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Abstract 

Microstructures with two distinct size-scales of voids are commonplace in additively-

manufactured metals. The smaller-scale voids nucleate from inclusions within the metal, while 

the larger-scale voids originate from unsintered powder particles. In this work, we study the 

interaction between these two size-scales of voids ahead of a crack, and the influence on the 

ductile fracture process. We adopt a finite element model of a centerline crack subjected to 

small-scale yielding conditions. The diffuse process zone ahead of the crack is modeled by 

several rows of void-containing cell elements governed by a Gurson porous material relation. 

Results show that the larger-scale voids near the initial crack tip generally reduces the fracture 

toughness by facilitating void coalescence with the crack-tip to form a single contiguous damage 

zone. However, strategic placements of these larger-scale voids within the active plastic zone of 

the crack-tip can promote crack-tip shielding, leading to diffused damage in the form of multiple 

unconnected damage zones, and ultimately, a several-fold improvement in toughness. We 

quantify the fracture behavior, as a function of the relative size and proportion of larger-scale 

voids in the diffuse process zone, by reconstructing the equivalent crack-tip cohesive zone laws 

in an elasto-plastic medium via nonlinear field projection. We demonstrate that the cohesive 

strength, cohesive energy, as well as the functional form of the cohesive zone law, are strongly 
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dependent on the dual void size-scales, which introduces a size-effect into the homogenized 

traction-separation relationship.  

Keywords: Additively-manufactured metals; void interaction; crack growth; fracture; 

micromechanics modeling  

1. Introduction 

 All natural and engineering materials contain voids at some length-scales which control the 

mechanical properties [1,2]. Even in highly densified materials, defects in the form of voids still 

dominate the failure process and limit structural design. Often, materials that fail by ductile 

fracture contain voids of different size-scales. In metallic alloys, for example, the primary voids 

first nucleate from inclusions (e.g. MnS and carbide inclusions in steel) at low stress levels 

during early stage loading [3]. When these primary voids grow and get closer, high local stress 

triaxiliaty and local plastic strains develop in the ligament between these enlarged primary voids, 

and induce the nucleation of secondary voids to form a two-scale porosity structure. Void 

interaction studies show that these secondary voids experience an elevated local stress field 

compared to the average stress in the material, due to local zones of high stress concentration 

emitted by the primary voids [4-6]. Compared to the primary voids, these secondary voids have 

substantially higher growth rates at average stresses below the cavitation instability level [7,8]. 

These detailed understanding of the synergistic interactions between voids of different scales 

have led to more accurate micromechanical modeling of the void coalescence behavior [9,10].  

 The coexistence of primary and secondary voids in conventional metallic alloys occurs only 

during the initiation of void coalescence after significant plastic deformation. In additively-

manufactured (AM) metals, however, two different size-scales of voids can coexist even prior to 

significant plastic deformation. Larger-scale voids (~20-40 μm in diameter) are pre-existing in 
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the AM metal and originate from gas entrapment or unsintered powder particles [11-16], while 

smaller-scale intrinsic voids (~2-12 μm in diameter) can also nucleate from the inclusions at low 

stress levels and are akin to those in conventional metals. To-date, the effects of these 

hierarchical scales of pre-existing voids on the crack path and ultimately fracture toughness are 

still not well established.  

 The micromechanical process of void growth and coalescence occurs within a process zone 

ahead of the crack. A widely adopted approach to link this fracture process to the macroscopic 

failure behavior is to model the process zone with an equivalent cohesive zone law. This 

constitutive law describes the relationship between cohesive-zone tractions in equilibrium with 

the stress fields of the surrounding body and the cohesive-zone separations compatible with the 

deformation fields of the surrounding body [17,18]. Ideally, the cohesive zone traction-

separation relationship embodies the entire micromechanical void growth and coalescence 

process within the process zone, but its exact functional form, particularly in the presence of 

multiple interacting voids of different size-scales, is unknown. Traditionally, the functional form 

of the cohesive zone law (e.g. exponential, trapezoidal, bilinear, etc.) is assumed a priori, and the 

cohesive strength (peak traction in cohesive zone law) and cohesive energy (area bounded by 

cohesive zone law) are treated as the two important material parameters to describe macroscopic 

fracture behavior, which are calibrated against measurement data [19-22]. Studies, however, 

have shown that the functional form of the cohesive zone law could be indicative of the actual 

micromechanical failure process [23-26]. This has led to recent efforts adopting inverse methods 

to reconstruct the exact functional form of the cohesive zone laws governed by different 

micromechanical processes in both elastic and elasto-plastic materials [27-31].  
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 The functional form of the cohesive zone law, together with the cohesive strength and 

energy, provides a homogenized view of the fracture process but cannot offer detailed insights 

into the actual failure micromechanics. Xia and Shih simplified the ductile fracture process by 

confining damage to a single row of void-containing computational cells ahead of the crack-tip 

to represent the fracture process zone [32]. This cell-element approach is capable of reproducing 

the details of damage dissipation, i.e. void nucleation, growth, and coalescence, within the 

process zone to predict monotonic or even fatigue crack growth [33-35]. Studies have also 

implemented discrete voids ahead of the crack, in place of computational cells, to detail with 

high-resolution the void interaction effects within a variety of materials [30,36-38].  

