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Abstract—Network protocols are challenging to test for cor-
rectness due to the huge number of packet dynamics possibilities.
Network simulators are popular in evaluating the performance
of network protocols but unable to test the correctness under
different packet dynamics efficiently. Random testing and sym-
bolic execution are two effective automated correctness testing
techniques that can explore different program execution pos-
sibilities. Random testing is simple and scalable in checking
typical cases but often misses corner ones with low probabilities.
Symbolic execution is more efficient in exploring these corner
cases but suffers from the scalability problem. In this paper,
we propose a testing platform built upon a network simulator
by implementing a combination of symbolic execution and
random testing to mitigate their limitations. Then we evaluate
the efficiency of different techniques in testing Linux network
stack under multiple possibilities of packet dynamics.

Index Terms—Network protocol testing, symbolic execution,
network simulator.

I. INTRODUCTION

Testing network protocols for correctness is important be-

cause they are the core components of many services. Unfor-

tunately, they are very difficult to test due to the unpredictable

nature of the underlying network. Packets can arrive out of or-

der or be lost during transmission. Packet transmission related

parameters such as delay, jitter and loss can be considered

as packet dynamics because these values are often different

for each packet. Testing network protocols under all possible

combinations of packet dynamics is essential because many

TCP bugs [1] are only detected in corner cases with low

probabilities.

Network simulators such as NS-3 [2] are widely used in

studying network protocol performance due to the capability

to simulate different cases of packet dynamics, topologies and

links. However, these network simulators are inefficient in

testing the correctness of network protocols under multiple

packet dynamics possibilities because they do not implement

automated correctness testing techniques.

In this paper, we consider the packet dynamics caused

by network delay, which directly affects the behavior of

network protocols. For example, TCP running on an end

node adjusts the transmission rate based on the transmission

time of previously received packets. In order to guarantee

the correctness, we need to test all the possibilities of packet

dynamics. Automated testing techniques are popular choices

for this job because of their capability to explore different

cases systematically. However, it is very challenging due to

the extremely large number of packet dynamics possibilities.

Random testing and symbolic execution are two widely

used automated testing techniques in the software testing

community. Random testing is cost-effective at checking com-

mon cases, but it has trouble reaching branches with strict

conditionals (e.g., if(x == 500)). On the contrary, symbolic

execution can effectively explore these branches. The main

idea is to execute the programs with symbolic variables that

represent multiple values. However, symbolic execution does

not scale well because its complexity is approximately an

exponential function of the number of branching statements

and symbolic variables. Network protocol testing systems

based on symbolic execution suffer from similar limitations

and are only capable of testing simple protocols [3], [4], [5]

or limited packet dynamics [6].

To address these problems, we propose to combine symbolic

execution with random testing to test network protocols.

By doing so, we take advantage of the ability to explore

low probability cases of symbolic execution while partially

mitigate its scalability problem. The general idea of combining

symbolic execution with random inputs is not new. The novelty

of our work is that we apply it to the large and general network

simulator NS-3, and evaluate its efficiency in testing network

protocols under packet dynamics while current works [7], [8]

focus on improving the performance of symbolic execution.

Our contributions: 1) We propose a testing platform based

on NS-3 to test network protocols for correctness. To effi-

ciently explore packet dynamics, we implement the combina-

tion of symbolic execution and random testing in our platform.

To the extent of our knowledge, this paper is the first to apply

both symbolic execution and random testing in a network

simulator for correctness testing of real-world network stack

under packet dynamics. 2) We present our comprehensive

evaluation of different techniques on Linux TCP and Multipath

TCP (MPTCP) [9] stack and investigate the trade-off between

scalability and coverage for the combination technique. Using

symbolic execution, we can test an equivalence class of inputs

simultaneously, instead of just a single input. However, the

number of equivalence classes is roughly an exponential func-

tion of the number of symbolic variables, and our experiments

show that the coverage does not have a linear increase with

the number of equivalence classes created in a simulation

run. Therefore, it is more efficient to explore equivalence

classes of a single symbolic execution at a time and merge the

coverage results of different runs than to increase the number

of symbolic variables in one run.



