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Abstract—Fast-frequency control strategies have been pro-
posed in the literature to maintain inertial response of electric
generation and help with the frequency regulation of the system.
However, it is challenging to deploy such strategies when the
inertia constant of the system is unknown and time-varying.
In this paper, we present a data-driven system identification
approach for an energy storage system (ESS) operator to identify
the inertial response of the system (and consequently the inertia
constant). The method is first tested and validated with a
simulated genset model using small changes in the system load as
the excitation signal and measuring the corresponding change in
frequency. The validated method is then used to experimentally
identify the inertia constant of a genset. The inertia constant
of the simulated genset model was estimated with an error of
less than 5% which provides a reasonable estimate for the ESS
operator to properly tune the parameters of a fast-frequency
controller.

Index Terms—Energy storage systems, fast-frequency control,
inertia, system identification, virtual inertia.

I. INTRODUCTION

As the cost of renewable energy sources (RESs) competes
with that of conventional generation, the future energy de-
mand will be increasingly delivered by RES interfaced with
power electronic converters. Converter-based generation does
not typically contribute to the inertial response of a power
system; as conventional rotational generator-based systems
are displaced, the inertial response of the system is also
displaced. The inertial response of power system also varies
through time due to the influx of stochastic converter-based
energy sources. This makes the power system susceptible to
large frequency excursions, compromising frequency stability
and overall system reliability as large frequency excursions
may ultimately lead to system failure. Fast-frequency control
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strategies using energy storage systems (ESSs) have been
proposed in the literature to emulate this lost inertia and
maintain system frequency [1].

The inertial response of a power system is due to the release
or absorption of the stored kinetic energy in large rotational
generators during power imbalances. The inertia constant (H)
is traditionally used to quantify this inertial response. A typical
approach to estimate the overall inertia of a power system is
based on the center of frequency method [2]. In this approach,
the total inertia of a power system is estimated based only
on the inertia constant of individual rotational generators. As
these rotational generators are displaced by converter-based
generation and ESSs, such an approach no longer represents
the inertia constant of a power system given the different
system dynamics. Exacerbating the problem, some converter-
based generation are embedded with inertia emulation algo-
rithms in the form of virtual inertia or fast-frequency support,
contributing to the overall effective inertia of the system [3].
In addition, there are myriad loads that exhibit voltage and/or
frequency dependency whose inertial response also needs to
be considered. Thus there is a need to design effective inertial
estimation techniques of a power system that does not rely
on the conventional definition. Situational awareness regarding
the effective inertia allows the system operator to design proper
controllers to provide fast-frequency response and thus limit
wide frequency variations. Similarly, it also allows system
operators to procure and dispatch its resources effectively.

In [4], the inertia constant of a power system is estimated
by solving the swing equation based on frequency transient
measurements. A polynomial approximation with respect to
time is applied to the transient frequency measurements to
isolate the oscillations and noise in the measurement. The
damping of the system has been neglected in this approach
and, furthermore, these techniques are known to be susceptible
to the identification of the exact time of frequency event onset
and the order of the polynomial approximation [5]. System
identification approaches using ambient frequency measure-
ments have also been developed [6]. An online technique using
phasor measurement unit (PMU) frequency measurements was
proposed in [7]. The proposed method also uses the swing
equation as the basis to determine the inertia constant, but
instead relies on measurements of active power deviations
and frequency from PMUs. The dependence of the method on
frequency events however makes it unsuitable for tuning the
parameters of the fast-frequency controller. In [8], an online
identification of the inertial response of a system is performed



using a system identification approach on PMU recordings.

