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Abstract

Microstructures with two distinct size-scales of voids are commonplace in additively-
manufactured metals. The smaller-scale voids nucleate from inclusions within the metal, while
the larger-scale voids originate from unsintered powder particles. In this work, we study the
interaction between these two size-scales of voids ahead of a crack, and the influence on the
ductile fracture process. We adopt a finite element model of a centerline crack subjected to
small-scale yielding conditions. The diffuse process zone ahead of the crack is modeled by
several rows of void-containing cell elements governed by a Gurson porous material relation.
Results show that the larger-scale voids near the initial crack tip generally reduces the fracture
toughness by facilitating void coalescence with the crack-tip to form a single contiguous damage
zone. However, strategic placements of these larger-scale voids within the active plastic zone of
the crack-tip can promote crack-tip shielding, leading to diffused damage in the form of multiple
unconnected damage zones, and ultimately, a several-fold improvement in toughness. We
quantify the fracture behavior, as a function of the relative size and proportion of larger-scale
voids in the diffuse process zone, by reconstructing the equivalent crack-tip cohesive zone laws
in an elasto-plastic medium via nonlinear field projection. We demonstrate that the cohesive

strength, cohesive energy, as well as the functional form of the cohesive zone law, are strongly



dependent on the dual void size-scales, which introduces a size-effect into the homogenized

traction-separation relationship.
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1. Introduction

All natural and engineering materials contain voids at some length-scales which control the
mechanical properties [1,2]. Even in highly densified materials, defects in the form of voids still
dominate the failure process and limit structural design. Often, materials that fail by ductile
fracture contain voids of different size-scales. In metallic alloys, for example, the primary voids
first nucleate from inclusions (e.g. MnS and carbide inclusions in steel) at low stress levels
during early stage loading [3]. When these primary voids grow and get closer, high local stress
triaxiliaty and local plastic strains develop in the ligament between these enlarged primary voids,
and induce the nucleation of secondary voids to form a two-scale porosity structure. Void
interaction studies show that these secondary voids experience an elevated local stress field
compared to the average stress in the material, due to local zones of high stress concentration
emitted by the primary voids [4-6]. Compared to the primary voids, these secondary voids have
substantially higher growth rates at average stresses below the cavitation instability level [7,8].
These detailed understanding of the synergistic interactions between voids of different scales

have led to more accurate micromechanical modeling of the void coalescence behavior [9,10].

The coexistence of primary and secondary voids in conventional metallic alloys occurs only
during the initiation of void coalescence after significant plastic deformation. In additively-
manufactured (AM) metals, however, two different size-scales of voids can coexist even prior to

significant plastic deformation. Larger-scale voids (~20-40 um in diameter) are pre-existing in
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the AM metal and originate from gas entrapment or unsintered powder particles [11-16], while
smaller-scale intrinsic voids (~2-12 um in diameter) can also nucleate from the inclusions at low
stress levels and are akin to those in conventional metals. To-date, the effects of these
hierarchical scales of pre-existing voids on the crack path and ultimately fracture toughness are

still not well established.

The micromechanical process of void growth and coalescence occurs within a process zone
ahead of the crack. A widely adopted approach to link this fracture process to the macroscopic
failure behavior is to model the process zone with an equivalent cohesive zone law. This
constitutive law describes the relationship between cohesive-zone tractions in equilibrium with
the stress fields of the surrounding body and the cohesive-zone separations compatible with the
deformation fields of the surrounding body [17,18]. Ideally, the cohesive zone traction-
separation relationship embodies the entire micromechanical void growth and coalescence
process within the process zone, but its exact functional form, particularly in the presence of
multiple interacting voids of different size-scales, is unknown. Traditionally, the functional form
of the cohesive zone law (e.g. exponential, trapezoidal, bilinear, etc.) is assumed a priori, and the
cohesive strength (peak traction in cohesive zone law) and cohesive energy (area bounded by
cohesive zone law) are treated as the two important material parameters to describe macroscopic
fracture behavior, which are calibrated against measurement data [19-22]. Studies, however,
have shown that the functional form of the cohesive zone law could be indicative of the actual
micromechanical failure process [23-26]. This has led to recent efforts adopting inverse methods
to reconstruct the exact functional form of the cohesive zone laws governed by different

micromechanical processes in both elastic and elasto-plastic materials [27-31].