 In this work, we investigate the cracking patterns and void interaction mechanisms in a 

ductile media resembling AM metals containing two size-scales of pre-existing voids, and 

subjected to small-scale yielding conditions. In the presence of a non-uniform distribution of 

voids of different size-scales, damage becomes more diffuse and the crack path will deviate 

accordingly, which precludes the use of a single row of void-containing cells to represent the 

fracture process zone (FPZ) [10,32,38]. In Section 2, we detail the modeling of this broader 

diffuse FPZ ahead of the crack by implementing several rows of void-containing computational 

cells with random distributions of initial porosities of two distinct size-scales. This allows the 

(undulating) crack to propagate naturally within the inhomogeneous process zone. We also 

introduce an inverse nonlinear field projection method (FPM) to homogenize the damage process 

with an equivalent crack-tip cohesive zone law [31]. In Section 3, we quantify the relative void 

size and void distribution effects on the crack-tip fracture process, crack path, and cohesive 

behavior. We follow with a discussion in Section 4, and conclude with a summary. 
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2.  Modeling 

2.1 Boundary value problem 

 Our small-scale yielding model consists of a homogeneous material with a semi-infinite 

crack loaded remotely by mode I K-field loading under plane strain conditions (Fig. 1a). Outside 

of the FPZ, we assume an elasto-plastic background material with Young’s modulus 𝐸𝐸 and 

Poisson’s ratio 𝜈𝜈 and with uniaxial tensile stress-strain behavior described by the true stress-

logarithmic strain relation 

𝜀𝜀 = 𝜎𝜎
𝐸𝐸

 ,𝜎𝜎 < 𝜎𝜎0         

𝜀𝜀 = 𝜎𝜎0
𝐸𝐸

( 𝜎𝜎
𝜎𝜎0

)1/𝑁𝑁 ,𝜎𝜎 ≥ 𝜎𝜎0          (1)                                                                                                                       

where 𝜎𝜎0 is the initial yield stress, and 𝑁𝑁 the strain hardening exponent. Generalization to 

multiaxial stress states assumes isotropic hardening and von Mises yield condition.  

 We model the porous FPZ with 17 rows of uniformly sized cell elements ahead of the initial 

crack-tip, each row of 117 cell elements (Fig. 1b and 1d). Each cell, the size of 𝐷𝐷 × 𝐷𝐷, contains a 

void of initial volume fraction 𝑓𝑓0. The behavior of a cell element is governed by the Gurson flow 

potential [39] 

Φ = (𝜎𝜎𝑒𝑒
𝜎𝜎�

)2 + 2𝑞𝑞1𝑓𝑓cosh(3𝑞𝑞2𝜎𝜎𝑚𝑚
2𝜎𝜎�

)− (1 + (𝑞𝑞1𝑓𝑓)2) = 0                         (2) 

where 𝜎𝜎𝑒𝑒 denotes the macroscopic effective stress, 𝜎𝜎𝑚𝑚 the mean stress, 𝜎𝜎� an equivalent tensile 

flow stress representing the actual microscopic stress-state in the matrix, and 𝑓𝑓 is the current 

void volume fraction. Parameters 𝑞𝑞1 and 𝑞𝑞2 were introduced by Tvergaard [40] to improve 

model predictions for periodic arrays of cylindrical and spherical voids, and are taken to be 1.48 
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and 1.013 respectively [41]. Note that (2) reduces to von Mises yield criterion when 𝑓𝑓 = 0. The 

void growth rate obeys the volumetric plastic strain rate relation 

𝑓𝑓̇ = (1− 𝑓𝑓) tr 𝐝𝐝p        (3) 

with nucleation neglected. Here tr 𝐝𝐝p implies trace of the plastic deformation rate 𝐝𝐝p.  

Our finite element simulations are performed using the open source 3D finite element code 

WARP3D. We adopt the material parameters 𝜎𝜎0
𝐸𝐸

= 0.004, 𝜐𝜐 = 0.3, 𝑁𝑁 = 0.05 for all simulations, 

which resemble the mechanical properties of Mg alloy. The porous FPZ for our two-scale 

porosity simulations consists of two distinct size-scales of voids. Smaller-scale voids have fixed 

initial porosities of 𝑓𝑓0 = 0.005, and are termed as the background porosity. The percentage 

proportion of randomly-distributed larger-scale voids in the process zone is denoted by 𝛼𝛼; the 

porosity of each larger-scale void is 𝛽𝛽 times larger than the smaller-scale void, i.e. 𝑓𝑓0 = 0.005𝛽𝛽. 

Thus, 𝛼𝛼 = 0 or 𝛽𝛽 = 1 infers the absence of larger-scale voids, while 𝛼𝛼 = 10 infers that 10% of 

the total number of cell elements within the diffuse FPZ have a porosity of 𝑓𝑓0 = 0.005𝛽𝛽 while 

the remaining 90% of the cell elements have a background porosity of 𝑓𝑓0 = 0.005. The void 

growth process is described by (2) and (3). The location of the current crack-tip is operationally 

defined at a porosity of 𝑓𝑓tip = 0.1. When the porosity of an element 𝑓𝑓 reaches the critical void 

volume fraction 𝑓𝑓c = 0.2, an element extinction procedure of WARP3D is invoked to remove the 

cell element and to allow crack growth. 

In our simulations, both the larger-scale and smaller-scale voids are modeled to be pre-

existing in the AM metal. In reality, only the larger-scale voids are pre-existing, and originate 

from gas entrapment or unsintered powder particles [11-16] while smaller-scale intrinsic 

background voids nucleate from cavities of reinforcement particles. However, prior studies have 
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shown that the overall response of the Gurson cell does not depend on whether the void is 

present from the outset or nucleates later on, provided that the nucleation would occur at a stress 

level below the maximum stress a cell can carry with an initial void present [22,42]. Since the 

background voids can nucleate from inclusions at relatively low stress levels which are well 

below the macroscopic stress that develops ahead of the crack front, it can therefore be assumed 

that these background voids in the FPZ are present from the beginning.  