II. BACKGROUND

A. Network simulation

Network protocols are usually tested using discrete-event

network simulators. These simulators maintain a list of pend-

ing events, and each event has a timestamp value, which is its

occurrence time. During the simulations, the system variables

only change at the occurrence times of events. Instead of

advancing the system clock by one time unit each step, the

simulators directly jump to the execution time of the next

event. For example, if the current event is completed at time

5 seconds and the next event is scheduled at 20 seconds, the

simulators will set the clock to 20 and immediately process the

next event. Note that the currently processing event must have

the lowest timestamp value to preserve the causal relationship,

which means future events cannot affect past events.

In this paper, we consider NS-3 [2], which is a discrete-

event network simulator widely used in the networking com-

munity. To run the Linux network protocol stack, we use the

DCE module [10].

B. Random testing

In random testing, a number of test inputs are generated

randomly according to some distribution, and these inputs are

used to run the program to check for correctness. Random

testing generally can check common cases with a relatively

small number of inputs compared to the total number of all

possible inputs. The main problems are that it often misses

corner cases with low probabilities, and many test inputs can

be redundant because they lead to the same program behaviors.

As an example, let us consider the conditional statement

if(x == 500) where x ∈ [1, 106], random testing with a

uniform distribution only has a probability of 1/106 to pick

the correct x value to satisfy this statement.

C. Symbolic execution

Symbolic execution [11] becomes practical in recent years

due to the significant advancement of constraint solvers.

Instead of executing programs with actual concrete data,

this technique uses symbolic input values and represents the

values of variables as symbolic expressions. Each symbolic

expression is a collection of constraints for a variable along an

execution path. Figure 1 shows a simple example of symbolic

execution. Lines 1 and 2 initialize two symbolic variables

t1 and t2 with their constraints. The constraints mean that

the symbolic variables can be any integer value in their

respective intervals. Once the execution reaches the branching

if statement at line 3, it checks the condition t1 < t2. In

this case, the condition can be either true or false. Thus

the execution forks into two paths, and each path has an

additional constraint. For example, path 1 adds t1 < t2 to

its corresponding accumulative constraints.

Even though there are 1000 × 2000 = 2 × 106 distinct

combinations of t1 and t2, symbolic execution only generates

two different paths, each path corresponds to multiple values

of t1 and t2. We can also see that the number of satisfying

values for each variable has no impact on the number of paths.

Program code

line 1: t1 ∈ [1, 1000]

line 2: t2 ∈ [991, 2990]

line 3: if (t1 < t2)

line 4: . . .

line 5: else

line 6: . . .

line 7: end if

Program execution tree

init: t1 ∈ [1, 1000], t2 ∈ [991, 2990]

t1 < t2 ?
true false

path 1

t1 ∈ [1, 1000]

t2 ∈ [991, 2990]

t1 < t2

path 2

t1 ∈ [1, 1000]

t2 ∈ [991, 2990]

t1 ≥ t2

Fig. 1. A symbolic execution example.

In this example, the number of values of t1 for the false branch

is much lower than that for the true branch.
In this paper, we use S2E [12], which is a powerful symbolic

execution platform that can symbolically execute NS-3 in a

virtual machine. The virtual machine is emulated using the

QEMU machine emulator [13], and the symbolic execution is

conducted using the KLEE symbolic execution engine [7].

