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ABSTRACT

Successful management of product transitions in the semiconductor industry requires effective
coordination of manufacturing and product development activities. Manufacturing units must
meet demand for current products while also allocating capacity to product development units
for prototype fabrication that will support timely introduction of new products into high-volume
manufacturing. Knowledge of detailed operational constraints and capabilities is only available
within each unit, precluding the use of a centralized planning model with complete information
of all units. However, the decision support tools used by the individual units offer the possibility
of a decentralized decision framework that uses these local models as components to rapidly
obtain mutually acceptable, implementable solutions. We develop Iterative Combinatorial Auctions
(ICAs) that achieve coordinated decisions for all units to maximize the firm’s profit while motivat-
ing all units to share information truthfully. Computational results show that the ICA that uses
column generation to update prices outperforms that using subgradient search, obtaining near-
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optimal corporate profit in low CPU times.

1. Introduction

Effective introduction of new products (product transitions) is
an important competitive advantage in many industries
(Levinthal and Purohit, 1989; Padmanabhan et al, 1997). A
growing body of research has addressed aspects of product
transitions (Billington et al, 1998; Lim and Tang, 2006;
Bilginer and Erhun, 2010) including capacity management
under technological uncertainty (Rajagopalan et al, 1998;
Angelus and Porteus, 2002; Wu et al., 2005; Li et al, 2014),
supply constraints (Ho et al, 2002), the impact of initial invest-
ment in design and process capacity and capabilities on the
time-to-market and ramp-up-time of a new product (Carrillo
and Franza, 2006; Wu et al., 2009), industry clockspeed (Souza
et al., 2004; Carrillo, 2005; Druehl et al, 2009) and cost struc-
ture (Souza, 2004). Liang et al. (2014) examine the impact of
strategic waiting by customers on the timing of the product
transition, whereas Klastorin and Tsai (2004) consider the
interaction of pricing, timing and product design in a competi-
tive environment. Koca et al. (2010) consider the impact of
pre-announcement of the transition on demand, and examine
the effects of inventory decisions and dynamic pricing. Li et al.
(2010) study inventory planning decisions during the transition
when the new product may substitute for the old one. This
body of work, however, has two shortcomings:

1. It treats the firm as a single centralized decision maker.
However, in practice the key resource allocation

decisions, as well as the domain knowledge and data
required to make them, are distributed among different
functional groups that have different, potentially con-
flicting objectives.

2. It treats product transitions as exceptions to routine
operations, and in isolation from products not involved
in the transition. However, in industries with frequent
product transitions, such as the semiconductor industry,
their management assumes a distinctly operational
aspect. New product introductions can have significant
negative impact on other products with which they
share resources, especially those currently in high-vol-
ume production that generate the firm’s revenue. Hence
product transitions cannot be managed effectively with-
out explicitly considering the technological constraints
governing the resource allocation decisions of the func-
tional units through which the product transition is
realized (Ulrich and Eppinger, 2016).

Although the process by which new products move into
volume production differs from firm to firm, units involved
in product transitions include several product line organiza-
tions that each serve a specific market (e.g., microprocessors,
mobile devices). Each product line has its own Sales and
Marketing (S-MKT) group and Product Development
Groups (PDGs), while multiple product lines can be manu-
factured by a Manufacturing organization (MFG). S-MKT is
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Figure 1. Information flow between S-MKT, MFG, and PDGs.

responsible for generating revenue for the firm through sale
of existing products and develops demand forecasts for new
products through market research.

Figure 1 shows the information flow between S-MKT,
MFG and the PDGs. Based on interaction with their markets
and the firm’s sales goals, the product line S-MKT units
issue production orders to MFG for current products and
specifications for new products to their PDGs. The PDGs
develop new products based on requests from their S-MKT
units, eventually requiring the fabrication of prototypes in
MFG facilities. Once MFG makes capacity available and pro-
totypes have been produced, the involved PDG tests them,
identifying problems and improving manufacturability and
performance. Several cycles of prototype testing and design
repair may be required before the product is ready for high-
volume production. In addition to these requests from the
PDGs, MFG must also address requests from the S-MKT
units for products to fill current orders and build inventory
positions for the future, generating the revenue needed to
operate the company. We stress that this is an ongoing, con-
tinuous process. The large number of product transitions in
a firm offering multiple product lines with multiple manu-
facturing facilities precludes a standard response process;
each situation requires negotiation between groups and
complex resource allocation decisions within each unit.

The problem in its full complexity is clearly extremely
challenging, especially given the pervasive uncertainty under
which decisions must be taken. Even a completely determin-
istic environment results in a computationally intractable
problem; a relatively simple form of the problem faced by
the PDGs reduces to the Resource-Constrained Multiple
Project Scheduling Problem, which is strongly NP-hard and
notoriously difficult to solve (Kolisch et al., 1995).

The inherently decentralized nature of the decision envir-
onment mandates a decentralized solution. Most of the indi-
vidual units already deploy automated decision support tools
to address their (already highly complex) local decision prob-
lems. A variety of models to support production planning
decisions by MFG are available in the literature (Leachman,
2001; Fordyce et al, 2011; Kacar et al, 2016; Monch et al,
2018). A variety of models to support the activities of the
PDGs have also been proposed (Rash and Kempf, 2012).
This suggests the possibility of a decentralized decision sup-
port framework that leverages these existing decision support
tools with a coordinating mechanism to ensure rapid

convergence to a set of decisions acceptable to all units and
consistent with the firm’s long-term objectives. The rapidly
growing literature on combinatorial auctions provides a
promising basis for the development of such a framework.

As a first step in this direction, this article studies a simpli-
fied version of the problem where the resources available to all
units are known with certainty, and demand forecasts for both
current and future products have been generated. The
Manufacturing (MFG) unit must manage factory capacity to
maximize the firm’s profit over a finite planning horizon, while
several PDGs must manage development activities to have new
products ready for high-volume manufacturing (ramp-up) in
time to meet their market demand. Factory capacity allocated
to the PDGs by MFG reduces short-term revenue, whereas if
the PDGs cannot obtain enough factory capacity from MFG
for timely prototype fabrication, new products may not be
available in the market when needed, resulting in lost revenue
and leaving the firm vulnerable to competition.

We propose two Iterative Combinatorial Auction (ICA)
frameworks (Parkes and Ungar, 2001) for coordinating deci-
sions between MFG and PDGs. The MFG unit auctions bun-
dles of factory capacity, consisting of specific amounts of
capacity in each period in the planning horizon, to the PDGs
who, in turn, receive incentive payments from MFG for hav-
ing new products ready for volume production at specific
times. MFG functions as the auctioneer, running a market-
clearing algorithm in each iteration to ensure that the deci-
sions of MFG and the PDGs are implementable, i.e., consist-
ent with each other and with all operational constraints for all
groups concerned, while seeking to maximize the firm’s profit
over the planning horizon. We shall refer to such solutions as
coordinated solutions, recognizing that our approaches do not
guarantee maximization of profit, and hence, are approximate
in nature. We assume myopic best response behavior by the
PDGs, such that each PDG seeks to obtain the best result it
can in the current iteration without considering the possibil-
ities of future iterations. This is a reasonable assumption due
to the NP-hard nature of the valuation problem by which the
PDGs generate their bids, which can only be increased by
incorporating conjectures about what other agents will do in
later iterations. In addition, no PDG has any way of knowing
when the ICA will end; the possibility that the current iter-
ation may be the last motivates the PDGs to submit their best
bids at each iteration.

A potential difficulty in many decentralized resource allo-
cation problems is the possibility that in a given iteration of
the ICA, several agents may request the same resources in
the same time periods, limiting the number of agents to
whom bids can be awarded while leaving others with no
allocation. Especially if each PDG submits only the bid that
optimizes its local objective, the auctioneer is left with a lim-
ited number of bids from which to construct a good quality
coordinated solution for the company. Allowing each unit to
submit multiple bids in addition to its locally optimal one
gives the auctioneer greater flexibility in this regard, since a
bid that is suboptimal for one PDG may allow a coordinated
solution that yields higher profit for the firm. Hence, an
important feature of our ICA approaches is the solicitation



of multiple bids from each participating PDG in each iter-
ation of the ICA. This provides the auctioneer with better
information on the capabilities of the PDGs, expressed as a
range of alternative delivery times for their new products
based on alternative resource allocations by MFG. However,
this raises two new issues. The first is since the valuation
problem solved by the PDGs may be strongly NP-hard (in
our case, a Resource-Constrained Project Scheduling
Problem), the computational effort involved in providing
multiple solutions may be excessive. We address this by
assuming that the PDGs develop their solution using a pro-
cedure that generates multiple feasible solutions in the
course of its computations. A wide range of algorithms,
including branch-and-bound methods for solving integer
programs (as used in this article), neighborhood search
metaheuristics such as Simulated Annealing (Van Laarhoven
and Aarts, 1987) and Tabu Search (Glover and Laguna,
1998), or population-based metaheuristics such as Genetic
Algorithms (Davis, 1991) meet this condition, although
manual procedures may not.