 Along the remote circular boundary (Fig. 1a), the elastic asymptotic in-plane displacement 

fields  

𝑢𝑢1(𝑅𝑅, 𝜃𝜃) = 𝐾𝐾𝐼𝐼
1+𝑣𝑣
𝐸𝐸
� 𝑅𝑅
2𝜋𝜋

(3− 4𝜐𝜐 − cos𝜃𝜃)cos 𝜃𝜃
2
      

𝑢𝑢2(𝑅𝑅,𝜃𝜃) = 𝐾𝐾𝐼𝐼
1+𝑣𝑣
𝐸𝐸
� 𝑅𝑅
2𝜋𝜋

(3− 4𝜐𝜐 − cos𝜃𝜃)sin 𝜃𝜃
2
             (4) 

are prescribed under plane strain conditions, where 𝑅𝑅2 = 𝑥𝑥12 + 𝑥𝑥22 and 𝜃𝜃 = tan−1(𝑥𝑥2/𝑥𝑥1) for 

nodes on the remote boundary. For the crack geometry in this study, the energy release rate or J-

integral is related to the mode I stress intensity factor 𝐾𝐾𝐼𝐼 by 

𝐽𝐽 = 1−𝑣𝑣2

𝐸𝐸
𝐾𝐾𝐼𝐼2                             (5) 

To verify that small-scale yielding condition is satisfied, we compute the J-integral on several 

contours around the crack using domain integral method at various loading stages [43]. The 

domain integral values were in good agreement with the value given in (5) for the prescribed 

value of 𝐾𝐾𝐼𝐼. 
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2.2 Nonlinear field projection method (FPM) 

 As aforementioned, cohesive zone laws provide a homogenized view of the crack-tip fracture 

processes. One promising method to identify the crack-tip cohesive zone relations from elastic 

far-fields is the inverse solution developed by Hong and Kim [44], which utilizes the path-

independent interaction J-integral applied to an eigenfunction expansion of a cohesive crack-tip 

field in an isotropic, homogeneous elastic solid. This field projection method (FPM) provides a 

systematic way of uncovering the shape of the cohesive zone laws governed by different 

micromechanical fracture processes. Several different forms of the FPM have been developed 

[27-30,45-48], with some utilizing the principle of virtual work in place of interaction J-integrals 

[45-48]. 

 While the FPM is applicable to linear elastic materials, the plastic zone size will be 

considerably larger in the presence of a diffuse process zone with two size-scales of voids. This 

plastic dissipation contributes to the much higher steady-state versus fracture initiation 

toughness. In order to capture the cohesive zone law associated with cracking initiation rather 

than steady-state crack growth, i.e. one where the cohesive zone law does not explicitly include 

the contribution of the background plastic dissipation, we adopt a nonlinear FPM to reconstruct 

the equivalent cohesive zone law in an elasto-plastic medium [31]. Specifically, the approach 

inversely reconstructs the equivalent unknown tractions along 𝜕𝜕𝜕𝜕1 centered about 𝑥𝑥2 = 0 (solid 

lines, Fig. 1b), from the known stress and displacement fields 𝑆𝑆[𝜎𝜎𝑖𝑖𝑖𝑖 ,𝑢𝑢𝑗𝑗]  along 𝜕𝜕𝜕𝜕2 (dashed lines, 

Fig. 1b) taken within the elasto-plastic region surrounding the process zone. The approach 

utilizes the Maxwell-Betti reciprocal theorem with a reciprocity gap 𝐽𝐽𝑅𝑅 to account for nonlinear 

(elasto-plastic) deformation of the material 

∫ 𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑢𝑢�𝑗𝑗𝑑𝑑𝑑𝑑 +𝜕𝜕𝜕𝜕1
∫ 𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑢𝑢�𝑗𝑗𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕2

= 𝐽𝐽𝑅𝑅 + ∫ 𝜎𝜎�𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑢𝑢𝑗𝑗𝑑𝑑𝑑𝑑 +𝜕𝜕𝜕𝜕1
∫ 𝜎𝜎�𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑢𝑢𝑗𝑗𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕2

   (6) 
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where 𝑛𝑛𝑖𝑖 is the outward normal vector to the boundary 𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕1 + 𝜕𝜕𝜕𝜕2, and 𝑆̂𝑆[𝜎𝜎�𝑖𝑖𝑖𝑖,𝑢𝑢�𝑗𝑗] is the 

linear elastic fields of an auxiliary body with the same (𝐸𝐸, 𝑣𝑣) as the elastic properties of the real 

body. We express the unknown cohesive tractions 𝑡𝑡𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛𝑗𝑗 along 𝜕𝜕𝜕𝜕1 as a Fourier series 

𝑡𝑡𝑖𝑖|𝜕𝜕𝜕𝜕1 = ∑ 𝐴𝐴𝑘𝑘𝑖𝑖𝑁𝑁
𝑘𝑘=1 sin 2𝑘𝑘𝑘𝑘𝑥𝑥1

𝐿𝐿
+ ∑ 𝐵𝐵𝑘𝑘𝑖𝑖𝑁𝑁

𝑘𝑘=0 cos 2𝑘𝑘𝑘𝑘𝑥𝑥1
𝐿𝐿

       (7) 

where 𝐿𝐿 = 117𝐷𝐷 is the length of the domain encompassing the 117 Gurson cell elements, 𝑘𝑘 is 

the wave number, and 𝐴𝐴𝑘𝑘𝑖𝑖  and 𝐵𝐵𝑘𝑘𝑖𝑖  are the Fourier coefficients to be determined.  