III. TESTING PLATFORM

A. Overview

In this paper, we focus on the packet delays, which are

a major factor causing network protocols to change their

behaviors. Protocols such as TCP and MPTCP [9] change their

behavior based on the arrival time of packets. For example,

the arrival time of a packet can change the estimated round-

trip time (RTT), or an acknowledgment (ACK) packet arriving

after a predetermined timeout can trigger a re-transmission of

the corresponding data packet. In order to comprehensively

test these protocols, we have to try all possible combinations of

packet delays. Consider a series of n packets {p0, p1, ..., pn},

each has an independent delay dpi
in the range [1, t]. Each

test case is a delay vector ~d = (dp1
, dp2

, ..., dpn
). Thus the

total number of unique delay vectors or test cases is tn. For

just a simple experiment with three packets having the same

delay interval [1, 1000] ms, there would be 10003 = 109 delay

vectors.
With symbolic execution, we can group multiple delay

vectors into an equivalence class. We define an equivalence

class as a group of delay vectors that follows the same

execution path. Because network simulators such as NS-3

are event-based, an execution path generally corresponds to

a distinct sequence of events. Therefore, we only need to test

one delay vector in each equivalence class, and the number

of equivalence classes is usually several orders of magnitude

lower than the total number of delay vectors.



Pseudocode 1 Three different types of delay values

1: sorted list: events[ ] ⊲ list of events
2: variable: packetDelay ⊲ concrete value
3: variable: maxDelay ⊲ delay interval
4: function TransmitStart(p, transmitT ime)
5: if p.type == symbolic then
6: delay = symbolic(1,maxDelay)
7: else if p.type == random then
8: delay = rand() % maxDelay + 1
9: else

10: delay = packetDelay

11: e = Event() ⊲ create a new event
12: e.timestamp = transmitT ime+ delay
13: InsertEvent(e)

14: function InsertEvent(e)
15: for i = 0; i < events.size; i = i+ 1 do
16: if e.timestamp < events[i].timestamp then
17: Insert e to position i
18: return

19: Append e to the end of events

B. Implementation

Pseudocode 1 shows the process of injecting different types

of delay values. We have three types of packets: random

packets that have random delay values, symbolic packets that

have symbolic delay values, and concrete packets that have

traditional concrete delay values. The variable packetDelay
at line 2 specifies the concrete delay value, which could be

different for different concrete packets in general. The variable

maxDelay at line 3 defines the interval of all delay values.

Function TransmitStart sets delay values for each packet

according to its type. The delay of each random packet is

a random integer in the interval [1,maxDelay] while the

concrete packets have delays specified by packetDelay. For

a symbolic packet, its delay is defined by the constraint 1 ≤
delay ≤ maxDelay. That is, the delay is a symbolic variable

is the interval [1,maxDelay]. Consequently, the arrival time

of this symbolic packet e.timestamp is a symbolic variable

in the interval [transmitT ime+1, transmitT ime+ delay].
The arrival event e is then inserted into the global list of events

sorted by timestamp in ascending order.

Function InsertEvent compares the timestamp of event e
with timestamps of other events in the list. We say that the

timestamps of two events overlap if the intersection of their

intervals is nonempty. This means two events may occur in

different orders and comparing their overlapping timestamps

at line 16 causes the execution to fork into two branches. Note

that, the execution only forks when at least one timestamp

is symbolic because each concrete or random delay contains

exactly a single value.

C. Testing techniques

The testing platform1 supports four testing techniques. Fig-

ure 2 shows an example of transmitting two packets using

different techniques.

1The source code is available at https://github.com/minhvu2/packet-
dynamics-platform
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Fig. 2. Example of transmitting two packets. a) Original. b) Random. c)
Symbolic execution. d) Symbolic execution plus random

1) Orginal: Figure 2a shows an example of sending two

packets p1, p2 with packetDelay = 300 which is equivalent

to the delay vector ~d = (300, 300). Both packets have the same

delay in this example and in Pseudocode 1, but in general they

may have different concrete delays. Each execution follows a

sequence of events, and repeated executions output the same

results unless we change the delay vector. There is also no

guarantee that a new delay vector produces a new sequence

of events because a sequence can correspond to multiple delay

vectors. To test a protocol for correctness using this method,

we need to run the simulator for all distinct delay vectors. If

each packet has 1000 different delay values, there are 10002

delay vectors to test.