A more subtle issue is that a particular PDG may attempt
to improve its local objective at the expense of other PDGs
and corporate profit by submitting only its locally optimal
solution, effectively claiming this to be its only feasible solu-
tion. However, since the auctioneer seeks to select a subset
of the submitted bids that maximizes corporate profit over
the planning horizon, a PDG whose bids prevent the selec-
tion of bids from other PDGs that contribute positively to
corporate profit may find itself receiving no factory capacity
at all. This essentially represents a decision by the firm not
to move that PDG’s products into the market, reflecting
very negatively on the management of that PDG. Thus, we
assume that receiving no factory capacity allocation at all,
i.e., having no bid awarded at the end of the ICA procedure,
is viewed as catastrophically expensive by each PDG, due to,
say, loss of bonuses or profit-sharing income. We show in
Appendix B that under the assumption of myopic best
response, this very high cost of not receiving any bid incen-
tivizes the PDGs not to withhold information on alternative
feasible solutions from the auctioneer, i.e., to disclose truth-
fully the different “production” possibilities they discover
during their search for their preferred bid. We shall refer to
this as “truthful” behavior on the part of the PDGs, recog-
nizing that this goes beyond the common definition of
truthful behavior in an auction context, which requires only
truthful reporting of the valuation of the bids submitted.

The remainder of this article is organized as follows:
Section 2 reviews previous related work. In Section 3, we
give a centralized formulation of the problem with perfect
information, from which we derive the two ICA frameworks
presented in Sections 4 and 5. Section 6 presents computa-
tional experiments and results, while Section 7 discusses our
principal findings and some directions for future work.

2. Previous related work

The work in this article draws on three streams of research
literature: that on combinatorial auctions (Section 2.1),
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distributed resource allocation approaches (Section 2.2) and
decentralized resource allocation models, especially in the
semiconductor industry (Section 2.3).

2.1. Combinatorial auctions

The field of mechanism design seeks efficient ways to allo-
cate objects among multiple bidders. Auctions are an
important subclass of mechanisms under which agents offer
bids reflecting their valuation of a set of objects to an auc-
tioneer, who then allocates the objects among the bidders
based on their bids to maximize its objective (Osborne and
Rubinstein, 1990; Narahari et al., 2009). An auction mechan-
ism thus consists of an allocation or market-clearing rule
through which the auctioneer allocates objects to the bidders
based on the bids submitted, and a payment rule that deter-
mines what the bidders pay for the goods they receive
(Abrache et al., 2007; Mishra, 2010).

Combinatorial auctions (Cramton et al., 2007) involve a
set S of m discrete objects that are bid for by n bidders.
Each bidder i assigns a valuation v;(T) to each subset T C §
of objects, and submits bids for one or more subsets T. The
auctioneer then solves a Winner Determination Problem
(WDP) that allocates objects to agents such that one or
more bids are accepted from each bidder while maximizing
the auctioneer’s revenue (De Vries and Vohra, 2003;
Abrache et al., 2007; Blumrosen and Nisan, 2007). Thus the
solution to the WDP provides the allocation or market-
clearing component of the auction mechanism. In this art-
icle we implement the XOR bidding language (Parkes and
Ungar, 2001) where the objective of the auctioneer is to
maximize corporate profit over the planning horizon of
interest while accepting at most one bid from each bidder.

The WDP can be formulated as a weighted set packing
problem, which is known to be NP-hard (De Vries and
Vohra, 2003). Various exact and heuristic approaches for
the WDP have been proposed (Andersson et al., 2000;
Sandholm, 2002; Jones and Koehler, 2005; Lehmann et al.,
2006). If there is no integrality gap between the WDP and
its Linear Programming (LP) relaxation (i.e., the WDP has
the integrality property), the primal and dual solutions to the
LP relaxation of the WDP represent a Walrasian equilibrium
of the allocation problem (Abrache et al, 2007).
Bikhchandani and Ostroy (2002) provide two extended for-
mulations for the WDP that satisfy the integrality property.
However, these formulations require exponentially many
variables and constraints, rendering them impractical for
combinatorial auctions involving divisible goods. O’Neill
et al. (2005) present an approach for calculating
Competitive Equilibrium prices for a general WDP formula-
tion that may not satisfy the integrality property, assuming
complete sharing of information between the bidding agents
and the auctioneer.

ICAs (Parkes and Ungar, 2001) mitigate these difficulties
by requiring each agent to reveal relevant private informa-
tion incrementally over time. After receiving bids at each
iteration, the auctioneer computes a provisional allocation of
the goods, and communicates this, together with updated
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pricing information for each item, to the agents, who then
update their bids for the next iteration. The iterations con-
tinue until some termination criterion is satisfied, at which
point the current provisional allocations become final (De
Vries and Vohra, 2003; Abrache et al., 2007).

Based on the information given by the auctioneer to the
agents, an ICA can be classified as quantity-setting or price-
setting (Villahoz et al, 2010). In a quantity-setting ICA,
agents submit price bids for every possible bundle of items,
based on which the auctioneer provisionally allocates the
objects. Agents adjust their bids for the next iteration based
on the provisional allocations in the current iteration. In a
price-setting ICA, the auctioneer provides the agents with
minimum ask prices for each object or bundle. Agents sub-
mit bids, whose value must exceed the minimum ask prices,
for one or more bundles of objects. The auctioneer then
uses these bids to make provisional allocations and adjust
the prices of over- and under-demanded objects or bundles
for the next iteration. Under linear prices, the price of a
bundle is equal to the sum of the prices of the individual
objects comprising the bundle; under nonlinear prices, this
is not the case (Mishra, 2010). Under anonymous prices, all
agents pay the same price for each object or bundle, while
under nonanonymous prices different agents can be charged
different prices for the same object or bundle. In this article,
we model the capacity coordination problem between MFG
and PDGs using a price-setting ICA whose linear nonanony-
mous prices are updated at each iteration using Lagrangian
relaxation or column generation. Following the literature,
we assume that the PDGs behave as price takers as in a
clock auction (Bichler et al, 2013) and submit their desired
set of bundles in each period as bids.

Objects traded in an auction can be divisible or indivisible,
while the participating agents can be sellers, buyers or both.
In this article, new product delivery times are treated as indi-
visible goods that MFG acquires from the PDGs. Factory cap-
acity in each period is viewed as a divisible good that PDGs
acquire from MFG. Thus, MFG acquires a bundle of new
product delivery times from PDGs, specifying when each new
product will be ready for introduction to manufacturing.
Each PDG acquires a bundle of capacity allocations, specify-
ing the capacity allocated to them in each period. This intro-
duces complementarities between the goods for all units.
Capacity allocation in a given period is only beneficial to a
PDG if it can obtain sufficient capacity in subsequent periods
to complete development tasks and deliver the product to
MFG for introduction. Since all units act as both buyers and
sellers, but bid for goods with significant complementarities,
the ICAs discussed in this paper are multilateral iterative
combinatorial auctions (Abrache et al., 2007).

Private information refers to information known only to
the agents which the auctioneer needs to compute an opti-
mal allocation (Mas-Colell et al., 1995). Ideally, the auction’s
payment rules should ensure that truthful revelation of
agents’ private information is a dominant strategy, i.e., not
revealing private information truthfully results in suboptimal
results for the agent (Abrache et al, 2007). For example, in
a Generalized Vickery Auction (GVA) (Parkes, 2001;

Narahari, 2014), each agent submits a bid for every subset
SC T of goods and the optimal solution to the WDP is
used as an allocation rule. Each agent pays the marginal
contribution of his (her) participation to the payoffs of all
agents except himself (herself), and no agent can do better
by giving the auctioneer untruthful information. However,
this approach can be difficult to implement, as both the
individual agents’ valuation problems (the problem each
agent must solve to derive their bids) and the WDP may be
NP-hard (De Vries and Vohra, 2003; Abrache et al., 2007).
Moreover, agents may be unwilling or unable to reveal their
private information required by the auctioneer in the alloca-
tion rule due to confidentiality restrictions, uncertainty or
difficulty in devising valuation functions (Abrache et al,
2007; Arache et al., 2013; Abrache et al., 2014).

Incentive compatibility is a very strong property that
motivates agents to truthfully reveal their private informa-
tion irrespective of other agents’ behavior (Narahari, 2014).
The GVA is the most famous incentive compatible combina-
torial auction mechanism (Parkes, 2001). Gul and Stacchetti
(1999), Parkes (2001), Ausubel (2006), and De Vries et al.
(2007) propose ICA mechanisms that result in the same out-
come as a sealed bid GVA under different assumptions on
bidder valuations. Mishra and Parkes (2007) develop the
price tatonnement process for general bidder valuations and
prove it to be necessary and sufficient for an ascending price
ICA to yield GVA outcomes on termination. However, they
assume that each agent will truthfully reveal his (her) private
information and require several WDPs to be solved opti-
mally in each iteration, which might be computationally
expensive. Ausubel and Milgrom (2006) shows that the
GVA auction loses its incentive compatible properties if
agents have budget constraints, whereas Lavi (2007) argues
that implementing incentive compatible mechanisms can be
computationally expensive. Considering these difficulties, we
do not seek incentive compatibility, but instead prove that
our proposed ICA mechanism is Bayesian Incentive
Compatible under modest assumptions, such that it is in the
best interest of each agent to truthfully reveal his (her) pri-
vate information provided other agents also truthfully reveal
theirs (Mas-Colell et al., 1995).