We use the analytical auxiliary (virtual) field proposed in Chew [31] which has traction free 

boundary conditions (𝜎𝜎�𝑖𝑖𝑗𝑗𝑛𝑛𝑖𝑖 = 0) and non-zero virtual displacements (𝑢𝑢�𝑗𝑗 ≠ 0) along 𝜕𝜕𝜕𝜕1. Then, 

(6) reduces to   

∫ 𝑡𝑡𝑖𝑖𝑢𝑢�𝑖𝑖𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕1
= 𝐽𝐽𝑅𝑅 + ∫ �𝜎𝜎�𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑢𝑢𝑗𝑗 − 𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑢𝑢�𝑗𝑗�𝑑𝑑𝑑𝑑𝜕𝜕𝜕𝜕2

                      (8) 

For a linear elastic material, 𝐽𝐽𝑅𝑅 = 0, and we can solve for the unknown Fourier coefficients 

(𝐴𝐴𝑘𝑘𝑖𝑖 ,𝐵𝐵𝑘𝑘𝑖𝑖 ) by substituting (7) in (8) to obtain the cohesive tractions. For an elasto-plastic 

background material, however, 𝐽𝐽𝑅𝑅 ≠ 0 and has to be determined iteratively through a self-

consistent procedure detailed in [31]. Once a converged cohesive traction 𝑡𝑡2(𝑥𝑥1) has been 

established (𝑡𝑡1~0 under 𝐾𝐾𝐼𝐼 loading), we can then directly obtain the corresponding cohesive 

separations 𝛿𝛿2(𝑥𝑥1) = 2𝑢𝑢2(𝑥𝑥1). Note that this (𝑡𝑡2, 𝛿𝛿2) relationship is the equivalent crack-tip 

cohesive zone law representing the diffuse porous process zone in an elasto-plastic surrounding 

body, and does not include the contribution of background plastic dissipation. As schematically 

shown in Fig. 1c, the reconstructed cohesive zone law can be introduced in place of the process 

zone in an elasto-plastic medium to simulate the full transition from fracture initiation to steady-

state toughness. Because this inverse method solution to reconstruct the crack-tip cohesive zone 
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law is sensitive to numerical errors, we implement a highly refined mesh along 𝜕𝜕𝑅𝑅2 to increase 

the resolution of the measured �𝜎𝜎𝑖𝑖𝑖𝑖,𝑢𝑢𝑗𝑗� as shown by the close-up view of the finite element mesh 

in Fig. 1d.  

3. Results  

3.1 Uniformly porous process zone 

 The diffuse fracture process zone (FPZ) consists of several rows of porous cell elements. 

This allows the crack to propagate freely within the FPZ, and is distinct from prior crack growth 

studies that simplify damage process modeling by confining crack growth to a narrow FPZ viz. a 

single row of porous cell elements ahead of the crack [32,34,35]. Figure 2a shows the fracture 

resistance curves 𝐽𝐽/(𝜎𝜎0𝐷𝐷) for crack advance ∆𝑎𝑎/𝐷𝐷  within a diffuse versus narrow FPZ. Each 

cell element within the process zone has the same initial porosity of 𝑓𝑓0 = 0.005 which resembles 

the void fractions for nucleated cavities in metals [32]. The initial crack growth within both 

process zones is characterized by a rapid increase in 𝐽𝐽/(𝜎𝜎0𝐷𝐷), but the diffuse FPZ exhibits a 

nearly two-fold higher steady-state fracture toughness 𝐽𝐽𝑠𝑠𝑠𝑠 at ∆𝑎𝑎 = 5𝐷𝐷; the 𝐽𝐽𝑠𝑠𝑠𝑠 steadily increases 

with ∆𝑎𝑎, indicating continued toughening in the presence of a diffuse FPZ. To validate our 

numerical calculations, we consider the mechanical properties of Mg (𝐸𝐸 = 38  to 120 GPa; 𝜎𝜎0 =

21 to 460 MPa), which are similar to the parameters adopted in our simulation model. For the 

typical material parameters of 𝐸𝐸 = 50 GPa, 𝑣𝑣 = 0.3, 𝜎𝜎0 = 200 MPa, with 𝐷𝐷 = ~12 μm (order 

of the maximum particulate size) for Mg alloy, the fracture toughness 𝐽𝐽 = 2𝜎𝜎0𝐷𝐷 to 3𝜎𝜎0𝐷𝐷 for 

crack growth within the diffuse FPZ in Fig. 2a translates to 4.8-7.2 kJ/m2 which is close to the 

reported fracture toughness of 5.6-7.8 kJ/m2 for Mg alloy [49].   
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 To provide a complete picture of the fracture process within the narrow and diffuse FPZ, we 

compare in Fig. 2b and 2c the evolution of the sequence of voiding 𝑓𝑓 and mean stress 𝜎𝜎𝑚𝑚/𝜎𝜎0 

along 𝑥𝑥2/𝐷𝐷 = 0, at ∆𝑎𝑎 = 20, 40 and 60𝐷𝐷. Observe that the porosity evolution for both the 

narrow and diffuse process zones are almost identical, since the crack in both FPZs grows 

symmetrically along the initial crack path by a void-by-void mechanism. High stress 

concentrations at the crack-tip, corresponding to the peak 𝜎𝜎𝑚𝑚, drives the rapid increase in 𝑓𝑓 to 

reach 𝑓𝑓c = 0.2 where the cell element is rendered extinct. The rapid and sequential voiding result 

in significant stress relaxation, and shift the peak 𝜎𝜎𝑚𝑚 forward, thus advancing the crack. 

