
Computer Physics Communications 254 (2020) 107275

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

freud: A software suite for high throughput analysis of particle
simulation data✩,✩✩

Vyas Ramasubramani a, Bradley D. Dice b, Eric S. Harper c, Matthew P. Spellings a,
Joshua A. Anderson a, Sharon C. Glotzer a,b,c,d,∗

a Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
b Department of Physics, University of Michigan, Ann Arbor, MI 48109, United States of America
c Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
d Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States of America

a r t i c l e i n f o

Article history:
Received 12 June 2019
Received in revised form 24 February 2020
Accepted 5 March 2020
Available online 17 March 2020

Keywords:
Simulation analysis
Molecular dynamics
Monte Carlo
Computational materials science

a b s t r a c t

The freud Python package is a library for analyzing simulation data. Written with modern simulation
and data analysis workflows in mind, freud provides a Python interface to fast, parallelized C++
routines that run efficiently on laptops, workstations, and supercomputing clusters. The package
provides the core tools for finding particle neighbors in periodic systems, and offers a uniform API to
a wide variety of methods implemented using these tools. As such, freud users can access standard
methods such as the radial distribution function as well as newer, more specialized methods such
as the potential of mean force and torque and local crystal environment analysis with equal ease.
Rather than providing its own trajectory data structure, freud operates either directly on NumPy
arrays or on trajectory data structures provided by other Python packages. This design allows freud
to transparently interface with many trajectory file formats by leveraging the file parsing abilities of
other trajectory management tools. By remaining agnostic to its data source, freud is suitable for
analyzing any particle simulation, regardless of the original data representation or simulation method.
When used for on-the-fly analysis in conjunction with scriptable simulation software such as HOOMD-
blue, freud enables smart simulations that adapt to the current state of the system, allowing users
to study phenomena such as nucleation and growth.
Program summary
Program Title: freud
Program Files doi: http://dx.doi.org/10.17632/v7wmv9xcct.1
Licensing provisions: BSD 3-Clause
Programming language: Python, C++
Nature of problem: Simulations of coarse-grained, nano-scale, and colloidal particle systems typically
require analyses specialized to a particular system. Certain more standardized techniques – including
correlation functions, order parameters, and clustering – are computationally intensive tasks that must
be carefully implemented to scale to the larger systems common in modern simulations.
Solution method: freud performs a wide variety of particle system analyses, offering a Python API
that interfaces with many other tools in computational molecular sciences via NumPy array inputs
and outputs. The algorithms in freud leverage parallelized C++ to scale to large systems and enable
real-time analysis. The library’s broad set of features encode few assumptions compared to other
analysis packages, enabling analysis of a broader class of data ranging from biomolecular simulations
to colloidal experiments.

✩ The review of this paper was arranged by Prof. D.P. Landau.
✩✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

∗ Corresponding author at: Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America.
E-mail addresses: vramasub@umich.edu (V. Ramasubramani), bdice@umich.edu (B.D. Dice), harperic@umich.edu (E.S. Harper), mspells@umich.edu

(M.P. Spellings), joaander@umich.edu (J.A. Anderson), sglotzer@umich.edu (S.C. Glotzer).

https://doi.org/10.1016/j.cpc.2020.107275
0010-4655/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2020.107275
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107275&domain=pdf
http://dx.doi.org/10.17632/v7wmv9xcct.1
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:vramasub@umich.edu
mailto:bdice@umich.edu
mailto:harperic@umich.edu
mailto:mspells@umich.edu
mailto:joaander@umich.edu
mailto:sglotzer@umich.edu
https://doi.org/10.1016/j.cpc.2020.107275


2 V. Ramasubramani, B.D. Dice, E.S. Harper et al. / Computer Physics Communications 254 (2020) 107275

Additional comments including restrictions and unusual features:
1. freud provides very fast parallel implementations of standard analysis methods like RDFs and
correlation functions.
2. freud includes the reference implementation for the potential of mean force and torque (PMFT).
3. freud provides various novel methods for characterizing particle environments, including the
calculation of descriptors useful for machine learning. The source code is hosted on GitHub (https://
github.com/glotzerlab/freud), and documentation is available online (https://freud.readthedocs.io/). The
package may be installed via pip install freud-analysis or conda install -c conda-forge
freud.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Molecular simulation is a crucial pillar in the investigation of
scientific phenomena. Increased computational resources, better
algorithms, and new hardware architectures have made it pos-
sible to simulate complex systems over longer timescales than
ever before [1–5]. The sheer volume of data necessitates com-
putationally efficient analysis tools, while the diversity of data
requires flexible tools that can be adapted for specific systems.
Additionally, to support scientists with limited prior computing
experience, tools must be usable without extensive knowledge of
the underlying code.

Numerous software packages that satisfy these requirements
have been developed in recent years. Tools such as MDTraj [6],
MDAnalysis [7], LOOS [8], MMTK [9], and VMD [10] provide
efficient implementations of various standard analysis methods.
Although powerful, such tools are generally limited in scope to
all-atom simulations, particularly biomolecular simulations. This
focus is manifested not only through the features these tools
provide, but also in their general design philosophies.

Perhaps the most pronounced characteristic of such tools is a
strong emphasis on trajectory management, which includes pars-
ing trajectory files and supporting extensive topology selection
features to enable, for instance, selecting all residues or atoms
in a protein backbone. Although such tools are crucial for work-
ing with topologies in atomistic simulations, they are frequently
cumbersome for working with coarse-grained simulation data
where the trivial selection (all particles in the system) is the most
common selection for various analyses. Moreover, such topology
selection tools make assumptions that are inappropriate for non-
atomistic systems: ‘‘bonding’’ in colloidal systems, for instance, is
typically based on whether two particles are found to be in the
same neighborhood by some distance-based metric, not by the
presence of a true chemical bond. Since such determination of
nearest neighbors is highly dynamic and parameter-dependent, it
must be calculated on-the-fly and cannot be stored in a trajectory.

Another inconvenient but almost universal implementation
choice is to directly tie analysis methods to trajectories by writing
code that acts directly on some in-memory representation of a
trajectory. This direct linkage is generally inflexible because it
inhibits pre-processing of the data before running the analysis,
which is often crucial to analyzing more specialized systems.
More importantly, existing tools emphasize implementations of
highly specific analyses involving, for instance, hydrogen bonding
and protein secondary structure (using, e.g., DSSP [11]), which are
far less useful for analyzing non-biomolecular systems. The pre-
dominant analyses of coarse-grained, colloidal-scale, or nanopar-
ticle simulations usually involve measurements like numbers of
nearest neighbors, diffraction patterns, or bond-orientational or-
der parameters. These analyses bear little relation to the analyses
performed for atomistic systems. These considerations suggest a
need for a different type of analysis package that offers different
methods than most existing tools.

