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A minimally invasive lens-free
computational microendoscope

Jaewook Shin', Dung N. Tran', Jasper R. Stroud’, Sang Chin"***, Trac D. Tran, Mark A. Foster'*

Ultra-miniaturized microendoscopes are vital for numerous biomedical applications. Such minimally invasive imagers
allow for navigation into hard-to-reach regions and observation of deep brain activity in freely moving animals.
Conventional solutions use distal microlenses. However, as lenses become smaller and less invasive, they develop
greater aberrations and restricted fields of view. In addition, most of the imagers capable of variable focusing require
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mechanical actuation of the lens, increasing the distal complexity and weight. Here, we demonstrate a distal lens-free
approach to microendoscopy enabled by computational image recovery. Our approach is entirely actuation free and
uses a single pseudorandom spatial mask at the distal end of a multicore fiber. Experimentally, this lensless approach
increases the space-bandwidth product, i.e., field of view divided by resolution, by threefold over a best-case lens-
based system. In addition, the microendoscope demonstrates color resolved imaging and refocusing to 11 distinct

depth planes from a single camera frame without any actuated parts.

INTRODUCTION
Optical endoscopes are widely used to image the interior of the human
body, enabling disease diagnosis and surgical image guidance. In addi-
tion, fiber-optic microendoscopes are becoming extremely valuable
tools for structural and functional brain imaging of live animals. Such
behavioral studies demand tools with high spatiotemporal resolution
that can image over a large space to capture large-scale neural activity
deep in the brain (1-4). One current approach is to acquire each image
pixel of a scene by distal scanning of a single-core fiber or proximal
scanning using a multicore fiber. Such designs typically use a
mechanical scanner and microlenses and recover images with high spa-
tial resolution but with a field of view limited by the deflection angle of
the scanner. Another approach is widefield illumination and detection
using a multicore fiber or a fiber bundle, where fiber cores transmit the
image pixels of a scene (5). In this case, widefield imaging is accompa-
nied by degradation in image quality due to the cross-talk between fiber
cores and pixelation artifacts. Furthermore, reducing the number of
fiber cores improves miniaturization but reduces the field of view with
the aforementioned effects becoming more pronounced. Alternatively,
handheld microscopes based on widefield illumination and collection
using microlenses have been recently demonstrated for brain imaging
of freely moving mice (6, 7). Regardless of the different approaches, the
distal lenses that most approaches use impose an inherent trade-off
between miniaturization of the imaging probes and their imaging
performance (6-10). The physical limit to miniaturization is a partic-
ular problem for brain imaging as probe implantation inevitably
damages the intricate neural circuitry that such studies aim to under-
stand. Several lensless endoscope designs using a multimode fiber,
multicore fiber, or cannula have been proposed but show drawbacks
such as sensitivity to bending, restricted field of view, or inability to
resolve color (11-14).

Recently, lensless cameras based on coded-aperture imaging have
been proposed for biological and commercial applications (15, 16).
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These cameras demonstrate flat form factors comparable to dimensions
of the bare image sensor with variable working distances, which allows
one to avoid damaging the sample through contact. The working prin-
ciple is to place a single spatial mask near the front of the bare sensor,
followed by characterization of light propagation through the mask
and onto the sensor. A least-squares minimization algorithm with a
regularizer reconstructs the scene using a single snapshot of the scene’s
coded-aperture response. Notably, other coded aperture-based imag-
ing systems have also demonstrated lightfield imaging capable of com-
putationally refocusing objects located at different depths (17, 18).
However, while these approaches can be very flat, they are large in
the transverse dimension limited by the size of the sensor array and
associated electronics. Thus, these approaches are best suited for
application at a tissue surface and are not effective for implantation
deep within tissue.