Dietrich and Forrest (2002) introduce the use of Column
Generation (CG) for solving the WDP in Combinatorial
Auctions for a given set of bids. Their work is extended by
Giinlik et al. (2005), who propose a branch-and-price
framework for solving the WDP for the Federal
Communications Commission (FCC) spectrum auction.
However, these papers focus on solving the WDP for a
known set of bids. In contrast, the current article uses the
CG procedure to emulate an ICA, which involves computing
prices for items based on the currently available bids and
eliciting new bids based on these updated prices from the
PDGs at each iteration. Our implementation of the
Lagrangian approach follows that of Kutanoglu and Wu
(1999) in using the subgradient algorithm, and provides a
benchmark for the performance of the CG-based ICA (CG-
ICA). Moreover, the ICA proposed in Kutanoglu and Wu
(1999) assumes that agents behave truthfully in the proposed



ICA whereas in the current article we show that if not
receiving any bid at the end of the auction is prohibitively
expensive for each PDG, it is in their best interest to
behave truthfully.

2.2. Distributed resource allocation approaches

Bidding mechanisms for distributed resource allocation have
been studied in several contexts, notably machine schedul-
ing. Toptal and Sabuncuoglu (2014) provide an extensive
review of this body of work, whereas Adhau et al. (2012,
2013) apply similar ideas to the problem of distributed pro-
ject scheduling. Kutanoglu and Wu (1999) were among the
first to use the subgradient algorithm to update prices in a
price-setting ICA for distributed job-shop scheduling prob-
lems. They note that the subgradient algorithm can be
viewed as an ICA with a different price tatonnement from
the well-known ascending price tatonnement (Ausubel and
Milgrom, 2002; Ausubel, 2004; Mishra and Parkes, 2007). At
each iteration, the subgradient algorithm penalizes the viola-
tion of market clearing constraints by updating prices to dis-
courage demand conflicts between agents. De Vries and
Vohra (2003) interpret several well-known ICAs such as
iBundle (Parkes, 2001) and RAD (Kwasnica et al., 2005) in
the context of the subgradient algorithm. Abrache et al
(2013) study an ICA for multilateral procurement using
Lagrangian relaxation and the subgradient algorithm. They
consider only divisible objects and assume that the produc-
tion cost functions and valuation functions of sellers and
buyers, respectively, are continuous, convex/concave (seller/
buyer) and monotonically increasing. These properties of
the production cost and valuation functions ensure that the
strong duality property holds for the Lagrangian dual. Thus,
the allocation and prices devised by the subgradient method
are market-clearing and form a Walrasian equilibrium. They
do not discuss the incentive compatibility of their mechan-
ism, effectively assuming truthful communication of all
necessary information between auctioneer and agents.
Confessore et al. (2007) present an ascending price ICA
similar to iBundle for the Decentralized Resource
Constrained Multi-Project Scheduling Problem (DRCMPSP)
where each agent faces a Resource Constrained Project
Scheduling Problem (RCPSP) involving both local and
shared resources. The DRCMPSP is similar to the problem
addressed in this article where PDGs solve RCPSPs compris-
ing local resources, such as engineering resources, and
shared resources such as factory capacity. An algorithm to
solve DRCMPSP would seek to resolve conflicts between dif-
ferent agents over shared resources such that all projects are
completed and project makespan is minimized. Aratzo et al.
(2010) develop a framework for simulating an ICA for the
dynamic version of this problem where new agents (with
new projects) can join the auction in any time period. They
also apply the subgradient method to update prices and
iteratively reduce conflicts over shared resources. Song et al.
(2017) propose a single-shot combinatorial auction for the
DRCMPSP which uses different capacity profiles of shared
resources for bid elicitation. The auctioneer minimizes the
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total project completion time after accepting bids from the
agents that specify a bundle of indivisible goods (time peri-
ods in which shared resources are desired), assuming truth-
ful behaviour by the agents. In the ICAs presented in this
article, the auctioneer seeks to maximize corporate profit
over the planning horizon, while the PDGs act as both
buyers and sellers whose bids involve both divisible (factory
capacity in each period) and indivisible goods (new product
delivery times). We also show that in the proposed ICAs,
PDGs behave truthfully under reasonable assumptions.

2.3. Capacity coordination problems in semiconductor
manufacturing

Several authors have applied mechanism design to capacity
coordination in the semiconductor industry. Mallik and
Harker (2004) and Mallik (2007) consider a semiconductor
firm with multiple product line S-MKT units who each
request factory capacity for their products from MFG. The
authors design a rule to allocate capacity among products
and a bonus scheme to ensure that all participants provide
truthful information. They show that a bonus is required for
truthful reporting from MFG but not for S-MKT. Erkoc and
Wu (2005), Karabuk and Wu (2005), and Jin and Wu
(2007) address similar problems in the context of capacity
reservations, where a S-MKT unit must reserve manufactur-
ing capacity from MFG under uncertain demand. All these
mechanisms seek to establish allocation rules and payment
policies that will yield the same total profit as a centralized
solution with complete information without resorting to
auctions. However, the derivation of such mechanisms is
extremely difficult in the face of the complex operational
constraints encountered in our problem.

Karabuk and Wu (2002, 2003) consider capacity planning
under demand and yield uncertainty with two units involved
in the capacity planning process: S-MKT seeks to maximize
revenue and MFG to minimize costs. They develop multi-
stage stochastic programming models for each unit and
integrate these into a single formulation that forces the first-
stage decisions of both models to be the same, but point out
this would require the two departments to reveal private
information, which is unlikely. They then decompose this
model into separate S-MKT and MFG models and develop a
price-based coordinated solution.

In summary, although ICAs have proven to be a useful
and computationally efficient tool for a variety of resource
allocation problems, they have not been applied to the prob-
lem of coordinating autonomous MFG and PDG units to
manage product transitions in the face of complex oper-
ational constraints and decentralized information. Direct
design of mechanisms through characterization of equilib-
rium solutions is difficult for this environment in which the
valuation problems of the units, particularly the PDGs, are
NP-hard and involve significant complementarities.
Although the subgradient algorithm has been used as an
alternative to the well-known ascending price auction, it
provides the auctioneer with limited information on the
valuation of goods by the agents, potentially slowing the rate
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of convergence to a market-clearing solution. The principal
contributions of this article over previous work are
as follows:

1. We propose two Multilateral ICA frameworks for the
problem of managing product transitions in a decentral-
ized environment and compare their properties and
performance.

2. The proposed ICAs sell indivisible goods from PDGs to
MFG (new product introduction time periods) and mul-
tiple divisible goods from MFG to PDGs (factory cap-
acity in each period).

3. Our first approach uses Lagrangian relaxation (Fisher,
1981) of the market-clearing constraints to develop an
ICA that wuses the subgradient algorithm to
update prices.

4. Our second approach develops a CG-based (Dantzig
and Wolfe, 1960) ICA and demonstrates its superior
computational performance over the Lagrangian
Relaxation-based ICA. To the best of our knowledge
this is the first time CG has been used to emulate an
ICA, as opposed to solving the WDP for a specified set
of bids.

5. We show that the proposed ICA mechanisms are
Bayesian Incentive Compatible under reasonable
assumptions.

3. Centralized formulation under complete
information

We begin by formulating a centralized decision model under
complete information. Such a centralized formulation is not
a viable solution approach since MFG has no knowledge of
the constraints faced by the PDGs, which we consider as
their private information, but is used to motivate the differ-
ent price taitonnements used in our ICAs.

We consider a finite planning horizon of discrete periods
t=1,...,T. Let I denote the index set of the PDGs and P;
the set of products under development by PDG;,i € I. We
express factory capacity as the maximum number of wafers
that can be manufactured in each period and assume it to
be known by both MFG and the PDGs. We can then state
the problem as follows, without as yet describing the local
constraints of the MFG and PDG units in detail:

N T
ZZ[nir(Dit + Bj,1—1 — Bit) (1)

(C1)Max 44

—h; Uiy — Qi Cy — bitBit]>
subject to 2)
MFG Constraints,
PDG; Constraints Vi € I, 3)
Qu<yu VpeP,icl t=1,.,T, (4)
ap<apVviel, t=1,...,T, (5)

Table 1. Parameters and decision variables for Model C1 and associated MFG
constraints.

Parameters Description

T Duration of planning horizon

/ Index set of PDGs

P; Set of all products under development with PDG;

N Total number of products (old products + new products)
Dy Demand forecast for product i in period t

Tt Per unit revenue of product i in period t

b Per unit backordering cost of product i in period t

hie Per unit inventory holding cost of product i in period t

Iie Release cost of product i in period t.

G Factory capacity in period t

Decision variables Description

U; Total inventory of product i in period t

B Total backorders of product i in period t

Qi Fraction of factory capacity released for product i in period t
Yot Binary variable equal to 1 if product p can be

manufactured in period t and 0 otherwise
it Fraction of factory capacity allocated to PDG; in period t

a
Qi Fraction of factory capacity used by PDG; in period t

Q> aiai € 0,1], yu €{0,1} Vpe Py, i€l t=1,..,T.
(6)

In this model Q,; denotes the fraction of available factory
capacity allocated by MFG for manufacturing product p in
period t. y, is a binary variable taking the value of 1 if
product p is ready to be manufactured (i.e., has completed
all its development activities) by period ¢ and 0 otherwise.
a;; denotes the fraction of factory capacity used by PDG; in
period t and a; the fraction of factory capacity allocated to
PDG; in period t. The notation used in the models is sum-
marized in Table 1.