In this paper we introduce freud, an open-source simula-
tion analysis toolkit that addresses these needs. All inputs to
and outputs from freud are numerical arrays of data, and the
package makes no reference to predefined notions of atoms or
molecules. As a result, freud can analyze particle-based data
from both experiments and simulations regardless of the specific
tools, methods, or software that were used to generate it. The
package provides a Python Application Programming Interface
(API) for accessing fast methods implemented in C++, and it
implements numerous specific methods such as radial distribu-
tion functions and correlation functions that are common in the
field of soft-matter physics (see Fig. 1). Prior works have used
freud for: determining spatial correlation functions and poten-
tials of mean force and torque (PMFTs) in two dimensions [1];
calculating Steinhardt order parameters for identifying solid-like
particles [12,13]; computing spherical harmonics for machine
learning on crystal structures [14]; optimizing pair potentials
for designing complex crystals [15]; calculating strain fields by
finding neighbors of particles against a uniform grid [16]; finding
PMFTs in depletion-mediated self-assembly of hard cuboctahe-
dra [17]; measuring rotational degrees of freedom in entropically
ordered systems [18]; umbrella sampling of solid–solid phase
transitions using Steinhardt order parameters [19]; evaluating
PMFTs in analysis of two-dimensional shape allophiles [20]; and
more. The freud library is designed to work well with coarse-
grained particle models, such as those used in simulations of
anisotropic nanoparticles, colloidal crystals, and polymers, and its
methods are particularly useful for studies of phase transitions
and critical phenomena in such systems. The package is likely
to be of greatest interest to scientific communities in materials
science, chemical engineering, and physics, though many of its
analysis methods would be useful in generic particle systems.
The freud library also integrates well into the scientific Python
ecosystem, especially in data pipelines for machine learning and
visualization [21].

The paper is organized as follows. We first address the core
design principles that went into building freud in Section 2.
Section 3 focuses more specifically on the details of the code,
including information on class structures. Section 4 describes the
various analysis methods in freud and details their uses. Finally,
in Section 5 we provide some example code demonstrating the
usage of freud.1 The figures in this paper are rendered using
Matplotlib [22] unless otherwise noted.

2. Design

Many of the best known tools for analyzing molecular simu-
lations are built into either simulation toolkits (such as LAMMPS
[23], GROMACS [24], or the cpptraj [25] plugin to Amber [26]) or
visualization toolkits (such as VMD [10], PyMOL [27], or OVITO
[28]). Although most of these have introduced varying degrees

1 The code for these examples and many others is available at https://github.
com/glotzerlab/freud-examples and in our online documentation.

https://github.com/glotzerlab/freud
https://github.com/glotzerlab/freud
https://freud.readthedocs.io/
https://github.com/glotzerlab/freud-examples
https://github.com/glotzerlab/freud-examples


V. Ramasubramani, B.D. Dice, E.S. Harper et al. / Computer Physics Communications 254 (2020) 107275 3

Fig. 1. The freud library is capable of computing a number of characteristics of a system of particles. Here, we demonstrate some of those features on a 2D Monte
Carlo simulation of polygons that exhibits hexatic ordering [1]. a) Phase separation is clearly evident in this system of 5122 pentagons colored by local density Φ; the
system is divided into denser (blue) and less dense (red) regions. b) Zooming into a particularly dense region shows that the hexatic ordering (left half) is generally
uniform across the region. The Voronoi diagram of the system (right half) is also largely defect-free, with just a few pentagons having more or fewer than 6 nearest
neighbors. c) The spatial correlation of the hexatic order parameter Cψ6 (r) is nearly constant for a nearly perfect crystal of pentagons (orange), whereas it decays
very quickly in a fluid (blue). For a comparable system of hexagons, however, we see a power-law decay (green) in the hexatic order parameter due to the presence
of a hexatic phase between the solid and fluid phases. d) The radial distribution function g(r) for the system of pentagons shows the expected sequence of neighbor
shells as a function of distance. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of scripting support over the years, the analyses built into sim-
ulation toolkits are primarily focused on performing one-shot
analyses on trajectory files directly from the command line. The
visualization toolkits tend to have more full-featured scripting
interfaces, but they are frequently difficult (if not impossible)
to use outside their own sandboxed environments, complicating
or even prohibiting integration with other tools. More recently,
many newer tools such as MDTraj [6], MDAnalysis [7], LOOS [8],
and Pteros [29] have aimed to decouple analysis from simulation
and visualization, making scriptability a primary focus to increase
flexibility. Among such tools, Python is the most common lan-
guage of choice due to its ease of use and the fact that it can be
naturally extended with high performance languages like C, C++,
and FORTRAN.

freud follows in the footsteps of these tools, providing a full-
featured Python API to access all of its routines. However, while
most other tools focus on calculating properties involving molec-
ular topologies, freud is fundamentally designed for analyzing
the local neighborhoods of particles, particularly where such local
analyses provide global insight about the system. Such analyses
are typically far more varied and system-dependent than the
standard analyses of molecular topologies and therefore require
more flexible tools. To meet this need, freud eschews any form
of trajectory object encoding system topology and is instead de-
signed such that each analysis method is an independent Python
class that performs computations directly on NumPy arrays [30]
of data.

This design makes it possible to use a much wider range of
data with freud than is possible with tools that are tied to simu-
lation trajectories. For instance, calculating Voronoi diagrams and

computing spatial correlation functions with freud is possible for
essentially arbitrary spatial data, not just the result of a molecular
simulation. Another major benefit is that NumPy arrays (the de
facto standard for numerical data in Python) can be easily passed
between multiple tools, making freud equally easy to use for
one-off analyses or as part of a larger analysis pipeline involving
many steps and using various software packages. As a result,
freud is a much more flexible choice both for analyzing disparate
sources of data and for incorporating into Python workflows. For
example, most of freud’s analyses can be used within the OVITO
visualization environment for real-time visualization with almost
no noticeable performance cost.

