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Abstract
Modern operating systems are monolithic. Today, however,

lack of isolation is one of the main factors undermining se-

curity of the kernel. Inherent complexity of the kernel code

and rapid development pace combined with the use of unsafe,

low-level programming language results in a steady stream

of errors. Even after decades of efforts to make commodity

kernels more secure, i.e., development of numerous static and

dynamic approaches aimed to prevent exploitation of most

common errors, several hundreds of serious kernel vulnerabil-

ities are reported every year. Unfortunately, in a monolithic

kernel a single exploitable vulnerability potentially provides

an attacker with access to the entire kernel.

Modern kernels need isolation as a practical means of con-

fining the effects of exploits to individual kernel subsystems.

Historically, introducing isolation in the kernel is hard. First,

commodity hardware interfaces provide no support for ef-

ficient, fine-grained isolation. Second, the complexity of a

modern kernel prevents a naive decomposition effort. Our

work on Lightweight Execution Domains (LXDs) takes a

step towards enabling isolation in a full-featured operating

system kernel. LXDs allow one to take an existing kernel

subsystem and run it inside an isolated domain with minimal

or no modifications and with a minimal overhead. We evalu-

ate our approach by developing isolated versions of several

performance-critical device drivers in the Linux kernel.

1 Introduction

Modern operating system kernels are fundamentally insecure.

Due to rapid development rate (the de-facto industry standard

Linux kernel features over 70 thousand commits a year), a

huge codebase (the latest version of the Linux kernel contains

over 17 million lines of unsafe C/C++ and assembly code1),
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§Currently at Google. Work done at the University of Utah.
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1Calculated using David Wheeler’s sloccount on Linux 5.0-rc1.

and inherent complexity (typical kernel code adheres to mul-

tiple allocation, synchronization, access control, and object

lifetime conventions) bugs and vulnerabilities are routinely

introduced into the kernel code. In 2018, the Common Vul-

nerabilities and Exposures database lists 176 Linux kernel

vulnerabilities that allow for privilege escalation, denial-of-

service, and other exploits [20]. This number is the lowest

across several years [19].

Even though a number of static and dynamic mechanisms

have been invented to protect execution of the low-level kernel

code, e.g., modern kernels deploy stack guards [18], address

space layout randomization (ASLR) [45], and data execution

prevention (DEP) [72], attackers come up with new ways to

bypass these protection mechanisms [8, 35, 45, 49, 51, 57–59,

71]. Even advanced defense mechanisms that are yet to be

deployed in mainstream kernels, e.g., code pointer integrity

(CPI) [1, 53] and safe stacks [14, 53], become vulnerable

in the face of data-only attacks combined with automated

attack generation tools [46, 77]. In a monolithic kernel, a

single vulnerability provides an attacker with access to the

entire kernel. An attacker can redirect control to any part

of the kernel and change any data structure escalating its

privileges [46, 77].

Modern kernels need isolation as a practical means of con-

fining the effects of individual vulnerabilities. However, in-

troducing isolation in a kernel is hard. First, despite many

advances in the architecture of modern CPUs, low-overhead

hardware isolation mechanisms [74–76] did not make it into

commodity architectures. On modern machines, the minimal

call/reply invocation that relies on traditional address-spaces

for isolation [26] takes over 834 cycles (Section 5). To put

this number into perspective, in the Linux kernel a system

call that sends a network packet through the network stack

and network device driver takes 2299 cycles. A straightfor-

ward isolation of a network device driver which requires two

domain crossings on the packet transmission path (Section 4),

would introduce an overhead of more than 72%.

Second, the complexity of a shared-memory kernel that

accumulates decades of development in a monolithic setting

USENIX Association 2019 USENIX Annual Technical Conference    269



prevents a trivial decomposition effort. Decomposition re-

quires cutting through a number of tightly-connected, well-

optimized subsystems that use rich interfaces and complex

interaction patterns. Two straightforward isolation strategies—

developing isolated subsystems from scratch [21, 24, 31]

or running them inside a full copy of a virtualized ker-

nel [11, 16, 30, 60]—result in either a prohibitively large engi-

neering effort or overheads of running a full copy of a kernel

for each isolated domain.

Our work on Lightweight Execution Domains (LXDs)

takes a step towards enabling isolation in a full-featured op-

erating system kernel. LXDs allow one to take an existing

kernel subsystem and run it inside an isolated domain with

minimal or no modifications and with a minimal overhead.

While isolation of core kernel subsystems, e.g., a buffer cache

layer, is beyond the scope of our work due to tight integration

with the kernel (i.e., complex isolation boundary and frequent

domain crossings), practical isolation of device drivers, which

account for over 11 millions lines of unsafe kernel code and

significant fraction of kernel exploits, is feasible.

Compared to prior isolation attempts [9, 12, 15, 27, 32–

34, 40–43, 66, 68, 69], LXDs leverage several new design

decisions. First, we make an observation that synchronous

cross-domain invocations are prohibitively expensive. The

only way to make isolation practical is to leverage asyn-

chronous communication mechanisms that batch and pipeline

multiple cross-domain invocations. Unfortunately, explicit

management of asynchronous messages typically requires a

clean-slate kernel implementation built for explicit message-

passing [5, 42]. LXDs, however, aim to enable isolation in

commodity OS kernels that are originally monolithic (com-

modity kernels accumulate decades of software engineering

effort that is worth preserving). To introduce asynchronous

communication primitives in the code of a legacy kernel,

LXDs build on the ideas from asynchronous programming lan-

guages [3,13,39]. We develop a lightweight asynchronous run-

time that allows us to create lightweight cooperative threads

that may block on cross-domain invocations and hence imple-

ment batching and pipelining of cross-domain calls in a way

transparent to the kernel code.

Second, to break the kernel apart in a manner that requires

only minimal changes to the kernel code, we develop de-

composition patterns, a collection of principles and mecha-

nisms that allow decomposition of the monolithic kernel code.