2) Random: Similar to Original, each execution corre-

sponds to one delay vector. The main difference is that packets

can have different random delay values in different simulator

runs. With this method, we can often test common sequences

of events with a much lower number of runs when compared to

Original. The problem of Random is that delay vectors are not

distributed evenly among equivalence classes. Thus, it cannot

guarantee to cover all possible sequences even if we run a large

number of simulations. For example, two packets p1 and p2
are sent at time 0 and 500 respectively as in Figure 2b. If

both packet delays are random with maxDelay = 1000, the

probability of p1 arriving after p2 is lower than the inverse

case, assuming a uniform distribution.
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S2E Symbolic Execution Engine

Fig. 4. System implementation for Symbolic Execution and Symbolic
Execution plus Random

3) Symbolic Execution: A symbolic delay associates with

a set of constraints, and it represents multiple delay values

instead of a single delay value. Let’s consider the example

in Figure 2c where dp1
is a symbolic delay in the interval

[1,maxDelay] = [1, 1000]. Because p1 departs at time 0, the

timestamp interval of p1 arrival is [1, 1000] which overlaps

with the departure and arrival of p2 occurring at time 500

and 800. Thus, there are three set of constraints {1 ≤ dp1
≤

500}, {501 ≤ dp1
≤ 800} and {801 ≤ dp1

≤ 1000}, which

define three sub-intervals Δ1 = [1, 500], Δ2 = [501, 800] and

Δ3 = [801, 1000], respectively. As a result, three equivalence

classes corresponding to three distinct sequences of events are

generated. Non-symbolic packets (if any) have the specified

concrete delays.

4) Symbolic Execution plus Random: The only difference

between this technique and Symbolic Execution is that non-

symbolic packets can have random delay values instead of

concrete ones in different simulation runs. Note that, Figure 2d

only represents a single random value of dp2
. During symbolic

execution, the interval Δ2 and Δ3 can vary among different

execution paths.

Figure 3 illustrates the implementation of Original and

Random. NS-3 communicates with the Linux network protocol

stack through the DCE module. For these two techniques, each

execution of the simulator covers only one delay vector.

With Symbolic Execution and Symbolic Execution plus

Random techniques, we set selected packets to be symbolic

and execute NS-3 and DCE in a QEMU virtual machine using

the S2E symbolic execution engine, as shown in Figure 4.

For these two techniques, each execution of the simulator

covers multiple equivalence classes, and each equivalence

class covers multiple delay vectors corresponding to a same

sequence of events.

IV. EVALUATION

A. Simulation setup

We demonstrate and compare the following testing tech-

niques: Original (referred to as O), Random (referred to as R),

Symbolic Execution (referred to as SE), Symbolic Execution

plus Random (referred to as SE - R). For O, packetDelay
is specified in the simulation scripts. For SE and SE - R,

we use n to indicate the number of symbolic packets and set

maxDelay = 16384× 106 ns.

In this paper, we use code coverage to evaluate the efficiency

of different techniques. Code coverage is a popular metric in

software engineering community to show which parts of the

source code of a program under test are executed. In particular,

we measure the line, function and branch coverage on the TCP

and MPTCP implementations in the Linux kernel.

We choose TCP because it is responsible for the majority

portion of Internet traffic. Popular applications such as email,

web browsing, and video streaming are transported over TCP.

Recently, MPTCP [9] has been proposed to improve the

performance of TCP and implemented in Linux kernel [14]

and Apple Mac OS.

For O and R, we repeatedly run the simulator for different

delay vectors. For SE and SE - R, we first execute the

simulator symbolically and generate one delay vector for each

equivalence class. These delay vectors are then used to run

the simulator to collect the coverage.

We evaluate different techniques with respect to the follow-

ing questions:

1) What is the scalability of SE in exploring packet dy-

namics?

2) Does SE - R improve code coverage when compared to

SE and R running separately?

3) What is the most effective way to apply SE - R for

different types of network protocols?

The experiments run on machines configured with a 2.3GHz

4-Core processor, 64GByte of RAM and Ubuntu 16.04. We

run the simulation scripts configured with TCP and MPTCP.