Interestingly, the post-peak 𝜎𝜎𝑚𝑚 distributions are consistently higher with a diffuse FPZ, which is 

indicative of a larger damage extent ahead of the crack and contributes to the two-fold higher 𝐽𝐽𝑠𝑠𝑠𝑠 

in Fig. 2a. 

 Figure 3a and 3b shows the converged traction 𝑡𝑡2/𝜎𝜎0 and separation 𝛿𝛿2/𝐷𝐷 distributions along 

𝑥𝑥2/𝐷𝐷 = 0 of the diffuse FPZ. These reconstructed traction and separation distributions (solid 

lines) from nonlinear FPM, as outlined in Section 2.2, are in relatively good agreement with 

those from direct FEM calculations taken along the crack front (symbols). Figure 3c shows the 

corresponding traction-separation relationship, constituting the crack-tip cohesive zone law. At 

∆𝑎𝑎 = 10𝐷𝐷, the field-projected 𝑡𝑡2 tractions are non-zero behind the crack at 𝑥𝑥1/𝐷𝐷 = 0, because 

of the periodic boundary assumption of the Fourier series in (7); this boundary error diminishes 

with crack length. Convergence of the cohesive zone law by nonlinear FPM is achieved at ∆𝑎𝑎 =

20𝐷𝐷, and a similar (𝑡𝑡2, 𝛿𝛿2) relationship is obtained at ∆𝑎𝑎 = 55𝐷𝐷.  

3.2 Two-scale porosity effects on micromechanics of cracking 

 The diffuse FPZ with uniform porosity of 𝑓𝑓0 = 0.005 provides a baseline understanding of 

crack growth in a homogeneous material relatively free of larger-scale defects, such as metals 
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and alloys produced by traditional manufacturing processes. In the following, we introduce an 

inhomogeneous distribution of larger-scale defects, as quantified by two parameters: 𝛽𝛽 denoting 

the porosity of the larger-scale voids relative to a background porosity of 𝑓𝑓0 = 0.005, and 𝛼𝛼 

denoting the percentage proportion of these larger-scale voids in the diffuse FPZ. Here, we 

consider the range of 𝛼𝛼 from 0.5 to 10 and 𝛽𝛽 from 1 to 10, with the higher spectrum resembling 

larger-scale defects formed by unsintered powder in additively-manufactured metals. Because 

the contributions of the larger-scale voids to the fracture behavior will be highly statistical, we 

will use the same random seed in our implementation, such that the location of larger-scale voids 

in an FPZ with high 𝛼𝛼 will encompass that in an FPZ with a smaller 𝛼𝛼. Figure 4 displays the 

effects of 𝛼𝛼 and 𝛽𝛽 on the fracture resistance curves. Observe that larger-scale voids with 𝛽𝛽 = 1.5 

do not significantly change 𝐽𝐽/(𝜎𝜎0𝐷𝐷), even at high percentage proportions of 𝛼𝛼 = 10. Increasing 

the porosity of the larger-scale void to 𝑓𝑓0 = 0.025 or 0.05, represented by 𝛽𝛽 = 5 or 10, however, 

significantly decreases the fracture toughness across all 𝛼𝛼 > 1. These results suggest that the 

mere presence of larger size-scale defects will significantly reduce the overall fracture toughness, 

provided these defects are considerably larger than the background porosity such as in 

additively-manufactured metals [11-16].   

 Figure 5 depicts the porosity distributions and fracture paths for the diffuse process zones 

with varying 𝛼𝛼 and 𝛽𝛽. For each (𝛼𝛼,𝛽𝛽) pair, we include contours of the porosity distributions at 

three different ∆𝑎𝑎/𝐷𝐷 to illustrate the cracking sequence. At 𝛽𝛽 = 1.5, the crack remains straight 

with voiding confined to a narrow damage zone ahead of the crack. At 𝛽𝛽 = 5, the crack path is 

now influenced by the presence of the larger-scale voids. While the crack remains relatively 

straight when there are few larger voids at 𝛼𝛼 = 1, we start to see the effects of the larger-scale 

voids in controlling the crack path at 𝛼𝛼 = 3 and 5. Unconnected voiding regions nucleating from 
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larger-scale voids near the crack-tip now result in the formation of multiple damage zones, which 

eventually link up with the main crack. At 𝛼𝛼 = 10, the proportion of larger-scale voids is now 

sufficient to allow multiple cracks initiating from high porosity regimes in the FPZ to grow 

somewhat independently, before coalescing with the main crack. This mechanism becomes 

dominant across all 𝛼𝛼 values at 𝛽𝛽 = 10, where multiple unconnected damage zones are formed 

to cause significant undulations in the crack path. 

 Because of the undulating crack paths for varying (𝛼𝛼,𝛽𝛽), the traction distributions cannot be 

directly ascertained from finite element measurements of 𝜎𝜎22 distributions along 𝑥𝑥2 = 0. Instead, 

the nonlinear FPM effectively homogenizes the damage within the diffuse FPZ to an equivalent 

traction distribution in a crack-tip cohesive zone binding two elasto-plastic materials together. 

Figure 6 shows the reconstructed 𝑡𝑡2 tractions, taken at  ∆𝑎𝑎/𝐷𝐷 = 25, at which point the cohesive 

zone becomes fully developed (i.e. cohesive tractions drop to zero along 𝑥𝑥1/𝐷𝐷). Direct 

measurements of the 𝑡𝑡2 tractions (symbols) along 𝑥𝑥2 = 0 by FEM are in good agreement with 

the reconstructed tractions from nonlinear FPM in the post-peak regime (∆𝑎𝑎/𝐷𝐷 > 25). However, 

these tractions by FEM display significant fluctuations within the cohesive zone (∆𝑎𝑎/𝐷𝐷 < 25), 

which are effectively averaged out by nonlinear FPM.  