Specifically, we support decomposition of typical idioms used

in the kernel code—exported functions, data structures passed

by reference, function pointers, etc. To achieve such backward

compatibility, decomposition patterns define a minimal run-

time layer that hides isolated, share-nothing environment by

synchronizing private copies of data structures, invoking func-

tions across domain boundaries, implementing exchange of

pointers to data structures and functions, handling dispatch

of cross-domain function calls, etc. Further, to make our ap-

proach practical, we develop an interface definition language

(IDL) that generates runtime glue-code code required for de-

composition.

Finally, similar to existing projects [54, 67], we make an

observation that on modern hardware cross-core communica-

tion via the cache coherence protocol is faster then crossing

an isolation boundary on the same CPU. By placing isolated

subsystems on different cores it is possible to reduce isola-

tion costs. While dedicating cores for every isolated driver

is impractical, the ability to run several performance-critical

subsystems, e.g., NVMe block and network device drivers,

with the lowest possible overhead makes sense.

We demonstrate practical isolation of several performance-

critical device drivers in the Linux kernel: software-only net-

work and NVMe block drivers, and a 10Gbps Intel ixgbe

network driver. Our experience with decomposition patterns

shows that majority of the decomposition effort can be done

with no modification to the kernel source. We hope that our

work—general decomposition patterns, interface definition

language, and asynchronous execution primitives—will grad-

ually enable kernels that employ fine-grained isolation as the

first-class abstraction. At the moment, two main limitations of

LXDs are 1) requirement of a dedicated core for each thread

of an isolated driver (Section 5), and 2) manual development

of the IDL interfaces. We expect to relax both of the limita-

tions in our future work.

2 Background and Motivation

The concept of decomposing operating systems for isolation

and security is not new [9,12,15,27,32–34,40–43,66,68,69].

In the past, multiple projects tried to make isolation prac-

tical in both microkernel [9, 27, 41–43, 68] and virtual ma-

chine [12, 15, 33, 66] systems. SawMill was a research effort

performed by IBM aimed at building a decomposed Linux en-

vironment on top of the L4 microkernel [34]. SawMill was an

ambitious effort that outlined many problems of fine-grained

isolation in OS kernels. SawMill relied on a synchronous IPC

mechanism and a simple execution model in which threads

migrated between isolated domains. Unfortunately, the cost of

a synchronous context switch more than doubled in terms of

CPU cycles over the last two decades [26]. Arguably, with ex-

isting hardware mechanisms the choice of a synchronous IPC

is not practical (on our hardware a bare-bone synchronous

call/reply invocation takes over 834 cycles on a 2.6GHz In-

tel machine; a cache-coherent invocation between two cores

of the same die takes only 448-533 cycles, moreover, this

number can be reduced further with batching (Section 5)).

Furthermore, relying on a generic Flick IDL [25], SawMill

required re-implementation of OS subsystem interfaces. In

contrast, LXDs’s IDL is designed with an explicit goal of

backward compatibility with the existing monolithic code,

i.e., we develop mechanisms that allow us to transparently

support decomposition of typical code patterns used in the

kernel, e.g., registration of interfaces as function pointers,

passing data structures by reference, etc.
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Nooks further explored the idea of isolating device drivers

in the Linux kernel [69]. Similar to SawMill, Nooks relied

on the synchronous cross-domain procedure calls that are

prohibitively expensive on modern hardware. Nooks main-

tained and synchronized private copies of kernel objects, how-

ever, the synchronization code had to be developed manually.

Nooks’ successors, Decaf [64] and Microdrivers [32] devel-

oped static analysis techniques to generate glue code directly

from the kernel source. LXDs do not have a static analysis

support at the moment. We, however, argue that IDL is still an

important part of a decomposed architecture—IDL provides a

generic intermediate representation that allows us to generate

glue code for different isolation boundaries, e.g., cross-core

invocations, address-space switches, etc.

OSKit developed a set of decomposed kernel subsys-

tems out of which a full-featured OS kernel could be con-

structed [29]. While successful, OSKit was not a sustainable

effort—decomposition glue code was developed manually,

and required a massive engineering effort in order to pro-

vide compatibility with the interface of Component Object

Model [17]. OSKit quickly became outdated and unsupported.

Rump kernels develop glue code that allows execution of

unmodified subsystems of the NetBSD kernel in a variety of

executable configurations on top of a minimal execution envi-

ronment [48], e.g., as a library operating system re-composed

out of Rump kernel subsystems. Rump’s glue code follows the

shape of the kernel subsystems and hence provides compatibil-

ity with unmodified kernel code that ensures maintainability

of the project. LXDs follow Rump’s design choice of ensur-

ing backward compatibility with unmodified code, but aim

at automating the decomposition effort. Specifically, LXDs

rely on decomposition patterns and IDL to extract unmodified

device drivers from the kernel source and seamlessly enable

their functionality for the monolithic kernel.

User-level device drivers [11, 21, 24, 30, 60] allow execu-

tion of device drivers in isolation. Two general approaches

are used for isolating the driver. First, it is possible to run an

unmodified device driver on top of a device driver execution

environment that provides a backward compatible interface

of the kernel inside an isolated domain [24]. Unfortunately,

development of a kernel-compatible device driver execution

environment requires a large engineering effort. Sometimes,

backward compatibility is sacrificed to simplify development,

but in this case the device driver or a kernel subsystem have

to be re-implemented from scratch [31]. LXDs aim to provide

a general framework for automating development of custom

backward compatible device driver environments. With a pow-

erful IDL, fast communication primitives, and asynchronous

threads, LXDs enable nearly transparent decomposition of

kernel code.

Alternatively, the device driver environment is constructed

from a partial or complete copy of the kernel that can host

the isolated driver on top of a VMM [11, 30, 60] or in-

side a user process [11, 48]. Unfortunately, a virtualized ker-

nel [11, 30, 60] extends the driver execution environment

with a nested copy of multiple software layers, e.g., interrupt

handling, thread scheduling, context-switching, memory man-

agement, etc. These layers introduce overheads of tens of

thousands of cycles on the critical data-path of the isolated

driver, and provide a large attack surface. A library operat-

ing system that provides full or partial compatibility with the

original kernel can be used as an execution environment for

the isolated device driver [48, 62, 70]. Smaller and lighter

compared to the full kernel, library operating systems elimi-

nate performance overheads of the full kernel. LXDs provide

ability to run an unmodified device driver in a very mini-

mal kernel environment hence achieving lean data path of a

custom-built device driver execution environment.