The objective (1) maximizes the firm’s total contribution
(revenue - variable costs) over the planning horizon.
Constraints (4) ensure that MFG manufactures a product
only when its development is complete, while constraints (5)
ensure that the capacity used by each PDG in each period
does not exceed its allocation. These constraints balance the
supply and demand of factory capacity and new product
introduction time periods, and serve as market clearing con-
straints in our ICAs. We assume that S-MKT has provided
demand forecasts for products under development.
Manufacturing costs include inventory holding, backorder-
ing and silicon wafer release (material) costs; for simplicity
we assume that any unsatisfied demand can be backordered.
The MFG constraints are:

Up=Upt-1 + QuCi—(Dit + Biy—1 — By) Vi=1.,N t=1,..,T,
(7)
N
Qi+ Y an<1l Vi=1,.,T, (8)
i=1 il
Uy,By >0 Vi=1,.,.N t=1,..,T,

Quan€[0,1], ¥peP, icl, t=1,.,T. ©)

Constraints (7) are inventory balance constraints and
constraints (8) the factory capacity constraints for each
period. These constraints are typical of most production
planning problems (Voff and Woodruff, 2006; Missbauer
and Uzsoy, 2011). Clearly much more complex formulations
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Figure 2. Product development process in semiconductor industry.

of the manufacturing problem are possible, but these con-
straints capture the essence of our problem: the need to allo-
cate limited factory capacity among revenue-generating
products and prototype fabrication for the PDGs which
reduces short-term revenue, but is essential to maintaining a
viable future revenue stream.

3.1. PDG; constraints

To describe the constraints for each PDG;, we propose a
simplified model of the product development process in the
semiconductor industry, which proceeds in a series of
design-test-refine cycles. The development of a particular
device consists of a series of stages, each consisting of a
number of subtasks linked by linear precedence constraints
as shown in Figure 2. Each stage, except the last one, spans
three planning periods, with engineering work by the PDG
in the first two periods, followed by the fabrication of proto-
types incorporating this design work in the third. The
engineering work requires specified amounts of engineering
resources from the PDG involved. The second task in each
stage involves the release of a number of engineering lots
into the factory for prototype fabrication. The last stage
requires only engineering resources for final verification of
the prototypes produced in the previous stage, and can be
completed in one time period. Once a stage is started, the
PDG must complete it due to the inefficiencies associated
with reallocating resources between projects in progress. A
product is considered ready for release to manufacturing
only when its last development stage is completed. Although
more detailed constraints can clearly be added, this simple
structure is sufficient to allow us to explore the feasibility of
decentralized procedures. The specific PDG; constraints we
consider are given in Appendix A.

4. A Lagrangian relaxation-based iterative
combinatorial auction

We now present a Lagrangian Relaxation-based ICA (LR-
ICA) framework in which MFG takes the role of auctioneer,
while the PDGs behave as utility-maximizing rational agents
who follow a myopic best response policy (Parkes, 2001)
seeking to maximize the value of their allocation in the cur-
rent iteration without considering future iterations. The sub-
gradient algorithm obtained by Lagrangian relaxation of the
market-clearing constraints serves as the auctioneer’s

(MFG’s) price updating scheme at each iteration of
this ICA.

Relaxing the market-clearing constraints (4) and (5) with
associated Lagrange multipliers f,,, p€ Pi€l, t=1,..,T
and 4y, Vi€ l, t=1,..., T, we obtain the Lagrangian prob-
lem (L1):

(L1)Max (ZZ [mi¢(Dy + Bit—1 — Biy) — hiyyUy — 14 Qi Cy — bitBit}>
T T
ZZ Z Bptpt — Qut) + Zziit(air — i),

=1 icl pep; =1 icl
(10)
subject to
(11)
MFG Constraints,
PDG; Constraints Vi € I, (12)

QP[’ &i[,ait S [0, 1], }’pt (S {0, ].} Vp € P,‘, i € I, t= 1,..., T,
(13)

The associated Lagrangian Dual Problem (LD1) can then
be written as:

N T
(LD1) N{in {Max <ZZ[7T#(DH + B r-1 — Bit) — hitUir — 1:4QitC — by Bye]
Lp0 =1 (=1
T
+Z Bpr(ypt th + ZZ/W ajr — axt >:|
t=1 i€l peP; t=1 iel
(14)
subject to
(15)
MFG Constraints,
PDG; Constraints Vi € I, (16)

tha&ibait € 0,1, Ypt € {0,1} Vpep;, iel, t=1,..,T.

17)

The Lagrange multipliers A; may be viewed as the price
PDG; must pay MFG for a unit of factory capacity in period
t. Similarly, f8,, can be viewed as the incentive MFG must
pay PDG,; to complete the development of product p € P; in
period t so that MFG can move it into volume manufactur-
ing and generate revenue. The Lagrangian problem (L1) can
be decomposed into |I| + 1 independent subproblems, one
for MFG and one for each of the |I| PDGs as shown in (L2)
and (L3) below:
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(L2) MFG subproblem

Max ZZ TE,t it + Bz t—1 — ) hzt Uzt - rththt ztBit]
1 1t=
DY YIS 9) XM
=1 il =1 icl peP,
(18)
subject to
MFG Constraints, (19)
Qu-ai €[0,1], VpeP;, iel, t=1,..,T.
(L3) Viel PDG,- subproblem
(20)

Max Z)ztazt + Z Z ﬁptypt)

t=1 peP;

Subject to :
PDG; Constraints Vi € I,
a; € [0, 1] Ypt € {0, 1} VP epP, t=1,..,T.

In subproblem (L2), MFG maximizes its total contribu-
tion, given by its sales revenue from meeting demand and
its income from allocating factory capacity to the PDGs,
minus the variable costs it incurs in meeting demands and
the incentives it pays the PDGs to complete the develop-
ment of new products. In subproblem (L3), each PDG; max-
imizes its contribution, given by the difference between the
incentives it receives from MFG for making products avail-
able for volume manufacturing and its payments to MFG
for the factory capacity necessary to complete its develop-
ment activities. The solution to the Lagrangian Dual prob-
lem (LD1) gives an upper bound on the optimal value of
(C1), which is at least as good as the optimal cost of the
corresponding LP relaxation. We solve the Lagrangian Dual
problem (LD1) using the Deflected Subgradient Method
(DSM), a variant of the subgradient method with faster con-
vergence that ensures that there is always an acute angle
between the subgradients in consecutive iterations
(Guta, 2003).

We define a feasible capacity allocation schedule for
PDG; as a tuple ((ait),_y, 1> (¥,)pep,)s Where the vector
(@it)—,,. r denotes the factory capacity required by PDG; in
each period t to complete the development of all products
p € P; by period t* such that y,, =y, , =1Vi>1t" and
constraints (43)-(55) are satisfied. We define a bid from
PDG; as a capacity allocation schedule that is feasible for its
subproblem (L3). Each bid gives the auctioneer some under-
standing of the capabilities of the PDGs (their private infor-
mation) by indicating their ability to complete the
development of their products in the periods defined by the
Ype given the capacity allocation schedule contained in the
bid; it is reasonable to assume that PDGs will only submit
bids with a delivery schedule that is feasible to their subpro-
blems (L3).

The LR-ICA framework derived from the DSM algorithm
is shown in Figure 3. The auctioneer (MFG) initiates the
auction by providing all agents with initial values of the
Lagrange multipliers, i.e., the price MFG charges the PDGs

Initialize using

A0 and g0
k ak
Step la: A", B .
MFG(Auctioneer) U, Sk Step Ib: PDGs
el

|

Step 2: Solve
Winner Determi-
nation Problem
(max Profit),
get lower bound

|

Step 3a: Solve
MFG Subproblem

provisional allocations

Step 3b: Update
A, B (DSM)

|

Step 4: is
Termination
Criteria Satisfed?

Yes

STOP

Figure 3. ICA framework based on Lagrangian relaxation.

for capacity in each period, and the incentive MFG is willing
to pay each PDG for completing development activities for
its products at times desirable to MFG. During the kth iter-
ation, in Step la, the auctioneer communicates the current
values of the Lagrange multipliers to each PDG;, who, in
Step 1b, solve their subproblem (L3) and calculate a set of
bids S¥, which is determined by the set of feasible solutions
found while solving L3. At this stage of the procedure, a

given PDG; may submit a subset Sf C SF as their bid set
instead of S¥ to procure an allocation with higher local con-
tribution (20) than it might be able to obtain if it submitted
all of them. An extreme case is for each PDG to submit only
the solution that maximizes its local objective (20), which
from the perspective of the auctioneer amounts to declaring
all other bids infeasible.

To address this issue, we assume that the auctioneer
retains all the bids from previous iterations and solves a
WDP in Step 2 to select at most one bid from among those
submitted by each PDG over the entire duration of the auc-
tion up to that iteration. Let S = Uf=1,..,k S; denote the set
of all bids submitted by PDG; up to and including iteration
k. The WDP gives a feasible solution to (C1), yielding a
lower bound on the optimal total contribution (1) as well as
a provisional allocation of factory capacity to the PDGs and
provisional new product introduction times to MFG. In Step
3a, MFG solves its subproblem (L2) for the optimal values
of QF, and a and in Step 3b updates the Lagrange multi-
pliers[1*, g¥]" 1n the kth iteration per the DSM as follows:



k (Sk)Tdk_l s kT gk—1 .
o = fTW if(s") d*™" <0, 0 otherwise p, (21)
d* =k 4 okdk1, (22)
UBF—Lk
k
V=l (23)
¥
[}Lk+1,ﬂk+1]T — max{O, [)uk,ﬁk]T + '))kdk}, (24)

where d°=0,0<71<2,0<y <1, UB* is the optimal
value of the Lagrangian subproblem (L1), L* the best lower
bound found for (1) and the subgradient s*=
[[a* —a")", [y* — @"]" in the kth iteration. a,a*, QK y* are
the optimal values of the decision variables ai:,dit, Qpt> Ypr
VieLpeP,t=1,..,T in the optimal solution of the
Lagrangian problem in the kth iteration of the DSM. Following
Caprara et al. (1999), we set 1 = 1.5 and update ;. according
to Algorithm 1 in our computational experiments.