Producing such array data from simulation trajectories for in-
put to freud is straightforward because high quality file parsers
with Python APIs already exist for all common trajectory file for-
mats. Through integration with tools like MDAnalysis, GSD [31],
and garnett [32], freud can be used with data from over 25
different file formats, including common formats like DCD, XTC,
and TRJ files. freud integrates with the trajectory objects pro-
duced by many of these tools, but if necessary, users can read
trajectories into arrays and modify them before passing the data
to freud for analysis. By using data read by other tools, freud’s
analyses can be made aware of molecular topology if needed,
but only when the analysis method requires such information.
Similarly, since the outputs of freud’s analyses are also NumPy
arrays, they can be passed to almost any tool in the scientific
Python software stack. For example, constructing a Pandas [33]
DataFrame from the outputs of any freud analysis requires just
one line of code, and it immediately enables writing the output
to text, CSV, or HDF5, or saving into an SQL database.



4 V. Ramasubramani, B.D. Dice, E.S. Harper et al. / Computer Physics Communications 254 (2020) 107275

Beyond differences in trajectory and data handling, the most
significant design choice in freud stems from the most common
pattern followed by its many analysis methods. Since the first
task in characterizing local neighborhoods is often the identifi-
cation of neighboring particles, freud provides efficient meth-
ods for finding neighbors in arbitrary system geometries. The
nearest-neighbor finding routines are designed to be as fast and
flexible as possible, supporting various algorithms optimized for
different system configurations and offering different criteria for
neighbor selection. In general, queries can be based on either a
cutoff distance or a desired number of nearest neighbors. These
tools are optimized to provide cheap access to neighbors even in
highly performance-critical loops in C++ analysis routines, but the
package’s system box representation and neighbor finding tools
also have Python APIs, so users can implement custom analyses
directly in Python (for an example, see Section 5.4).

The analysis methods in freud are essentially independent
tools that make use of these objects to efficiently perform various
calculations. These features are all presented with a common
API, easing the transition between the different types of analy-
ses needed for different simulations. All methods in freud are
accelerated through extensive parallelization.

3. Implementation

The freud package is entirely object-oriented, with two core
C++ classes: the Box class, which encapsulates all logic asso-
ciated with periodicity in arbitrary triclinic boxes (boxes with
3 linearly independent basis vectors); and the NeighborQuery
class, which facilitates efficiently finding, storing, and iterating
over nearest neighbors. In keeping with the Python ethos, box
objects in freud may be constructed from a variety of inputs.
Any method in freud that accepts a box object also accepts a
number of objects that can be interpreted as a box, such as a
3 × 3 NumPy array of box vectors or a list of three numbers
representing the edge lengths of an orthorhombic box. There are
two subclasses of NeighborQuery in freud that each imple-
ment different neighbor search algorithms: one implements a
bounding volume hierarchy (BVH) [34], while the other imple-
ments a cell list [35]. The NeighborList class is a lightweight
storage mechanism for NeighborQuery results that accelerates
performing multiple analyses on the same set of neighbor pairs.

The analysis methods in freud are encapsulated by Compute
classes, which are loosely defined as classes providing a compute
method that populates class attributes after performing some
computation. Compute classes, such as the density module’s
RDF class, are usually configured with constructor arguments,
after which they can be used multiple times to perform distinct
calculations. Some classes in freud (e.g. the RDF, PMFT, or bond-
orientational order diagram) represent histogram-like quantities,
and therefore allow the user to specify reset=False as an
argument to compute in order to accumulate and average data
over many calls.

Compute classes can be divided into two groups, those that
depend on finding neighbors and those that do not. A majority
of calculations in freud require neighbors, and the compute
methods of such classes all share two arguments, system and
neighbors (in addition to analysis-specific arguments like par-
ticle orientations for PMFTs; such arguments are also typically
NumPy arrays). The system parameter accepts a Neighbor-
Query or any object that can be interpreted as a tuple (box,
points), where the box is any valid box-like object (as de-
scribed above) and the points argument is anything that can
be interpreted as an N × 3 NumPy array of positions. Valid
systems include simulation frame objects from tools such as MD-
Analysis, GSD, garnett, OVITO, or the particle simulation engine
HOOMD-blue [36–38].

When performance is critical, providing a NeighborQuery
object is advantageous because many compute methods can
reuse these neighbor search data structures. For all other sys-
tem inputs, freud internally constructs a NeighborQuery if
the compute method requires neighbor pairs. The neighbors
argument is a dictionary of query arguments, such as dict
(num_neighbors=12) or dict(r_max=3.0) (the complete
specification for freud’s Query API is provided in the documenta-
tion). Alternatively, users may precompute a NeighborList and
provide it as the neighbors. In this case, whether system is a
NeighborQuery or not has no impact on performance because
the calculation will be carried out directly on the provided set
of neighbor pairs and no additional spatial searches are required.
Fig. 2 shows a flowchart demonstrating how these classes and
data structures are used.

Some methods in freud do not operate on neighboring pairs
of particles. For those that still depend on particle positions
(such as GaussianDensity), the first argument is still any valid
system, but no neighbors are provided. Some methods do
not depend on positions at all; for instance, the Nematic order
parameter only requires particle orientations. In such cases, the
user can simply pass that quantity alone to the calculation. This
mode of operation is particularly useful when performing high-
throughput analysis of large files; using file formats like GSD that
permit reading only certain properties of the trajectory, users can
minimize I/O operations by only reading the required arrays from
memory.

All Compute classes use efficient, thread-parallel C++ im-
plementations for performance-critical components. The Python
bindings for these C++ classes are generated using Cython [39],
and the C++ methods are mirrored in Python using thin Cython
classes that dispatch calls to the underlying C++ class instances.
The Cython classes have limited responsibilities: managing the
memory of the underlying C++ instances, sanitizing inputs when
necessary, and providing transparent access via memory views
on C++ arrays.

The main exception to this design is the msd module, which
is implemented in pure Python in freud. The mean squared
displacement (MSD) is a measure of, on average, how far particles
move in a given window of time. In a simulation trajectory of Nf
frames, the MSD of particle i over a window of length m frames
is given by:

MSD(i,m) =
1

Nf − m

Nf −m−1∑
k=0

∥(r⃗i(k + m) − r⃗i(k))∥2 (1)

Therefore, the total MSD is given by:

MSD(m) =
1
Np

Np∑
i=1

MSD(i,m) (2)

Direct computation of the MSD is an O(NpN2
f ) operation, but

by using a fast Fourier transform (FFT) this cost can be re-
duced to O(NpNf log(Nf )) [40]. When using this approach, the
FFT is responsible for most of the computation time, and since
packages like NumPy [30] and SciPy [41] already expose fast C
and FORTRAN FFT routines to Python, freud simply leverages
them directly and implements the rest of the MSD in pure
Python.