3 LXDs Architecture

LXDs execute as a collection of isolated domains running

side by side with the monolithic kernel (Figure 1). This de-

sign allows us to enable isolation incrementally, i.e., develop

isolated device drivers one at a time, and seamlessly enable

their functionality in the monolithic kernel.

Each LXD is developed as a loadable kernel module. An

unmodified source of the isolated driver is linked against the

two components that provide a backward compatible execu-

tion environment for the driver: 1) the glue code generated by

the IDL compiler Figure 1, 6 ), and 2) a minimal library, li-

bLXD (Figure 1, 7 ), that provides common utility functions

normally available to the driver in a monolithic kernel, e.g.,

memory allocators, synchronization primitives, routines like

memcpy(), etc.

LXDs rely on hardware-assisted virtualization (VT-x) for

isolation. The choice of the hardware isolation mechanism

is orthogonal to the LXDs architecture. VT-x, however, im-

plements convenient interface for direct assignment of PCIe

devices to isolated domains, and direct interrupt delivery (sup-

port for which we envision in the future). On the critical path

LXDs rely on asynchronous cross-core communication prim-

itives, and hence the cost of transitions to and from the VT-x

domain (which is higher than a regular context switch) is

acceptable.

LXDs are created and managed by a small microkernel that

runs inside the commodity operating system kernel (Figure 1,

8 ). The LXD microkernel follows design of the L4 microker-

nel family [26]: it is centered around a pure capability-based

synchronous IPC that explicitly controls authority of each

isolated subsystem. The synchronous IPC is used for request-

ing microkernel resources, and exchange of capabilities, e.g.,

establishing regions of shared memory that are then used for

fast asynchronous channels. Each LXD starts with at least

one synchronous IPC channel that allows the LXD to gain

more capabilities, exchange capabilities to its memory pages

with the non-isolated kernel, and establish fast asynchronous

communication channels.

To provide an interface of the isolated driver inside the
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structure on the caller side to the callee (i.e., all fields of the

projection above have the implicit [in] attribute). The data

structure is deallocated when the dealloc qualifier is used with

the projection.

Remote object references In most cases isolated subsys-

tems refer to the same data structure multiple times. For ex-

ample, the net_device data structure is first registered with

the register_netdev() function, then used in a number of func-

tions that attach, turn on, and eventually unregister the device.

LXDs provide a mechanism of remote references to refer to

a specific object across domain boundaries. Similar to a ca-

pability in the LXD microkernel, each remote reference is a

number that is resolved through a fast hash that is private to

each thread of execution. References are transparent to the

code, the IDL generates all necessary code to pair every local

object with a reference that is used to lookup a corresponding

shadow copy in another domain.

Function pointers Many parts of the kernel rely on the con-

cept of an interface that allows dynamic registration of a

specific subsystem implementation. In a native language like

C an interface is implemented as a data structure with a col-

lection of function pointers that are defined by each subsys-

tem that provides a concrete interface implementation. In

our example, net_device_ops is a data structure that defines a

collection of function pointers implemented by the network

device. We implement support for export of function pointers

that cross boundaries of isolated domains. The following code

provides a definition of the projection for the net_device_ops

data structure.

projection <struct net_device_ops> net_device_ops {

rpc [alloc] int (∗ndo_open)(projection netdev_empty [bind] ∗dev);

rpc [alloc] int (∗ndo_stop)(projection netdev_empty [bind] ∗dev);

rpc [alloc] int (∗ndo_start_xmit)(projection sk_buff ∗skb,

projection net_device [bind] ∗dev);

...

}

For every function pointer, the IDL generates caller and callee

stubs that behave like normal function pointers and hide de-

tails of cross-domain communication. To implement cross-

domain function pointers while providing unmodified func-

tion signatures, we implement a concept of hidden arguments.

For each function pointer, the IDL dynamically generates an

executable trampoline in the caller’s address space. The caller

invokes this trampoline like any other function, however, the

trampoline resolves additional hidden arguments as an offset

from its own address. The hidden arguments describe which

channel to use and passes this information to the cross-domain

stub generated by the IDL compiler. A remote reference to a

function pointer on the callee side allows the caller to resolve

a specific instance of a function pointer.

Implementation We implement the IDL compiler as a

source-to-source translator from the LXD IDL to C. To build

the compiler, we rely on the formalism of parsing expression

1 DO_FINISH({

2 while (skb) {

3 struct sk_buff ∗next = skb−>next;

4 ASYNC({

5 ...

6 rc = ndo_start_xmit(skb, dev);

7 ...

8 });

9 skb = next;

10 }

11 });

Listing 1: Asynchronous threads.

grammars (PEG). This choice allows us to design a modular

grammar that is easy to extend with new IDL primitives. We

use Vembyr PEG parser generator [63] to automate develop-

ment of a compiler. Vembyr provides a convenient extension

interface that allows us to construct an abstract syntax tree

(AST) as a set of C++ classes. We then perform a compilation

step as a series of passes over the AST, e.g., module import,

derivation of directional attributes, etc.. The final pass con-

verts the AST into a concrete syntax tree (CST) that we use

to print out the C code.

3.2 Asynchronous Execution Runtime

Traditionally, asynchronous communication requires explicit

message passing [5, 42]. Programming of asynchronous

message-passing systems, however, is challenging as it re-

quires manual management (saving and restoring) of compu-

tation as execution gets blocked on remote invocations. In

general, message-based systems work well as long as they

are limited to a simple run-to-completion loop, but become

nearly impossible to program if multiple blocking invocations

are required on the message processing path [2, 52]. Further,

in a message-passing environment, re-use of existing kernel

code becomes hard or even impossible.