In this paper, we propose to use a data-driven system iden-
tification technique to estimate the inertial response, and thus
the effective inertia constant, of the system. The power system
under study is probed through small active power changes
through an ESS that does not impact the operational stability
of the system. Using the measured frequency and power
measurements during the perturbations, a transfer function-
based model is identified and the effective inertia constant is
estimated. Results on a simulated genset model with a known
inertia constant are first presented to validate the approach,
followed by the estimation of effective inertia constant of a
genset whose inertia constant is unknown. With the presented
method, the ESS operator can estimate the unknown time-
varying inertia of any generic power system and properly
tune/control their device for fast-frequency strategies.

The paper is organized as follows: Section II introduces the
modeled power system frequency dynamics. In Section III,
the methodology used for the system identification process is
described, followed by the simulation and the experimental
setup. The results are presented and analyzed in Section 1V,
and the paper is concluded in Section V.

II. MODELING FREQUENCY DYNAMICS

Power system frequency dynamics are usually modeled
using the swing equation, which describes the behavior of
generator frequency in response to an active power mismatch.
We can represent the frequency dynamics of an entire power
system through the dynamics of one equivalent generator [2].
Fig. 1 shows a linearized transfer function model that captures
the frequency dynamics of the system.
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Fig. 1: Schematic representing the frequency dynamics of a power
system.

The inertial response of the power system in response to an
electrical load change of AP, is governed by the equivalent
inertia constant M = 2H and damping constant D. This
inertial response prevents the initial change in frequency until
the the turbine-governor loop can control the frequency. The
dynamics of the turbine-governor loop is typically represented
by a first-order transfer function with time-constant T},. This
loop implements a speed-regulation droop to control the fre-
quency by varying the mechanical power output AP,,. The
secondary integral control loop with output power AP and
the integral-gain K; typically has very slow dynamics, and
thus does not play a role in the inertial response of the system.
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Fig. 2: Multiple time-scales of frequency dynamics in a typical power
system.

The frequency dynamics of the power system can thus
represented by the following set of differential equations:

MAG+ DAw = AP, — AP, (1)
TyAP,, + AP, = —R,*Aw )

In this paper, we are estimating the effective inertia constant
M of the power system. The frequency dynamics of a power
system has multiple time-scales, as depicted in Fig. 2. In
the first few seconds after a frequency event, the frequency
dynamics depends solely on the inertial response of the
system. After the inertial response, the governor (or primary)
controller then tries to limit the frequency drop and finally
the secondary and/or tertiary controller acts to reduce the
steady-state deviation in the frequency to zero. To estimate
the inertia constant, we can decouple these time-scales. During
the time-frame of interest, the secondary power AP, and the
mechanical power AP,, can be assumed to be zero, thus
Eq. (1) can be reformulated as [6]:

MAw + DAw = —AP, (3)

The transfer function representing the frequency dynamics can
be written as:
Aw(s 1
= (5) = (G))
AP.(s)

G(s -
() Ms+D

By identifying this transfer function, the inertia constant of
the system can then be estimated.

III. SYSTEM IDENTIFICATION METHODOLOGY

The basic concepts of system identification is first presented
in this section. This is followed by a description of the method-
ology used to identify the inertia constants of a simulated
and a real-genset using the system identification toolbox in
MATLAB.

A. System Identification

A data-driven system identification approach can estimate
the frequency dynamics of a power system. By probing the
system to be identified with active power changes AP, (in
this work accomplished through an ESS), the corresponding
response of the system frequency Aw can be measured. Based
on this input-output data, the unknown parameters of a transfer



function representing frequency dynamics can be identified.
Fig. 3 illustrates the basic concepts of a system identification
process. The input signal w(t) and the output signal y(t)
are first measured from the unknown dynamic process to be
identified. Because the logged data are discrete in nature (taken
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Fig. 3: Basic concept of system identification, which uses input and
output measurements to identify an unknown dynamic process.

at a fixed sample rate), the relationship between the input and
output can be defined as:

y@t) +ary(t —1) + - +ay(t —n) =
biu(t — 1) + -+ bpult —m) (5)

where n and m represent the number of poles and zeros of the
system, respectively, and a,, and b,, represent the parameters
of the differential equation in Eq. (5) or the coefficients of the
equivalent transfer function. In general, a dynamic system can
then be represented as:

g(t|0)=9¢"0 (6)