These simulation scripts are selected from examples provided

with the DCE module.

B. MPTCP experiments

This group of experiments uses the dce-cradle-mptcp.cc

script of the DCE module. There are two nodes communicating

through a MPTCP connection as shown in Figure 5. There

are two paths between the two nodes corresponding to two

TCP subflows. About 50 packets are transmitted during a

simulation.

1) Scalability evaluation: Table I shows the testing time

and numbers of delay vectors using O and SE, where a selected

packet has a delay in the range of [1, 16380×106] and all other

packets have a concrete delay (i.e., a total of 16380×106 delay

vectors to test). When using SE, there is one symbolic packet

(i.e., the selected packet) and all other packets are concrete
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Fig. 5. Network topology of the MPTCP experiments

TABLE I
NUMBER OF DELAY VECTORS AND TESTING TIME OF DIFFERENT

TECHNIQUES

Number of delay vectors Testing time

O 16384×10
6 17747 years

R 156 1.48 hours

R 1029 9.76 hours

SE (n=1) 156 equivalence classes 2.25 hours

SE - R (n=1) 1029 equivalence classes 12.82 hours

packets, and we run the simulator with SE only once. When

using O, all packets are concrete packets, and we need to

repeatedly run the simulator for 16380×106 times, each time

with a different concrete delay for the selected packet. As a

result, O takes about 21248 years. In contrast, SE finishes the

test in just 2.55 hours, and reports 156 equivalence classes of

delay vectors. This result clearly shows the effectiveness of

SE in testing network protocols.

While R is faster than SE and SE - R when running with

the same numbers of delay vectors, multiple delay vectors in

R can belong to an equivalence class because they are chosen

randomly. SE - R outputs a higher number of equivalence

classes than SE due to the fact that the set of constraints for

each equivalence class must be unique. The delay for a packet

remains the same for all paths in SE while it varies among

different paths in SE - R. Thus, additional feasible branches

are forked, leading to more execution paths.

However, symbolic execution does not scale well as we

increase the number of symbolic packets. We run the simulator

and introduce symbolic delay values for n = 2 packets. In

this case, the execution is unable to finish within 110 hours

for just two symbolic packets, as summarized in Table II.

Moreover, the code coverage does not increase linearly with

the number of delay vectors given the limited testing time.

As we increase the number of symbolic packets, the code

coverage of different delay vectors overlaps with each other.

Thus, instead of increasing the number of symbolic delays in

one run, we can execute the simulator multiple times, each

time only one packet has symbolic delay. In each of these

runs, we can choose a new type of packet to have symbolic

delay.

TABLE II
TESTING TIME AND CODE COVERAGE FOR SE - R

Number of symbolic packets n = 1 n = 2

Testing time in hour 14.75 stop at 110

Number of delay vectors 1029 6627

Line coverage for MPTCP 100 % 82.0 %

Function coverage for MPTCP 100 % 87.8 %

Branch coverage for MPTCP 100 % 81.0 %

TABLE III
MPTCP TESTING SCENARIOS FOR PARTS UNAFFECTED BY DELAYS

Testing scenarios

mptcp fullmesh.c 1) More routers and paths.

mptcp input.c 1) Unable to establish MPTCP connection and
falling back to TCP.
2) Fast open option.

mptcp output.c 1) Paths with highly different capacities.
2) Keep alive connection option.

All files 1) Removing and adding subflows.