With LXDs we aim to satisfy two contradicting

goals: 1) utilize asynchrony for cross-domain invocations,

and 2) provide backward compatibility with existing ker-

nel code, i.e., avoid re-implementation of the system in a

message-passing style. To meet these goals, we implement a

lightweight runtime that hides details of asynchronous com-

munication behind an interface of asynchronous threads.

The core of the LXDs asynchronous runtime is built around

two primitives: ASYNC() and DO_FINISH(). In Listing 1 the

ASYNC() macro creates a new lightweight thread for execut-

ing a block of code (lines 4–8) asynchronously. Our imple-

mentation is based on GCC macros as it allows us to avoid

modifications to the compiler and therefore provides compati-

bility with the existing kernel toolchain. When ndo_start_xmit()

blocks on sending a message to the isolated driver (line 6),

the asynchronous runtime continues execution from the next

line after the asynchronous block (line 9) and starts the next

iteration of the loop creating the new asynchronous thread.
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Instead of blocking on the first ndo_start_xmit() cross-domain

invocation, we dispatch multiple asynchronous invocations,

hence submitting multiple network packets to the driver in a

pipelined manner.

Internally, ASYNC() creates a minimal thread of execution

by allocating a new stack and switching to it for execution

of the code inside of the asynchronous block. ASYNC() cre-

ates a continuation, i.e., it saves the point of execution that

follows the asynchronous block, which allows the runtime to

resume execution when the thread either blocks or finishes.

We save the state of the thread, i.e., its callee saved regis-

ters, on the stack, and therefore, can represent continuation

as a tuple {instruction pointer, stack pointer}. The continuation is

added to the run-queue that holds all asynchronous threads

that are created in the context of the current kernel thread.

When asynchronous thread blocks waiting on a reply from

an isolated domain, it invokes the yield() function that again

saves the state of the thread by creating another continuation

that is added to the run-queue. The yield() function picks the

next continuation from the run-queue and switches to it.

The DO_FINISH() macro specifies the scope in which

all asynchronous threads must complete. When execution

reaches the end of the DO_FINISH() block, the runtime checks

if any of unfinished asynchronous threads are still on the

run-queue. If yes, the runtime creates a continuation for the

current thread knowing that it has to finish the DO_FINISH()

block later, and switches to a thread from the run-queue.

Integration with the messaging system Every time a re-

mote invocation blocks waiting on a reply, the asynchronous

runtime switches to the new thread. The runtime system

checks the reply message ring for incoming messages and

whether any of them can unblock one of the blocked asyn-

chronous threads. We implement a lightweight data structure

that allows us to resolve response identifiers into pointers

to asynchronous threads waiting on the run-queue. If the re-

sponse channel is empty, the runtime system tries to return to

the main thread to dispatch more asynchronous threads, but if

the main thread reached the end of the DO_FINISH() block it

picks one of the existing threads from the run-queue.

Nested invocations In most cases a cross-domain invocation

triggers one or more nested remote invocations back into

the caller domain, be it an LXD or a non-isolated kernel.

For example, the ndo_start_xmit() triggers invocation of the

consume_skb() function that releases the skb after it is sent.

We need to process nested invocations in the caller domain.

To avoid using an extra thread to dispatch remote invocations,

we process nested invocations in the context of the caller

thread. We embed a dispatch loop, the optimization we call

“sender’s dispatch loop”, inside the message receive function

thc_ipc_poll_recv() in such a way that it listens and processes

incoming invocations from the callee.

Implementation ASYNC() and DO_FINISH() leverage func-

tionality of GCC macros that allow us to declare the block

of code as a nested function that can be executed on a new

stack. We base implementation of the threading runtime on

the eager version of AC [39] (in LXDs cross-domain invo-

cations always block, therefore, eager creation of the stack

for each asynchronous thread is justified). Besides changing

AC to work inside the Linux kernel and integrating it with the

LXDs messaging primitives, we employ several aggressive

optimizations. To minimize the number of thread switches,

we introduce an idea of a “direct” continuation, the continua-

tion that is known to follow the current context of execution,

e.g., the instruction following the ASYNC() block. We also

defer deallocation of stacks. Normally, the stack cannot be

deallocated from the context of the thread that is using it. AC

switches into the context of the “idle” scheduler thread and

deallocates the stack from there. This, however, introduces an

extra context switch. Instead, we maintain the queue of stacks

pending de-allocation and deallocate them all at once right

when the execution exits the DO_FINISH() block.

3.3 Fast Cross-Core Messaging

Trying to reduce overheads of crossing the isolation bound-

ary, LXDs schedule isolated subsystems on separate CPU

cores and use a fast cross-core communication mechanism to

send “call” and “reply” invocations between the cores. The

performance of cross-core invocations is dominated by the la-

tency of cache coherence protocol, which synchronizes cache

lines between cores (a single cache-line transaction incurs a

latency of 100-400 cycles [22, 56, 57]). In order to achieve

the lowest possible communication overhead, similar to prior

projects [5,6,47], we minimize the number of cache coherence

transactions. In LXDs, each channel consists of two rings: one

for outgoing “call” messages and one for incoming “replies”.

We configure each message to be the size of a single cache

line (64 bytes on our hardware). Similar to FastForward [36],

we avoid shared producer and consumer pointers, as they add

extra transactions for each message. Instead, we utilize an

explicit state flag that signals whether the ring slot is free.

4 Decomposition Case-Studies

To evaluate the generality of LXDs abstractions, we develop

several isolated device drivers in the Linux kernel.

4.1 Network Device Drivers

We develop isolated versions of two network drivers: 1) a

software-only dummy network driver that emulates an in-

finitely fast network adapter, and 2) Intel 82599 10Gbps Eth-

ernet driver (ixgbe). The network layer of the Linux kernel

has one of the tightest performance budgets among all ker-

nel subsystems. Further, the dummy is not connected to a real

network interface, and hence allows us to stress overheads of

isolation without any artificial limits of existing NICs.