The functional form of the cohesive zone law, together with the cohesive strength and
energy, provides a homogenized view of the fracture process but cannot offer detailed insights
into the actual failure micromechanics. Xia and Shih simplified the ductile fracture process by
confining damage to a single row of void-containing computational cells ahead of the crack-tip
to represent the fracture process zone [32]. This cell-element approach is capable of reproducing
the details of damage dissipation, i.e. void nucleation, growth, and coalescence, within the
process zone to predict monotonic or even fatigue crack growth [33-35]. Studies have also
implemented discrete voids ahead of the crack, in place of computational cells, to detail with

high-resolution the void interaction effects within a variety of materials [30,36-38].

In this work, we investigate the cracking patterns and void interaction mechanisms in a
ductile media resembling AM metals containing two size-scales of pre-existing voids, and
subjected to small-scale yielding conditions. In the presence of a non-uniform distribution of
voids of different size-scales, damage becomes more diffuse and the crack path will deviate
accordingly, which precludes the use of a single row of void-containing cells to represent the
fracture process zone (FPZ) [10,32,38]. In Section 2, we detail the modeling of this broader
diffuse FPZ ahead of the crack by implementing several rows of void-containing computational
cells with random distributions of initial porosities of two distinct size-scales. This allows the
(undulating) crack to propagate naturally within the inhomogeneous process zone. We also
introduce an inverse nonlinear field projection method (FPM) to homogenize the damage process
with an equivalent crack-tip cohesive zone law [31]. In Section 3, we quantify the relative void
size and void distribution effects on the crack-tip fracture process, crack path, and cohesive

behavior. We follow with a discussion in Section 4, and conclude with a summary.



2. Modeling
2.1 Boundary value problem

Our small-scale yielding model consists of a homogeneous material with a semi-infinite
crack loaded remotely by mode I K-field loading under plane strain conditions (Fig. 1a). Outside
of the FPZ, we assume an elasto-plastic background material with Young’s modulus E and
Poisson’s ratio v and with uniaxial tensile stress-strain behavior described by the true stress-

logarithmic strain relation

g
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where oy is the initial yield stress, and N the strain hardening exponent. Generalization to

multiaxial stress states assumes isotropic hardening and von Mises yield condition.

We model the porous FPZ with 17 rows of uniformly sized cell elements ahead of the initial
crack-tip, each row of 117 cell elements (Fig. 1b and 1d). Each cell, the size of D X D, contains a
void of initial volume fraction f;,. The behavior of a cell element is governed by the Gurson flow

potential [39]
® = (2)2 + 2q; feosh(*Z) — (1 + (41/)?) = 0 2)

where o, denotes the macroscopic effective stress, g, the mean stress,  an equivalent tensile
flow stress representing the actual microscopic stress-state in the matrix, and f is the current
void volume fraction. Parameters g; and q, were introduced by Tvergaard [40] to improve

model predictions for periodic arrays of cylindrical and spherical voids, and are taken to be 1.48



and 1.013 respectively [41]. Note that (2) reduces to von Mises yield criterion when f = 0. The

void growth rate obeys the volumetric plastic strain rate relation

f=QA-f)trdP )
with nucleation neglected. Here tr dP implies trace of the plastic deformation rate dP.

Our finite element simulations are performed using the open source 3D finite element code

WARP3D. We adopt the material parameters % = 0.004, v = 0.3, N = 0.05 for all simulations,

which resemble the mechanical properties of Mg alloy. The porous FPZ for our two-scale
porosity simulations consists of two distinct size-scales of voids. Smaller-scale voids have fixed
initial porosities of f;, = 0.005, and are termed as the background porosity. The percentage
proportion of randomly-distributed larger-scale voids in the process zone is denoted by «; the
porosity of each larger-scale void is 8 times larger than the smaller-scale void, i.e. f, = 0.0058.
Thus, @ = 0 or f = 1 infers the absence of larger-scale voids, while « = 10 infers that 10% of
the total number of cell elements within the diffuse FPZ have a porosity of f, = 0.0054 while
the remaining 90% of the cell elements have a background porosity of f, = 0.005. The void
growth process is described by (2) and (3). The location of the current crack-tip is operationally
defined at a porosity of fi;, = 0.1. When the porosity of an element f reaches the critical void
volume fraction f. = 0.2, an element extinction procedure of WARP3D is invoked to remove the

cell element and to allow crack growth.