 We show in Fig. 7 the equivalent crack-tip cohesive zone laws by nonlinear FPM for diffuse 

process zones with varying (𝛼𝛼,𝛽𝛽). Results consistently show that the peak tractions, which 

reside close to the current crack-tip (𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡 = 0.1), are reached during early separation. The 

extracted cohesive zone law for the dual size-scale porous process zone therefore resembles a 

linear or slightly concaving traction-separation law. Observe that increasing 𝛼𝛼 and/or 𝛽𝛽 generally 

decreases the cohesive energy, by reducing both the peak traction as well as the critical 

separation 𝛿𝛿0 in Fig. 1c. At 𝛽𝛽 = 1.5, the 50% higher porosity of the larger-scale voids do not 
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significantly change the peak traction across all 𝛼𝛼. The effects of 𝛼𝛼 become more pronounced for 

𝛽𝛽 = 5: the peak traction decreases from 3.1𝜎𝜎0 to 2.6𝜎𝜎0 as 𝛼𝛼 increases from 1 to 3 but saturates 

thereafter, while 𝛿𝛿0 proportionally decreases with increase in 𝛼𝛼. When the variation in void 

porosity becomes an order of magnitude higher at 𝛽𝛽 = 10, the traction-separation relationship 

does not significantly change beyond 𝛼𝛼 = 3, which suggests saturation in the effects of the 

larger-scale voids on the cracking behavior. We remark that the initial drop in peak cohesive 

tractions with increase in 𝛼𝛼 for 𝛽𝛽 = 5 and 10 (Fig. 7b and 7c) leads to significant reduction in the 

corresponding steady-state fracture toughness (Fig. 4b and 4c). This trend is in agreement with 

studies by Hutchinson and Evans [50] which show that small changes to the peak cohesive 

strength with values of ~3𝜎𝜎0 can cause dramatic changes to the steady-state fracture toughness. 

3.3 Two-scale porosity effects on statistical fracture toughness 

 Because the fracture toughness maybe sensitive to the exact location of the larger-scale voids 

with respect to the growing crack, we perform 10 independent simulation runs with different 

random seeds for each (𝛼𝛼,𝛽𝛽) pair. The symbols in Fig. 8a as well as the contour plot in Fig. 8b 

denote the average steady-state fracture toughness 𝐽𝐽𝑠𝑠𝑠𝑠 values from these runs, as a function of 

(𝛼𝛼,𝛽𝛽). We also show as error bars in Fig. 8a as well as the contour plot in Fig. 8c the standard 

errors in 𝐽𝐽𝑠𝑠𝑠𝑠 associated with these simulation runs. Unsurprisingly, the FPZ with 𝛽𝛽 = 1.5, which 

is close to being uniformly porous, has the highest average 𝐽𝐽𝑠𝑠𝑠𝑠. However, increasing 𝛼𝛼 for such a 

process zone can in fact increase the toughness, which is counterintuitive and clearly relates to 

the location of the larger-scale void with respect to the crack path. The presence of a larger-scale 

void directly ahead of the crack, for example, would accelerate the void coalescence process with 

the crack-tip and lower 𝐽𝐽𝑠𝑠𝑠𝑠, while the larger-scale voids in the vicinity of, but not along, the 

initial crack path can instead cause deviations in the crack paths to increase 𝐽𝐽𝑠𝑠𝑠𝑠. Increasing 𝛽𝛽 
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generally lowers 𝐽𝐽𝑠𝑠𝑠𝑠, though the effects become negligible beyond 𝛽𝛽 > 5, as seen by the similar 

average 𝐽𝐽𝑠𝑠𝑠𝑠 values for 𝛽𝛽 = 5 and 10 with the same 𝛼𝛼. For 𝛽𝛽 ≥ 2, the initial increase in 𝛼𝛼 from 1 

to 4 significantly decreases 𝐽𝐽𝑠𝑠𝑠𝑠, but 𝐽𝐽𝑠𝑠𝑠𝑠 remains unchanged beyond this point. These results 

suggest a limiting effect of the size (𝛽𝛽) and number (𝛼𝛼) of larger-scale voids on the fracture 

toughness. 

 There are a number of exceptions to the general trends in the relationship between 𝐽𝐽𝑠𝑠𝑠𝑠 and 

(𝛼𝛼,𝛽𝛽) detailed above, specifically at 𝛼𝛼 = 𝛽𝛽 = 3 where a higher than expected 𝐽𝐽𝑠𝑠𝑠𝑠 comparable to 

𝛼𝛼 = 3,𝛽𝛽 = 2 is obtained. Close examination of the statistical fluctuations in 𝐽𝐽𝑠𝑠𝑠𝑠 also show 

unusually high standard errors at 𝛼𝛼 = 𝛽𝛽 = 3 (Fig. 8c), indicating that the fracture resistance is 

highly sensitive to the location of the larger-scale voids with respect to the growing crack. 

Higher than expected 𝐽𝐽𝑠𝑠𝑠𝑠 is also seen at 𝛼𝛼 = 2,𝛽𝛽 = 8, though not at the same extent as 𝛼𝛼 = 𝛽𝛽 =

3. To understand the statistical effects, we show in Fig. 9a the fracture resistance curves for all 

10 independent simulation runs with 𝛼𝛼 = 𝛽𝛽 = 3. Observe that the fracture resistance spans 

several-folds: 1 ≤ 𝐽𝐽/(𝜎𝜎0𝐷𝐷) ≤ 4 . Figure 9b and 9c shows the cracking progression and porosity 

distribution for the FPZ with the maximum (seed 5) and minimum fracture toughness (seed 6). 