Decomposed network drivers To isolate the dummy and

ixgbe network drivers, we develop IDL specifications of the

network driver interface. The IDL specification is 64 lines of
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code for the dummy, and 153 lines for the ixgbe driver (110

lines for the network and 43 for the PCIe bus interfaces). Each

network device driver registers with the kernel by invoking a

kernel function and passing a collection of function pointers

that implement an interface of a specific driver. Since ixgbe

manages a real PCIe device, it registers with the PCIe bus

driver that enumerates all PCIe devices on the bus and con-

nects them to matching device drivers. Therefore, we develop

an IDL specification for the PCI bus interface.

In contrast to block device drivers that implement a zero-

copy path for block requests, the network stack copies each

packet from a user process into a freshly allocated kernel

buffer. To ensure a zero-copy transfer of the packet from the

kernel to the LXD, we allocate a region of memory shared

between the non-isolated kernel and the LXD of the network

driver. The kernel allocates memory for the skb payload us-

ing the alloc_skb() function. We modify it to allocate payload

data from this shared region. Linux does not provide a simple

mechanism to configure one of its memory allocators to run

on a specified region of memory. We, therefore, develop a

lock-free allocator that uses a dedicated memory region to

allocate blocks of a fixed size. To enable device access to

the region of shared memory where packet payload is allo-

cated, we extend the libLXD and the LXD microkernel with

support for the IOMMU interface. We configure the IOMMU

to enable access to the packet payload region that is shared

between the kernel and the LXD.

The ixgbe device driver uses system timers for several

control plane operations. To provide timers inside LXDs, we

rely on the timer infrastructure of the non-isolated kernel.

Much like any other function pointer, we register the timer

callback function pointer with the kernel. The callback caller

stub sends an IPC to the isolated driver to trigger the actual

callback inside the LXD. Finally, in the native driver, the

NAPI polling function is invoked in the context of the softirq

thread. We implement softirq threads as asynchronous threads

dispatched from the LXD’s dispatch loop.

The isolated dummy driver requires two cross-domain calls

on the packet transmission path. The first call is invoked by

the non-isolated kernel to submit the packet to the driver

(ndo_start_xmit()), and the second is called by the driver after

the packet was processed by the device and is ready to be

released (consume_skb()). To reduce overheads of isolation,

we introduce the “half-crossing” optimization. Specifically,

for the functions that do not return a value, e.g., consume_skb()

that releases the network packet to the kernel, we send the

“call” message across the isolation boundary, but do not wait

for the arrival of the reply message.

4.2 Multi-Queue Block Device Drivers

We implement a decomposed version of the nullblk block

driver [4]. The nullblk driver is not connected to a real NVMe

device, but instead emulates the behavior of the fastest possi-

ble block device in software.

Linux multi-queue block layer Linux implements a multi-

queue (MQ) block layer [7] to support low-latency, high-

throughput PCIe-attached non-volatile memory (NVMe)

block devices. On par with network adapters, today NVMe

is one of the fastest I/O subsystems in the kernel. To fully

benefit from the asynchronous multi-queue layer, user-level

processes rely on the new asynchronous block I/O interface

that allows applications to submit batches of I/O requests to

the kernel and poll for completion later. In the case of di-

rect device access, the kernel performs all request processing

starting from the system call to leaving the request ready for

the DMA in the context of the same process that issued the

io_submit() system call. The kernel returns to the process right

after leaving request in the DMA ring buffers. Later the pro-

cess polls for completion of the request by either entering the

kernel again, or by monitoring a user-mapped page where the

kernel advertises completed requests. Being allocated inside

a user-level page, the pointer to the request is passed to the

kernel, the kernel “pins” the page ensuring that it does not get

swapped out while the request is in-flight. For each request

the device driver adds the page containing the request to the

IOMMU of the device, hence permitting the direct access to

the request payload.

Decomposed block driver Similar to network drivers, we

develop IDL specifications of the block driver interface, which

consists of 68 lines of IDL code. The isolated nullblk driver re-

quires three cross-domain calls on the I/O path. The first call

is invoked by the non-isolated kernel to pass a block request

from the block layer to the driver. The driver itself invokes

two functions of the non-isolated kernel: blk_mq_start_request()

and blk_mq_end_request(). The blk_mq_start_request() function

passes the pointer to the request back to the block layer to

inform it that request processing has started, and the I/O is

ready to be issued to the device. The block layer now asso-

ciates a timer with this particular request to ensure that if

the completion for that request does not arrive in time, it can

either abort the I/O operation or try to enqueue the request

again. The blk_mq_end_request() allows the driver to inform

the block layer that the request is completed by the device,

and is ready to go up the block layer back to the user process.

We utilize ASYNC() and DO_FINISH() to implement an asyn-

chronous loop on the submission path. A batch of requests is

submitted by the application, hence we dispatch them to the

nullblk LXD asynchronously. We provide a detailed analysis

of isolation overheads in Section 5.6.

5 Evaluation

We conduct all experiments in the openly-available CloudLab

network testbed [65].3 We utilize CloudLab d820 servers with

four 2.2 GHz 8-Core E5-4620 processors and 128 GB RAM.

All machines run 64-bit Ubuntu 18.04 Linux with the kernel

version 4.8.4. In all experiments we disable hyper-threading,

3LXDs are available at ❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴♠❛rs✲r❡s❡❛r❝❤✴

❧①❞s.
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Operation Cycles (Cycles per request)

Context switch 29-41

1 non-blocking ASYNC() 46

1 blocking ASYNC() 124

4 blocking ASYNC()s 374 (93.5)

Table 1: Overhead of asynchronous threads.

Operation Cycles

seL4 same-core d820 (without PCIDs) 1005

seL4 same-core c220g2 (with PCIDs) 834

LXDs cross-core r320 (non-NUMA) 448

LXDs cross-core d820 (NUMA) 533

Table 2: Intra-core vs cross-core IPC.

turbo boost, and frequency scaling to reduce the variance in

benchmarking.

