Code Generation and Optimization (Vienna,
Austria) (CGO 2018). ACM, New York, NY, USA, 113ś125. https://doi.org/10.
1145/3168822

[72] Francesco Tacchino, Chiara Macchiavello, Dario Gerace, and Daniele Bajoni.
2018. An Artificial Neuron Implemented on an Actual Quantum Processor.
arXiv:arXiv:1811.02266

[73] Colin J. Trout, Muyuan Li, Mauricio Gutierrez, Yukai Wu, Sheng-Tao Wang,
Luming Duan, and Kenneth R Brown. 2017. Simulating the performance of a
distance-3 surface code in a linear ion trap. (2017). https://doi.org/10.1088/1367-
2630/aab341 arXiv:arXiv:1710.01378

[74] Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank. 2017. Compiling
quantum circuits to realistic hardware architectures using temporal planners.
2017 Quantum Sci. Technol. - also related to proceedings of IJCAI 2017, and
ICAPS SPARK Workshop 2017. (2017). https://doi.org/10.1088/2058-9565/aaa331
arXiv:arXiv:1705.08927

[75] Andreas Wallraff. 2018. Deterministic Quantum State Transfer and Generation
of Remote Entanglement using Microwave Photons. In APS Meeting Abstracts.

[76] J. Werschnik and E. K. U. Gross. 2007. Quantum Optimal Control Theory.
arXiv:arXiv:0707.1883

[77] Mark Whitney, Nemanja Isailovic, Yatish Patel, and John Kubiatowicz. 2007. Au-
tomated Generation of Layout and Control for Quantum Circuits. In Proceedings
of the 4th International Conference on Computing Frontiers (Ischia, Italy) (CF ’07).
ACM, New York, NY, USA, 83ś94. https://doi.org/10.1145/1242531.1242546

[78] K.Wright, K.M. Beck, S. Debnath, J. M. Amini, Y. Nam, N. Grzesiak, J. S. Chen, N. C.
Pisenti, M. Chmielewski, C. Collins, K. M. Hudek, J. Mizrahi, J. D. Wong-Campos,
S. Allen, J. Apisdorf, P. Solomon, M. Williams, A. M. Ducore, A. Blinov, S. M.
Kreikemeier, V. Chaplin, M. Keesan, C. Monroe, and J. Kim. 2019. Benchmarking
an 11-qubit quantum computer. arXiv:arXiv:1903.08181

[79] Xin Zhang, Hong Xiang, Tao Xiang, Li Fu, and Jun Sang. 2018. An efficient quan-
tum circuits optimizing scheme compared with QISKit. arXiv:arXiv:1807.01703

[80] Alwin Zulehner, Alexandru Paler, and Robert Wille. 2017. An Efficient
Methodology for Mapping Quantum Circuits to the IBM QX Architectures.
arXiv:arXiv:1712.04722

107