Calculations in freud are generally parallelized over particles
(e.g. the Nematic order parameter class) or over pairs of parti-
cles (e.g. computing inter-particle distances with the RDF class).
Both the number of particles and the number of particle–particle
pairs increase with system size, ensuring that the work is load-
balanced well among threads because the number of threads



V. Ramasubramani, B.D. Dice, E.S. Harper et al. / Computer Physics Communications 254 (2020) 107275 5

Fig. 2. Here we show the flow of various types of inputs into freud. Boxes can be constructed based on a variety of inputs, all of which can also directly be
provided anywhere a box object is required. Similarly, any object that can be interpreted as an N × 3 array can be provided where particle positions are required.
Any valid pair of box and points can be used to construct a NeighborQuery object, which is one of the types of systems that freud accepts. In addition to a
NeighborQuery, freud can also interpret raw tuples of boxes and points as system objects, or use simulation frames from numerous external tools (a subset
are shown in the figure). Any computation that involves finding nearest neighbors also requires a specification of neighbors, which can be a NeighborList or a
dictionary of query arguments. The ‘‘Example of Usage’’ box on the right shows a typical use case of freud that combines these concepts.

is much less than the number of particles or pairs. Parallelism
in freud is accomplished using Intel Threading Building Blocks
(TBB) [42]. Analysis routines are written as lambda functions
operating on a particle or a pair of particles; freud provides
wrappers that then automatically parallelize these functions ap-
propriately using TBB. Modern compilers aggressively inline such
lambda functions, thereby optimizing away any additional cost
that could arise from the extra function calls. freud uses thread-
local storage extensively to avoid any parallel writes to data
containers. For histograms that accumulate over many frames
of simulation data, freud performs reduction over thread-local
containers lazily.

Currently, freud is at version 2.1.0 and supports Python ver-
sions 3.5.0 or greater. The package is distributed through the
Python Package Index (PyPI) and the conda-forge channel of
the Anaconda package manager [43], making it easy to install on
any Unix-based operating system (e.g. Linux or macOS). Builds
for the Windows operating system are also available on conda-
forge. freud depends on NumPy and TBB libraries, which are
automatically installed with freud. The library can also be com-
piled from source using a C++11 compliant compiler. Compilation
requires NumPy and TBB headers as well as a Cython installation.
Code documentation is written using Google-style docstrings ren-
dered using Sphinx and hosted on ReadTheDocs. The freud li-
brary is released open source under the BSD 3-Clause License,
and the source code is available in a GitHub repository [44].
Continuous integration testing is performed using CircleCI.

4. Features

4.1. General utilities

The general utilities in freud are contained in two modules:
box and locality. The box module contains the core Box class.
The locality module contains the NeighborQuery abstract
class, which defines the standardized query API. NeighborQuery
results (neighboring particle pairs) can be obtained dynamically
or stored in the NeighborList class provided by the locality
module.

Box periodicity is built in at the lowest level of the Neigh-
borQuery subclasses, which are highly optimized for this use
case. The AABBQuery subclass implements a tree data structure
of Axis-Aligned Bounding Boxes (AABBs), a type of BVH which
greatly accelerates the process of finding particles’ neighbors [13,
34]. A second approach is implemented in the LinkCell sub-
class [35], which uses linked cell lists to find particle neighbors.
Both of these classes can find neighboring particle pairs based on
a distance cutoff or a desired number of neighbors, and both were
adapted from HOOMD-blue.

As a performance benchmark, we compare freud’s AABB-
Query class with the cKDTree implementation in SciPy [41]. As
part of SciPy, this implementation is the most readily available
alternative to AABBQuery. Fig. 3 shows that freud’s AABBQuery
routines clearly outperform the cKDTree as system sizes increase
to thousands of points. Moreover, we note that while freud
supports general triclinic boxes, SciPy’s cKDTree only supports



6 V. Ramasubramani, B.D. Dice, E.S. Harper et al. / Computer Physics Communications 254 (2020) 107275

Fig. 3. Here we benchmark the AABBQuery implementation in freud against
the cKDTree implementation in SciPy. We construct randomly generated sets
of points such that each particle would have, on average, 12 neighbors within
a distance of 1. We then measure the performance of finding all neighbors
within this distance using both SciPy’s cKDTree and freud’s AABBQuery. The
benchmarks were performed on a system with an Intel R⃝ Xeon R⃝ CPU E5-2680
v2 @ 2.80 GHz. The AABBQuery implementation in freud scales much better
than SciPy’s cKDTree for larger system sizes. We do not report error bars due
to the extremely low variance in the data. The exact details are available at
https://github.com/glotzerlab/freud-examples.

periodic orthorhombic boxes (i.e. a cuboid, a rectangular prism
where all angles are right angles).

In addition to these performance gains, the NeighborQuery
objects in freud are designed to interoperate seamlessly with
analysis routines. Since analyses in freud are written in C++, us-
ing a Python API to find neighbors and then pass them into other
C++ routines would require storing an intermediate representa-
tion of the neighbors. Furthermore, while a Python API should
make certain promises, such as sorting the resulting neighbors,
the analyses using neighbors simply loop over all pairs and there-
fore do not require such ordering. To avoid these costs, the
features of the NeighborQuery classes are directly accessible
in C++ in the form of iterators that lazily produce neighbors.
In practice, using the NeighborQuery classes in this manner
speeds up computations by a factor of two or more depending
on the system size. To make use of these iterators, developers
implement analysis methods as lambda functions that are passed
as arguments to freud’s internal TBB wrappers that apply these
functions to neighbor pairs in parallel.

The final feature of the locality module is the Voronoi
class, which uses the voro++ library [45] to generate Voronoi di-
agrams for systems of particles. Voronoi diagrams are a standard
method for characterizing the local geometric arrangements in
the system, and they also provide a parameter-free method for
defining nearest-neighbor relationships [46]. The Voronoi class
produces a NeighborList object that can then be used as the
neighbors argument for other compute classes.

4.2. Analysis modules

The remaining modules in freud are independent of one
another and contain groups of classes that implement related
features. While some of freud’s features are unique, many oth-
ers are standard techniques. However, implementations of these
methods commonly lack support for periodicity. For example, the
SciPy library [41] has functions for computing Voronoi diagrams
and correlation functions, but these are restricted to aperiodic
systems.

