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Implementing multicomponent diffusion models in reacting-flow simulations is compu-
tationally expensive due to the challenges involved in calculating diffusion coefficients. 
Instead, mixture-averaged diffusion treatments are typically used to avoid these costs. 
However, to our knowledge, the accuracy and appropriateness of the mixture-averaged dif-
fusion models has not been verified for three-dimensional turbulent premixed flames. In 
this study we propose a fast, efficient, low-memory algorithm and use that to evaluate the 
role of multicomponent mass diffusion in reacting-flow simulations. Direct numerical simu-
lation of these flames is performed by implementing the Stefan–Maxwell equations in NGA. 
A semi-implicit algorithm decreases the computational expense of inverting the full multi-
component ordinary diffusion array while maintaining accuracy and fidelity. We first verify 
the method by performing one-dimensional simulations of premixed hydrogen flames and 
compare with matching cases in Cantera. We demonstrate the algorithm to be stable, and 
its performance scales approximately with the number of species squared. Then, as an ini-
tial study of multicomponent diffusion, we simulate premixed, three-dimensional turbulent 
hydrogen flames, neglecting secondary Soret and Dufour effects. Simulation conditions are 
carefully selected to match previously published results and ensure valid comparison. Our 
results show that using the mixture-averaged diffusion assumption leads to a 15% under-
prediction of the normalized turbulent flame speed for a premixed hydrogen-air flame. This 
difference in the turbulent flame speed motivates further study into using the mixture-
averaged diffusion assumption for DNS of moderate-to-high Karlovitz number flames.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Implementing full multicomponent mass diffusion transport in direct numerical simulation (DNS) can be memory in-
tensive and computationally expensive. This is because calculating diffusion fluxes requires point-wise knowledge of the 
multicomponent diffusion coefficient matrix, which scales with the number of chemical species squared [1]. The unity 
Lewis number, non-unity Lewis number, and mixture-averaged diffusion assumptions have been used to reduce the costs 
associated with mass diffusion by approximating the full diffusion coefficient matrix as a constant scalar value, a constant 
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vector, and a matrix diagonal, respectively. In addition, several approaches further reduce the system’s complexity by ap-
proximating multicomponent diffusion processes in terms of equivalent Fickian processes, such as those used by Warnatz [2]
and Coltrin et al. [3]. However, to our knowledge, the accuracy and appropriateness of these assumptions have not been 
evaluated in turbulent reacting flows against multicomponent diffusion transport due to its high computational expense and 
a dearth of affordable computing tools.

As further motivation for this study, Lapointe and Blanquart [4] recently investigated the impact of differential diffusion 
on simulations using unity and nonunity Lewis number approximations. They reported that methane, n-heptane, iso-octane, 
and toluene flames have similar normalized turbulent flame speeds and fuel burning rates when neglecting differential diffu-
sion, but flames using the nonunity Lewis number approximation underpredict the normalized flame speed when including 
differential diffusion due to reduced burning rates [4]. Building on these results, Burali et al. [5] evaluated the relative 
accuracy of the nonunity Lewis number assumption relative to mixture-averaged diffusion for lean, unstable hydrogen/air 
flames; lean, turbulent n-heptane/air flames; and ethylene/air coflow diffusion flames. They demonstrated that the rela-
tive error associated with the nonunity Lewis number assumption could be minimized with careful selection of the Lewis 
number vector for a wide range of flames [5]. Similarly, Schlup and Blanquart [6] examined the impact of multicomponent 
thermal diffusion on DNS of turbulent, premixed, high-Karlovitz hydrogen/air flames. They showed that simulations using 
the mixture-averaged thermal diffusion assumption underpredict the normalized flame speeds compared with results from 
simulations using full multicomponent thermal diffusion. In addition, including multicomponent thermal diffusion results 
in increased production of chemical source terms in regions of high positive curvature [6]. These observed discrepancies 
in similar flame simulations with different diffusion models warrant a detailed investigation of the fundamental transport 
phenomena involved.

While data are sparse from three-dimensional reacting-flow simulations with multicomponent transport, several 
groups have investigated the effects of multicomponent transport in simpler configurations. These studies include one-
dimensional [7–12] and two-dimensional flames [13–15] at various unburnt conditions. These works compared the mul-
ticomponent model with various levels of diffusion and transport property models, from constant Lewis number to 
mixture-averaged properties. In general, prior studies found some errors between multicomponent and mixture-averaged 
formulations for simplified hydrogen/air and methane/air flame configurations, such as unstretched laminar flames. However, 
these studies did not assess flames where diffusion effects may be more important, such as two- and three-dimensional, 
unsteady laminar and turbulent flames. Moreover, advancing clean and efficient combustion technology requires incorporat-
ing realistic fuel chemistry in large-scale turbulent simulations relevant to practical applications. Thus, there is a clear need 
for a computationally efficient algorithm capable of modeling full multicomponent diffusion transport [16].

The studies by Lapointe and Blanquart [4], Burali et al. [5], and Schlup and Blanquart [6] each took care to isolate the 
diffusion assumptions in question by neglecting higher-order terms that may affect diffusion transport. For example, with 
the exception of Schlup and Blanquart [6], these studies neglected Soret and Dufour diffusion, as it would be difficult to 
determine the direct cause of an observed effect when including both molecular and thermal diffusion. However, despite this 
methodical approach, the results of these studies were presented with reference to mixture-averaged diffusion, rather than 
full multicomponent diffusion. This further highlights the need for a computationally efficient method for implementing full 
multicomponent transport, and a subsequent examination of the differences between its “true” results and those resulting 
from the approximations conventionally used.

In this direction, several studies have examined the impact of full multicomponent transport on simplified three-
dimensional flame configurations. Giovangigli [14] demonstrated that multicomponent Soret effects significantly impact 
a wide range of laminar hydrogen/air flames. Specifically, they noted that multicomponent Soret effects influence laminar 
flame speeds and extinction stretch rates for flat and strained premixed flames, respectively. For high-pressure systems, 
Borchesi and Bellan [17] developed and analyzed a multi-species turbulent mixing model for large-eddy simulations. They 
focused on turbulent crossflow mixing of a five-species combustion-relevant mixture of n-heptane, O2, CO2, N2, and H2O. 
The multi-species transport model significantly improves the accuracy and fidelity of the solution throughout the mixing 
layer; however, this study only considered non-reacting flows and, as a result, did not assess the impact of multicomponent 
transport on the chemistry inherent in turbulent combustion. In addition, these simulations implement a simplified diffu-
sion model to approximate multicomponent diffusion but do not directly solve the diffusion terms present in the generalized 
conservation equations for species and energy [18].

Motivated by the dearth of affordable three-dimensional multicomponent transport models, Ern and Giovangigli [9,19,
20] developed the computationally efficient Fortran library EGLIB for accurately determining transport coefficients in gas 
mixtures. More recently, Ambikasaran and Narayanaswamy [21] proposed an efficient algorithm to compute multicomponent 
diffusion velocities, which scales linearly with the number of species. This significantly reduces computational cost compared 
with previous methods that directly invert the Stephan–Maxwell equations and thus scale with the number of species cubed. 
Although both libraries reduce the computational cost of determining the multicomponent diffusion coefficients, they do not 
provide a method for reducing the resulting large memory requirements for multidimensional simulations.