TABLE IV
LINE COVERAGE FOR THE MPTCP IMPLEMENTATION

O R SE (n=1) SE - R (n=1)

mptcp binder.c 100 % 100 % 100 % 100 %

mptcp ctrl.c 5.0 % 80.7 % 83.0 % 100 %

mptcp fullmesh.c 56.0 % 89.3 % 89.3 % 100 %

mptcp input.c 0.0 % 80.8 % 81.0 % 100 %

mptcp ipv4.c 12.8 % 36.4 % 36.4 % 100 %

mptcp ndiffports.c 100 % 100 % 100 % 100 %

mptcp ofo queue.c 0.0 % 6.7 % 6.7 % 100 %

mptcp output.c 0.0 % 91.2 % 90.2 % 100 %

mptcp pm.c 72.2 % 100 % 100 % 100 %

mptcp sched.c 28.0 % 100 % 98.8 % 100 %

Takeaway: (Results for Question 1) The increased testing

time of using SE is acceptable when compared to R running

the simulator for the same number of times as the number

of equivalence classes. Increasing the number of symbolic

packets may produce lower coverage due to the fact that the

simulation is unable to finish within the allotted time, and the

code covered by different delay vectors becomes overlapped.

In cases where one symbolic packet is insufficient, it is

more efficient to repeat the simulation with different symbolic

packets than to introduce additional symbolic packets.

2) Efficiency evaluation: We have thoroughly analyzed the

source code of MPTCP to the best of our understanding, and

identified all possible parts of the MPTCP code that can be

covered by the dce-cradle-mptcp.cc script with dynamic packet

delays. Below, we only report the coverage for these parts.

Table III lists further testing scenarios in order to cover the

other parts which are unrelated to packet delays.

Tables IV, V and VI show the line, function and branch

coverage, respectively, on the MPTCP implementation by dif-

ferent techniques. For O, we run the simulator only once with

the original dce-cradle-mptcp.cc script. For R, we repeatedly

run the simulator for 1029 times, to be consistent with SE

(n = 1) that reports 1029 equivalence classes. The symbolic

packet in SE (n=1) and SE-R (n=1) is the SYN-ACK packet

TABLE V
FUNCTION COVERAGE FOR THE MPTCP IMPLEMENTATION

O R SE (n=1) SE - R (n=1)

mptcp binder.c 100 % 100 % 100 % 100 %

mptcp ctrl.c 4.3 % 87.3 % 89.4 % 100 %

mptcp fullmesh.c 61.2 % 96.1 % 96.1 % 100 %

mptcp input.c 0.0 % 86.9 % 91.2 % 100 %

mptcp ipv4.c 10.0 % 50.0 % 50.0 % 100 %

mptcp ndiffports.c 100 % 100 % 100 % 100 %

mptcp ofo queue.c 0.0 % 16.7 % 16.7 % 100 %

mptcp output.c 0.0 % 95.4 % 95.4 % 100 %

mptcp pm.c 66.7 % 100 % 100 % 100 %

mptcp sched.c 28.5 % 100 % 100 % 100 %



TABLE VI
BRANCH COVERAGE FOR THE MPTCP IMPLEMENTATION

O R SE (n=1) SE - R (n=1)

mptcp binder.c 100 % 100 % 100 % 100 %

mptcp ctrl.c 7.7 % 75.4 % 80.0 % 100 %

mptcp fullmesh.c 56.4 % 83.5 % 83.5 % 100 %

mptcp input.c 0.0 % 76.1 % 74.5 % 100 %

mptcp ipv4.c 7.0 % 21.5 % 21.5 % 100 %

mptcp ndiffports.c 100 % 100 % 100 % 100 %

mptcp ofo queue.c 0.0 % 4.5 % 4.5 % 100 %

mptcp output.c 0.0 % 93.8 % 88.8 % 100 %

mptcp pm.c 80.0 % 100 % 100 % 100 %

mptcp sched.c 17.1 % 100 % 89.5 % 100 %

TABLE VII
COVERAGE FOR THE MPTCP IMPLEMENTATION USING SE-R (N=1) WITH

DIFFERENT SYMBOLIC PACKETS

SYN-ACK Data FIN-ACK Combined cov

Line 100 % 82.0 % 81.4 % 100 %

Function 100 % 87.8 % 87.8 % 100 %

Branch 100 % 81.0 % 78.2 % 100 %

of the connection establishment that is sent through TCP

subflow 0. We can see that SE-R achieves the highest coverage

(actually perfect 100% coverage) across all experiments. We

can also see that the coverage improves from O to SE-R

for several files: mptcp ipv4.c that initializes the connec-

tion, files mptcp ctrl.c, mptcp input.c and mptcp output.c

that deal with the transmission and receipt of packets, file

mptcp ofo queue.c that handles packet reordering, and file

mptcp sched.c that manages congestion control. This is be-

cause packet delays directly affect these tasks, and thus these

files see significant improvement from O to other techniques.