5.1 Asynchronous Runtime

LXDs rely on the asynchronous runtime to hide the overheads

of cross-domain invocations. To evaluate the effectiveness of

this design choice, we conduct two sets of experiments that

measure and compare overheads of asynchronous threads,

and synchronous invocations.

Overhead of asynchronous threads We conduct four exper-

iments that measure overheads of the asynchronous runtime

(Table 1). In all tests we run 10M iterations and report an

average across five runs. The first test measures the overhead

of creating and tearing down a minimal asynchronous block

of code that just increments an integer, but does not block.

Each iteration takes 46 cycles which includes allocating and

deallocating a stack for the new thread, and two stack switches

to start and end execution of the thread. In the second test we

measure the overhead of switching between a pair of asyn-

chronous threads that takes 29 cycles and uses a sequence of

20 CPU instructions. Out of 20 instructions 16 are memory

accesses that touch the first level cache and take two cycles

each [28] (six instructions are required to save and restore

callee saved registers, and two save and restore instruction

pointer and stack registers). If, however, the context switch

touches additional metadata, e.g., adds the thread to the run-

queue, the overhead of the context switch grows to 41 cycles

due to additional memory accesses.

The third and fourth tests measure the overhead of exe-

cuting one and four blocking ASYNC() code blocks, i.e., each

thread executes yield() similar to the IPC path. The overhead

of creating one blocking asynchronous block (third test in

Table 1) is 124 cycles, which consist of the cost to create

and tear down a non-blocking asynchronous thread (46 cy-

cles) and three context switches required to block and un-

block the thread, and switch back to the main thread when the

DO_FINISH() block is reached. If, however, we execute four

asynchronous blocks in a loop the total overhead comes to 374

cycles or 93.5 cycles per one asynchronous block. Overall, we

Batch size Cycles (cycles per msg)

Manual ASYNC()

1 533 568

4 876 (219) 1111 (277)

8 1262 (157) 2096 (262)

Table 3: Benefits of manual and ASYNC() batching.

conclude that asynchronous threads are fast, and come close

to the speed of manual management of pending invocations

in a message-passing system.

5.2 Same-core vs cross-core IPC

Same-core IPC To understand the benefits of cache-coherent

cross-core invocations over traditional same-core address-

space switches, we compare LXDs’ cross-core channels with

the synchronous IPC mechanism implemented by the seL4

microkernel [26]. We choose seL4 as it implements the fastest

synchronous IPC across several modern microkernels [55]. As

d820 servers do not provide support for tagged TLBs (PCIDs)

that improve IPC performance by avoiding an expensive TLB

flush on the IPC path, in addition to the d820 machines we

report results for the same IPC tests on an Intel E5-2660 v3 10-

core Haswell 2.6GHz machine (CloudLab c220g2 server) that

implements support for tagged TLBs. To defend against Melt-

down attacks, seL4 provides support for a page-table-based

kernel isolation mechanism similar to KPTI [37]. However,

this mechanism negatively affects IPC performance due to

an additional reload of the page table root pointer. Since re-

cent Intel CPUs address Meltdown attacks in hardware, we

configure seL4 without these mitigations. On d820 machines

without PCIDs support, seL4 achieves the median IPC latency

of 1005 cycles (Table 2). On the c220g2 servers with tagged

TLBs enabled the IPC latency drops to 834 cycles (Table 2).

Cross-core IPC To measure the overhead of cross-core

cache-coherent invocations, we conduct a minimal call/re-

ply test in which a client thread repeatedly invokes a func-

tion of a server via an LXD’s asynchronous communication

channel. Client and server are running on two cores of the

same CPU socket. Since multi-socket NUMA machines in-

cur higher cache-coherence overheads and thus have slower

cross-domain invocations, in our experiments we a NUMA

and a non-NUMA machine with a similar CPU: a four socket

d820 NUMA server and a single-socket non-NUMA r320

CloudLab server configured with one 2.1 GHz 8-core Xeon

E5-2450 CPU. In all experiments we run 100M call/reply

invocations and report an average across five runs (Table 2).

On a non-NUMA r320 machine, cross-core IPC takes 448

cycles. On a NUMA d820 machine, this number increases to

533 cycles.

Two additional observations are important. First, communi-

cation between hardware threads of the same CPU core takes

less time than communication between cores (we measure the

overhead of cross-core invocations to be only 105 cycles on

the non-NUMA r320 machine and 133 cycles on the NUMA
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d820). Typically, however, a single LXD serves requests from

multiple cores of the monolithic kernel, and hence only a

single core can benefit from proximity to the logical core.

Second, communication outside of the NUMA node incurs

high overheads due to crossing inter-socket links. On the d820

server, a cross-socket call/reply invocation takes 1988 cycles

over one inter-socket hop, which is higher than overhead of a

synchronous same-core IPC. Note that on a batch of 4 and 8

this number drops to 900 and 535 cycles per message respec-

tively. We anticipate that each NUMA node will run a local

LXD thread and hence the crossings of NUMA nodes will

be rare (this design makes sense as high-throughput isolated

subsystems, e.g., network and NVMe drivers, are CPU-bound

and anyway require multiple LXD threads to keep up with

invocations from multiple kernel threads).

Finally, we make an observation that compared to over-

heads of synchronous IPC invocations (both on the same

core and cross-core) the overheads of asynchronous threads

is relatively small (93.5 cycles per-request in a batch of four

(Table 1)). Therefore, the use of asynchronous threads for

batching and pipelining of multiple cross-domain invocations

is justified.

5.3 Message Batching

To evaluate the benefits of aggregating multiple cross-core

invocations in a batch, we conduct an experiment that per-

forms call/reply invocations in batches of messages ranging

from 1 to 8. On a batch of 4 messages a call/reply invocation

takes only 876 cycles, or 219 cycles per invocation on a d820

NUMA machine (Table 3). On a batch of 8 messages the

overhead per one call/reply invocation drops to 157 cycles per

message. For a batch of messages, the cross-core IPC sends

call/reply invocations through independent cache lines. The

CPU starts sending the next message right after issuing loads

and stores to the hardware load/store queue, but without wait-

ing for completion of the cache-coherence requests effectively

pipelining multiple outstanding cache coherence requests.