If the termination criteria in Step 4 are not satisfied, the
algorithm returns to Step 1. Otherwise the auction termi-
nates and the most recent provisional capacity allocations
and new product completion time periods become final allo-
cations. The auction terminates when either the total num-
ber of iterations or computational time exceed a predefined
limit or if the duality gaps falls below a predefined value.

Algorithm 1. Scheme to update p

Initiate with p, = 0.1. Let ¢; and ¢, be the biggest and the
smallest values of the Lagranq)gian Dual (14) in last p =
20 DSM iterations. Let o = 4"“(;1‘ L

if o > 0.01 then

Hyeyr < 0.5

else if o < 0.001 then
Hyeyr < 154

else

M1 < Mg
end if

The WDP solved in the kth iteration of DSM is formu-
lated as a set packing problem (Gilinlik et al, 2005;
Blumrosen and Nisan, 2007) that selects at most one bid for

<k
PDG; from S; such that inventory balance and factory cap-
acity constraints are satisfied while maximizing total contri-
bution, and can be stated as follows:

N T
(W1) Max ZZ[TCu (D,‘t + Bit-1) — Bit) — hi Uy — 14QitCy — biBi] »

i=1 t=1

(25)
subject to
Ui = U1 + QuC—(Dy + Bjy—1 — By) Vi=1.,N t=1.,T,
(26)
N
> Qu+d an<1l Vt=1,.,T, (27)
i=1 icl
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S dgy<an Vielt=1,.,T, (28)
jest
Qi< Juag Vil pePy t=1,.,T, 29)
jest
day<1Viel,
jest
Uit)Bit 2 0 Vl - 1,...,N t= 1, ey T,
Quel01], zye{01} Viel peP, jes t=1,.,T.
(30)

where y;; is a binary variable that takes the value 1 if bid j €
S¥ is awarded to PDG; and 0 otherwise, &J;t is the factory

capacity required by PDG; in period t in bid j € Sf, and )A,;')t
is a binary parameter that takes the value of 1 if product p

is ready for manufacturing in period ¢ in bid j € Sf for
p € P;. Constraints (26) and (27) ensure that inventory bal-
ance and factory capacity constraints are satisfied.
Constraints (28) and (29) ensure that MFG allocates factory
capacity to PDG; and manufactures product p € P; as per
the bid selected for PDG;, and constraint (30) that at most
one bid is selected for each PDG.

4.1. Private information and the WDP

Submission of a restricted bid set Sf C SF instead of the full
set SF by some PDG; seeking to improve their local objec-
tives may reduce the auctioneer’s ability to capture sufficient
knowledge of its capabilities (described by the PDG; con-
straints, which are private information to each PDG) to
determine an optimal market-clearing solution. Consider

two instances W1 and W1 of the WDP (W1) based on two

~k ~k ~k ~k
bid sets S; and S; from PDG; respectively, such that S; C §,
and the bid sets of all other PDGs remain the same in both
instances. Then W1 is a relaxation of W1, with total contri-

bution to the firm at least as great as that of W1. Thus,
more bids from the PDGs will give the auctioneer more
knowledge of their constraints (their private information)
and therefore their capability to commit to a capacity alloca-
tion schedule. This gives the auctioneer greater flexibility in
determining a good coordinated solution for the firm that is
also feasible to the PDG; subproblems. Thus, it is clearly in
the auctioneer’s interest to obtain as many bids as possible
from the PDGs, even though it may not be in the PDG’s
interest to provide them. We show in Appendix B that if
the perceived cost of any PDG not receiving any allocation
at auction termination are sufficiently high, each PDG will
willingly provide the auctioneer with as many bids as pos-
sible, provided other PDGs also do so.

5. A CG-ICA

Chapter 1 of Desaulniers et al. (2006) describes the dual
relationship between Lagrangian Relaxation and CG, noting
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that both yield the same upper bound on the optimal total
contribution (1) to the firm. However, the calculation of
such an upper bound using Lagrangian Relaxation requires
knowledge of all extreme points of the convex hull of con-
straints (11)-(13) in the Lagrangian Subproblem (L1), which is
impractical due to the NP-hardness of the PDG; subproblem
(L3). Therefore, we use the DSM to determine a set of near-
optimal prices for the Lagrangian Dual problem (LD1). For the
problem addressed in this article, the LR-ICA with DSM has
two favorable properties: (i) it can be easily interpreted as an
ICA; and (ii) it is easy to implement and understand.

However, the LR-ICA with DSM suffers from two
major drawbacks:

1. As the DSM uses only the optimal solutions to the sub-
problems to update the Lagrange multipliers (prices) at
each iteration, it does not consider any other bids sub-
mitted by the PDGs in updating prices. This deprives
the auctioneer of information regarding the constraints
of the PDGs (their private information), resulting in
slower convergence to the optimal upper bound.

2. There is no mechanism in the DSM that elicits new bids
that have not been submitted previously from the PDGs
in each iteration. The more bids satisfying the PDG’s con-
straints the auctioneer has available, the more informa-
tion the auctioneer has about the capabilities of the PDG.
As the auctioneer retains bids from previous iterations,
submission of bids already submitted in previous itera-
tions does not add to the auctioneer’s knowledge of the
PDGs’ capabilities, limiting its ability to quickly generate
good coordinated solutions for the firm.

CG-ICA overcomes both these drawbacks by considering
all bids submitted by the PDGs while updating prices, and
ensuring that no previously submitted bid is resubmitted by
a PDG in subsequent iterations. This is accomplished by
enforcing provisional budgets specifying the maximum loss
each PDG is allowed to incur at the current iteration of
the ICA.

Figure 4 outlines the ICA framework derived using CG
where 0 denotes the provisional budget of PDG; in the kth
iteration. The auction is initialized with randomly chosen
prices and infinite provisional budgets for the PDGs. In Step
la of the kth iteration the auctioneer communicates the cur-
rent prices and provisional budgets to the PDGs, who, in
Step 1b, solve their subproblems (L3) and submit bids
whose local cost, given by the negative of constraint (20),
must not exceed the provisional budget. As in LR-ICA, each
PDG; can strategically manipulate the auction by submitting
fewer budget-feasible bids than they actually calculate.
However, PDGs may be induced to submit multiple budget-
feasible bids as described for the LR-ICA in Section 4.1
when the cost of not receiving any allocation is extremely
high. The auctioneer retains all bids from previous iterations
and in Step 2a, solves the LP relaxation of the Restricted
Master Problem to update prices (4%, ) and the provisional
budget 0 for the next iteration (explained in Section 5.1) in
Step 2b. CG-ICA terminates in Step 3 when no PDG
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A% and 80
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MFG(Auctioneer)

Step 1b: PDGs

Uiel St

Step 2a: Solve
the LP relax-
ation of RMP

Step 2b: Up-
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Step 4: Solve
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Step 3: is
Termination
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Figure 4. ICA framework based on CG.

submits a bid that is feasible for both the available capacity
allocation and their provisional budget; otherwise, the auc-
tion returns to Step 1.

Unlike LR-ICA, a lower bound on the optimal total con-
tribution (1) is not required to update prices at each iter-
ation, so in Step 4, the auctioneer solves the WDP (W1)
only once after termination to obtain a lower bound on the
optimal solution value of the optimal total contribution (1),
final capacity allocations and product introduction periods.
Since no information except its own bids and the prices it
receives from the auctioneer are available to the PDGs at
any iteration, they have no knowledge of when the auction
will end. Since at the auction termination, PDGs will receive
an allocation based on the bids submitted in the ICA, and
the cost of not receiving an allocation is perceived by the
PDGs to be prohibitively high, the assumption of myopic
best response holds and they retain the incentive to submit
bids that are likely to result in a successful allocation.

5.1. Restricted master problem and price update

The WDP (W1) can be regarded as the Restricted Master
Problem (RMP) derived from the centralized formulation (C1)
with bids from the PDGs represented as columns and the
PDG; Constraints ¥i € I as the constraints of |I| pricing sub-
problems. W1-LP gives the linear relaxation of W1 at the kth
iteration of the ICA. However, we modify the inequality (30) to
equality in (36) to ensure that prices are updated in a manner
that encourages PDGs to submit compatible bids. We define
compatible bids as those containing feasible capacity allocation
schedules that result in feasible solutions to WDP (W1) where
all PDGs receive an allocation (i.e., constraint (30) is tight for
all PDGs). The LP relaxation of this WDP is as follows:

N T
(WI1-LP) Max ZZ[ﬂir(Dit +Bis1 — Bit) — hitUir — 1 QitCy — bis Byt

i=1 t=1

(31)



subject to
Uit = Uir-1 + QitCi—(Dit + Bijy—1 — Bir) (32)
Vi=1.,N t=1,.,T,
N
D QY <l Vi=1..T, (33)
i=1 icl
Y gy <an Vielt=1,.,T, (34)
jes;
Qi<Y Jpay Viel peP, t=1,.,T, (35)
jes;
ZXU:IViEI, (36)

jes;

Uit’B1t>0 \Vll—l N t_l T
Qi €0,1], g >0Viel, peP,,]eSkt—l ,T.