To see how the technique SE-R performs with different

symbolic packets, we set various types of packets to be

symbolic, as shown in table VII. We can see that SYN-

ACK symbolic packet achieves the highest coverage, which

is expected because of two reasons. First, MPTCP essentially

consists of multiple TCP subflows, and MPTCP is mainly

responsible for the connection establishment and management.

Handling the transmission and receipt of packets is the task

of TCP. Second, the symbolic delay of a packet can affect

the timestamps of subsequent events that are triggered by the

arrival of the packet. That is, these timestamps also become

symbolic variables. In this group of experiments, we can see

that the coverage of the ith symbolic packet is a subset of that

of the (i+1)th symbolic packet due to the impact of symbolic

delay on subsequent events.

Takeaway: (Results for Question 2) SE-R reports the high-

est coverage based on our experiment results. For MPTCP, one

simulator run in which the SYN-ACK packet of the connection

establishment phase is set to symbolic is sufficient to cover all

possible behaviors. It is unnecessary to repeatedly running the

simulator with other packets because the symbolic delay of

SYN-ACK packet can propagate to later packets.

C. TCP experiments

This group of experiments test Linux TCP code using

the dce-cradle-simple.cc script of the DCE module which

contains two nodes connecting over a wired link. Table VIII,

IX and X show the line, function and branch coverage for

TABLE VIII
LINE COVERAGE FOR THE TCP IMPLEMENTATION

O R SE (n=1) SE - R (n=1)

tcp.c 47.6 % 47.6 % 98.3 % 98.3 %

tcp cong.c 67.4 % 67.4 % 85.3 % 85.3 %

tcp input.c 37.0 % 53.2 % 83.3 % 91.8 %

tcp ipv4.c 62.3 % 64.0 % 83.4 % 100 %

tcp minisocks.c 66.1 % 71.2 % 92.1 % 99.1 %

tcp output.c 38.5 % 43.1 % 94.6 % 96.9 %

tcp timer.c 27.2 % 31.2 % 45.3 % 95.1 %

TABLE IX
FUNCTION COVERAGE FOR THE TCP IMPLEMENTATION

O R SE (n=1) SE - R (n=1)

tcp.c 33.3 % 33.3 % 100 % 100 %

tcp cong.c 63.6 % 63.6 % 91.0 % 91.0 %

tcp input.c 42.4 % 62.6 % 87.9 % 96.0 %

tcp ipv4.c 83.9 % 83.9 % 91.9 % 100 %

tcp minisocks.c 70.0 % 70.0 % 90.0 % 100 %

tcp output.c 37.0 % 38.9 % 96.3 % 98.2 %

tcp timer.c 33.3 % 44.4 % 55.6 % 100 %

TCP implementation by different techniques. Again we have

thoroughly analyzed the source of TCP and identified all

possible parts of the TCP code that can be covered by the

dce-cradle-simple.cc script with dynamic packet delays. The

coverage is calculated for only these parts. In addition, we

exclude file tcp fastopen.c because NS-3 and DCE do not

support fast open mechanism. Files that implement different

congestion control algorithms such as tcp bic.c, tcp cubic.c,

tcp highspeed.c, and tcp dctcp.c are also excluded because

a TCP connection can only use one congestion control algo-

rithm. We can see that SE-R still gets the highest coverage.

Table XI shows the line coverage for different symbolic

packets for SE-R. We only set one packet to be symbolic in

each run and also report their combined coverage. In contrast

to MPTCP, we can see that there are improvements in the

combined coverage because TCP handles the transmission and

receipt of packets on its own. Even though the symbolic delay

can affect subsequent events, it is still bounded by the existing

constraints which can limit the interval of these subsequent

events. Thus, there can be new sequence of events when setting

different packets to be symbolic.