The toughening mechanism for the former (seed 5) is solely attributed to the unique distribution 

of these larger-scale voids. During initial crack growth (Δ𝑎𝑎/𝐷𝐷 = 5), one of the larger-scale voids 

strategically located at ~60º below the crack-tip is caught within the active plastic zone and 

grows rapidly. This cavitation process dissipates significant amount of energy, and shields the 

crack-tip. The reduced stress concentration at the crack-tip leads to a continuously increasing 

fracture resistance up to Δ𝑎𝑎/𝐷𝐷 = 8. At this juncture, the crack-tip shielding allows high 

hydrostatic stresses (𝜎𝜎𝑚𝑚) to develop further ahead of the crack, which triggers the cavitation of 

two larger-scale voids in the vicinity to form multiple damage zones akin to that for a 
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constrained ductile film [33,36,37]. These larger-scale voids grow and coalesce with the 

neighboring background voids to form a new micro-crack at Δ𝑎𝑎/𝐷𝐷 = 23 which is unconnected 

to the main crack. The interaction between the micro-crack and the main crack in turn causes 

ligament thinning and eventual coalescence. In contrast, the low toughness FPZ (seed 6) has a 

cluster of 4 large voids located within ~7𝐷𝐷 of the initial crack-tip. Rapid growth and 

coalescence of these voids with the crack-tip leads to rapid propagation of the crack at low 

𝐽𝐽/(𝜎𝜎0𝐷𝐷) to form a contiguous damage zone. Statistically, seed 5 constitutes a rare event, since 

majority of the 𝐽𝐽𝑠𝑠𝑠𝑠 values in Fig. 9a for our simulation runs (including seed 6) fluctuate around 

1.5𝜎𝜎0𝐷𝐷.  

4. Discussions and Conclusion 

 The interaction between dual size-scale voids and the effects on the crack path and overall 

fracture resistance have significant implications for additively-manufactured (AM) metals 

processed through direct metal laser sintering (DMLS). This 3D printing technique uses lasers to 

selectively melt ultra-thin layers of deposited metallic powder in a layer-by-layer fashion, until 

the build is complete [51]. Such AM metals by DMLS can contain a distribution of void sizes, 

~20-40 μm in diameter [52], which are either gas entrapment voids or voids originating from 

unsintered powder particles [11-16]. These larger-scale voids are in addition to the smaller-scale 

background porosity seen on postmortem fracture surfaces of both AM and conventional metals. 

The background porosity typically originates from nucleated cavities of reinforcement 

particulates, such as MnS particles in steel which have diameters ranging from ~2-12 μm [53].  

 While the uniaxial strength properties of AM metals are comparable to conventional metals 

of the same type [15], the fracture and fatigue response behavior are highly statistical. In a batch 

of AM Ti6Al4V samples produced under the same processing conditions, for example, certain 
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number of these samples exhibited good fatigue life, while others experienced catastrophic 

failure during early load cycling [52]. The fracture surfaces of these groups of samples reveal 

similar level of larger-scale void porosity, though the presence of clusters of larger-scale voids 

close to the initial crack-front was suspected to be the reason for the premature failure [52]. Our 

results appear to support this experimental observation. In a real material, the distance from the 

crack tip to the larger-scale voids will vary from one position to another along the crack front, 

but the parameter of importance is the average location of these voids relative to the crack front. 

Accordingly, the porosities in our 2D analysis represent the average through-thickness porosities 

in that of a real sample. The smaller-scale voids are uniformly distributed within the sample, and 

have the same average background porosity. The larger-scale voids, however, are more sparsely 

distributed and the locations of these larger-scale voids in our 2D analysis represent the mean 

positions with porosities that are averaged through the thickness. While increasing the size (𝛽𝛽) 

and quantity (𝛼𝛼) of these larger-scale voids relative to the smaller-scale background porosity 

generally decreases the fracture toughness, the effects of (𝛽𝛽,𝛼𝛼) can be diminished in some 

instances or even reversed in other instances to increase the fracture toughness. This is apparent 

for FPZs with 𝛼𝛼 = 𝛽𝛽 = 3 where unusually high average fracture toughness values, along with 

large statistical variations in toughness, are observed (Fig. 8a and 9a). The presence of a cluster 

of larger-scale voids in the vicinity of the initial crack-tip, in particular, facilitates the void link 

up process and results in low toughness (Fig. 9c). However, the presence of larger-scale voids 

within the active plastic zone of the crack-tip can shield the crack-tip and induce the 

development of multiple damage zones nucleating at larger-scale voids some distances from the 

crack-tip (Fig. 9b). Our results show that such damage mechanisms can improve fracture 

toughness by four-folds.  
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 The measured fracture toughness 𝐽𝐽/(𝜎𝜎0𝐷𝐷) for mode I crack growth within the various FPZs 

have combined contributions from background plasticity, as well as void growth and coalescence 

mechanisms operative within the porous FPZs. We delineate these contributions through a 

nonlinear FPM [31] to reconstruct an equivalent crack-tip cohesive zone law operating within an 

elasto-plastic background material, as schematically shown in Fig. 1c. The micromechanical void 

growth and coalescence mechanics operative within the diffuse FPZ are homogenized as a 

cohesive zone traction-separation law, and the resulting cohesive energy Γ0 is the associated 

fracture toughness contribution;  𝐽𝐽𝑠𝑠𝑠𝑠 − Γ0 can thus be delineated as the approximate contribution 