(37)
Let

- ~k
=) (5)
t)iel, t=1,..,T ﬁ ﬁP’ pePyiel, t=1,..,T

and 0* = (ék) icl

i

be the optimal values of the dual variables associated with con-

straints (34), (35), and (36) respectively, where {},k, Bk} > 0.

0" is unrestricted in sign, and can be interpreted as a provi-
sional budget allocated to PDG; at each iteration k as discussed
below. The CG procedure seeks columns (bids) with positive
reduced cost at (1, f,0) that are feasible to the PDG; con-
straints. Thus, the columns acceptable to the auctioneer in the
(k + 1)th iteration should satisfy

- Z Db+ Y Z ﬁptypt 0 >0 viel (38)
peEP; t=
Setting A1 = ;Lk,ﬁk+l = /~3k and the provisional budgets for

~k
the (k + 1)th iteration, 0*"!' = —6" in constraint (38), we get

_Zwvﬁzz By ype > =0 Viel,

pEP; t=1

(39)

whose-left hand side ensures that all constraints of the optimiza-
tion model (L3) with objective function (20) are retained for the
PDG; subproblem in CG-ICA. However, (39) implies that:

ZW“ ZZﬁk e <OFT Viel,

pEP; t=
suggesting an additional constraint for the PDGs to ensure
that only bids whose local total loss, given by the negative
of (20), does not exceed the specified provisional budget

(40)

IISE TRANSACTIONS 1

0" can be submitted to the auctioneer, i.e., only columns
with positive reduced costs are added to the RMP.

Moreover, the dual constraint of W1-LP associated with

1iVj € Sf, i € I at optimality of (W1-LP) is given by:

Zﬂ,ta,t ZZﬁpt;/pﬂre >0VieS, iel  (41)
peP; t=1
. k1 _ 5k k1 Bk gkl nko. .
Setting A" =4, =f,0"" =—0 in Equation (41)
we get:
Z - S B 2 0 e el (@
pep; =1

which renders all bids submitted by the PDGs in previous

iterations budget infeasible for a provisional budget of 0",
ensuring, along with constraint (39), that either bids differ-
ent from previously submitted ones will be submitted in the
next iteration, or none at all. Thus, CG-ICA takes into
account all bids submitted by agents up to and including
the current iteration while updating prices and provisional
budgets, giving the auctioneer a better understanding of the
private information of PDGs (specifically, the structure of
the PDG constraints that define the capabilities of the PDG
to its management, but which are not known to the auction-
eer). CG-ICA terminates when either the time limit imposed
in the ICA expires or no new budget-feasible bids are sub-
mitted by PDGs, implying an optimal solution of the linear
relaxation of the RMP. o

Since the provisional budgets 0 are unrestricted in sign,

the provisional budget 0;‘“ for PDG; can take both positive

and negative values. A positive provisional budget 05-‘“ >0
at iteration k+ 1 can be interpreted as the maximum loss
PDG; can incur from its bids submitted in iteration k+ 1.
Moreover, a positive provisional budget implies that the

optimal dual variable éi{ is negative. This suggests that,
based on the bids submitted by PDG; until iteration k, the
auctioneer can improve the objective of (W1-LP) by reduc-
ing the right-hand side of the ith constraint in Equation
(36) to zero, i.e., not selecting any combination of bids so
far submitted by PDG;. Thus, a positive provisional budget
relaxes the PDG; subproblem through Equation (40),
encouraging PDG; to submit additional bids in iteration
k+1. On the other hand, a negative provisional budget
0;‘“ < 0 at iteration k-1 represents a penalty paid by
PDG; to the auctioneer for submitting a bid in iteration
k+1, forcing it to search for a solution whose value offsets
the penalty, leading to a bid with positive reduced cost.
Moreover, a negative provisional budget implies that the

optimal dual variable Z)f is positive. This suggests that, based
on the solutions submitted by PDG; till iteration k, the auc-
tioneer will seek to reduce the optimal objective function
value of (WI1-LP) by changing the right- hand side of the
ith constraint in (36) to zero. This means that PDG; has
submitted some compatible bids in previous iterations, so
the auctioneer may not require PDG; to bid as aggressively
as in previous iterations. Thus, a negative provisional budget
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Table 2. Parameter values for MFG constraints.

Table 3. Demand distribution of new products in Case 4PDGs.

Parameters Values  PDG Demand distribution
T 24 PDG, UNIF(1550, 1555)

/ 12 PDG, UNIF(750, 755)

N 4 PDGs UNIF(1550, 1555)
ri 50 PDG, UNIF(750, 755)

hie 0.1r;

bir 20hy

G 5000

constrains the PDG; subproblem through Equation (40), dis-
couraging PDG; from submitting additional bids in iter-
ation k+ 1.

6. Computational experiments
6.1. Experimental design

Our computational experiments consider problem instances
with one MFG unit and either two or four PDGs, denoted
by Case 2PDGs and Case 4PDGs, respectively. In both cases,
each PDG develops one new product that will replace an
old product currently in volume production. We assume
demand for the older products goes to zero when demand
for new products are realized, and that all new products
have the same introduction deadlines based on the demand
forecasts. This will ensure that we generate hard problem
instances, as if the development of new products is not com-
plete before their demand is realized, the firm will incur high
backordering costs for new products and high opportunity
costs for factory capacity as MFG would be left with no prod-
uct to manufacture. If, on the other hand, the PDGs are allo-
cated too much factory capacity in the initial periods of the
planning horizon, the firm will incur large backordering costs
for old products, reducing their revenue stream. Although in
practice we would expect positive demand for both old and
new products in some periods, the current design makes timely
completion of new product development by the PDGs espe-
cially critical, since the firm cannot receive any revenue if the
new product is not ready. Hence, we believe these represent
particularly hard test instances for this problem.

We shall use the notation UNIF(a, b) to denote a continu-
ous uniform probability distribution over the interval (a, b). In
Case 2PDGs, we will refer to the current products as Products
1 and 2 and the new products as Products 3 and 4. PDG,
develops the new generation of Product 1 (Product 3) with
low demand (UNIF(1600,1605)) and high revenue ($175/
unit), whereas PDG, develops the new generation of Product 2
(Product 4) with high demand (UNIF(3000,3005)) and low
revenue($75/unit). All products have the same unit material,
inventory holding and backordering costs. The price incre-
ments from old products to new generation products are
equally likely to be {10%, 15%,20%}. Values of other parame-
ters of the MFG constraints are given in Table 2 and are iden-
tical for all products.

Case 4PDGs has a similar design to Case 2PDGs with two
additional PDGs, PDG; and PDG,, that duplicate PDG; and
PDG, of Case 2PDGs. The demand for new products in Case
4PDGs, shown in Table 3, is adjusted to maintain an average

Table 4. Cases in product development process in semiconductor industry.

Cases Number of stages  Factory capacity requirements  Probability
Scenario 1 3 (500, 100, 0) 0.20
Scenario 2 4 (500, 250, 100, 0) 0.20
Scenario 3 5 (500, 400, 200, 100, 0) 0.60

factory utilization of 0.92. These represent quite difficult prob-
lem instances where there is limited excess capacity available
for MFG to allocate to PDGs; any factory capacity allocated to
a PDG is likely to result in lost revenue.

For all PDG; subproblems, we consider a single engineering
resource whose capacity is constant across time periods and is
determined using the parameter 7. Setting # =0 ensures that
engineering resource capacity is not constraining, whereas
n=1 sets the engineering resource capacity to the minimum
level required to maintain problem feasibility. During the new
product development process, as the engineering resource can
be allocated in the first two time periods of a stage (except the
last one which spans only one time period), the minimum
engineering resource level is set to half of the maximum engin-
eering resource requirement among all stages.

Since the product development process can require differ-
ent number of stages, we consider three scenarios. The
number of stages and factory capacity required for each
stage in each scenario is given in Table 4 along with the
probability of each scenario occurring. Scenario 1 is the best
case scenario that requires the least factory capacity, whereas
Scenario 3 is the worst case scenario, with Scenario 2 inter-
mediate between them. We generate different problem
instances by assuming that each product development pro-
cess will require one of these three scenarios with the proba-
bilities shown in Table 4. The probability distribution is
chosen such that we emphasize harder problem instances
where most PDGs are developing products in Scenario 3.

We obtain multiple bids for each PDG by using the
cplex.populate() command in the CPLEX MILP
solver, which gives all the feasible solutions found in the
course of the branch-and-bound algorithm used to solve the
subproblems. We consider three different bidding strategies
for the PDGs. Under the first, which we shall refer to as All,
all PDGs submit all bids that they obtain in the process of
solving their respective subproblems. Under the Random
bidding strategy, the PDGs randomly determine the number
of bids to be submitted to the auctioneer from their set of
feasible capacity allocation schedules. Specifically, the num-
ber of bids submitted by a PDG is uniformly distributed
between one and the number of feasible bids the PDG has
generated. Under Best, all PDGs submit their feasible cap-
acity allocation schedules that are optimal to their local
objective functions as their bid. We solve 20 random



instances for each bidding strategy, each value of # = {0,1}
with randomization over demand, cases in product develop-
ment process and per unit revenue increments from old prod-
ucts to new products. As the DSM and CG procedures require
optimal subproblem and RMP solutions for convergence, we
use the CPLEX LP solver to solve the MFG subproblem and
RMP, and the CPLEX MILP solver to solve the PDG subpro-
blems and the WDP to optimality. We execute the computa-
tional experiments on an Intel Xeon E5-2680 v2 @ 2.80 GHz
processor with 128GB RAM, MATLAB 2017b and CPLEX
12.8.0. We impose a time limit of 3600 seconds for the entire
ICA procedure, but if this limit is reached while an iteration is
in progress, we allow the iteration to complete. Hence in LR-
ICA some CPU times can exceed the 3600 seconds limit, but
only by the time required to complete the final iteration.