In our simulations, both the larger-scale and smaller-scale voids are modeled to be pre-
existing in the AM metal. In reality, only the larger-scale voids are pre-existing, and originate
from gas entrapment or unsintered powder particles [11-16] while smaller-scale intrinsic

background voids nucleate from cavities of reinforcement particles. However, prior studies have



shown that the overall response of the Gurson cell does not depend on whether the void is
present from the outset or nucleates later on, provided that the nucleation would occur at a stress
level below the maximum stress a cell can carry with an initial void present [22,42]. Since the
background voids can nucleate from inclusions at relatively low stress levels which are well
below the macroscopic stress that develops ahead of the crack front, it can therefore be assumed

that these background voids in the FPZ are present from the beginning.

Along the remote circular boundary (Fig. 1a), the elastic asymptotic in-plane displacement

fields

1+v

u,(R,0) = K’T —n(3 —4v — cosH)cosg

u,(R,0) = K’T ;(3 —4v — cosH)sing 4)

are prescribed under plane strain conditions, where R? = x? + xZ and 6 = tan™!(x,/x;) for
nodes on the remote boundary. For the crack geometry in this study, the energy release rate or J-

integral is related to the mode I stress intensity factor K; by

1-v?
E

] = KIZ (5)

To verify that small-scale yielding condition is satisfied, we compute the J-integral on several
contours around the crack using domain integral method at various loading stages [43]. The
domain integral values were in good agreement with the value given in (5) for the prescribed

value of K;.



2.2 Nonlinear field projection method (FPM)

As aforementioned, cohesive zone laws provide a homogenized view of the crack-tip fracture
processes. One promising method to identify the crack-tip cohesive zone relations from elastic
far-fields is the inverse solution developed by Hong and Kim [44], which utilizes the path-
independent interaction J-integral applied to an eigenfunction expansion of a cohesive crack-tip
field in an isotropic, homogeneous elastic solid. This field projection method (FPM) provides a
systematic way of uncovering the shape of the cohesive zone laws governed by different
micromechanical fracture processes. Several different forms of the FPM have been developed
[27-30,45-48], with some utilizing the principle of virtual work in place of interaction J-integrals

[45-48].

While the FPM is applicable to linear elastic materials, the plastic zone size will be
considerably larger in the presence of a diffuse process zone with two size-scales of voids. This
plastic dissipation contributes to the much higher steady-state versus fracture initiation
toughness. In order to capture the cohesive zone law associated with cracking initiation rather
than steady-state crack growth, i.e. one where the cohesive zone law does not explicitly include
the contribution of the background plastic dissipation, we adopt a nonlinear FPM to reconstruct
the equivalent cohesive zone law in an elasto-plastic medium [31]. Specifically, the approach
inversely reconstructs the equivalent unknown tractions along dR; centered about x, = 0 (solid
lines, Fig. 1b), from the known stress and displacement fields S[o;;, u;] along AR, (dashed lines,
Fig. 1b) taken within the elasto-plastic region surrounding the process zone. The approach
utilizes the Maxwell-Betti reciprocal theorem with a reciprocity gap Jr to account for nonlinear

(elasto-plastic) deformation of the material

faRl aunlﬁ]dS + faRz O'Unlﬁjds = ]R + faRl 6Unlu]d5 + faRz 6Unlu]d5 (6)



where n; is the outward normal vector to the boundary dR = dR; + dR,, and S[6; i 1] is the
linear elastic fields of an auxiliary body with the same (E, v) as the elastic properties of the real

body. We express the unknown cohesive tractions t; = o;;n; along IR, as a Fourier series

2kmx,
L

2kmx,

: (7)

tilor, = Y k=14 sin + Y=o By cos

where L = 117D is the length of the domain encompassing the 117 Gurson cell elements, k is

the wave number, and A%, and B}, are the Fourier coefficients to be determined.