from background plasticity [32]. We find that Γ0/𝐽𝐽𝑠𝑠𝑠𝑠 for the cohesive zone laws in Fig. 7 

generally ranges from 0.4-0.6 for the various (𝛽𝛽,𝛼𝛼) parameters, suggesting almost equal 

contributions from both background plasticity and crack-growth micromechanics within the 

process zone. Interestingly, this extracted value of Γ0 from field projection is consistently 

several-folds higher than the fracture initiation toughness value of 𝐽𝐽/(𝜎𝜎0𝐷𝐷) = ~0.3 across the 

various (𝛽𝛽,𝛼𝛼) parameters in Fig. 4. This discrepancy arises because the extraction of the 

cohesive zone law from field projection is conducted during steady-state cracking; the stress 

fields associated with this crack propagation phase is clearly different from those associated with 

cracking initiation conditions, which modifies the rate of growth and coalescence of damage. 

This discrepancy in Γ0 suggests that some evolution of the cohesive parameters from crack 

initiation to propagation should ideally be considered to account for this stress state evolution 

[54]. 

 The ductile fracture of a conventional metal can be modeled with a uniformly porous FPZ, 

i.e. 𝛼𝛼 = 𝛽𝛽 = 1, since the pores nucleate only from a single size-scale of inclusions or 

particulates; the fracture process can thus be described by a single cohesive zone law. In AM 
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metals, however, our results demonstrate that the fracture process is highly-sensitive to the 

relative size, proportion, and location of larger-scale voids statistically distributed within the 

diffuse process zone. As a result, the cohesive strength, cohesive energy, as well as functional 

form of the cohesive zone law, are strongly dependent on the dual void size-scales, which 

introduces a size-effect into the homogenized traction-separation relationship. Thus, AM metals 

of the same type may have different cohesive zone laws, as shown in Fig. 7, depending on the 

relative size of the larger-scale voids and the specifics of how these larger-scale voids are 

distributed.  

 We remark that the nonlinear FPM adopted in this paper [31] provides a bridge between 

detailed micromechanical damage modeling with Gurson cell elements and the crack-tip 

cohesive zone law. While modeling the process zone with Gurson cells provides detailed and 

realistic insights into the effects of the larger-scale voids on crack deflection and advancement, 

use of the Gurson cell introduces a physical length-scale parameter D representing the spacing 

between voids. This results in a potential scaling issue, since the minimum mesh size in the finite 

element model will be dictated by D. In contrast, no such scaling issues exists for the 

reconstructed crack-tip cohesive zone law by nonlinear FPM, which is suitable for large-scale 

computations [54] since it accounts for the dissipative mechanisms in a homogenized fashion 

(i.e. effects of D, 𝑓𝑓0, etc. are smeared out).  

 In summary, we show that the presence of a population of voids considerably larger than the 

background porosity associated with conventional ductile fracture process can significantly 

affect the fracture toughness, crack paths, as well as the crack-tip cohesive zone laws. These 

findings have significant implications for AM metals where larger-scale voids are present. While 

increasing the size and number fractions of these larger-scale voids tend to lower the fracture 
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resistance, the results are highly statistical and depend on the exact location of these voids with 

respect to the crack-tip. In particular, we demonstrate that strategic placement of larger-scale 

voids within the active plastic zone can induce crack-tip shielding and trigger the formation of 

multiple, unconnected damage zones, both of which contribute to a four-fold increase in 

toughness. 
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Figure 1: (a) Schematic of a small-scale yielding model with a porous process zone embedded 
within an elasto-plastic background material. (b,c) Porous process zone represented by several 
rows of void-containing Gurson cell elements (b); dashed lines denote the integration domain for 
field projection of the equivalent crack-tip cohesive tractions in a non-porous elasto-plastic 
medium for construction of the crack-tip cohesive zone laws (c). (d) Close-up view of the finite 
element mesh, with refined mesh along the integration domain for nonlinear field projection.  

 

 



 

Figure 2: (a) Crack growth resistance curves, as well as (b) porosity and (c) mean stress 
distributions along 𝑥𝑥2 = 0 for crack growth within a diffuse (solid lines) and narrow (dashed 
lines) fracture process zone (FPZ) with uniform porosity.  

 

  



 

Figure 3: Equivalent traction (a) and separation (b) distributions along 𝑥𝑥2 = 0 and 
corresponding cohesive zone laws (c) for crack growth within a diffuse FPZ with uniform 
porosity. Solid lines are from nonlinear field projection; symbols are from finite element 
calculations.   



 

Figure 4: Fracture resistance curves for crack growth within diffuse FPZs containing two size-
scales of voids; 𝛽𝛽 and 𝛼𝛼 denote the relative porosity and percentage proportion of the larger-
scale voids. 

 

  



 

 

Figure 5: Crack growth profiles within diffuse FPZs containing two size-scales of voids; 𝛽𝛽 and 
𝛼𝛼 denote the relative porosity and percentage proportion of the larger-scale voids. 



 

 

Figure 6: Equivalent traction distributions along 𝑥𝑥2 = 0 for crack growth within diffuse FPZs 
containing two size-scales of voids; 𝛽𝛽 and 𝛼𝛼 denote the relative porosity and percentage 
proportion of the larger-scale voids. Solid lines are from nonlinear field projection; symbols are 
from finite element calculations. 



 

Figure 7: Equivalent cohesive zone laws for crack growth within diffuse FPZs containing two 
size-scales of voids; 𝛽𝛽 and 𝛼𝛼 denote the relative porosity and percentage proportion of the larger-
scale voids. 
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