Overall, these prior studies provide compelling evidence that multicomponent transport is important and can affect the 
accuracy of combustion models. However, none assessed how multicomponent transport impacts three-dimensional tur-
bulent systems with detailed chemistry. In this article, we demonstrate and analyze an efficient, dynamic algorithm that 
reduces the computational expense of calculating the multicomponent diffusion fluxes. We demonstrate the approach is ac-
curate and stable for a wide range of time-step sizes. In addition, we present a comprehensive assessment of the numerical 
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costs associated with this method. To verify the proposed algorithm we present one-dimensional freely propagating, laminar 
hydrogen/air flames and compare with results from Cantera. Finally, we simulate three-dimensional, turbulent, premixed, hy-
drogen/air flames. As a preliminary comparison of the mixture-averaged and multicomponent diffusion models, we perform 
an a posteriori assessment of how the choice of diffusion model impacts the turbulent statistics of the three-dimensional 
hydrogen simulation.

2. Governing equations

This section presents the low-Mach number reacting Navier–Stokes equations used in this study. In addition, this sec-
tion outlines the method used to determine the mass diffusion fluxes for both the mixture-averaged and multicomponent 
approaches, abbreviated here as MA and MC, respectively.

2.1. Low Mach-number equations

In this work we solve the variable-density, low-Mach number, reacting-flow equations [22,23]. The conservation equa-
tions are

∂ρ

∂t
+ ∇ · (ρu) = 0 , (1)

∂ρu

∂t
+ ∇ · (ρu ⊗ u) = −∇p + ∇ · τ , (2)

∂ρT

∂t
+ ∇ · (ρuT ) = ∇ · (ρα∇T ) + ρω̇T − 1

cp

∑
i

cp,i ji · ∇T + ρα

cp
∇cp · ∇T , (3)

∂ρYi

∂t
+ ∇ · (ρuYi) = −∇ · ji + ω̇i , (4)

where ρ is the mixture density, u is the velocity vector, p is the hydrodynamic pressure, τ is the viscous stress tensor, T
is the temperature, α is the mixture thermal diffusivity, cp,i is the constant-pressure specific heat of species i, cp is the 
constant-pressure specific heat of the mixture, ji is the diffusion flux of species i, Yi is the mass fraction of species i, and 
ω̇i is the production rate of species i. In Equation (3), the temperature source term ω̇T is given by

ω̇T = −c−1
p

∑
i

hi(T )ω̇i , (5)

where hi(T ) is the specific enthalpy of species i as a function of temperature. The density is determined from the ideal gas 
equation of state

ρ = Po W

RT
, (6)

where Po is the thermodynamic pressure, R is the universal gas constant, and W is the mixture molecular weight deter-

mined via W =
(∑N

i Yi/W i

)−1
, where W i is the molar mass of the ith species and N is the number of species.

The diffusion fluxes are calculated with either the mixture-averaged [1] or multicomponent [24] models, which are both 
based on Boltzmann’s equation for the kinetic theory of gases [24,25]. The baro-diffusion term is commonly neglected 
in reacting-flow simulations under the low Mach-number approximation [26]. We have also neglected thermal diffusion 
because our objective in this work is to investigate the impact of mass diffusion models; Schlup and Blanquart [6,27]
previously explored the effects of thermal diffusion modeling.

2.2. Mixture-averaged (MA) species diffusion flux

The ith species diffusion flux for the mixture-averaged diffusion model is related to the species gradients by a Fickian 
formulation and is expressed as

ji = −ρDi,m
Yi

Xi
∇ Xi + ρYiu

′
c , (7)

where Xi is the ith species mole fraction, Di,m is the ith species mixture-averaged diffusion coefficient as expressed by Bird 
et al. [1]:

Di,m = 1 − Yi∑
X j/D ji

, (8)

j �=i
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where D ji is the binary diffusion coefficient between the ith and jth species. Finally, u′
c is the correction velocity used to 

ensure mass continuity:

u′
c =

N∑
i=1

Di,m
Yi

Xi
∇ Xi . (9)

The expression for species diffusion flux can be re-stated in terms of mass fraction Yi as

ji = −ρDi,m

(
∇Yi − Yi

N∑
k=1

∇Yk
W

Wk

)
+ ρYiu

′
c , (10)

where Di,m corresponds to the ith element of the diagonal mixture-averaged diffusion coefficient matrix, defined herein as 
DMA.

2.3. Multicomponent (MC) species diffusion flux

The multicomponent diffusion model for the ith species diffusion flux is

ji = ρYi

Xi W

N∑
k=1

Wk Dik∇ Xk , (11)

where Dik is the ordinary multicomponent diffusion coefficient (computed using the MCMDIF subroutine of CHEMKIN II [28]
with the method outlined by Dixon–Lewis [29]). Equation (11) can be restated in terms of mass fraction as

ji = ρ
∑

k

−DMC
ik ∇Yk , (12)

where

DMC
ik = − W i

W

⎡
⎣Dik − W

Wk

⎛
⎝∑

j

Di j Y j

⎞
⎠

⎤
⎦ . (13)

The diagonal of the ordinary multicomponent diffusion matrix, Dii , is zero. As will be shown later, the DMC matrix is 
singular with a kernel of dimension one. Interestingly, the vector of species mass fractions is in the kernel:

N∑
k=1

DMC
ik Yk = − W i

W

⎡
⎣(∑

k

DikYk

)
−

(
W

∑
k

Yk

Wk

)⎛
⎝∑

j

Di j Y j

⎞
⎠

⎤
⎦ = 0 . (14)

This property will be important later (in Section 3.4) for the stability analysis.
The multicomponent diffusion coefficients, thermal conductivities, and thermal diffusion coefficients are computed by 

solving a system of equations defined by the L matrix, composed of nine sub-matrices:⎡
⎣L00,00 L00,10 0

L10,00 L10,10 L10,01

0 L01,10 L01,01

⎤
⎦

⎡
⎣a00

1
a10

1
a01

1

⎤
⎦ =

⎡
⎣ 0

X
X

⎤
⎦ , (15)

where the right-hand side is composed of the one-dimensional mole fraction arrays X. Based on this system of equations, 
the inverse of the L00,00 block provides the multicomponent diffusion coefficients:

Dij = Xi
16T

25P

W

W j
(qij − qii) , (16)

where

q =
(

L00,00
)−1

. (17)

The L00,00 sub-matrix block is given by

L00,00
i j = 16T

25P

N∑
k=1

Xk

W iDik

{
W j X j(1 − δi,k) − W i Xi(δi, j − δ j,k)

}
, (18)

where δi, j is the reduced dipole moment corresponding to the ith component of the vector of dipole moments.
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3. Methods

As discussed previously, multicomponent mass diffusion has not yet been incorporated into three-dimensional turbu-
lent flame simulations due to its high computational expense. This section presents the discretized equations, numerical 
algorithm, and preconditioner proposed. The method is based on the semi-implicit time-marching scheme for species mass-
fraction fields proposed by Savard et al. [23].

3.1. Multicomponent model implementation

This work was completed using the structured, multi-physics, and multi-scale finite-difference code NGA [22,23]. NGA 
can solve a wide range of problems, including laminar and turbulent flows [30–32], constant- and variable-density flows [22,
33,34], large-eddy simulation [31,35], and DNS [33,34,36]. NGA discretely conserves mass, momentum, and kinetic energy 
with an arbitrarily high-order spatial accuracy [22].

NGA’s variable-density flow solver uses both spatially and temporally staggered variables, storing all scalar quantities (ρ , 
P , T , Yi ) at the volume centers and velocity components at their respective volume faces [22,37]. The convective term in 
the species transport equation is discretized using the bounded, quadratic, upwind-biased, interpolative convective scheme 
(BQUICK) [38]. The diffusion source term is discretized using a second-order centered scheme and the variables are advanced 
in time using a second-order semi-implicit Crank–Nicolson scheme [39].