We use the analytical auxiliary (virtual) field proposed in Chew [31] which has traction free
boundary conditions (6;;n; = 0) and non-zero virtual displacements (ii; # 0) along dR;. Then,

(6) reduces to
faRl tiﬁidS = ]R + faRz(ﬁijniuj - aunlﬁ])dS (8)

For a linear elastic material, J; = 0, and we can solve for the unknown Fourier coefficients
(A%, BL) by substituting (7) in (8) to obtain the cohesive tractions. For an elasto-plastic
background material, however, Jp # 0 and has to be determined iteratively through a self-
consistent procedure detailed in [31]. Once a converged cohesive traction t,(x;) has been
established (t;~0 under K; loading), we can then directly obtain the corresponding cohesive
separations &,(x;) = 2u,(x;). Note that this (t,,d,) relationship is the equivalent crack-tip
cohesive zone law representing the diffuse porous process zone in an elasto-plastic surrounding
body, and does not include the contribution of background plastic dissipation. As schematically
shown in Fig. 1c, the reconstructed cohesive zone law can be introduced in place of the process
zone in an elasto-plastic medium to simulate the full transition from fracture initiation to steady-

state toughness. Because this inverse method solution to reconstruct the crack-tip cohesive zone



law is sensitive to numerical errors, we implement a highly refined mesh along R, to increase
the resolution of the measured (al- s uj) as shown by the close-up view of the finite element mesh

in Fig. 1d.
3. Results
3.1 Uniformly porous process zone

The diffuse fracture process zone (FPZ) consists of several rows of porous cell elements.
This allows the crack to propagate freely within the FPZ, and is distinct from prior crack growth
studies that simplify damage process modeling by confining crack growth to a narrow FPZ viz. a
single row of porous cell elements ahead of the crack [32,34,35]. Figure 2a shows the fracture
resistance curves J/(a,D) for crack advance Aa/D within a diffuse versus narrow FPZ. Each
cell element within the process zone has the same initial porosity of f, = 0.005 which resembles
the void fractions for nucleated cavities in metals [32]. The initial crack growth within both
process zones is characterized by a rapid increase in J/(o,D), but the diffuse FPZ exhibits a
nearly two-fold higher steady-state fracture toughness s at Aa = 5D; the J, steadily increases
with Aa, indicating continued toughening in the presence of a diffuse FPZ. To validate our
numerical calculations, we consider the mechanical properties of Mg (E = 38 to 120 GPa; g, =
21 to 460 MPa), which are similar to the parameters adopted in our simulation model. For the
typical material parameters of E = 50 GPa, v = 0.3, g, = 200 MPa, with D = ~12 pm (order
of the maximum particulate size) for Mg alloy, the fracture toughness /| = 204D to 30,D for
crack growth within the diffuse FPZ in Fig. 2a translates to 4.8-7.2 k]J/m? which is close to the

reported fracture toughness of 5.6-7.8 k]/m? for Mg alloy [49].
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To provide a complete picture of the fracture process within the narrow and diffuse FPZ, we
compare in Fig. 2b and 2c the evolution of the sequence of voiding f and mean stress g,,/0,
along x,/D =0, at Aa = 20,40 and 60D. Observe that the porosity evolution for both the
narrow and diffuse process zones are almost identical, since the crack in both FPZs grows
symmetrically along the initial crack path by a void-by-void mechanism. High stress
concentrations at the crack-tip, corresponding to the peak o,,, drives the rapid increase in f to
reach f. = 0.2 where the cell element is rendered extinct. The rapid and sequential voiding result
in significant stress relaxation, and shift the peak o, forward, thus advancing the crack.
Interestingly, the post-peak o, distributions are consistently higher with a diffuse FPZ, which is
indicative of a larger damage extent ahead of the crack and contributes to the two-fold higher /¢

in Fig. 2a.