Takeaway: (Results for Question 3) SE-R still achieves

the best coverage. Contrary to MPTCP, TCP requires several

simulator runs with different symbolic packets to cover all

cases. The difference is that TCP manages the whole process,

including sending and receiving packets, which are directly

affected by the delays. While the symbolic delay propagates

to subsequent packets, its accumulative constraints can prevent

valid execution paths, leading to some undiscovered equiva-

TABLE X
BRANCH COVERAGE FOR THE TCP IMPLEMENTATION

O R SE (n=1) SE - R (n=1)

tcp.c 43.9 % 43.9 % 97.3 % 97.3 %

tcp cong.c 71.3 % 71.3 % 81.1 % 81.1 %

tcp input.c 27.3 % 45.6 % 72.4 % 85.7 %

tcp ipv4.c 63.8 % 68.1 % 85.6 % 100 %

tcp minisocks.c 51.8 % 66.8 % 79.1 % 96.5 %

tcp output.c 26.6 % 33.6 % 88.8 % 94.4 %

tcp timer.c 17.4 % 18.8 % 28.5 % 91.0 %



TABLE XI
LINE COVERAGE FOR THE TCP IMPLEMENTATION USING SE-R (N=1)

WITH DIFFERENT SYMBOLIC PACKETS

SYN-ACK Data FIN-ACK Combined cov

tcp.c 98.3 % 98.3 % 97.2 % 100 %

tcp cong.c 85.3 % 85.3 % 100 % 100 %

tcp input.c 91.8 % 98.9 % 76.4 % 100 %

tcp ipv4.c 100 % 99.2 % 83.9 % 100 %

tcp minisocks.c 99.1 % 94.9 % 96.7 % 100 %

tcp output.c 96.9 % 99.8 % 89.0 % 100 %

tcp timer.c 95.1 % 97.1 % 73.6 % 100 %

lence classes.

D. Limitations

One limitation of our platform is that manual effort is

required to analyze the code. Another limitation is that we only

consider the packet delay in our study. It can potentially limit

parts of network protocols that can be tested. In future work,

we plan to add support for more types of packet dynamics.

V. RELATED WORK

Fuzzing is a type of random testing that provides randomly

mutating inputs to programs. SAGE [8], QSYM [15] and

Driller [16] follow the hybrid approach by using symbolic

execution to guide the fuzzers to alternate paths. Their aim is to

improve the performance of fuzzing whereas we evaluate the

effectiveness of the combination approach in testing network

protocols.

Concolic testing combines concrete and symbolic execu-

tion to overcome the limitations of symbolic execution. This

technique has been implemented in various tools such as

KLEE [7], Dart [17], CUTE [18] and CREST [19] to find

vulnerabilities in software. In this technique, the execution

starts with randomly generated concrete inputs, collects sym-

bolic constraints along the execution path, and then uses

constraint solvers to generate inputs to drive the next execution

to unexplored parts of the code. Hybrid concolic testing

[20] interleaves random testing and symbolic execution. The

technique starts with random testing until no new coverage

point is discovered. Then it switches to symbolic execution

to find uncovered parts of the code. When one is found, the

execution reverts to random. Selective symbolic execution [21]

exploits the fact that parts of the code do not need to be

executed symbolically such as system calls or calls to external

libraries. MergePoint [22] performs dynamic path merging to

mitigate the path explosion problem. These techniques focus

on improving the performance of symbolic execution engine.

On the contrary, our testing platform is the first attempt to

introduce both symbolic execution and random testing into

the popular network simulator NS-3 in order to efficiently test

different packet dynamics.

VI. CONCLUSIONS

In this paper, we present our testing platform which im-

plements both symbolic execution and random testing tech-

nique. Our preliminary experiments show the efficiency of our

platform in testing real-world network stack under multiple

possible packet dynamics.
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