An iterative procedure is applied to fully cover the nonlinearities in the Navier–Stokes equations and the species diffusion 
terms. Prior studies demonstrated this iterative process to be critically important for stability and accuracy [22,23,39,40]. 
Savard et al. [23] fully detailed the numerical algorithm sequence; we summarize this method here. This summary is 
independent of the preconditioning strategy employed in NGA, to which propose modifications in Section 3.2.

The algorithm for advancing one time step follows, using a uniform time-step size �t . The density, pressure, and scalar 
fields are advanced from time level tn+1/2 to tn+3/2, and the velocity fields are advanced from time tn to tn+1, where tn is 
the current time. Each iteration (i.e., time step) consists of Q sub-iterations and follows this procedure:

0. Upon convergence of the previous time step, the algorithm stores the density (ρn+1/2), pressure (Pn+1/2), velocity fields 
(un), and scalar fields (Yn+1/2), where Y represents the vector of species mass fractions (Y1, . . . , Y N). The solutions for 
pressure, species mass fraction, and momentum from the previous time step are used as an initial guess for the iterative 
procedure:

Pn+3/2
0 = Pn+1/2 , Yn+3/2

0 = Yn+1/2 , and (ρu)n+1
0 = (ρu)n . (19)

An Adams–Bashforth prediction evaluates the initial density:

ρ
n+3/2
0 = 2ρn+1/2 − ρn−1/2 , (20)

which ensures that the continuity equation is discretely satisfied at the beginning of the iterative procedure.
1. For the sub-iterations k = 1, . . . , Q , the semi-implicit Crank–Nicolson method advances the scalar fields in time [39,41]:

ρ
n+3/2
k Yn+3/2

k+1 = ρn+1/2Yn+1/2 + �t
(
C∗

k + Diff∗k + �∗
k

)
+�t

2

(
∂C

∂Y
+ ∂Diff

∂Y
+ ∂�

∂Y

)n+1

k
·
(

Yn+3/2
k+1 − Yn+3/2

k

)
,

(21)

where Diff = −∇ · ji and Y∗
k , C∗

k , Diff∗k , and �∗
k are the mass fraction, convection, diffusion, and chemical terms evaluated 

on the mid-point (or half time-step) scalar field Y ∗
k :

Y∗
k = Yn+1/2 + Yn+3/2

k

2
. (22)

To simplify the discrete notations for spatial differentiation, the operators corresponding to the convective and diffusive 
terms in Equation (4) are written as C and Diff, respectively [23]. ∂C

∂Y and ∂Diff
∂Y are the Jacobian matrices corresponding 

to the convective and diffusive terms with respect to the species mass fractions, respectively. C and ∂C
∂Y are functions 

of the density and velocity, while Diff and ∂Diff
∂Y are functions of the density, diffusivity, and molar weight. They are 

consistently updated at each sub-iteration [23].
2. The density field, ρn+3/2

k+1 , is evaluated from the new scalar fields using Equation (6). We do not rescale the scalar fields 
as proposed by Shunn et al. [40]. However, upon convergence of the sub-iterations, this method is equivalent to the 
density treatment they proposed [23].

3. The momentum equation is advanced in time using a similar semi-implicit Crank–Nicolson method for the scalar fields 
as described by Savard et al. [23].

4. A Poisson equation is then solved for the fluctuating hydrodynamic pressure using a combination of HYPRE [22,42], 
BICGSTAB [43], and/or FFTW [44]. The predicted velocity field is then updated.
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5. Upon convergence of the sub-iterations, the solutions are updated.

The procedure summarized above becomes equivalent to the fully implicit Crank–Nicolson time-integration scheme upon 
convergence of the sub-iterations [39].

3.2. Preconditioning

We expand the above numerical procedure to incorporate multicomponent diffusion by modifying the time-marching 
step for species mass fraction fields. Specifically, this method modifies the treatment of the mass-diffusion source term in 
the species mass fraction fields. All other intermediate steps are unchanged.

3.2.1. Preconditioning iterative method
For simpler implementation, Equation (21) is solved in its residual form:

[
ρ

n+3/2
k I − �t

2

(
∂C

∂Y
+ ∂Diff

∂Y
+ ∂�

∂Y

)n+1

k

]
·
(

Yn+3/2
k+1 − Yn+3/2

k

)
= ρn+1/2Yn+1/2 − ρ

n+3/2
k Yn+3/2

k + �t
(

Cn+1
k + Diffn+1

k + �∗
k

)
.

(23)

This equation can be restated as

Yn+3/2
k+1 = Yn+3/2

k − �tJ−1 · �k , (24)

where the matrix J is

J = ρ
n+3/2
k I − �t

2

(
∂C

∂Y
+ ∂Diff

∂Y
+ ∂�

∂Y

)n+1

k
(25)

and the vector

�k = ρ
n+3/2
k Yn+3/2

k − ρn+1/2Yn+1/2

�t
−

[
Cn+1

k + Diffn+1
k + �∗

k

]
(26)

is the residual of the species transport equation at the previous sub-iteration, which asymptotes to zero as the sub-iterations 
fully converge.

Written in its residual form, the time advancement of the species transport equations described here resembles the 
standard preconditioned Richardson-type iterative method [23,45], where the matrix J acts as a preconditioner. The choice of 
J as a preconditioner is arbitrary and only affects the convergence characteristics of the iterative method [23]. For example,

J = ρ
n+3/2
k I (27)

is equivalent to the fully explicit integration of the convective, diffusive, and chemical source terms in the species transport 
equations. Alternatively,

J = ρ
n+3/2
k I − �t

2

(
∂C

∂Y
+ ∂Diff

∂Y
+ ∂�

∂Y

)n+1

k
(28)

is equivalent to fully implicit integration of the convective, diffusive, and chemical source terms [23].
There is a clear tradeoff in selecting the preconditioner. Since preconditioning is applied to each step of the iterative 

methods, the form of matrix J should be optimized for low computational and inversion cost while maintaining strong con-
vergence. The fully explicit preconditioner provides the cheapest option but in our experience results in poor convergence 
performance, requiring extremely small time steps. Alternatively, the fully implicit preconditioner would provide excellent 
convergence criteria and unconditional stability; however, the Jacobian matrices for the chemical and diffusion source terms 
are typically dense [1,28,46]. Thus, constructing a fully implicit preconditioner is prohibitively expensive for large kinetic 
models.

To achieve strong convergence while maintaining a low-cost form for the preconditioner, we propose an approximation 
of the diffusion Jacobian that lies between the fully implicit and fully explicit extremes: a semi-implicit preconditioner. 
Savard et al. [23] previously implemented a similar approach for preconditioning the chemical Jacobian.
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3.2.2. Semi-implicit preconditioner
In Equation (28), the Jacobian of the diffusion source term depends on the multicomponent diffusion flux, which is 

proportional to the multicomponent diffusion coefficient matrix, DMC. However, DMC is a dense matrix and would be a 
computationally expensive approximation for the Jacobian. Alternatively, the mixture-averaged diffusion coefficient matrix, 
DMA, is a simplified approximation of DMC and thus may provide a reasonable, low-cost approximation of the fully implicit 
Jacobian.