Figure 3a and 3b shows the converged traction t, /o, and separation &, /D distributions along
x,/D = 0 of the diffuse FPZ. These reconstructed traction and separation distributions (solid
lines) from nonlinear FPM, as outlined in Section 2.2, are in relatively good agreement with
those from direct FEM calculations taken along the crack front (symbols). Figure 3¢ shows the
corresponding traction-separation relationship, constituting the crack-tip cohesive zone law. At
Aa = 10D, the field-projected t, tractions are non-zero behind the crack at x; /D = 0, because
of the periodic boundary assumption of the Fourier series in (7); this boundary error diminishes
with crack length. Convergence of the cohesive zone law by nonlinear FPM is achieved at Aa =

20D, and a similar (t,, §,) relationship is obtained at Aa = 55D.
3.2 Two-scale porosity effects on micromechanics of cracking

The diffuse FPZ with uniform porosity of fy = 0.005 provides a baseline understanding of

crack growth in a homogeneous material relatively free of larger-scale defects, such as metals
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and alloys produced by traditional manufacturing processes. In the following, we introduce an
inhomogeneous distribution of larger-scale defects, as quantified by two parameters: f denoting
the porosity of the larger-scale voids relative to a background porosity of f, = 0.005, and «
denoting the percentage proportion of these larger-scale voids in the diffuse FPZ. Here, we
consider the range of a from 0.5 to 10 and £ from 1 to 10, with the higher spectrum resembling
larger-scale defects formed by unsintered powder in additively-manufactured metals. Because
the contributions of the larger-scale voids to the fracture behavior will be highly statistical, we
will use the same random seed in our implementation, such that the location of larger-scale voids
in an FPZ with high a will encompass that in an FPZ with a smaller a. Figure 4 displays the
effects of @ and S on the fracture resistance curves. Observe that larger-scale voids with § = 1.5
do not significantly change J/(o,D), even at high percentage proportions of @ = 10. Increasing
the porosity of the larger-scale void to fo = 0.025 or 0.05, represented by f = 5 or 10, however,
significantly decreases the fracture toughness across all @ > 1. These results suggest that the
mere presence of larger size-scale defects will significantly reduce the overall fracture toughness,
provided these defects are considerably larger than the background porosity such as in

additively-manufactured metals [11-16].

Figure 5 depicts the porosity distributions and fracture paths for the diffuse process zones
with varying a and . For each (a,f) pair, we include contours of the porosity distributions at
three different Aa/D to illustrate the cracking sequence. At f = 1.5, the crack remains straight
with voiding confined to a narrow damage zone ahead of the crack. At f = 5, the crack path is
now influenced by the presence of the larger-scale voids. While the crack remains relatively
straight when there are few larger voids at @ = 1, we start to see the effects of the larger-scale

voids in controlling the crack path at @ = 3 and 5. Unconnected voiding regions nucleating from
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larger-scale voids near the crack-tip now result in the formation of multiple damage zones, which
eventually link up with the main crack. At @ = 10, the proportion of larger-scale voids is now
sufficient to allow multiple cracks initiating from high porosity regimes in the FPZ to grow
somewhat independently, before coalescing with the main crack. This mechanism becomes
dominant across all a values at f = 10, where multiple unconnected damage zones are formed

to cause significant undulations in the crack path.

Because of the undulating crack paths for varying (a, 8), the traction distributions cannot be
directly ascertained from finite element measurements of o,, distributions along x, = 0. Instead,
the nonlinear FPM effectively homogenizes the damage within the diffuse FPZ to an equivalent
traction distribution in a crack-tip cohesive zone binding two elasto-plastic materials together.
Figure 6 shows the reconstructed t, tractions, taken at Aa/D = 25, at which point the cohesive
zone becomes fully developed (i.e. cohesive tractions drop to zero along x;/D). Direct
measurements of the t, tractions (symbols) along x, = 0 by FEM are in good agreement with
the reconstructed tractions from nonlinear FPM in the post-peak regime (Aa/D > 25). However,
these tractions by FEM display significant fluctuations within the cohesive zone (Aa/D < 25),

which are effectively averaged out by nonlinear FPM.