The cluster module of freud can be used to find clusters
of particles – where cluster membership is defined by neighbor

bonds – and then compute properties of these clusters such
as gyration tensors. The density module contains features for
calculating radial distribution functions as well as spatial correla-
tion functions of arbitrary quantities. Additionally, the density
module can estimate local particle density and interpolate par-
ticle density onto a regular grid suitable for, e.g., computing
discrete Fourier transforms for diffraction patterns. The inter-
face module provides a quick tool for identifying interfaces
between two mutually exclusive sets of points (e.g. a solid and
a liquid phase). The msd module enables the calculation of mean
squared displacements of particles over the course of a trajectory.

The order module is the most extensive one in freud, con-
taining a large number of different order parameters commonly
used to measure ordering and identify phase transitions in crys-
talline systems. Of particular note are the bond-orientational
order parameters Ql and Wl [48] and the cubatic order param-
eter [49] (see Fig. 4). The module also contains the nematic order
parameter for identifying orientationally ordered, translationally
disordered phases, as well as a solid–liquid order parameter for
identifying generic ordered phases [50].

The other features of freud are analysis methods developed
by researchers in our group and not yet implemented anywhere
else. In particular, the pmft and environment modules imple-
ment features unique to freud that we now discuss in greater
detail.

4.3. Potentials of mean force and torque

The potential of mean force and torque (PMFT) is a general-
ization of the classical potential of mean force (PMF) that was
recently developed to quantify directional entropic forces that
emerge in crowded systems [51,52]. Given the canonical parti-
tion function as a function of particle positions {q} and particle
orientations {Q }, Ref. [52] derives the PMFT by separating out a
component corresponding to the relative coordinates of a pair of
particles ∆ξ12:

Z =

∫
d∆ξ12J(∆ξ12)e−βU(∆ξ12)

∫
[dq̃][dQ̃ ]e−βU({q̃},{Q̃ },∆ξ12) (3)

=

∫
d∆ξ12J(∆ξ12)e−βU(∆ξ12) e−β F̃12(∆ξ12) (4)

where J is the Jacobian transforming to the local coordinate
system and F̃12 is the free energy of the other particles, which
have been integrated over in Eq. (4). The PMFT F12 is defined by
the relation

Z ≡

∫
d∆ξ12e−βF12(∆ξ12) (5)

Combining Eqs. (4) and (5) gives an expression for the PMFT

βF12(∆ξ12) = βU(∆ξ12) − log J(∆ξ12) + β F̃12(∆ξ12) (6)

In hard particle systems governed exclusively by excluded vol-
ume interactions, the potential energy term becomes an infinite
Heaviside function H and the PMFT can be simplified to

F12(∆ξ12) = −kBT log(H(d(∆ξ12))J(∆ξ12)) + F̃12(∆ξ12) (7)

To contextualize the PMFT, we note that if in Eq. (3) we rede-
fine ∆ξ12 to only include the center-to-center distance of the pair
of particles and otherwise follow the same steps, the resulting
potential F12 reduces to the classical PMF with the usual RDF
relation g(r) = e−βF12(r). This suggests that although the PMFT
is a function of all degrees of freedom required to characterize
the relative configuration of a pair of particles, examining a more
limited coordinate system can still be informative. Fig. 5 shows
two examples of PMFTs that contain more information than a
PMF without containing all available degrees of freedom. In the

https://github.com/glotzerlab/freud-examples


V. Ramasubramani, B.D. Dice, E.S. Harper et al. / Computer Physics Communications 254 (2020) 107275 7

Fig. 4. Various order parameters can be used to characterize the degree of ordering in a system. The per-particle order parameter values eventually converge to
a uniform global value as the system becomes globally well-ordered. These plots show the evolution of two order parameters over the course of a Monte Carlo
simulation of hard particles, which over time rearrange into an ordered phase under compression. Simulation snapshots are colored by the per-particle order parameter
and rendered with fresnel [47]. a) The Steinhardt Q6 order parameter is an appropriate scalar descriptor for systems forming a BCC (cI2-W) structure. Systems of
cuboctahedra in the fluid phase show a distinctly different characteristic value of the order parameter than in the solid phase. b) The cubatic order parameter KΩ4

is useful for characterizing ordering in these systems of octahedra.

Fig. 5. The PMFT is related to the probability of finding particles at a given position and orientation relative to one another. a) The PMFT of an ordered system
of hexagons [20], where the locations of the wells indicate that particles are much more likely to sit next to the edges of their neighbors than the corners. In
two-dimensional systems, the full PMFT is 3-dimensional, since it also must account for the orientation of the second particle relative to the first; for clarity, in this
figure we have integrated out that degree of freedom. b) A PMFT computed from a system of rhombicosidodecahedra shows distributions of neighboring particles
in three dimensions (figure rendered using Mayavi [53]). There are six degrees of freedom in 3D systems, three translational and three rotational. This PMFT only
shows the three translational degrees of freedom. The wells representing the deepest energy isosurfaces of the PMFT align with the largest (pentagonal) facets of
the polyhedron.

2D PMFT in the left panel, the orientation of the second particle is
ignored, but its angular position relative to the reference particle
is sufficient to illustrate the clear preference for facet-to-facet
alignment. Similarly, the right panel ignores the orientation of the
second particle (which encodes three degrees of freedom in 3D,
as represented by e.g. Euler angles), but once again the preference
for facet-to-facet alignment is clear. For an example of a case
where analyzing the full, high-dimensional PMFT is necessary, see
Ref. [54].

freud calculates the PMFT by accumulating a histogram of the
configurations of all other particles and then taking the negative
logarithm of the counts. PMFTs may be accumulated over many
frames to generate smoother energy surfaces. This method of
computing the PMFT is very similar to that of computing an
RDF, so we compare their scaling behavior in a two-dimensional
system in Fig. 6. The calculations scale almost identically to many
threads, with a constant scaling factor between them. There are
two components contributing to the absolute difference in their

performance: 1) the extra operations required to compute the
orientation of the local coordinate system in the PMFT, and 2)
the extra cost of binning in multiple dimensions.