The mixture-averaged diffusion coefficient matrix, DMA, and the multicomponent diffusion coefficient matrix, DMC, are of 
a similar order and depend on the underlying species diffusivities. In addition, since DMA is computed from the local species 
and temperature values rather than global changes, it is inexpensive to compute. Finally, since DMA is strictly diagonal and 
thus inexpensive to invert, it provides a low-cost approximation to the diffusion Jacobian. In practice the approximate 
diffusion Jacobian is a tri-diagonal block matrix, where each block is the diagonal DMA matrix. In other words, for each 
species the part of the Jacobian corresponding to that species is tri-diagonal and described by DMA.

3.3. Dynamic memory algorithm

As mentioned previously, high-fidelity simulations with full multicomponent mass diffusion will have a high compu-
tational expense. Thus, to facilitate a cost-effective implementation of full multicomponent diffusion we propose a simple 
dynamic memory algorithm that significantly reduces the computational resources needed for such simulations.

The cost of simulating full multicomponent diffusion comes from evaluating the DMC matrix. Thus, we can reduce 
computational cost significantly by limiting the evaluation of DMC to strictly once per grid-point. (In contrast, a naive 
implementation would involve repeated and redundant evaluations when calculating the species diffusion flux vector and 
its gradient.) This is possible because the central-difference scheme used is linear and thus additive and commutative by 
nature. In other words, the terms in the discretized equation are simply added together, and thus are strictly independent 
of each other and require no information from the surrounding grid points.

Recognizing this, it follows that the order of addition does not matter so long as all of the appropriate terms are included 
in the discretization. Thus, we can calculate the DMC matrix once per grid point, and calculate and store for each species the 
discrete terms of the discretized scalar field corresponding only to the information available at that grid point. The process 
then repeats at the next grid point and fills in the remaining information. This approach is simply a memory-efficient 
rearrangement of the floating-point operations and does not alter the final result. Moreover, this dynamic memory scheme 
avoids the need to calculate local gradients at each grid point.

In practice, we calculate and store the portions of the enthalpy and species-diffusion source terms (in Equations (3) and 
(4), respectively) that can be computed from the information available at the ith grid-point for the (i − 1/2) and (i + 1/2)

flux vectors. For example, the discretized form of the diffusion source term is

Diffi = −∇ · ji = − ji+1/2 + ji−1/2

�x

=
[
(ρi Di + ρi+1 Di+1)

Yi+1 − Yi

�x
− (ρi−1 Di−1 + ρi Di)

Yi − Yi−1

�x

]
1

2�x2
, (29)

where the diffusion source term contributions from the i − 1, i, and i + 1 grid points are

Sourcei−1 = ρi−1 Di−1

2�x2 (Yi − Yi−1) , (30)

Sourcei = ρi Di

2�x2 (Yi+1 + Yi−1 − 2Yi) , and (31)

Sourcei+1 = ρi+1 Di+1

2�x2 (Yi+1 − Yi) , (32)

respectively.
At the ith grid point, information on the diffusion coefficients at the i − 1 and i + 1 grid points is not available; thus, 

only the diffusion coefficients for the ith grid point can be stored. However, by recognizing that Di at the ith grid point is 
equal to Di+1 and Di−1 at the i − 1 and i + 1 grid points, respectively, it is possible to solve Equation (30), Equation (31), 
and Equation (32) for the i + 1, i, and i − 1 grid points, and store them in their respective memory locations. At the next 
grid point (i + 1) the process repeats and the remaining information for the ith grid point is calculated and added to the 
previously stored partial solution, thus completing the information needed at the ith grid point. Fig. 1 summarizes this 
process; fluxes are located at cell faces while source terms are at cell centers.

This approach reduces the number of DMC evaluations from one per species per grid point to strictly one per grid point. 
Finally, it reduces temporary memory requirements from an array sized nx × ny × nz × N2 to a 1 × 7 array corresponding 
to only the information needed at the current grid point (i, j, k) and its six surrounding points, where nx , ny , and nz are 
the numbers of grid points in the x, y, and z directions. This optimizes performance by reducing cache calls for both the 
species mass fractions and species diffusion coefficients.
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Fig. 1. Dynamic algorithm for calculating multicomponent enthalpy and species diffusion source terms. Fluxes are located at cell faces while source terms 
are at cell centers. N is the number of species.

The algorithm is most efficient for a structured grid, but the proposed method is easily extendable to finite-volume 
discretizations on unstructured meshes with scalars located at the cell centers. In such schemes, the diffusion term is 
written as the sum of fluxes on each cell surface. In turn, these fluxes are written as differences of cell-averaged scalar 
values. The regrouping of the contributions of the diffusion term to each cell in Equations (30)–(32) would follow a similar 
approach.

3.4. Method stability

To evaluate the theoretical stability of the proposed treatment of the diffusion source terms, we will perform a one-
dimensional von Neumann stability analysis. First, we decompose the vector of species mass fractions into the exact 
steady-state solution (Y◦) and a small perturbation vector. Then, we expand this perturbation in a Fourier series by as-
suming a solution of the form

Y(x, t) = Y◦(x) + f(t)eiκx , (33)

where κ is the wavenumber and f(t) is the time-varying amplitude of the perturbation. Under small deviations from a 
steady-state solution, we can make the simplifying assumption that

ρ
n+3/2
k ≈ ρn+1/2 = ρ◦ . (34)

Similarly, all diffusion coefficients are evaluated from the steady-state solution.
From here, we rewrite Equation (21) in a point-wise form neglecting both the chemical source term—demonstrated to 

be stable by Savard et al. [23]—and the convective transport term, which is integrated explicitly in this stability analysis 
(i.e., not modified by sub-iterations). This transforms the set of N partial differential equations into a set of N ordinary 
differential equations, where N is the number of species. Equation (23) reduces to the form(

I + �t

2
DMAκ ′2

)(
fn+3/2
k+1 − fn+3/2

k

)
= fn+1/2 − fn+3/2

k − �t

2
DMCκ ′2 (

fn+3/2
k + fn+1/2

)
, (35)

where κ ′2 is the modified wavenumber, and DMA and DMC are the mixture-averaged and multicomponent diffusion coeffi-
cient matrices calculated from Equations (8) and (13), respectively. For the second-order central differencing scheme used, 
κ ′2 takes the form

κ ′2 = 2

�x2 [1 − cos(κ�x)] . (36)

While here we apply this to a second-order central difference scheme, the stability analysis holds for any spatial discretiza-
tion of the diffusion terms in Equation (23). In the present case, the most unstable mode manifests as cell-to-cell oscillations 
corresponding to κ = π/�x and κ ′2 = 4/�x2.

Recall that fn+1/2 is the value at the previous time step as defined in step 0 of Section 3.1 and

fn+3/2 ≡ fn+1/2 . (37)
0
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Table 1
Eigenvalues for the multi-component (left) and mixture-averaged (center-left) 
diffusion matrices (DMC and DMA) and absolute values of the eigenvalues for the 
amplification matrix (B) for the implicit formulation (center-right) and explicit 
formulation (right) evaluated on the burned side of the lean hydrogen premixed 
flame (see section 4.1). † units are 10−3 m2/s. A time-step size of �t = 10−5 s 
was used for B.