Composable batching with ASYNC() Finally, we analyze

how cross-core invocations are affected if the batches of mes-

sages are created by blocking asynchronous threads instead

of the manual, message-passing style batching we analyzed

above. To evaluate overheads of asynchronous threads, we de-

sign an IPC test that performs a series of cross-core function

invocations from inside an ASYNC() block (Table 3). We run

a loop of length 1, 4, and 8. The body of the loop is an asyn-

chronous code block that invokes a function on another core.

Instead of waiting for the reply, each asynchronous thread

yields and continues to the next iteration of the loop that dis-

patches the new asynchronous thread. For the loop of length

1, 4, and 8, compared to the manual batch, ASYNC() introduces

overhead ranging from 35 cycles on a batch of one to 105

cycles per message on a batch of 8 (Table 3).
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Figure 3: Performance of the dummy driver

5.4 Dummy Device Driver

We utilize the dummy driver as a platform for several bench-

marks that highlight overheads of isolation in the context of a

“fast” device driver (dummy is a good, representative example

of such device driver as it serves an infinitely fast device and

is accessed through a well-optimized I/O submission path

of the kernel network stack). In all experiments we use the

iperf2 benchmark that measures the transmit and receive band-

width for different payload sizes, and run the tests on d820

servers (Figure 3). We configure the isolated dummy driver

with a varying number of cores ranging from one to four in

such a manner that one LXD thread runs on each socket of

the 4-socket d820 system. Specifically, on a 32-core system,

the isolated dummy can support up to 27 iperf threads (i.e.,

four cores of the system are dedicated to LXD threads, and

one core is occupied by the kLXD thread servicing control

plane invocations from the LXD). We assign the first six iperf

threads to the first socket (one core of the CPU socket is occu-

pied by the LXD thread and one by the kLXD thread), then we

assign the next seven iperf threads (7-13) to the next socket,

and so on (Figure 3). We report the total number of device

driver I/O requests per-second (IOPS) across all threads (we

report an average across five runs on the maximum transmis-

sion unit (MTU) size packets).

In our first experiment we change dummy to perform only

one crossing between the kernel and the driver for sending

each packet (❞✉♠♠②✲✶, Figure 3). This synthetic configuration

allows us to analyze overheads of isolation in the ideal sce-

nario of a device driver that requires only one crossing on the

device I/O path. With one application thread the non-isolated

driver achieves 956K IOPS (i.e., on average, a well-optimized

network send path takes only 2299 cycles to submit an MTU-

sized packet from the user process to the network interface).

The isolated driver achieves 730K IOPS (76% of the non-

isolated performance), and on average requires 3009 cycles to

submit one packet. Of course, the isolated driver utilizes one

extra core for running the LXD. Isolation adds an overhead of
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710 cycles per-packet, which includes the overhead of the IPC

and processing of the packet by the driver (in this experiment,

LXDs do not benefit from any asynchrony; all packets are

submitted synchronously). On 27 threads the isolated driver

achieves 70% of the performance of the non-isolated driver.

Compared to the configuration with one application thread,

the slight drop in performance is due to the fact that each of

four LXDs service up to seven application threads which adds

overhead to the LXD’s dispatch processing loop.

In practice, the dummy driver requires two domain cross-

ings for submitting each packet (Section 4). We evaluate how

performance of isolated drivers degrades with the number of

crossings by running a version of dummy that performs two

full cross-domain invocations (❞✉♠♠②✲✷, Figure 3). On one

thread, two crossings add overhead of 1794 cycles per packet.

The “half-crossing” optimization, however, reduces the over-

head of two crossings from 1794 cycles per-packet to only

814 cycles (❞✉♠♠②✲✶✳✺, Figure 3).

Asynchronous threads To evaluate the impact of asyn-

chronous communication, we perform the same iperf2 test

with a packet size of 4096 bytes. When the packet size ex-

ceeds MTU, the kernel fragments each packet into MTU-size

chunks suitable for transmission and submits each chunk to

the driver individually. In general, multiple domain cross-

ings caused by fragmentation negatively affect performance

of the isolated driver. We compare three configurations: a

non-isolated dummy driver (♥❛t✐✈❡, Figure 3), a synchronous

version of LXDs (s②♥❝✲✹✲❧❝❞s) and asynchronous version

that leverages ASYNC() to invoke the driver in a parallel loop

(❛s②♥❝✲✹✲❧❝❞s). Configured with one iperf thread, a non-

isolated driver achieves 534K IOPS, i.e., on average it requires

4114 cycles to submit a 4096 byte packet split in three frag-

ments. Performance of the synchronous version of the isolated

driver is heavily penalized by the inability to overlap com-

munication, i.e., waiting for LXD replies, and processing of

further requests. The synchronous version achieves only 236K

IOPS (44% of non-isolated performance). The asynchronous

isolated driver is able to benefit from pipelining of three frag-

mented packets with asynchronous threads (it achieves 341K

IOPS or 63.8% of non-isolated performance). Note, that as

the number of application threads grows, the benefits of asyn-

chronous threads gradually disappear. With 27 iperf threads

both synchronous and asynchronous configurations achieve

similar performance (36% and 37% of the native driver re-

spectively). As the number of application threads increases,

each core of the isolated driver that processes requests from

up to seven iperf threads becomes heavily utilized. Each LXD

thread dispatches kernel invocations in a round-robin man-

ner from a set of cross-core communication channels. If all

channels are active, the performance of each iperf thread is

dominated by the time spent waiting for its turn to be pro-

cessed by the LXD. On a batch of only three messages, asyn-

chronous threads do not provide sufficient benefits to tolerate

this latency.
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Figure 4: Ixgbe Tx and Rx bandwidth.