Here, we combine coded-aperture imaging with a multicore fiber to
create a distal lens-free microendoscope system that simultaneously
achieves miniaturization and wide field of view. Figure 1A shows a
simplified illustration of conventional lens-based imaging with a mul-
ticore fiber via widefield illumination and detection. Figure 1B shows a
simplified illustration of our distal lensless imaging approach using a
multicore fiber and coded aperture. In essence, distal lenses are re-
placed with a simple random binary spatial mask (i.e., coded aper-
ture), which modulates the intensity of light propagating from the
scene to the fiber face. Unlike the widefield illumination approach,
each fiber core serves as a single measurement instead of an image
pixel as the cores measure a pseudorandom linear combination of
light emitted from various points within the scene, enabling image re-
construction without pixelation artifacts.

Before imaging, we first characterize the light propagation through
the coded aperture and multicore fiber. For calibration, an incoherent
source [green or white light-emitting diode (LED)] and a digital micro-
mirror device are used to project and scan a point source across the mi-
croscopic sample plane. The design of the calibration projector is
described in the Supplementary Materials (fig. S1). The light trans-
mitted through the coded aperture and multicore fiber is imaged at
the proximal end of the multicore fiber onto a charge-coupled device
camera, which captures the corresponding system response of each
point source. For imaging, an object is placed in the sample plane, an
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Fig. 1. Imaging using a multicore fiber and coded aperture. (A) Simplified illustration of widefield illumination imaging using a multicore fiber and lens. (B) Our distal

lensless imaging approach using a coded aperture.
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Fig. 2. Experimental imaging results. (A to C) Objectimages acquired using a bulk microscope. Experimental results shown throughout have a 980-um-wide field of view. (D to
F) Objects imaged using a conventional lens-based multicore fiber microendoscope. Scene is demagnified to fit within the fiber's image circle diameter of 270 um. (G to I) Raw
images captured from the proximal end of the multicore fiber in our distal lensless microendoscope using a distal coded aperture and used to reconstruct (J) to (L). (J to L) Objects

imaged using our distal lensless microendoscope.

incoherent source illuminates the sample plane, and a single snapshot of
the object’s system response is captured using the camera at the
proximal end of the fiber. An image of the scene is then reconstructed
using the calibrated system response of individual point sources, the
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single frame of the object’s system response, and an image reconstruc-
tion algorithm. In comparison to previously demonstrated lensless
approaches (11, 12), the proposed lensless imager is insensitive to
bending of the fiber as the operation relies on the faithful transmission
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of intensity patterns, not phase, of the system responses of the point
sources (fig. S6).

The above processes can be written mathematically as the following,
Let M and N represent the number of fiber cores in the multicore fiber
and number of pixels in the computational reconstruction, respectively.
The imaging problem is written as y = Ax, where y € R is the ob-
ject’s system response, A € R*N is the calibration matrix where each
column vector is the system response from a single point source, and
x € R™ is the image of the object to be recovered. To reconstruct the
image of the object from the object’s system response, we use /; min-
imization coupled with discrete cosine transform basis at the level of
blocks of pixels called patches: Any selected local patch should be
sparse. Out of all candidate images that are consistent with the system
response, the iterative optimization algorithm seeks the most sparse
set of overlapped patches. A detailed mathematical description of
the algorithm is given in Materials and Methods. In accordance with
compressive sensing theory, the minimum number of measurements,
i.e., fiber cores, to accurately reconstruct x is defined as S log ¥ < M,
where S is the number of nonzero elements in x, and the calibration
matrix satisfies the restricted isometry property (19).

Lens-based imaging
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Fig. 3. Test for spatial resolution. (A to C) Images of the resolution target objects acquired using a bulk microscope. Experimental results shown throughout have a 980-um-
wide field of view. (D to F) Objects imaged using a conventional lens-based multicore fiber microendoscope. (G to ) Objects imaged using our lensless multicore fiber micro-

RESULTS

Lens-based versus lensless microendoscope

Example experimental results of the imaging system are shown in Fig. 2.
For reference, images of projected test objects (Fig. 2, A and B) and a
prepared slide of esophagus tissue (Fig. 2C) are acquired using a high-
resolution bulk microscope. The corresponding objects imaged through
a conventional lens-based multicore fiber microendoscope are also
shown (Fig. 2, D to F) by using a lens and a 30-cm-long multicore fiber
with 6000 fiber cores, an image circle diameter of 270 um, a fiber core
diameter of 3 um, and a pitch of 3.3 um. Imaging results from our distal
lensless system are demonstrated using coded aperture and the same
multicore fiber and are shown (Fig. 2, G to I). Furthermore, their
corresponding raw camera images used to reconstruct these images
are shown (Fig. 2, ] to L). Experimental results shown throughout this
article have a 980-um-wide field of view.