DMC† DMA† Bimp Bexp

0.0000 0.2984 0.0095 0.0000
0.3033 0.3003 0.0096 25.629
0.3053 0.3014 0.0126 25.800
0.3070 0.3023 0.0131 25.945
0.3860 0.4069 0.0163 32.614
0.4644 0.4585 0.0265 39.239
0.4735 0.4672 0.0276 40.012
1.1163 1.0859 0.0450 94.327
1.8968 1.8145 0.9634 160.276

Dropping the superscripts for clarity, we can reduce Equation (35) to

fk+1 = Af0 + Bfk , (38)

where

A =
(

I + �t

2
κ ′2 DMA

)−1 (
I − �t

2
κ ′2 DMC

)
(39)

and

B =
(

I + �t

2
κ ′2 DMA

)−1 (
�t

2
κ ′2 (

DMA − DMC
))

. (40)

Inspecting Equation (38), matrix A is multiplied by the constant value of the previous time step (f0) and therefore does not 
contribute to the stability of the sub-iterations. We focus on the properties of the B matrix, which acts as the amplifica-
tion/growth factor. Theoretically, the stability of the sub-iterations is ensured if the spectral radius of matrix B, defined as 
the largest absolute value of the eigenvalues, is less than one:

ρ(B) ≤ 1 . (41)

The matrix B has some interesting properties that deserve further discussion.
First, this matrix is proportional to the difference between the two diffusion matrices DMA and DMC. Recall that the DMA

is a purely diagonal matrix. Table 1 compares the eigenvalues of these matrices on the burned side of the lean hydrogen 
premixed flames (see Section 4.1 for details on the flame). The burned side of the flame is characterized by the largest 
diffusion coefficients and is expected to be the most unstable location within a flame as far as diffusion is concerned. The 
two sets of eigenvalues are extremely close, which is expected as the mixture-averaged diffusion model approximates the 
multi-component diffusion model. As a result, the norm of the difference of the two matrices is expected to be much less 
than the norm of either matrix. In other words, we anticipate that ρ(B) � 1 regardless of the time-step size (�t) and grid 
spacing (�x).

One noticeable difference between DMC and DMA is the presence of a null eigenvalue for multi-component diffusion. 
As described in Section 2.3, the multi-component matrix is singular, and its kernel is spanned by the species mass fraction 
matrix, here Y◦ . Consider the special case of f0 = Y◦ . Leveraging the fact that f0 lies in the kernel of DMC, the amplitude at 
the next sub-iteration will be

f1 = (A + B) f0 = f0 . (42)

By recursive reasoning, one can show the property holds for all sub-iterations. In other words, this mode is unaffected 
by the iterative process and remains the same between time steps. This time-invariant mode is nothing more than the 
steady-state solution Y◦ . To avoid “double counting” in Equation (33), the eigenvalue analysis of the matrix B should be 
performed on the linear space not including the vector Y◦ .

Table 1 provides an example of the eigenvalues of the amplification matrix B for a time-step size of �t = 10−5 s. 
Practically, the eigenvector associated with the largest eigenvalue of B forms a small angle (∼ 0.08 deg) with the species 
mass fraction vector (Y◦). Hence, most of it is in the kernel of DMC. Following the previous discussion, this eigenvalue 
(indicated in italics) should not be considered, and the overall stability is controlled by the second-largest eigenvalue, in 
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this case 0.0425. As expected, this eigenvalue is much less than unity, thus proving the stability of the iterative procedure. 
This should be compared to the stability of the explicit formulation obtained by setting DMA = 0 in Eq. (40). Under these 
conditions, the spectral radius of B becomes

ρ(B) = 2
�t

�x2
ρ

(
DMC

)
≈ 2

�t

�x2
max

(
DMA

)
, (43)

which resembles a Fourier number. As shown by the large eigenvalue of the explicit-method amplification matrix, Bexp, in 
Table 1, solving the system of equations would not be stable at �t = 10−5 s without the proposed implicit formulation. 
Section 5.1 presents an in-depth comparison of this theoretical stability criterion against practical numerical convergence 
results for a one-dimensional freely propagating flame.

4. Test cases

We will evaluate the performance of the proposed iterative method and the relative cost of the implemented memory 
algorithm in Section 5. We base our evaluation on two flow configurations: a one-dimensional, unstretched, laminar flame 
and a three-dimensional, statistically stationary, turbulent flame; both are premixed hydrogen/air flames. All simulations 
used the same nine-species hydrogen mechanism of Hong et al. [47] with updated rate constants from the same group [48,
49]. This section describes the configuration and conditions used for the one- and three-dimensional simulations used for 
this study. Appendix B includes additional method verification.

4.1. One-dimensional premixed flame

To verify the implementation of the multicomponent mass-diffusion model and evaluate its accuracy, we performed 
one-dimensional, unstretched (flat), laminar flame simulations and compared these with similar mixture-averaged and mul-
ticomponent results computed using Cantera [50]. We selected the one-dimensional flat flame configuration because it 
restricts all transport to the streamwise direction. As a result, the spanwise fluxes are zero by definition for this geometry. 
This condition may not hold in a multidimensional flow simulation where the multicomponent diffusion fluxes may be 
misaligned with the species gradient vector. This simplified geometry allows us to directly compare the multicomponent 
mass diffusion model to the commonly used mixture-averaged diffusion model.

The simulations used an unburnt temperature of 298 K and pressure of 1 atm, with an equivalence ratio of φ = 0.4 and 
inlet velocity equal to the laminar flame speed for all Cantera and NGA cases. The flame was centered in a computational 
domain comprised of 720 grid points where �x = 15.4 μm. To ensure fidelity in the results, we selected the domain to 
have at least 20 points through the laminar flame, with the thickness defined using the maximum temperature gradient: 
lF = (Tmax − Tmin)/|∇T |max. Schlup and Blanquart [6] used an identical configuration to investigate the impact of Soret and 
Dufour thermal diffusion effects.

We ran the Cantera simulations similarly using both mixture-averaged and multicomponent diffusion models with 
matching inlet conditions, equivalence ratio, and domain size. The freely-propagating adiabatic flat flame solver
(FreeFlame) was used with grid refinement criteria for both slope and curvature set to 0.1 and a refinement ratio of 
2.0 for 860 grid-points.

4.2. Three-dimensional flow configuration

We simulated a three-dimensional, turbulent, premixed, freely propagating flame as a test of the proposed algorithm for 
multicomponent mass diffusion and to assess the impact of diffusion model choice on global statistics such as the turbulent 
flame speed. The computational domain consists of inflow and convective outflow boundary conditions in the streamwise 
direction. The two spanwise directions use periodic boundaries. We set the inflow velocity to the mean turbulent flame 
speed, which keeps the flame statistically stationary such that turbulent statistics can be collected over an arbitrarily long 
run time. In the absence of mean shear, we use a linear turbulence-forcing method [33,51] to maintain the production of 
turbulent kinetic energy through the flame. We selected the Karlovitz number to fall near the boundary between the thin 
and distributed reaction zone regimes, while avoiding the broken reaction zone regime [52]. Moreover, the computational 
setup for this case is similar to those of Lapointe et al. [52], Burali et al. [5], and Schlup et at. [6], who studied differential-
diffusion effects, local extinction, and flame broadening using the mixture-averaged model and constant non-unity Lewis 
number assumptions.