6.2. Computational results

For the mean and maximum of the performance measures
stated in Table 5 for the All bidding strategy; Table 6 com-
pares the performances of LR-ICA and CG-ICA. Both ICAs
generate near-optimal feasible solutions, as evident from the

Table 5. Performance measures.

Performance

measure Definition

Gap_Cl (%) Relative gap of the best objective function value obtained
from DSM or CG from the optimal objective function
value of the centralized formulation under compete
information (solved using CPLEX MILP solver)

Gap_LB (%) Relative gap of the best objective function value
(lower bound) from the upper bound obtained from
DSM or CG

Comp_Time CPU time in seconds
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very low values of Gap_CI in Table 6. It is interesting to
note that in Case 4PDGs, LR-ICA obtains optimal solutions
with values of zero for Gap_CI, while CG-ICA is slightly
worse on average. However, CG-ICA constructs markedly
better upper bounds in CPU time that is two orders of mag-
nitude faster than LR-ICA for all cases and 7 values. This is
because, unlike LR-ICA, CG-ICA utilizes all the bids sub-
mitted by PDGs to update prices, providing the auctioneer
with more information regarding the capabilities of PDGs.
Moreover, CG-ICA uses the provisional budget of the PDGs
to force them to submit different bids in each iteration,
which monotonically improves the upper bound. Such a
mechanism is absent in LR-ICA, where bids can be repeated
in each iteration and the change in upper bound may be
non-monotonic. Thus, we focus on the performance of CG-
ICA for the rest of this section as it consistently outperforms
LR-ICA over two of the three performance measures while
constructing feasible solutions of similar quality. We also
drop Case 2PDGs from subsequent analysis as it provides
very easy problems compared with Case 4PDGs, as evident
from low values of all three performance measures in
Table 6.

Table 7, Figure 5, and Figure 6 compare the All, Random,
and Best bidding strategies for CG-ICA over the mean and
maximum of the performance measures stated in Table 5 for
Case 4PDGs and both values of 7. Mean Gap_CI and Mean
Gap_LB decreases from top to bottom for both values of # in
Table 7, suggesting that the All bidding strategy outperforms
Random, which in turn outperforms Best, with Figures 5 and 6
supporting this observation. This is because more bids from
the PDGs give the auctioneer a better understanding of the
capabilities of PDGs, giving it an increased flexibility in com-
bining bids and thus in constructing a better feasible solutions

Table 6. Comparison of LR-ICA and CG-ICA for Case 2PDGs and 4PDGs under All bidding strategy.

Mean Max
Gap_Cl(%) Gap_LB(%) Comp_Time (sec) Gap-Cl(%) Gap_LB(%) Comp_Time (sec)

Case 2PDGs (n = 0)

LR-ICA 0.011 23.84 2916.88 0.058 64.88 3698.24

CG-ICA 0.002 0.03 31.92 0.011 0.04 46.58
Case 2PDGs (n = 1)

LR-ICA 0.0044 22.71 2916.37 0.057 60.64 3675.96

CG-ICA 0.0001 0.02 29.21 0.0011 0.04 45.69
Case 4PDGs (n = 0)

LR-ICA 0.00 23.00 3686.77 0.00 83.59 374248

CG-ICA 1.00 3.74 59.87 5.81 13.80 80.94
Case 4PDGs (n = 1)

LR-ICA 0.00 22.86 3654.09 0.00 83.27 3732.67

CG-ICA 1.07 3.81 59.17 5.25 13.57 90.71
Table 7. Comparison of different bidding strategies in CG-ICA for Case 4PDGs.

Mean Max
Gap_Cl(%) Gap_LB(%) Comp_Time (sec) Gap_Cl(%) Gap_LB(%) Comp_Time (sec)

Case 4PDGs (n = 0)

All 1.00 3.74 59.87 5.81 13.80 80.94

Random 1.21 3.96 46.34 6.25 14.33 61.36

Best 1.31 4.10 80.98 8.72 17.90 155.36
Case 4PDGs (n = 1)

All 1.07 3.81 59.17 5.25 13.57 90.71

Random 1.29 4.04 48.64 438 12.54 66.44

Best 1.49 4.26 78.40 537 13.71 149.72
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Figure 5. Comparison of three bidding strategies in CG-ICA over Gap_Cl for Case 4PDGs: (a) n=0 and (b) n=1.

and upper bounds. Thus, the auctioneer should provide some
incentives to PDGs to follow the All bidding strategy. We
show in Appendix B that if failing to obtain a capacity alloca-
tion at auction termination is viewed as being prohibitively
expensive for the PDGs, then under the assumption of myopic
best response, it is in the best interest of each PDG to submit
their complete set of bids.

7. Conclusion

We design two ICA frameworks for coordinating decentralized
negotiations over factory capacity in the semiconductor indus-
try using MILP, Lagrangian Relaxation (LR-ICA) and Column
Generation (CG-ICA). LR-ICA uses the DSM as the price
tatonnement scheme, whereas CG-ICA uses the all the bids
submitted by PDGs to update prices. We show that CG-ICA
constructs better quality upper bounds in short CPU times as
compared with LR-ICA while generating similar quality feasible
solutions. Moreover, it is free from strategic manipulation by
PDGs under the assumption of myopic best response if any
PDG that cannot procure any factory capacity at auction ter-
mination is subject to a heavy penalty.

In our computational experiments we found columns at the
termination of CG-ICA to be integer feasible for all instances, but
in general, this might not be the case. Therefore, an important dir-
ection for future research is to design a CG-ICA that generates
integer-feasible solutions for most problem instances. Other

future research directions include designing a ICA framework
with both MFG and PDGs as agents in the ICA and devising a
side payment scheme that makes submission of all bids the opti-
mal strategy for a PDG irrespective of the bids submitted by other
PDGs and MFG. The timing of the auctions, i.e., the frequency
with which the auction should be conducted in the face of
dynamically evolving information, is another question that
remains to be addressed. Finally, the schemes proposed in this
article assume that agents can obtain optimal solutions for their
various subproblems at each iteration of the procedure. How the
performance of the procedures might be affected when heuristics
are used to produce near-optimal solutions in short CPU times,
and how the subproblems might be modified to enhance the per-
formance of procedures using such approximate subproblem sol-
utions, is an important question.

The current article assumes no communication between
the individual PDGs except indirectly through the ICA pro-
cess. In practice, subsets of PDGs might be motivated to
communicate among themselves to prepare coordinated bids
that would place them in a favorable position relative to
others. Examination of effective decentralized solution pro-
cedures under such conditions is an important direction for
future work. Finally, the extension of the approaches in this
article to study stochastic versions of the problem, where
different units may have private information about internal
sources of uncertainty as well as different assumptions about
external uncertainties remains an important long-term goal.
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Figure 6. Comparison of three bidding strategies in CG-ICA over Gap_LB for Case 4PDGs (a) n =0 and (b) n = 1.
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Appendices

Appendix A
Detailed formulation of PDG; constraints

In this section we give a detailed description of the constraints describ-
ing the capabilities of each PDG; using the notation defined in Table 8.
The formulation can then be stated as follows:

D)W

r=1,.,R t=1,..,T, (43)
PEP; sp=1
H! <z’ YpeP s,=1,..,5, r=1..,R t=1,.,T, (44)
ot <2y VPEP s5=1,..5 s e s T
H) <zl YpeP s5=1,.,5-1 r=1.,R-1 t=1,.,T-1,
(45)
Hip <1-2),,, VpEP s5=1,..5-1 t=1,.,T-1,  (46)
T
S EHp > Kj VpeP s=1,..5 r=1.,R (47)
t=1
T
dzh=3 WpeP s=1,..5-1 (48)
t=1
T -
dogi=1 Vpep, (49)

t—2
Sp

S 1 S —
—Z )+ % +?Zz;1 <1 YpeP, s=1,..5-1 t=3..,T,
=1

(50)
t—1 .
K Sp— —
<Y gk WpEP s,=2,..5 t=2..,T, (51
=1
Sp
dzh<1 VpeP t=1,..,T, (52)
sp=1
Table 8. Parameters and decision variables for PDG; constraints.
Parameters Description
R Total number of resources with resource R being factory
capacity
5p Total number of stages in the development process of
product p € P;
E Capacity of resource r in period t
K;‘; Total amount of resource r required for the completion of
stage s, of product p
Decision variables Description
H;,",, Fraction of capacity of resource r allocated to stage s,

product p in period t
z;”, binary variable equal to 1 if stage s, of product p is
active in period t and 0 otherwise
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T -
Ypr = ZA[TZIS,‘; VpeP,t=1,..,T,

(53)
=1
Sp—1
=3 Hy vt=1,..T, (54)
PEP; sp=1
zn €{0,1}, Hp, €[0,1] Vp € Py, 5, =1,...,5,—1, (55)
r=1,.,R t=1,..,T.