Test for spatial resolution

Resolution targets are imaged (Fig. 3) to determine the spatial resolu-
tion of the imaging system. Microscope images of the resolution targets
(Fig. 3, A to C), images using the conventional lens-based multicore

Lensless imaging

endoscope using a distal coded aperture. (A, D, and G) Linewidths are 44, 40, and 33 um, respectively. (B, E, and H) Linewidths are 32, 29, 26, and 22 um, respectively. (C, F, and I)

Linewidths are 21, 19, 17, and 14 um, respectively.
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fiber microendoscope (Fig. 3, D to F), and the distal lensless micro-
endoscope image reconstructions (Fig. 3, G to I) are shown. The line-
widths in Fig. 3 (A, D, and G) are 44, 40, and 33 um, respectively; the
linewidths in Fig. 3 (B, E, and H) are 32, 29, 26, and 22 um, respectively;
and the linewidths in Fig. 3 (C, F, and I) are 21, 19, 17, and 14 um,
respectively. Unlike a lens-based approach, lensless imaging is capable
of resolving 14-um features, as shown in the Supplementary Materials
(fig. S2).

Dynamic scene reconstruction

The imaging architecture presented here is comparable to the single-
pixel camera, where each measurement carries global information
about the scene (20-22). However, contrary to single-pixel cameras
that sequentially mask the scene with varying spatial patterns and
acquire each measurement sequentially, our imaging system only re-
quires a single random spatial mask and acquires the spatially multi-
plexed measurements from a single camera frame and is therefore
highly suitable for capturing dynamic scenes. To demonstrate this,
we experimentally reconstruct a time-varying scene acquired at the
native frame rate of our camera (50 frames per second) and is
provided in the Supplementary Materials (fig. S3 and movie S1).
The pixel resolution of the camera does not dictate the frame rate of
the lensless microendoscope, provided enough pixels are available to
measure the light intensity in each fiber core. For calibration and im-
aging, we acquire images of the fiber cores using only 10 camera pixels
per core. Given the modest pixel requirements of the present system,
we anticipate the signal-to-noise of the system response to be the
primary limiter of the maximum frame rate, not the camera data
throughput.

Computational refocusing

A marked benefit of the lensless microendoscope system presented
is the ability to computationally refocus on objects that are posi-
tioned at different depths without any actuated components and
using only a single camera frame. Conventionally, optical endo-
scopes with depth-scanning capabilities require components capa-
ble of physically varying the focal plane, such as electrically tunable
lens, which makes brain mounting of freely moving animals diffi-
cult due to increased distal footprint and weight (23-26). In stark
contrast to these bulky approaches, we can simply calibrate the sys-
tem responses at different depths and reconstruct the scene volu-
metrically without actuation from a single camera snapshot. As a
demonstration of this, Fig. 4 (A and B) shows the microscope
images of two test objects separated in depth by 1.5 mm. Using a
single snapshot (Fig. 4C), we can volumetrically reconstruct an
image volume of the objects and digitally focus on either object
(Fig. 4, E and F, and movie S2) simply by choosing the depth plane
within the reconstructed volume.

Color imaging

Beyond computational refocusing, this lensless approach can also
achieve color imaging without any additional components. In con-
trast, microlens-based systems suffer from substantial chromatic aber-
rations that are difficult to correct. Using the proposed lensless
approach, one can simply use a color camera and calibrate the sensing
matrix for each color channel resulting in no chromatic aberration, in
principle. To demonstrate this color imaging capability, we used a
white LED as the light source and we reconstructed and overlay
images of each color channel to generate the results shown in Fig. 5.