Table 2 provides further details of the computational domain, unburnt mixture, and inlet turbulence. The unburnt tem-
perature and pressure are 298 K and 1 atm, respectively. The inlet equivalence ratio is φ = 0.4, with an unburnt Karlovitz 
number Kau = τF /τη = 149, where τF = lF /SL is the flame time scale and τη = (νu/ε)1/2 is the Kolmogorov time scale of 
the incoming turbulence with unburnt kinematic viscosity νu and turbulent energy dissipation ε . The unburnt turbulent 
Reynolds number is Ret = u′l/νu = 289, where u′ is the fluctuation of the mean velocity and l is the integral length scale. 
The mean inflow velocity at the inlet boundary condition approximately matches the turbulent flame speed so that the 
flame remains relatively centered in the domain and we can perform arbitrarily long simulations. Once the turbulence has 
fully developed, we run the simulations for 22 eddy turnover times, τeddy = k/ε ≈ 500 μs.
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Table 2
Three-dimensional simulations parameters. �x is the 
grid spacing, ηu is Kolmogorov length scale of the un-
burnt gas, �t is the simulation time-step size, φ is 
the equivalence ratio, P0 is the thermodynamic pres-
sure, Tu is the temperature of the unburnt mixture, 
Tpeak is the temperature of peak fuel consumption rate 
in the one-dimensional laminar flame, SL is the lami-
nar flame speed, lF = (Tb − Tu) / |∇T |max is the laminar 
flame thickness, l = u′ 3/ε is the integral length scale, u′
is the turbulence fluctuations, ε is the turbulent energy 
dissipation rate, Kau is the Karlovitz number of the un-
burnt mixture, Ret is the turbulent Reynolds number of 
the unburnt mixture, and νu is the unburnt kinematic 
viscosity.

Parameter MA MC

Domain 8L × L × L
L 190�x
Grid 1520 × 190 × 190
�x [m] 4.24 × 10−5

ηu [m] 2.1 × 10−5

�t [s] 6 × 10−7

φ 0.4
P0 [atm] 1
Tu [K] 298
Tpeak [K] 1190 1180
S L [m/s] 0.230 0.223
lF [mm] 0.643 0.631
l/lF 2 2.04
u′/S L 18 18.6
Kau = τF /τη 149 151
Ret = (u′l)/νu 289

Fig. 2. Two-dimensional schematic of the three-dimensional flame configuration. Adapted from Burali et al. and Schlup and Blanquart [5,6]. The red line 
indicates the approximate location of the flame. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

The domain has 1520 points in the streamwise direction and 190 points in both spanwise directions, with a uniform grid 
size of �x = lF /16. This domain is about 100lF long and 12lF in the spanwise directions. Given the prescribed turbulence 
intensity, this mesh has a grid spacing equivalent to �x ≈ 2ηu , where ηu is the Kolmogorov length scale for the unburnt 
region; this resolution improves in the burnt region of the flame. Lapointe et al. [52] previously confirmed the suitability of 
the selected grid spacing and resolution in the flame front using a mesh refinement study, which found no difference when 
using this grid spacing compared with half the size. Fig. 2 shows a two-dimensional schematic of the domain, including the 
locations of the flame and the forcing region. Fig. 3 shows a three-dimensional view of the iso-surface of Tpeak defining the 
flame front, where Tpeak is the temperature of peak fuel consumption rate in the one-dimensional laminar flame. The flame 
surface shows the complex behavior of the flame in the turbulent field.

5. Results and discussion

To start, we present a practical assessment of the method’s convergence and stability, by comparing the numerical rate 
of convergence to the theoretical rate of convergence. Following this demonstration of the proposed method’s stability, 
we verify the accuracy of the method through a posteriori assessment of one-dimensional, unstretched, premixed, laminar 
flame simulations. Finally, we present a preliminary evaluation of the relative differences between the mixture-averaged and 
multicomponent diffusion models for the three-dimensional turbulent premixed flame simulations.

5.1. Stability analysis results

We use the one-dimensional flame to numerically evaluate the convergence stability of the sub-iterations with respect 
to time-step size. The simulations for these tests were initialized from a mixture-averaged data file to provide a worst-
case scenario for the initial iterative step in converging to the multicomponent solution. While the theoretical analysis was 
performed assuming explicit transport of the convective terms and constant density/diffusion coefficients, we performed 
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Fig. 3. Iso-surface of peak temperature colored by OH mass fraction for a three-dimensional turbulent hydrogen/air flame with multicomponent mass 
diffusion.

Fig. 4. Convergence of the density residual as a function of sub-iteration for the proposed semi-implicit method, for a smaller and larger time-step size. 
Dashed lines are the spectral radii shown in Fig. 5 and are determined by numerically fitting an exponential curve to the slope of the density residual

.

this test with semi-implicit transport and variable density/diffusion coefficients. This demonstrates the stability of the pro-
posed preconditioner for the semi-implicit multicomponent diffusion transport in a practical numerical simulation. Savard 
et al. [23] previously showed the numerical stability of the chemical and convective terms, so we do not discuss these terms 
in detail in this analysis.

We focus on the maximum density residual over the whole domain, because its convergence is controlled by the con-
vergence of all chemical species. Figs. 4a and 4b present the density residuals as a function of sub-iteration, starting from 
the initial time step, for a small and large time-step size, respectively. For the time-step sizes tested, converging (as op-
posed to converged) sub-iterations implies a stable simulation, which agrees with behavior shown by Savard et al. [23]. 
In other words, unless the sub-iterations diverge, the simulation remains stable. As expected, the explicit method diverges 
quickly even at very small time-step sizes (Fig. 4a), while the semi-implicit method remains stable up to a time-step size of 
�t ≤ 1 × 10−5 s (Fig. 4b).

The rate of convergence of the sub-iterations for each of the source terms in Figs. 4a and 4b follows an exponential 
relationship, i.e., Resk ∼ rk , where Resk is the residual of the kth sub-iteration and r is the convergence rate. We compute 
the numerical convergence rate r by fitting an exponential curve to the slope of the density residuals; the convergence rate 
is represented by dashed lines in Fig. 4. Since density is a function of the species mass fractions, its convergence rate should 
tend towards that of the slowest-converging species mass fraction.

Fig. 5 compares the results of the theoretical and numerical stability analyses, showing the spectral radius of matrix B
as a function of the time-step size for the one-dimensional test case. For the explicit scheme, the theoretical and numerical 
results agree well for the full range of time-step sizes. However, for the implicit scheme, the predicted spectral radius 
is much smaller than the measured one. The proposed implicit formulation thus yields a convergence rate that is not 
limited by diffusion, but rather constrained by other processes that were not considered in the stability analysis, such as 
chemistry. The predicted convergence rate can nonetheless be observed in the implicit case. As mentioned in Section 3.4, 
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Fig. 5. Theoretical convergence rate determined from diagonalizing matrix B corresponding to the worst-case modified wavenumber for the one-dimensional 
premixed flame, compared with the numerical convergence rates determined by fitting an exponential curve to the slope of the density residual.

Fig. 6. A posteriori comparisons of species mass fractions relative to mixture local temperature in a hydrogen/air flame with φ = 0.4 using NGA and Cantera.

the eigenvector associated with the largest eigenvalue of Bimp in Table 1 forms a small angle with Y◦ . Hence, a fraction of 
the error, albeit tiny, is associated with this eigenvector, which will slowly converge. In Fig. 4b, the convergence rate for the 
last sub-iterations of the implicit case closely matches that eigenvalue.

Overall, these results suggest that the theory well-approximates actual stability and provides a practical limit for the 
numerical stability of the proposed algorithm.