We show in Fig. 7 the equivalent crack-tip cohesive zone laws by nonlinear FPM for diffuse
process zones with varying (a, ). Results consistently show that the peak tractions, which
reside close to the current crack-tip (fy;, = 0.1), are reached during early separation. The
extracted cohesive zone law for the dual size-scale porous process zone therefore resembles a
linear or slightly concaving traction-separation law. Observe that increasing @ and/or f# generally
decreases the cohesive energy, by reducing both the peak traction as well as the critical
separation §, in Fig. lc. At f = 1.5, the 50% higher porosity of the larger-scale voids do not
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significantly change the peak traction across all a. The effects of @ become more pronounced for
[ = 5: the peak traction decreases from 3.10, to 2.60, as a increases from 1 to 3 but saturates
thereafter, while §, proportionally decreases with increase in @. When the variation in void
porosity becomes an order of magnitude higher at f = 10, the traction-separation relationship
does not significantly change beyond a = 3, which suggests saturation in the effects of the
larger-scale voids on the cracking behavior. We remark that the initial drop in peak cohesive
tractions with increase in « for § = 5 and 10 (Fig. 7b and 7c¢) leads to significant reduction in the
corresponding steady-state fracture toughness (Fig. 4b and 4c). This trend is in agreement with
studies by Hutchinson and Evans [50] which show that small changes to the peak cohesive

strength with values of ~30, can cause dramatic changes to the steady-state fracture toughness.

3.3 Two-scale porosity effects on statistical fracture toughness

Because the fracture toughness maybe sensitive to the exact location of the larger-scale voids
with respect to the growing crack, we perform 10 independent simulation runs with different
random seeds for each («, ) pair. The symbols in Fig. 8a as well as the contour plot in Fig. 8b
denote the average steady-state fracture toughness [y, values from these runs, as a function of
(a, B). We also show as error bars in Fig. 8a as well as the contour plot in Fig. 8c the standard
errors in Jg associated with these simulation runs. Unsurprisingly, the FPZ with f = 1.5, which
is close to being uniformly porous, has the highest average J,;. However, increasing a for such a
process zone can in fact increase the toughness, which is counterintuitive and clearly relates to
the location of the larger-scale void with respect to the crack path. The presence of a larger-scale
void directly ahead of the crack, for example, would accelerate the void coalescence process with
the crack-tip and lower J, while the larger-scale voids in the vicinity of, but not along, the

initial crack path can instead cause deviations in the crack paths to increase Jg¢. Increasing f
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generally lowers /¢, though the effects become negligible beyond f > 5, as seen by the similar
average /¢, values for f = 5 and 10 with the same a. For f > 2, the initial increase in a from 1
to 4 significantly decreases [y, but o, remains unchanged beyond this point. These results
suggest a limiting effect of the size () and number (a) of larger-scale voids on the fracture

toughness.

There are a number of exceptions to the general trends in the relationship between Ji, and
(a, P) detailed above, specifically at « = § = 3 where a higher than expected J;; comparable to
a =3, =2 is obtained. Close examination of the statistical fluctuations in Ji; also show
unusually high standard errors at « = = 3 (Fig. 8c), indicating that the fracture resistance is
highly sensitive to the location of the larger-scale voids with respect to the growing crack.
Higher than expected J,, is also seen at @ = 2, § = 8, though not at the same extentas ¢ = f§ =
3. To understand the statistical effects, we show in Fig. 9a the fracture resistance curves for all
10 independent simulation runs with ¢ = f = 3. Observe that the fracture resistance spans
several-folds: 1 < J/(0yD) < 4. Figure 9b and 9c shows the cracking progression and porosity
distribution for the FPZ with the maximum (seed 5) and minimum fracture toughness (seed 6).
The toughening mechanism for the former (seed 5) is solely attributed to the unique distribution
of these larger-scale voids. During initial crack growth (Aa/D = 5), one of the larger-scale voids
strategically located at ~60° below the crack-tip is caught within the active plastic zone and
grows rapidly. This cavitation process dissipates significant amount of energy, and shields the
crack-tip. The reduced stress concentration at the crack-tip leads to a continuously increasing
fracture resistance up to Aa/D = 8. At this juncture, the crack-tip shielding allows high
hydrostatic stresses (g,,) to develop further ahead of the crack, which triggers the cavitation of