In Eq. (6), 6 represents the set of the unknown parame-
ters/coefficients of the system, and ¢(¢) represents the set of
inputs u(¢) and outputs y(t) of the dynamic system defined as
follows:

0:[a1a2...anb1b2...bm]T (7)
() =[~y(t—1)- —yt —n) ult —1)...ult—m)"
®)

Now, if we define ZV as the set of known measurements and
N is the overall input-output data points in the time interval
1<t<N:

ZN = {u(1),y(1),...,u(N),y(N)} ©)

then the unknown parameters of the system, 6, are estimated
by employing a least-squares method with the following cost-
function [9]:

N
. 1 N
min Vi = > Iy - g o)

t=1

(10)

The fit of the model can be calculated using a metric, such
as the normalized root-mean-square-error (NRMSE) defined
as [10]:

ly() =9t [ O]l

NRMSE =1-— |ly(t) — mean (g(¢|0))]|

(1)

In a system identification procedure, the dataset must first
be pre-processed to remove noise, offsets, and/or any un-
wanted trends in the data. Then a least-squares error approach
described above is used to fit the model and identify the
transfer function (training phase). Finally, to validate the
identified transfer function (testing phase), the output from the
identified model can be compared with the output determined
experimentaly. Using different datasets for training and testing
ensures the fitted models are applicable over a wide range of
operation and prevents issues with overfitting [9].

B. Identification of Inertia Constant of a Simulated Genset
Model

The system identification was initially conducted on a sim-
ulated genset model with a known inertia constant to test the
validity of the proposed method. Fig. 4 shows the simulation
setup used to perform system identification. A 3.125 MVA,
2.4 kV diesel-genset is used with a standard governor and
AC1A-type excitation system as described in [11]. A fixed
base load of 1 MW is always connected to the system. To
excite the generator, various step changes in the active power
were introduced through an ESS by setting different refer-
ence commands to the ESS for different perturbation power
profiles and the resulting frequency changes were measured
using a phase-locked-loop (PLL). Similarly, by measuring the
generator terminal voltage v,p. and the output current ., the
change in electrical power was also computed and fed into the
system identification routine mentioned in Section ITI-A.
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Fig. 4: Simulation setup used in MATLAB/Simulink for system
identification. The system is excited through step changes in the active
power introduced through an ESS. The corresponding frequency and
active power measurements are fed into the system identification
toolbox.

This routine is implemented by the system identification
toolbox from MATLAB in this work. Three datasets were used



for training the model while a fourth dataset was collected for
testing purposes as follows:

o Dataset S1: Step load changes of 31.25 kW (1% of
generator size, used for training)

o Dataset S2: Step load changes of 62.50 kW (2% of
generator size, used for training)

o Dataset S3: Step load changes of 312.50 kW (10% of
generator size, used for training)

o Dataset S4: Step load changes of 781.25 kW (25% of
generator size, used for testing)

Fig. 5 shows waveforms for Dataset S1 when the variable
load was changed in steps of 31.25 kW. All the datasets
were collected using a sample time of 0.1 ms. The input to
the system is the active power change AP, and the output
is the change in frequency Aw measured using a PLL. All
the datasets were normalized with base values of 60 Hz and
3.125 MVA for the frequency and power, respectively. The
input-output dataset are imported into the system identification
toolbox. The system identification toolbox can be used to
identify different types of models such as transfer functions,
state-space models, ARX models, and other various non-
linear models [10]. In this particular case, linear transfer
function models are fit so the model is in the same form as
in Fig. 1. After specifying the desired number of poles and
zeros in the transfer function, the toolbox then identifies the
coefficients of the transfer function through an iterative process
that minimizes the prediction error using the cost function in
Eq. (10). Transfer functions of increasing order were evaluated
based on the fitness to both the testing and the training dataset
using Eq. (11) and the model with the highest fit was chosen.