In addition to the metric shown in Fig. 6, we also tested
performance as a function of the parameters of these two meth-
ods, namely the maximum interparticle distance and the number
of bins. In the former case, both methods show the expected
quadratic growth, since the number of particles included in the
calculation increases as the square of this cutoff distance in 2D.
The behavior with respect to the number of bins is more interest-
ing: this parameter has no effect on performance until it becomes
sufficiently large, at which point performance begins to degrade.
This degradation can be understood as the result of two things:
1) poor cache performance as the histograms become too large
to fit in memory, and 2) increasing costs of reduction, which
can eventually affect performance. Since the PMFT shown is a
two-dimensional histogram, the number of bins that can be used
along each dimension before experiencing this performance drop



8 V. Ramasubramani, B.D. Dice, E.S. Harper et al. / Computer Physics Communications 254 (2020) 107275

Fig. 6. This benchmark compares the performance of the 2D PMFT to that of
an RDF on the same two-dimensional system of hexagons used in Fig. 5. This
computation was performed with a randomly generated trajectory of consisting
of 10 frames of 20000 particles. Particle positions were constructed such that
each particle would have, on average, 12 neighbors within a distance of 1. The
benchmarks were performed on a system with an Intel R⃝ Xeon R⃝ CPU E5-2680 v2
@ 2.80 GHz. Both methods have essentially the same performance characteristics,
with the PMFT approximately three times slower than the RDF. We do not report
error bars due to the extremely low variance in the data.

is commensurately smaller than can be used with the RDF; this
effect would be even more pronounced for a three-dimensional
PMFT.

4.4. Local environments

The environment module provides methods for characteriz-
ing the local environments of particles that we now illustrate in
greater detail.

4.4.1. Bond-orientational order diagrams
The BondOrder class enables the calculation of

bond-orientational order diagrams (BOODs) [55–59]. Inspired by
the bond-orientational order parameters defined by Steinhardt
et al. [48], BOODs characterize the local ordering of systems by
calculating the vectors between all neighboring particles in a
system and then projecting these vectors onto a sphere. One
example of how BOODs can be used is to identify n-fold ordering
in a system; in simple crystal structures with n-fold coordina-
tion, the BOOD will show n peaks corresponding to the average
location of nearest neighbors.

In addition to the standard BOOD calculation, the class offers
some additional modes of operation that can be useful in specific
cases. One mode involves finding the positions of nearest neigh-
bors in the local coordinate system of a given particle rather than
the global coordinate system, which can prevent misidentifying
systems with multiple grains [55]. Another mode modifies the
BOOD to help identify plastic crystals, which appear crystalline
due to having translational order but lack orientational ordering.
In this mode, the positions of the nearest neighbors of each par-
ticle are modified by the relative orientations of the neighboring
particles, creating a BOOD in which positional ordering will no
longer appear except when orientational ordering is also present.

4.4.2. Spherical harmonic descriptors
The BOOD is closely related to the Steinhardt order param-

eters Ql and Wl, which measure rotational order in a system

using spherical harmonics [48]. While the BOOD is essentially a
histogram of nearest-neighbor bonds, the Steinhardt order pa-
rameters take this one step further, measuring l-fold order by
constructing scalar quantities from rotationally invariant combi-
nations of spherical harmonics of degree l calculated from the lo-
cations of nearest-neighbor bonds. However, spherical harmonic
representations can also be used in a variety of different ways. For
example, distinguishing different grains of the same crystal struc-
ture could be done using descriptors that are not rotationally in-
variant. Alternatively, we can often obtain rotationally-invariant
descriptions of local environments for crystal structure identifi-
cation via the principal axes of the moment of inertia tensor of
the environments, or by using particle orientations of anisotropic
particles [14,49,60]. To support such spherical harmonic analyses,
the LocalDescriptors class in freud computes spherical har-
monics characterizing particle neighborhoods. These harmonics
can then be combined in arbitrary ways to generate custom
descriptors of local particle environments. Such descriptors have
proven useful in identifying multiple complex crystals (see Fig. 7).
One method for identifying these structures is to use the infor-
mation contained in this array of spherical harmonics as a set
of per-particle features in an artificial neural network (ANN) for
structure classification [14].

4.4.3. Environment matching
Methods like the spherical harmonic descriptors and the BOOD

characterize ordering in systems by calculating system-averaged
quantities from neighbor bonds. The EnvironmentCluster class
takes a different approach by defining environments according to
the nearest neighbors of each particle and performing point set
registration to identify and cluster similar environments [61]. This
type of analysis is particularly useful because it emphasizes local
information for each particle. As a result, it can be used for tasks
such as identifying different Wyckoff positions in a crystal. The
complementary EnvironmentMotifMatch class can be used to
match clusters to specific motifs, allowing deeper analysis of a
given structural motif.

Since this method performs a direct pairwise comparison of all
motifs, it is substantially more expensive than common methods
used for structure identification. For instance, the performance is
at least an order of magnitude slower than the implementations
of Polyhedral Template Matching and Common Neighbor Analy-
sis in OVITO. Unlike these methods, however, the environment
matching algorithm does not depend on previous knowledge of
possible structures, and instead infers possible structures entirely
from the local motifs present in a system. Moreover, it can be
tuned much more finely than the other methods, allowing not
only the identification of crystal structures present, but also the
precise identification of stacking faults like those found in Fig. 8.
As a result, it is a good complement to existing methods for
identifying crystal structures in various systems.

4.4.4. Angular separation
The AngularSeparation classes provide a way to character-

ize typical particle orientations in a system. The AngularSepa-
rationGlobal class allows comparison of particle orientations
to a set of reference orientations, which can be used to character-
ize orientational order relative to the reference input. This metric
can be used as an order parameter for measuring orientational
disorder in plastic crystals, which exhibit translational order and
orientational disorder [62]. Alternatively, the AngularSepara-
tionNeighbor computes minimum separation angles between
neighboring particles, allowing a more fine-grained analysis of
the orientational ordering in local motifs. Both of these meth-
ods account for symmetry by accepting an array of equivalent



V. Ramasubramani, B.D. Dice, E.S. Harper et al. / Computer Physics Communications 254 (2020) 107275 9

Fig. 7. Spherical harmonic descriptors can be used to identify the nucleation and growth of tP30-CrFe (Frank–Kasper σ phase). a–c) As time progresses, crystallites
nucleate and grow. Solid-like particles (blue) are identified via a feedforward artificial neural network using spherical harmonic descriptors (described in more detail
in [14]).

Fig. 8. Environment matching allows us to detect variations in the local environments of particles. a) The presence of grain boundaries in this system (rendered
with fresnel) is clearly visible due to the different coloring according to local environments. b) The two distinct domains (blue and gray particles) are clustered
separately, but we can see that they both exhibit FCC-like (cF4-Cu) ordering in their stacking pattern (upper-right). The environment matching method can also
detect the different environments of the stacking faults themselves (mauve and orange), which exhibit an ABA stacking pattern instead of the expected ABC pattern
(lower-right).

quaternions corresponding to all symmetry-preserving transfor-
mations of the particle (i.e. the particle’s point group).