5.2. Method verification

To verify the multicomponent model, we compare a posteriori the one-dimensional unstretched species profiles and 
laminar flame speeds. Fig. 6 compares the nine species profiles for the steady-state one-dimensional flat flame solutions 
relative to local mixture temperature for the multicomponent and mixture-averaged models from both NGA and Cantera. 
The profiles all agree within 1% at all points, with the exception of N2. The laminar flame speeds (So ) for these simulations 
L
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Fig. 7. Relative accuracy of the method as a function of time step size for the one-dimensional, freely propagating flame test case with seven sub-iterations. 
Errors are defined as the absolute difference of their integrated value in temperature space compared with a reference solution obtained for �t = 1 × 107 s 
and seven sub-iterations. Black dashed line corresponds to y = x−2.

are approximately 23.0 cm/s and 22.3 cm/s for the mixture-averaged and multicomponent diffusion NGA cases, respectively; 
the laminar flame speeds for both cases agree with those from Cantera within 1%. The unstretched laminar flame speed is

So
L = −

∫
ρω̇H2dx

ρu YH2,u
, (44)

where ρu is the unburnt mixture density and YH2,u is the unburnt fuel mass fraction. We attribute the larger difference in 
the species profile for N2 to the correction velocity term associated with the mixture-averaged diffusion model, which is 
weighted by mass fraction and thus can be heavily impacted by differences in N2 due to its high concentration throughout 
the flame. The minor differences between the multicomponent species profiles are less than 1% at all points. The strong 
agreement between the other eight species profiles for both the NGA and Cantera results verifies the multicomponent 
model’s functionality.

5.3. Accuracy

With the proposed algorithm’s stability limits and functionality verified, we now examine the accuracy for a given stable 
simulation. We determine the order of accuracy of the method based on the 1D freely propagating flame case by examining 
the power-law dependence of the error as a function of the time-step size.

Fig. 7 shows the normalized error for the 1D freely propagating flame case for various time steps. We initialize the 
simulation using an input flame profile corresponding to a fully converged statistically stationary flame, generated with a 
time-step size of �t = 1 × 107 s and seven sub-iterations. A wall is then set at the simulation inlet, allowing the flame 
to propagate upstream in the domain. We then let the reference flame propagate for two flame pass-through times to 
ensure a fully converged freely propagating flame profile free of any initial transients due to the transition from the input 
stationary flame profile. This reference file then serves as the input for a set of freely propagating flames with time-step 
sizes ranging 10−5–10−7 s and for seven sub-iterations. Finally, we allow these test flames to propagate for an additional 
flame pass-through time to ensure statistical independence from the initial reference-flame input file.

With the freely propagating flame tests completed, we interpolated the species and density fields to a constant tempera-
ture space corresponding to the temperature distribution in the flame region. This interpolation ensures a direct comparison 
of the species error independent of variation in the temperature space over the range of time-step sizes. We then calculate 
error as the L2-norm of the species and density profiles in temperature space, relative to the reference flame profile with 
�t = 1 × 10−7 s and seven sub-iterations:

error =
√√√√∫ (

Yi − Yi,ref
)2

dT∫
Y 2

i,refdT
(45)

and

error =
√∫

(ρ − ρref)
2 dT∫

ρ2
refdT

. (46)

We selected the species H2, H2O, OH, and H to evaluate the accuracy of the method because they represent the reactants, 
intermediate species, and products present in hydrogen combustion. Density (ρ) is also included to globally assess error, 
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Fig. 8. Impact of time-step size and number of sub-iterations on the accuracy of one-dimensional freely propagating flames.

Fig. 9. Turbulent flame speed history for three-dimensional, freely propagating, premixed, turbulent hydrogen/air flame with φ = 0.4.

since it depends on all species. As shown in Fig. 7a, all quantities exhibit second-order accuracy in time with seven sub-
iterations. The errors corresponding to the L1- and L∞-norms are similar in magnitude and also demonstrate second-order 
accuracy in time with seven sub-iterations.

While the method is fully second-order accurate for seven sub-iterations and above, the solution transitions to first-order 
accuracy as the number of sub-iterations decreases. Fig. 7b shows that the solution exhibits first-order accuracy when using 
four sub-iterations. Between four and seven sub-iterations the solution is second-order accurate for large time-step sizes 
but transitions to first-order accuracy as the time step size decreases. The range of time-step sizes that achieve second-
order accuracy grows until the solution becomes fully second-order accurate at seven sub-iterations for all time-step sizes 
considered.

To evaluate the absolute magnitude of error associated with the proposed method, as opposed to the order of accuracy 
(as time-step size approaches zero), Figs. 8a and 8b present the temperature as a function of distance and fuel mass frac-
tion as a function of temperature, respectively, for a range of freely propagating flames with several time-step sizes and 
sub-iterations. The solutions exhibit negligible error in both temperature and fuel mass fractions for the time-step sizes 
considered, and even when using as few as four sub-iterations; these tests demonstrate the high accuracy and robustness 
of the proposed method.

5.4. Three-dimensional assessment of diffusion flux models

In this section we assess a posteriori the species mass diffusion fluxes in the doubly periodic three-dimensional flames 
[4–6]. Differential diffusion effects cause the instabilities found in lean hydrogen/air flames, and at high Karlovitz numbers 
the turbulence time scales match the order of diffusion time scales.

To assess the impact of the mixture-averaged and multicomponent mass diffusion models on flame chemistry, we com-
pare a posteriori the turbulent and chemistry statistics. We allow the flames to develop in a turbulent flow field, and 
compute the statistics after the transients from the initial flow and scalar fields have advected through the domain. As an 
initial assessment, we calculate the effective turbulent flame propagation speeds:

ST = −
∫

V ρω̇H2dV

ρu YH2,u L2
. (47)

Fig. 9 shows the time history of the turbulent flame speed over twenty-two eddy turn-over times (τeddy). The aver-
age normalized flames speeds from the mixture-averaged and multicomponent models differ by 15%: SMA

T /SL = 29.6 and 
SMC

T /S0
L = 34.7, respectively. Further study is needed on whether the mixture-averaged diffusion model fully captures the 

fundamental physics of multicomponent diffusion.
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Fig. 10. Conditional means on temperature for the three-dimensional, freely propagating, premixed, turbulent hydrogen/air flame with φ = 0.4.

Fig. 11. Computational time per grid point for computing diffusion coefficients and diffusion mass fluxes using kinetic models with 9, 35, and 172 species; 
black dashed lines correspond to linear (y = x) and quadratic (y = x2) scaling trends respectively. MC and MA stand for multicomponent and mixture-
averaged, respectively.

To further assess any differences between the mixture-averaged and multicomponent mass diffusion models, Fig. 10
presents the means of fuel mass fraction and its source term conditioned on temperature for the full time domain. The 
differences in the calculated conditional means are small: less than 5.5%. This agreement also extends into super-adiabatic 
regions for the hydrogen/air flame; these regions, also called “hot spots”, result from differential diffusion and have been 
predicted both in theoretical studies [53] and numerical analyses of lean hydrogen/air mixtures [54–56]. However, these 
small differences in global flame statistics do not explain the 15% difference observed in the turbulent flame speeds between 
the mixture-averaged and multicomponent diffusion models. These results raise questions on the appropriateness of the 
mixture-averaged diffusion assumption for direct numerical simulation and warrants further investigation.

5.5. Computational cost

This section discusses the relative cost for implementing the full multicomponent mass diffusion to provide context for 
its use. The presented timing comparisons examine how the method scales with both number of chemical species and 
spatial dimension.

We tested three chemical kinetic models (containing 9 [5], 35 [36,37], and 172 species [57–59]) in a one-dimensional flat 
flame simulation to determine the cost of multicomponent mass diffusion over a wide range of model sizes. Fig. 11 shows 
the computational time per grid point for computing the diffusion mass fluxes on a desktop workstation using an Intel 
Xeon-X5660 CPU with a 2.80 GHz clock speed. The presented timings include calculation of both the diffusion coefficients 
and mass diffusion fluxes for all aspects of the code.