The identified higher-order models include the dynamics
from inertial response and the primary and secondary fre-
quency loops. Hence, to decouple these dynamics and to obtain
the effective inertia value of the genset, the impulse response
of the identified transfer function was computed as proposed
in [6]. For example, the impulse response in time-domain of
the first-order transfer function described in Eq. (4) is given

by:
(t) = i Qt
PO =" P\ "y

Based on Eq. (12), at time ¢t = 0, the impulse response leads to
the reciprocal of the effective inertia of the system. A similar
assumption can be made for the higher-order transfer function
determined by the system identification process. By evaluating
the unit-impulse response of the identified transfer function we
can estimate the inertia constant of the genset.

12)

C. Identification of Inertia Constant of a Genset Experimen-
tally

After the methodology was validated with the simulation
model, the same procedure was repeated for a 13 kW, 208 V
natural gas genset (Kohler 15RES). In the experimental setup,
the genset is loaded with a resistive load bank (Model L-63,
Canon Load Banks) replicating the load perturbations from
an ESS. Four datasets were collected based on the available
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Fig. 5: A sample of the datasets used for training and testing of
transfer function models. This particular figure shows the frequency
of the system to 31.25 kW (0.01 p.u.) electrical load changes.

load changes in the resistive load bank. The frequency was
again measured using a PLL and the power was computed
through voltage and current measurements. The datasets are
listed below:
o Dataset R1: Step load change from 1 to 6 kW (Training)
« Dataset R2: Step load change from 1 to 3 kW (Training)
« Dataset R3: Step load change from 0 to 5 kW (Training)
o Dataset R4: Random step load changes ranging from 1
to 8 kW (Testing)
The sample testing Dataset R1 is illustrated in Fig. 6. The
sampling time was again set to 0.1 ms. The noise and the
spikes in the power measurement were removed by using a
moving average filter with a sliding window of 3000 samples.
The moving average filter helps smooth out the measurements
without introducing any significant delay.
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Fig. 6: A sample of the datasets used for training and testing of
transfer function models for 13 kW genset. This particular figure
shows the frequency of the genset to 5 kW active power changes.

IV. RESULTS AND ANALYSIS

The results obtained from the identification of the inertia
constant by simulation and experiment are presented and
analyzed in this section.



A. Results from Simulated Genset Model

Table I summarizes the coefficients of the transfer functions
identified using the different datasets. The fit for the identified
second-order transfer functions with respect to the training
and the testing dataset are also tabulated (calculated based
on Eq. (11)). Initially, transfer functions of various orders
were evaluated based on the fitness to both the training
and the testing datasets. However, transfer functions higher
than the second-order model did not provide any significant
improvement in the fit and hence were not considered. In all
three cases, approximately a 94% fit was achieved with both
the training and the testing datasets. Increasing the amplitude
of the excitation signal did not provide any improvement in the
fits. The identified transfer functions obtained from different
datasets are almost identical with only slight variations in the
coefficients. This highlights the fact that the identified model
is valid over a wide range of operation.

TABLE I: Transfer Functions Identified Using Simulated Genset

Dataset MOdF:l F'itr}ess to Fitness to
Coefficients Training Data | Test Data
by = -0.4954
bo = -0.0019
S1 a2 = 1.0000 94.52% 94.75%
ai = 6.7090
ag = 17.8900
b1 =-0.4931
bo = -0.0020
S2 ag = 1.0000 94.73% 94.76%
a; = 6.6820
ag = 17.8200
b1 = -0.4863
bp = -0.0019
S3 a2 = 1.0000 94.91% 94.78%
a1 = 6.5890
ag = 17.6100
Fig. 7 shows the unit-impulse response of all the three

transfer functions that were identified. Based on the impulse
response of the transfer function at time ¢t = 0, the effective
inertia of the system is calculated. The average of the inertia
constant calculated from the unit-impulse response of the
system at time ¢ = 0 was taken. Thus, the estimated equiv-
alent inertia constant M is computed to be 2.03. The actual
equivalent inertia constant of the simulated genset model was
2.14. Thus, the inertia constant was estimated with a small
error of approximately 5%. Even though we do not get an
exact value, with this reasonable estimate the ESS operator can
better the deploy fast-frequency control strategies in systems
with unknown and/or time-varying inertia constants.