Shin et al,, Sci. Adv. 2019;5:eaaw5595 6 December 2019
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Fig. 4. Computational refocusing. (A and B) Bulk microscope images of the test
subject, which consists of two planar objects separated in depth by 1.5 mm. The image
volume is reconstructed from a single image of the multicore fiber's proximal end,
shown in (C). (D) shows volumetric reconstruction with 11 depth layers, separated in
depth by 300 um, using the system response shown in (C). (E and F) Images from the
volumetric reconstruction corresponding to the two depths that the objects are in the
best focus.

DISCUSSION

In summary, we have demonstrated a distal lensless, scan-free micro-
endoscope using a coded aperture at the distal end of a multicore fiber.
By replacing distal lenses with a single spatial mask, widefield images of
the scene with a 980-pum-wide field of view are computationally recovered
with superior image quality to a comparable conventional lens-based
approach. In addition, the imaging system is capable of computa-
tional refocusing of objects located 1.5 mm apart in depth without
actuation using a single snapshot of the scene’s coded-aperture re-
sponse. Furthermore, the presented technique does not require addi-
tional elements to correct for chromatic aberrations, enabling color
imaging by simply calibrating for each color channel. Thus, this distal
lens-free microendoscope enables minimally invasive imaging with
capabilities and performance that are not possible with conventional
lens-based microendosopes. Future improvements on this work will
include optimizing the minimum feature size of the random spatial
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Object

Lensless imaging

Fig. 5. Demonstration of color imaging. (A and B) Images of multicolor objects
acquired using a bulk microscope. (C and D) Color image reconstructions of the
same objects using our lensless microendoscope.

mask and its distance from the multicore fiber to cast the smallest
features on the distal end while preserving the decorrelation of each
point source, which would maximize the lateral and axial resolutions.
Furthermore, simultaneous illumination and detection using the multi-
core fiber is to be implemented, which can be done by evenly illuminat-
ing the scene through the coded aperture as all fiber cores are used for
illumination and collection. Given the application to fluorescence im-
aging, we expect to use a fluorescence filter that sufficiently rejects the
excitation light from the fluorescence emission, as is commonplace
in conventional lens-based fluorescence microendoscopes. In addition,
we aim to improve the scalability of the calibration module for high-
resolution imaging with a large number of image pixels by using a
high-speed two-dimensional (2D) galvanometer to scan a point in a
thin fluorescence slide or using a coded aperture with a separable mask
pattern (15, 16). Overall, the presented imaging system demonstrates
an alternative design to ultrathin microendoscopy with great potential
for applications that demand extremely small and agile probes such as
real-time imaging of neural activity in freely moving animals.

MATERIALS AND METHODS

Multicore fiber and coded aperture

The multicore fiber (FIGH-06-3008S, Fujikura, distributed by Myriad
Fiber Imaging in the United States) used to acquire all experimental
data is a 30-cm-long multicore fiber of 6000 fiber cores with a core
diameter of 3 um, a core pitch of 3.3 um, an image circle diameter
of 270 um, a fiber diameter of 300 um, and a coating diameter of
400 pm. The coded aperture used in the experiment has a minimum
feature size of 10 um, limited by our printing capabilities. The coded
aperture was laser-printed on a transparency and was a 2D square-
shaped, uniformly distributed pseudorandom binary pattern. Because
of the feature size of the coded aperture and the inherent cross-talk in
the multicore fiber, the distance between the mask and the fiber is set to
be 1 mm with the imager’s working distance being approximately 4 mm
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to ensure sufficient shift in the coded-aperture responses of each point
source from the scene.