For the tested chemical kinetic models, the mixture-averaged model scales linearly while the multicomponent model 
scales quadratically with the number of species. The multicomponent model is more expensive and does take more time 
per-point for all three test cases. For the largest kinetic model (with 172 species) the multicomponent case is noticeably 
more expensive than the mixture-averaged model. The increased cost for the multicomponent simulations comes primarily 
from the CHEMKIN II [28] routine used to determine the ordinary multicomponent diffusion coefficient matrix.

The relevant cost for the proposed method can be split into three primary categories: the costs of calculating the multi-
component diffusion coefficients, calculating the multicomponent diffusion fluxes, and the semi-implicit integration scheme. 
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Fig. 12. Computational time per grid point for each of the three flame configurations: one dimensional (blue), two dimensional (red), and three dimensional 
(yellow).

Fig. 13. Comparison of numerical costs for the three-dimensional hydrogen flame simulations.

Since the proposed method for implementing full multicomponent mass diffusion focuses on efficient low-memory calcula-
tion of the diffusion fluxes, rather than the multicomponent diffusion coefficients, the cost of CHEMKIN should be considered 
independently of the proposed algorithm. Moreover, the semi-implicit scheme is the same for the mixture-averaged and 
multicomponent cases, because both cases use the mixture-averaged diffusion coefficient matrix to approximate the Jaco-
bian for the diffusion source terms. As a result, the two methods have similar implementation and computational expense, 
with the exception of using CHEMKIN II [28].

To evaluate how the multicomponent model scales with increasing spatial dimension, and evaluate the relative cost of 
using CHEMKIN II [28], we acquired timings for one- (720 grid points), two- (1888 ×472 grid points), and three-dimensional 
(1520 ×190 ×190 grid points) configurations covering the cases presented in this work, with the additional two-dimensional 
case matching similar timing tests by Schlup et al. [6]. These timing tests represent an average cost per point and are 
determined by averaging the timings taken for the 20 time steps, skipping the first and last integrations. Fig. 12 presents the 
computational timings for each part of the code for both diffusion models, where “Scalar” includes scalar field calculation; 
“Diffusion” includes the flux calculation and DMA calculation for the implicit solver; “Chemistry”, “Velocity”, and “Pressure” 
are as named; and “Rest” account for any remaining computations. “Scalar” includes the semi-implicit solver for integrating 
the diffusion source terms, while the semi-implicit solvers for chemistry and velocity are included in their named categories. 
To facilitate comparison between the two models, Fig. 13 presents the total computational time per grid point for both 
three-dimensional hydrogen simulations as a stacked bar chart broken down by each section of code. We performed these 
computations on the National Energy Research Scientific Computing Center (NERSC) high-performance computing cluster 
Cori (Cray XC40) [60].

While much of the code exhibits a similar cost per grid point, regardless of the dimensionality of the problem, the 
chemistry is more expensive for the one- and two-dimensional cases. This cost increase is due to NGA’s structure. NGA 
was written and optimized for three-dimensional configurations, thus the one- and two-dimensional cases are artificially 
more expensive, especially in the chemistry calculations [6]. In addition, for three dimensions the cost of the pressure 
solver increases due to using the HYPRE package [42]. The one- and two-dimensional cases both implement an exact 
FFT-tridiagonal solver, while HYPRE—used for the three-dimensional cases—is iterative and thus more expensive. Despite 
the minor increase in cost for the pressure solver in three dimensions, the cost is negligible when considering larger kinetic 
models (i.e., more than 35 species).

Consistent with Fig. 11, the cost of calculating “Diffusion” increases with model complexity; recall that DMA is calculated 
for both the mixture-averaged and multicomponent solvers. However, the multicomponent diffusion mass flux calculation 
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represents only 21% of the total simulation time for the three-dimensional case. As expected, the cost of calling CHEMKIN II 
for the diffusion coefficients is large and accounts for roughly 23% of the three-dimensional simulation time. Interestingly, 
the cost of diffusion increases only slightly moving from one dimension to two dimensions. This results from the high 
efficiency of the dynamic memory-allocation algorithm used to implement this model (see Section 3.3). Moreover, the 
multicomponent diffusion implementation is less expensive than the mixture-averaged model for the one-dimensional case 
and equivalent in cost for the two-dimensional case. Overall, by reducing memory requirements and optimizing calls to 
memory, the memory algorithm implemented for the multicomponent model maintains low computational expense.

These results indicate that, for hydrogen-air combustion, the multicomponent model is more expensive than the mixture-
averaged model; however, the differences in “Diffusion” costs between the two models are due to the use of CHEMKIN 
II [28]. Thus, the slowdown could be minimized by implementing a more-efficient package for calculating the mass-diffusion 
coefficients such as EGLIB [9,19,20]; however, the total cost of computing mass diffusion fluxes remains notable, even for 
the mixture-averaged case.

6. Summary and future work

This article presents an efficient and stable scheme for implementing multicomponent mass diffusion in reacting-flow 
DNS with minimal memory expense. The proposed scheme exhibits reasonable computational cost for chemical kinetic 
models of up to 100 species; this performance could be further improved by implementing a more-efficient method for 
calculating the multicomponent diffusion coefficient matrix.

The results presented for hydrogen flames suggest that the mixture-averaged mass diffusion model may suffice for DNS 
of three-dimensional, premixed turbulent flames in the regimes and configurations considered. However, we observed a 
15% difference in the turbulent flame speeds between the two models, though the differences in the conditional means of 
the fuel source term and mass fraction were negligible. The difference observed in turbulent flame speeds raises questions 
about using the mixture-averaged model in DNS of turbulent reacting flows. Moreover, the algorithm proposed in this study 
provides a fast, efficient, method for implementing multicomponent mass diffusion in reacting-flow simulations, which may 
eliminate the need for the mixture-averaged assumption. However, despite these results, we do not have sufficient data to 
draw firm conclusions on the accuracy and appropriateness of mixture-averaged assumptions for all flames (i.e., all fuels, 
configurations, and regimes). Additional data are needed from studies of different fuels—namely large hydrocarbons—and 
kinetic models with more species. Thus, future work should focus on extending these comparisons to other fuels and flame 
configurations.
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Appendix A. Availability of material

The figures in this article, as well as the data and plotting scripts necessary to reproduce them, are available openly 
under the CC-BY license [61]. Furthermore, the full simulation results from NGA are available for the three-dimensional 
multicomponent [62] and mixture-averaged [63] hydrogen/air flames.

Appendix B. Method verification

To verify the method implementation, we generated an artificial species profile where the direction and relative mag-
nitudes of the flux vectors could be predicted a priori to remain independent of any differential diffusion effects that may 
exist in a physical system. Specifically, we created a two-dimensional V-shaped species profile with a central angle of 45◦
and projected it into three dimensions as shown in Fig. B.14a.

Such a profile results in flux vectors that are constant in the y-direction, are of equal magnitude and opposite sign in 
the z-direction reflected over the x-y-plane, and vary in magnitude but remain constant in sign matching the initial input 
profile in the x-direction. These predictions should be consistent independent of chemical species or other scalar value for 
the artificial input profile. We ran the algorithm for one “complete” set of sub-iterations to convergence and normalized the 
resulting diffusion flux vectors to ensure the relative magnitudes and direction were consistent with our expectations.

Fig. B.14 shows the results of this artificial test case. The resulting normalized flux vectors agree with expectation and 
have equal magnitudes in the x- and z-directions corresponding to the 45◦ artificial flame angle. This result indicates proper 
functionality of the proposed method.
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Fig. B.14. Normalized flux vectors resulting from an artificial species profile after one full iteration of semi-implicit multicomponent diffusion calculation.
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