Constraints (43) are the resource capacity constraints. Constraints
(44) ensure that resources are allocated to a stage only when that stage
is active, and constraints (45) that engineering resources are allocated in
the first two periods of a stage. Constraints (46) ensure that factory cap-
acity is allocated only in last period of a stage, whereas constraints (47)
ensure that all stages of all products in P; are allocated their required
resources during the time horizon. Constraints (48) and (49) ensure
that all stages except the last one span three time periods and the last
stage spans only one. Constraints (50) ensure that once PDG; starts
working on a stage it must be completed, whereas constraints (51) and
(52) establish linear precedence constraints between the stages. Lastly,
constraints (53) and (54) link the PDG; subproblem to the centralized
formulation (C1), where A is a T x T lower triangular matrix with all
non-zero components equal to one. The resource capacity constraint
(43) and project scheduling constraints (44)-(54) make the PDG; sub-
problem a special case of the strongly NP-hard Multiple Resource
Constrained Project Scheduling Problem (Kolisch et al, 1995). This is
again representative of the type of problem that must be solved by a
PDG; clearly more detailed, domain-specific constraints may be added.

Appendix B

Bayesian incentive compatibility of proposed
ICA scheme

In this section, we show Bayesian Incentive Compatibility for CG-ICA;
the proof of the Bayesian Incentive Compatibility of LR-ICA follows
the same lines. Let 0; = |S¥| denote the number of bids obtained by
PDG,; in the course of solving its subproblem associated with the kth
iteration of the ICA, which we define as the true type of PDG;. If PDG;
decides to submit Ok < Ok bids, let S o denote the set of bids it submits
and g&(S ok) be the probablhty distribution over all the p0551ble bid sets
consisting of 0 bids. We assume that the distribution gf(S ok is pri-
vately known to PDG;. The remaining notation in this section is
defined in Table 9.

The probability of PDG; receiving some factory capacity at CG-ICA
termination depends on its submitted bid set and on the bids submit-
ted by other PDGs. Therefore, let ﬁf‘(@f‘) denote the expected probabil-
ity of the ICA ending in iteration k and PDG; being awarded one of its
submitted bids if it submits 0{.‘ < Of.{ bids, that is to say

:ES“& ( “k< z( 0 Sek )))’

where p¥(S o> Sek ) is the probability of the ICA ending in iteration k
and PDG; gettmg an allocation if it submits the bid set Sok and other

pr(0%) (56)

Table 9. Notations for Bayesian Incentive Compatibility.

Notation Description
i True type of PDG; or total number of bids devised by PDG; in
' kth iteratig?
sek Set of 0(< 0;) bids submitted by PDG;
(9") Expected payment for PDG; if it submits 6% bids
0, Revealed types of all other PDGsexcept i
S Set of all bids submltted by all PDGs except i associated with
- their types 6%,
Ui(0%) Expected utility earned by PDG; if it submits 0% bids in iteration k
P A set of distributions used by each PDG to devise their belief

distribution of S« and is assumed to be common knowledge

PDGs bid Sy .
representing the bid set chosen with 05.‘ bids, which are drawn from
g5(Sy), and S represents the bid sets submitted by all PDGs except
i, wHich are dr?lwn from some belief distribution in PP. Similarly, let

75(6%) be the expected utility earned by PDG; through the trading of
factory capacity and product introduction time periods if the ICA ends

Expectation is calculated over the random variable S{)k

in iteration k and PDG; receives an allocation if it submits 0 bids.
When MFG assumes the role of auctioneer, we model the expected
payment paid by PDG; for not getting a factory capacity allocation by

setting:
705 = M(1 - pHED),

where M is the very large penalty paid by each PDG; for not getting an
(0")) the expected prob-
ability of PDG; of not getting an allocation 1f it submits 0;‘ bids. Thus,
the expected utility of PDG; with 6F bids is:

(57)

allocation at auction termination and (1 —

U(0F) = i(09)p,(05)—1:(0}) (58)
U(05) = 7(0)p,(0)-M(1 = pH(O})) from (57)  (59)
= U(0F) = (v,-(ejf) + M) 5,(05-M. (60)

Following the Mechanism Design literature for linear environments
(Mas-Colell et al, 1995), we assume that the types of PDGs are statis-
tically independent, i.e., their joint density distribution can be written
as the product of their marginal distributions. By Equation (60), we

know that improving U,-(Gf.‘) involves increasing p,(0F). We have the
following results:

Pr0p081tlon L If (Sy Sy ) denote the complete set of bids for all
PDGs with (0,,9 ;) bemg thezr true types in the kth iteration of CG-
ICA then p} (S[)k,Sgk‘) < PS5 S5 ) V()i < Oi, i€l if WDP is solved
optimally as the allocation rule.

be the set of feasible solutions for the WDP at iter-
. If PDG;

gets an allocation when WDP is solved optimally over Xs , 1t will def-

Proof. Let Xg
ation k if PDG submits S- i and all other PDGs submit S W,

initely get an allocation when WDP is solved over Xg  as X L CXg
0! n, 04

for Sak - gak. Moreover, if PDG; doesn’t get an allocation then submit-

ting all its @f bids will not make its probability of getting an allocation
worse. Thus, P?(gél’(,géil) < pf.‘(géf,gg;;).

In Proposition 1, we show that with WDP solved optimally as an
allocation rule and bids of all other PDGs remaining unaltered, the
probability of PDG; getting an allocation is maximized when it submits
the complete set of bids. Proposition 2 is a generalization of
Proposition 1 where we show that expected probability of PDG; getting
an allocation is maximized when it submits its complete set of bids at
kth iteration of ICA.

Proposition 2:

PR(O%) < pH(OY) VOE < B vieT.

Proof. From Proposition 1, Vi € I we get:

p,( )<p,(SkSk) (61)

= ZplskSk

S(zk es)k

ZPISkSk

Sy

( Hk) (62)



= Z Pz S 5 S 0, z( o) SP?(S(’;@S;{X) Z 8 (Sof) (63)
SY"ES Sok€S

L o

sok< ’(S(),k’s7k,)) <P (S()k’s()k,) (64)

T T T T —k/ak

= pH(0) = Bs, (Es, (p3p0Sp0))) <Es, (pFGySe)) = @)

(65)

= pE(0F) < pk(OY) ok < 0. (66)

Equation (64) follows from the observation that > 5 g &Sy =
0 o i

1 and the second equality in Equation (65), because 9:.{ consists of only
one set of bids.

Definition 1. Bayesian Incentive Compatibility of CG-ICA (Mas-
Colell et al., 1995): CG-ICA with WDP solved optimally as an alloca-
tion rule is said to be Bayesian Incentive Compatible (BIC) if submit-
ting their complete set of bids, i.e., revealing their true types is in
Bayesian Nash Equilibrium for each PDG.

In other words, solving WDP optimally as an allocation rule in
CG-ICA is BIC if it ensures that the expected utility of PDG; is maxi-
mized when it submits its complete set of bids i.e. Vi=1,...,I:

k

Ui(Di) = ;

vi(07)p,(0)~1:(0) > 7i(01)p,(0})
Moreover, an outcome in Bayesian Nash Equilibrium ensures that no
PDG has an incentive to misrepresent its type as long as other PDGs sub-
mit their bids associated with their true types (Mas-Colell et al., 1995). We
now show that, under the assumption of myopic best response, the CG-
ICA which solves WDP optimally as an allocation rule is BIC, if the pro-
posed high penalty scheme is implemented. Myopic best response assumes
that each PDG seeks to obtain the best result it can in the current iteration
without considering the possibilities of future iterations. This is a reason-
able assumption due to the complexity of the valuation problem by which
the PDGs generate their bids.

—5,(05) VOr <08, (67)
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Theorem 1. If the penalty for not receiving an allocation in CG-ICA
at termination is sufficiently large, specifically if
B N
vi(05)p;(05)—vi(0;)p;(0;)
k-
pi(0:) = pi(0)

then, under the assumptions of myopic best response, CG-ICA with
WDP solved optimally as an allocation rule is BIC.

M > Max{"

()k<z)l‘

b (68)

Proof. From (68) we get:

_ _ _ ky\— k
M> Vt(of)P (02) VI(O )P (Ot)Vef < @f (69)
B.(07) —B,(0%)
= M(p,(0) — p,(65)) = 7:(01)p,(05)—7:(0)p,(0) w0 <0} (70)
= vi(01)p,(00) + Mp,(0F) = v,(05)p,(0%) + Mp,(0F) VoF < 0F  (71)

= 7i(07)p,(07) + Mp,(05)—M > vi(0)p,(0%) + Mp, (05)—M V0¥ < 0}
(72)

= 5i(0))p,(0) M (1= p,(01)) = 9:(0)p, (05) M (1 ~ p,(05) ) vo < 0
(73)

= i(01)p,(0)~1:(0) > m(0)p,(0) 1,0, )0} <0, (79)

which is the condition for BIC as per Equation (67) and we get
Equation (73) as pF(6F) Sﬁf(@f) vok < (7)1.( due to Equation (66).
Thus, the ICA we have derived using CG with WDP ensures that
under the assumptions of myopic best response, if each PDG faces
very high penalty (at least stated in (68)) for not procuring an alloca-
tion at auction termination then, submitting its complete set of bids is
its weakly dominant strategy given other PDGs truthfully submit their
complete set of bids.
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