B. Results from Genset Experiments

Table II summarizes the coefficients of the second-order
transfer functions identified using the different datasets col-
lected from the 13 kVA genset available at SDSU’s Microgrid
Research Laboratory. The fitness of the model to the training
and testing datasets, calculated using Eq. (11), are also pro-
vided. The fit is around 60%, which is considerably lower than
for the simulated case with a second-order transfer function.
The non-linearities in the response of an existing genset along
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Fig. 7: Impulse response of the identified transfer functions from the
simulated genset model. The inset highlights the impulse response at
time ¢t = 0.
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TABLE II: Transfer Functions Identified Using Experimental Genset

Dataset Mod;l F.itr_less to Fitness to
Coefficients Training Data | Test Data
b1 =-0.99720
bo = -0.00006
R1 az = 1.00000 62.74% 55.55%
a1 =5.53262
ap = 3.24961
b1 =-1.94318
bo = -0.00081
R2 a2 = 1.00000 57.18% 57.43%
a1 = 8.99629
ap = 5.03138
b1 =-0.98929
bo = 0.00121
R3 a2 = 1.0000 62.07% 57.78%
a1 =5.35941
ag = 2.89455

with the measurement noise are the most likely causes for the
lower fit. Similar to the case with the simulated genset model,
fitting higher-order models than a second-order model did not
provide a significant improvement in the fit. Furthermore, a
second-order model provides a sufficiently good fit around the
timescale of interest (the inertial response of the genset). This
can be visualized from Fig. 8, where it can be observed that
even though there are errors in the overall fit, during the initial
few seconds after the step load change, there is a relatively
good agreement in the rate of frequency drop. Hence, we
conclude the identified second-order models can be used to
identify the inertia constant of the genset without significant
errors.

Fig. 9 shows the unit-impulse response of the three identi-
fied transfer functions. Based on previous discussions, the re-
ciprocal of the unit-impulse response of the identified transfer
function at ¢ = 0 gives the estimated effective inertia constant
M. For the genset, the estimated effective inertia constant M
based on the unit-impulse response obtained from Datasets R1,
R2 and R3 are 1.01, 0.51 and 1.00, respectively. The inertia
constant estimated from Dataset R2 was higher compared to
Datasets R1 and R3, indicating discrepancies in the inertia
estimate. This may be due to the difference in the response
of the genset for different step load changes and will require
further testing.
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Fig. 8: Simulated and measured output of 13 kVA genset.
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Fig. 9: Impulse response of the identified transfer functions of genset.

V. CONCLUSIONS

The inertia constant of a simulated and real-genset was
identified using ESS and system identification techniques.
With the simulated model, the system was excited through
active power changes using an ESS. System identification
technique was then utilized to identify the inertia constant
with a relatively small error of less than 5% for the simulated
model. The same methodology was then used to estimate the
inertia constant of a genset. The generic method employed in
this paper can easily be adopted by an ESS operator to identify

the effective inertia constant of a power system where there
are other elements such as inverters with fast-frequency control
capabilities and/or frequency dependent loads that contribute
to the overall inertia of a power system. The method currently
requires the inertia constant to be estimated through offline
system identification procedures. However, it can still provide
the ESS operator with valuable insights to deploy and possibly
coordinate fast-frequency control strategies so as to negate
large frequency excursions to stochastic RESs.
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