4.5. Data generation and plotting

For the purposes of teaching via code examples and test-
ing freud’s analyses, freud includes the freud.data module.
It includes the UnitCell class for representing arbitrary unit
cells with user-provided box vectors and basis positions. The
UnitCell class includes class methods that generate common
crystal structures like face-centered cubic, body-centered cubic,
and simple cubic. The data module also includes a method for
generating a random system with uniformly distributed points in
a periodic box.

Many analysis modules in freud implement a plot()method,
which can be used for rapid data visualization. The Compute
classes (e.g. instances of freud.density.RDF) also define a
_repr_png_()method that allows their data to be automatically
plotted in IPython environments (such as Jupyter notebooks)
using Matplotlib [22], when the last line in a code cell returns
that analysis object.

5. Examples

In this section, we demonstrate the use of freud in conjunc-
tion with the broader scientific software ecosystem. The code for
these examples and many others is available at https://github.
com/glotzerlab/freud-examples.

5.1. Computing an RDF and an MSD from a LAMMPS simulation

Here, we consider the problem of calculating the RDF and
the MSD of a system simulated using LAMMPS (version 5 Jun
2019) [23]. LAMMPS is a standard tool for particle simulation
used in many fields, and it supports multiple output formats,
including those used by other simulation codes (e.g., the DCD for-
mat from CHARMM [63] and the XTC format from GROMACS [24]).
In this case, we demonstrate the case of using the output of a
custom dump format in LAMMPS, which allows users to dump
selected quantities into a text file. Although the default XYZ
file format lacks sufficient information to calculate an MSD, the
necessary particle image information can be included as shown.

https://github.com/glotzerlab/freud-examples
https://github.com/glotzerlab/freud-examples
https://github.com/glotzerlab/freud-examples


10 V. Ramasubramani, B.D. Dice, E.S. Harper et al. / Computer Physics Communications 254 (2020) 107275

If our trajectory was stored in a DCD file, we could modify
our code above to read the input data using MDAnalysis (version
0.20.1):

5.2. On-the-fly analysis with HOOMD-blue

A major strength of freud is that it can also be used for on-
the-fly analysis. For example, freud can be used to terminate
a simulation based on some additional condition, or to log a
quantity at a higher frequency than we want to save the full

system trajectory. In our previous example, we demonstrated
the calculation of an RDF using freud. An RDF can be noisy
when calculated with limited data, so we would like to average
it over a large number of simulation frames; however, storing
many frames can lead to unreasonably large simulation trajectory
files. Using the simulation engine HOOMD-blue (v2.9.0), we can
accumulate RDF data during a simulation without storing the
entire output. Additionally, we show that we can log an order
parameter over the course of the simulation:

5.3. Analyzing atomistic trajectories from GROMACS

As discussed in Sections 1 and 2, freud’s design focus differs
from that of many similar tools in the lack of focus on trajectory
management. The example below is based on a simulation tra-
jectory of water molecules in a box generated using GROMACS
(version 2020) [24]. We use MDTraj (version 1.9.3) [6] to read
in an XTC trajectory file and then compute an RDF of the oxy-
gen atoms in the water molecules using freud. In the process,



V. Ramasubramani, B.D. Dice, E.S. Harper et al. / Computer Physics Communications 254 (2020) 107275 11

we demonstrate how the sophisticated subsetting functional-
ity offered by tools like MDTraj can be replicated with Python
code, which is very useful when such subsets must be computed
from coarse-grained trajectories with highly customized topology
definitions that standard trajectory management tools cannot
handle.

5.4. Common neighbor analysis

Common Neighbor Analysis (CNA) [64] is a standard technique
for analyzing the local neighborhoods of particles in a crystal. The
method involves a classification of local neighborhoods based on
a number of features. Using freud’s NeighborList, however,
the method is straightforward to implement in Python.

We first consider the simpler problem of identifying all com-
mon neighbors between any pair of points. This is equivalent to
searching for the second-nearest neighbor pairs, which can be
done using freud as follows (note that this code is primarily
written for clarity and could easily be optimized):

Our dictionary common_neighbors now contains lists of com-
mon neighbors j for every pair of points (i, k). This information
could itself be useful for performing some analysis on the system.
If we are interested in actually implementing CNA, then we need
to use this information to build local graphs, which we can do
with the networkx (version 2.4) [65] Python package. Combined
with the code above, the CNA algorithm can be implemented as
follows:



12 V. Ramasubramani, B.D. Dice, E.S. Harper et al. / Computer Physics Communications 254 (2020) 107275

In this code, we are looping over all pairs of previously iden-
tified second neighbor shells, and finding bonds between the
common neighbors of these pairs. The graph of these bonds then
uniquely identifies a new environment.

6. Conclusion

freud is a high-performance Python library for analyzing
particle simulations. Among simulation analysis packages, freud
is unique due to its emphasis on coarse-grained simulations and
its flexibility. Its high-performance C++ back-end makes freud
a suitable solution for large-scale, high-throughput simulation
analysis, while its simple, compact API is highly amenable to in-
tegration with other tools for, e.g., machine learning applications.
The package’s API also promotes the prototyping of new analyses
directly in Python, and the intuitive design of freud’s internals
ensures that translating such analyses into C++ is a relatively
painless process.

The package’s design is general enough to work with any
particle-based system. However, freud is primarily targeted
at communities of materials scientists, chemical engineers, and
physicists analyzing molecular dynamics and Monte Carlo for
which existing tools are too specialized to be convenient. Since
it makes no assumptions about the types of its input data or the
system topology, freud can be used with arbitrary simulation
outputs based on topologies defined by the user. As a result,
freud can find wide use in these areas to simplify workflows that
require consideration of periodic systems without the complexity
associated with specific atomistic features. Contributions to this
open-source toolkit are highly encouraged as new methods are
developed in future research applications.