two larger-scale voids in the vicinity to form multiple damage zones akin to that for a
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constrained ductile film [33,36,37]. These larger-scale voids grow and coalesce with the
neighboring background voids to form a new micro-crack at Aa/D = 23 which is unconnected
to the main crack. The interaction between the micro-crack and the main crack in turn causes
ligament thinning and eventual coalescence. In contrast, the low toughness FPZ (seed 6) has a
cluster of 4 large voids located within ~7D of the initial crack-tip. Rapid growth and
coalescence of these voids with the crack-tip leads to rapid propagation of the crack at low
J/(g¢D) to form a contiguous damage zone. Statistically, seed 5 constitutes a rare event, since
majority of the Js; values in Fig. 9a for our simulation runs (including seed 6) fluctuate around

1.50,D.

4. Discussions and Conclusion

The interaction between dual size-scale voids and the effects on the crack path and overall
fracture resistance have significant implications for additively-manufactured (AM) metals
processed through direct metal laser sintering (DMLS). This 3D printing technique uses lasers to
selectively melt ultra-thin layers of deposited metallic powder in a layer-by-layer fashion, until
the build is complete [51]. Such AM metals by DMLS can contain a distribution of void sizes,
~20-40 pm in diameter [52], which are either gas entrapment voids or voids originating from
unsintered powder particles [11-16]. These larger-scale voids are in addition to the smaller-scale
background porosity seen on postmortem fracture surfaces of both AM and conventional metals.
The background porosity typically originates from nucleated cavities of reinforcement

particulates, such as MnS particles in steel which have diameters ranging from ~2-12 pm [53].

While the uniaxial strength properties of AM metals are comparable to conventional metals
of the same type [15], the fracture and fatigue response behavior are highly statistical. In a batch
of AM Ti6Al4V samples produced under the same processing conditions, for example, certain
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number of these samples exhibited good fatigue life, while others experienced catastrophic
failure during early load cycling [52]. The fracture surfaces of these groups of samples reveal
similar level of larger-scale void porosity, though the presence of clusters of larger-scale voids
close to the initial crack-front was suspected to be the reason for the premature failure [52]. Our
results appear to support this experimental observation. In a real material, the distance from the
crack tip to the larger-scale voids will vary from one position to another along the crack front,
but the parameter of importance is the average location of these voids relative to the crack front.
Accordingly, the porosities in our 2D analysis represent the average through-thickness porosities
in that of a real sample. The smaller-scale voids are uniformly distributed within the sample, and
have the same average background porosity. The larger-scale voids, however, are more sparsely
distributed and the locations of these larger-scale voids in our 2D analysis represent the mean
positions with porosities that are averaged through the thickness. While increasing the size (f)
and quantity (a) of these larger-scale voids relative to the smaller-scale background porosity
generally decreases the fracture toughness, the effects of (S, @) can be diminished in some
instances or even reversed in other instances to increase the fracture toughness. This is apparent
for FPZs with a = § = 3 where unusually high average fracture toughness values, along with
large statistical variations in toughness, are observed (Fig. 8a and 9a). The presence of a cluster
of larger-scale voids in the vicinity of the initial crack-tip, in particular, facilitates the void link
up process and results in low toughness (Fig. 9¢). However, the presence of larger-scale voids
within the active plastic zone of the crack-tip can shield the crack-tip and induce the
development of multiple damage zones nucleating at larger-scale voids some distances from the
crack-tip (Fig. 9b). Our results show that such damage mechanisms can improve fracture

toughness by four-folds.
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The measured fracture toughness J/(g,D) for mode I crack growth within the various FPZs
have combined contributions from background plasticity, as well as void growth and coalescence
mechanisms operative within the porous FPZs. We delineate these contributions through a
nonlinear FPM [31] to reconstruct an equivalent crack-tip cohesive zone law operating within an
elasto-plastic background material, as schematically shown in Fig. 1¢. The micromechanical void
growth and coalescence mechanics operative within the diffuse FPZ are homogenized as a
cohesive zone traction-separation law, and the resulting cohesive energy [, is the associated
fracture toughness contribution; J¢, — Iy can thus be delineated as the approximate contribution
from background plasticity [32]. We find that [)//;; for the cohesive zone laws in Fig. 7
generally ranges from 0.4-0.6 for the various (f,«) parameters, suggesting almost equal
contributions from both background plasticity and crack-growth micromechanics within the
process zone. Interestingly, this extracted value of [, from field projection is consistently
several-folds higher than the fracture initiation toughness value of J/(gyD) = ~0.3 across the
various ([, @) parameters in Fig. 4. This discrepancy arises because the extraction of the
cohesive zone law from field projection is conducted during steady-state cracking; the stress
fields associated with this crack propagation phase is clearly different from those associated with
cracking initiation conditions, which modifies the rate of growth and coalescence of damage.
This discrepancy in I}, suggests that some evolution of the cohesive parameters from crack
initiation to propagation should ideally be considered to account for this stress state evolution