5.5 Ixgbe Device Driver

To measure performance of the isolated ixgbe driver, we con-

figure an iperf2 test with a varying number of iperf threads

ranging from one to six (Figure 4). On our system, a small

number of application threads saturates a 10Gbps network

adapter. Configured with one iperf thread, on the MTU size

packet the isolated ixgbe is 12% faster compared to the iso-

lated system on the network transmit path, although at the

cost of using an extra core. This advantage disappears as the

LXD becomes busy handling more than one iperf thread. Nev-

ertheless, from three to seven threads, the isolated driver stays

within 6-13% of the performance of the native device driver

which saturates the network interface with three and more

application threads.

On the receive path, the isolated driver is 1% slower for

one application thread. Two factors attribute to performance

of the isolated driver: 1) it benefits from an additional core,

and 2) it uses asynchronous threads for NAPI polling instead

of native threads used by the Linux kernel for handling IRQs.

Asynchronous threads provide a faster context switch com-

pared to the native Linux kernel threads. Similar to transmit

path, this advantage disappears with larger number of applica-

tion threads. From two to six threads the isolated driver stays

within 12-18% of the performance of the native driver.

To measure the end-to-end latency, we rely on the UDP

request-response test implemented by the netperf benchmark-

ing tool. The ❯❉P❴❘❘ measures the number of round-trip

request-response transactions per second, i.e., the client sends

a 64 byte UDP packet and waits for the response from the

server. The native driver achieves 26688 transactions per sec-

ond (which equals the round-trip latency of 40µs), the isolated

driver is 7% (2.6µs) faster with 24975 transactions per sec-

ond (round-trip latency of 37.4µs). Again the isolated driver

benefits from a faster receive path due to low-overhead con-

text switch of asynchronous threads. As the network is lightly

loaded during the latency test even with six application threads

the isolated driver remains 3.4µs faster achieving the latency
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of 43.4µs versus 46.8µs achieved by the native driver.

5.6 Multi-Queue Block Device Driver

In our block device experiments, we use fio to generate I/O

requests. To set an optimal baseline for our evaluation, we

chose the configuration parameters that provide the lowest

latency path to the driver, so that overheads of isolation are

emphasized the most. We use fio’s libaio engine to overlap I/O

submissions, and bypass the page cache by setting direct I/O

flag to ensure raw device performance. Similar to dummy, in

isolated configuration, the nullblk LXD fully utilizes one extra

core on every CPU socket. We run the same configurations

as for dummy, e.g., one LXD thread on each NUMA node.

We placing the first six fio threads on the first NUMA node,

next seven fio threads on the second NUMA node, and so on,

up until 27 fio threads. We vary the number of fio threads

from 1 to 27 and report results for two block sizes—512 bytes

and 1MB—which represent two extreme points: a very small

and a very large data block. For each block size, we submit a

set of requests at once ranging the number of requests from

1 to 16 and then poll for the same number of completions.

Since the nullblk driver does not interact with an actual storage

medium writes perform as fast as reads, hence we utilize read

I/O operations in all experiments.

The native driver achieves 295K IOPS for the packet size

of 512 bytes and the queue of one (Figure 5). In other words,

a single request takes about 7457 cycles to complete. The

isolated driver achieves 235K IOPS (or 79% of non-isolated

performance). The isolation incurs an overhead of 1904 cycles

due to three domain crossings on the critical path. For a queue

of 16 requests, the isolated driver benefits from asynchronous

threads which allow it to stay within 4% of the performance

of the native driver for as long as it stays in one NUMA node

(from 1 to 6 fio threads). Both native and isolated drivers suffer

from NUMA effects due to the fact that Linux block layer

collects performance statistics for every device partition. The

blk_mq_end_request() function acquires a per-partition lock

and updates several global counters. The native driver faces

performance drops when it spills outside of a NUMA node

at 9, 17, and 25 fio threads (Figure 5). The isolated driver

experiences similar drops at 7, 14, and 21 fio threads. On

the block size of 1M, inside one NUMA node the isolated

driver stays within 10% of the performance of the native

driver for both queues of one and 16 requests. Outside of

one NUMA node the performance of both native and isolated

drivers suffers from NUMA effects. We speculate that NUMA

degradation can be fixed by changing the kernel to use per-

core performance counters [10].

6 Conclusions

LXDs provide general abstractions and mechanisms for iso-

lating device drivers in a full-featured operating system ker-

nel. By employing several design choices—relying on an

asynchronous execution runtime for hiding latency of cross-
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Figure 5: Performance of the nullblk driver

domain invocations, developing general decomposition pat-

terns, and relying on cross-core invocations—we demonstrate

the ability to isolate kernel subsystems with tightest perfor-

mance budgets. We hope that our work will gradually enable

kernels to employ practical isolation of most device drivers

and other kernel subsystems that today account for the major-

ity of the kernel code.
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Mondrix: Memory isolation for Linux using Mondrian

memory protection. In ACM SIGOPS Operating Sys-

tems Review, volume 39, pages 31–44. ACM, 2005.

[76] Jonathan Woodruff, Robert NM Watson, David Chisnall,

Simon W Moore, Jonathan Anderson, Brooks Davis,

Ben Laurie, Peter G Neumann, Robert Norton, and

Michael Roe. The CHERI capability model: Revisiting

RISC in an age of risk. In ACM/IEEE International

Symposium on Computer Architecture (ISCA), pages

457–468. IEEE, 2014.

[77] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui

Gong, and Wei Zou. FUZE: Towards facilitating ex-

ploit generation for kernel use-after-free vulnerabilities.

In Usenix Security Symposium, 2018.

284    2019 USENIX Annual Technical Conference USENIX Association


	Introduction
	Background and Motivation
	LXDs Architecture
	Interface Definition Language
	Asynchronous Execution Runtime
	Fast Cross-Core Messaging

	Decomposition Case-Studies
	Network Device Drivers
	Multi-Queue Block Device Drivers

	Evaluation
	Asynchronous Runtime
	Same-core vs cross-core IPC
	Message Batching
	Dummy Device Driver
	Ixgbe Device Driver
	Multi-Queue Block Device Driver

	Conclusions
	Acknowledgments