Calibration

For all experimental results, the reconstructed images are 60 by 60 pixels,
so we calibrated 60*-point sources in our 980-um-wide field of view
for a single depth plane. The point sources are square-shaped with
16.3-um width (square point source with 9.78-pum width is generated
to acquire Figure 3I). We calibrated for 11 depth layers separated by
300 um in depth for demonstration of volumetric imaging, which
requires calibration of 11 x 60 point sources. In the present con-
figuration, the lensless microendoscope demonstrates an axial reso-
lution of approximately 300 pm as shown in figs. S2 and S3. In this
particular experiment, the number of calibrated point sources was
purely limited by the scanning speed of the digital micromirror de-
vice due to its limited scanning speed of 2 Hz.

Reconstruction algorithm

To reconstruct the image of the object from the object’s system re-
sponse, we used a reconstruction framework focusing on the local image
structures. A popular model to quantify local image information is spar-
sity in an appropriate domain. Given a patch or block of pixels z
extracted at a random location from the image of the object, its co-
efficient o under some sparsifying transform ¥ (-) defined by

a="Y(z)

should be sparse or compressible.

The reconstruction process estimates the sparse coefficient set of
some patch set covering the entire image of interest, which is consistent
with the object’s system response. In particular, let {z;} be a patch set
extracted from the original image x, the image of the object can be math-
ematically represented by its patches as

x = P({z})

where P(-) is an operator that combines the patch set to obtain the orig-
inal image. Denote {0y} as the coefficients of the patches {z} and ‘¥(-) as
the inverse sparsifying transform of V() satisfying z; = (o) for all k,
the sensing process can be written as

y = A(P(Y{o}))

We propose to obtain the sparse coefficients from the following op-
timization problem

min Y, logll; s.t. A(P(W{ox})) =y
{ox} k

This optimization problem can be solved efficiently by an iteratively
alternating minimization procedure. At iteration ¢ of the algorithm, a
noisy estimate x'”’ of the original image consistent with the object’s sys-
tem response is reconstructed on the basis of the information from the
previous iteration. The estimates of the sparse coefficients {a,@ } at this
iteration can then be found by thresholding the coefficients of the noisy
patches {Z]it) } extracted from x“. The error between the true measure-
ments and the sparsified reconstruction with the known coded aperture
is used to generate the next image estimate x * . The algorithm stops
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when a maximum number of iterations is reached, or the inconsistency
between the estimate and the measurements is sufficiently small.

Lens-based microendoscope

Object images and lens-based imaging results in Figs. 2, 3, and 5 were
acquired using a biconvex lens (LB1630-A, Thorlabs). The lens-based
microendoscope for comparison is home-built using the biconvex lens,
and the identical multicore fiber (FIGH-06-300S, Fujikura) was used for
the lensless microendoscope. The lens was used to demagnify and relay
the scene by a factor of 980 pm/270 um = 3.6 to relay the 980-um-wide
field of view to the multicore fiber’s image circle diameter of 270 um. Note
that the lens-based microendoscope does not use a microlens and there-
fore represents the best-case imaging performance with minimal optical
aberrations.

Calculation of the space-bandwidth product

The space-bandwidth product of an imaging system measures the num-
ber of pixels required to image the full field of view at full resolution (at
Nyquist sampling rate). The 2D space-bandwidth product of a lens-
based microendoscope is the total number of fiber cores in the multicore
fiber, which is 6000. In comparison, the lensless microendoscope has a
2D space-bandwidth product of 0.96 mm?/(7 um)?* = 19,592 for a single
depth plane.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/12/eaaw5595/DC1

Fig. S1. Detailed schematic of our approach consisting of calibration optics and the imager.
Fig. S2. Determining the axial resolution of the lensless microendoscope.

Fig. S3. Volumetric reconstruction of two planar objects separated by 1.5 mm in depth (shown
in Figure 4 and movie S2).

Fig. S4. Comparison of spatial resolution between lens-based and lensless multicore fiber
microendoscopes.

Fig. S5. Demonstration of time-varying scene reconstruction.

Fig. S6. Demonstration of insensitivity towards bending of the multicore fiber of the lensless
microendoscope.

Movie S1. Dynamic scene reconstruction, acquired at 50 frames per second.

Movie S2. Computational refocusing of planar objects separated in depth.
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