[54].

The ductile fracture of a conventional metal can be modeled with a uniformly porous FPZ,
i.e. a =f =1, since the pores nucleate only from a single size-scale of inclusions or

particulates; the fracture process can thus be described by a single cohesive zone law. In AM
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metals, however, our results demonstrate that the fracture process is highly-sensitive to the
relative size, proportion, and location of larger-scale voids statistically distributed within the
diffuse process zone. As a result, the cohesive strength, cohesive energy, as well as functional
form of the cohesive zone law, are strongly dependent on the dual void size-scales, which
introduces a size-effect into the homogenized traction-separation relationship. Thus, AM metals
of the same type may have different cohesive zone laws, as shown in Fig. 7, depending on the
relative size of the larger-scale voids and the specifics of how these larger-scale voids are

distributed.

We remark that the nonlinear FPM adopted in this paper [31] provides a bridge between
detailed micromechanical damage modeling with Gurson cell elements and the crack-tip
cohesive zone law. While modeling the process zone with Gurson cells provides detailed and
realistic insights into the effects of the larger-scale voids on crack deflection and advancement,
use of the Gurson cell introduces a physical length-scale parameter D representing the spacing
between voids. This results in a potential scaling issue, since the minimum mesh size in the finite
element model will be dictated by D. In contrast, no such scaling issues exists for the
reconstructed crack-tip cohesive zone law by nonlinear FPM, which is suitable for large-scale
computations [54] since it accounts for the dissipative mechanisms in a homogenized fashion

(i.e. effects of D, f,, etc. are smeared out).

In summary, we show that the presence of a population of voids considerably larger than the
background porosity associated with conventional ductile fracture process can significantly
affect the fracture toughness, crack paths, as well as the crack-tip cohesive zone laws. These
findings have significant implications for AM metals where larger-scale voids are present. While

increasing the size and number fractions of these larger-scale voids tend to lower the fracture
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resistance, the results are highly statistical and depend on the exact location of these voids with
respect to the crack-tip. In particular, we demonstrate that strategic placement of larger-scale
voids within the active plastic zone can induce crack-tip shielding and trigger the formation of
multiple, unconnected damage zones, both of which contribute to a four-fold increase in

toughness.
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Figure 1: (a) Schematic of a small-scale yielding model with a porous process zone embedded
within an elasto-plastic background material. (b,c¢) Porous process zone represented by several
rows of void-containing Gurson cell elements (b); dashed lines denote the integration domain for
field projection of the equivalent crack-tip cohesive tractions in a non-porous elasto-plastic
medium for construction of the crack-tip cohesive zone laws (¢). (d) Close-up view of the finite
element mesh, with refined mesh along the integration domain for nonlinear field projection.
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Figure 2: (a) Crack growth resistance curves, as well as (b) porosity and (¢) mean stress
distributions along x, = 0 for crack growth within a diffuse (solid lines) and narrow (dashed
lines) fracture process zone (FPZ) with uniform porosity.
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Figure 3: Equivalent traction (a) and separation (b) distributions along x, =0 and
corresponding cohesive zone laws (¢) for crack growth within a diffuse FPZ with uniform
porosity. Solid lines are from nonlinear field projection; symbols are from finite element
calculations.
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Figure 4: Fracture resistance curves for crack growth within diffuse FPZs containing two size-
scales of voids; f and a denote the relative porosity and percentage proportion of the larger-
scale voids.
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from finite element calculations.
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