Acknowledgments

Support for the design and development of freud has evolved
over time and with programmatic research directions. Conceptu-
alization and early implementations were supported in part by
the DOD/ASD(R&E) under Award No. N00244-09-1-0062 and also
by the National Science Foundation, Integrative Graduate Educa-
tion and Research Traineeship, Award # DGE 0903629 (E.S.H. and
M.P.S.). A majority of the code development including all public
code releases was supported by the National Science Foundation,
Division of Materials Research under a Computational and Data-
Enabled Science & Engineering Award # DMR 1409620 (2014–
2018) and the Office of Advanced Cyberinfrastructure Award #
OAC 1835612 (2018–2021). V.R. holds the 2019–2020 J. Robert
Beyster Computational Innovation Graduate Fellowship at the
University of Michigan. B.D. acknowledges fellowship support
from the National Science Foundation under ACI-1547580, S212:
Impl: The Molecular Sciences Software Institute [66,67] and an
earlier National Science Foundation Graduate Research Fellow-
ship Grant #DGE 1256260 (2016–2019). M.P.S. also acknowledges
support from the University of Michigan Rackham Predoctoral
Fellowship program. Computational resources and services sup-
ported in part by Advanced Research Computing at the University
of Michigan, Ann Arbor.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] J.A. Anderson, J. Antonaglia, J.A. Millan, M. Engel, S.C. Glotzer, Phys. Rev. X
(ISSN: 21603308) 7 (2) (2017) 021001, http://dx.doi.org/10.1103/PhysRevX.
7.021001.

[2] A.J. Simon, Y. Zhou, V. Ramasubramani, J. Glaser, A. Pothukuchy, J. Gollihar,
J.C. Gerberich, J.C. Leggere, B.R. Morrow, C. Jung, S.C. Glotzer, D.W. Taylor,
A.D. Ellington, Nature Chem. (ISSN: 17554349) 11 (3) (2019) 204–212,
http://dx.doi.org/10.1038/s41557-018-0196-3.

[3] C. Niethammer, S. Becker, M. Bernreuther, M. Buchholz, W. Eckhardt,
A. Heinecke, S. Werth, H.J. Bungartz, C.W. Glass, H. Hasse, J. Vrabec,
M. Horsch, J. Chem. Theory Comput. (ISSN: 15499626) 10 (10) (2014)
4455–4464, http://dx.doi.org/10.1021/ct500169q.

[4] P.L. Freddolino, F. Liu, M. Gruebele, K. Schulten, Biophys. J. (ISSN:
15420086) 94 (10) (2008) L75–L77, http://dx.doi.org/10.1529/biophysj.108.
131565.

[5] D.E. Shaw, K.J. Bowers, E. Chow, M.P. Eastwood, D.J. Ierardi, J.L. Klepeis,
J.S. Kuskin, R.H. Larson, K. Lindorff-Larsen, P. Maragakis, M.A. Moraes,
R.O. Dror, S. Piana, Y. Shan, B. Towles, J.K. Salmon, J.P. Grossman, K.M.
Mackenzie, J.A. Bank, C. Young, M.M. Deneroff, B. Batson, Proceedings of
the Conference on High Performance Computing Networking, Storage and
Analysis - SC ’09, ACM Press, New York, New York, USA, 2009, p. 1,
http://dx.doi.org/10.1145/1654059.1654099.

[6] R.T. McGibbon, K.A. Beauchamp, M.P. Harrigan, C. Klein, J.M. Swails, C.X.
Hernández, C.R. Schwantes, L.-P. Wang, T.J. Lane, V.S. Pande, Biophys. J.
(ISSN: 0006-3495) 109 (8) (2015) 1528–1532, http://dx.doi.org/10.1016/J.
BPJ.2015.08.015.

[7] N. Michaud-Agrawal, E.J. Denning, T.B. Woolf, O. Beckstein, J. Comput.
Chem. (ISSN: 01928651) 32 (10) (2011) 2319–2327, http://dx.doi.org/10.
1002/jcc.21787.

[8] T. Romo, A. Grossfield, 2009 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, IEEE, 2009, pp. 2332–2335,
http://dx.doi.org/10.1109/IEMBS.2009.5335065.

[9] K. Hinsen, J. Comput. Chem. (ISSN: 01928651) 21 (2) (2000) 79–
85, http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<79::AID-
JCC1>3.0.CO;2-B.

[10] W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14 (1996) 33–38,
http://dx.doi.org/10.1016/0263-7855(96)00018-5.

[11] W. Kabsch, C. Sander, Biopolymers (ISSN: 10970282) 22 (12) (1983)
2577–2637, http://dx.doi.org/10.1002/bip.360221211.

[12] W.F. Reinhart, A.Z. Panagiotopoulos, J. Chem. Phys. (ISSN: 00219606) 148
(12) (2018) 124506, http://dx.doi.org/10.1063/1.5021347.

[13] M.P. Howard, W.F. Reinhart, T. Sanyal, M.S. Shell, A. Nikoubashman, A.Z.
Panagiotopoulos, J. Chem. Phys. (ISSN: 00219606) 149 (9) (2018) 094901,
http://dx.doi.org/10.1063/1.5043401.

[14] M. Spellings, S.C. Glotzer, AIChE J. (ISSN: 00011541) 64 (6) (2018)
2198–2206, http://dx.doi.org/10.1002/aic.16157.

[15] C.S. Adorf, J. Antonaglia, J. Dshemuchadse, S.C. Glotzer, J. Chem. Phys. (ISSN:
00219606) 149 (20) (2018) 204102, http://dx.doi.org/10.1063/1.5063802.

[16] B. Vansaders, J. Dshemuchadse, S.C. Glotzer, Phys. Rev. Mater.
(ISSN: 24759953) 2 (6) (2018) 063604, http://dx.doi.org/10.1103/
PhysRevMaterials.2.063604.

[17] A.S. Karas, J. Glaser, S.C. Glotzer, Soft Matter (ISSN: 17446848) 12 (23)
(2016) 5199–5204, http://dx.doi.org/10.1039/c6sm00620e.

[18] J.A. Antonaglia, G. van Anders, S.C. Glotzer, Mapping disorder in
entropically ordered crystals, 2018, arXiv preprint arXiv:1803.05936.

[19] C.X. Du, G. van Anders, R.S. Newman, S.C. Glotzer, Proc. Natl. Acad. Sci.
USA (ISSN: 1091-6490) 114 (20) (2016) E3892–E3899, http://dx.doi.org/
10.1073/pnas.1621348114.

[20] E.S. Harper, R.L. Marson, J.A. Anderson, G. Van Anders, S.C. Glotzer, Soft
Matter (ISSN: 17446848) 11 (37) (2015) 7250–7256, http://dx.doi.org/10.
1039/c5sm01351h.

[21] B. Dice, V. Ramasubramani, E. Harper, M. Spellings, J. Anderson, S. Glotzer,
Proceedings of the 18th Python in Science Conference, (Scipy) 2019, pp.
27–33, http://dx.doi.org/10.25080/Majora-7ddc1dd1-004.

[22] J.D. Hunter, Comput. Sci. Eng. 9 (3) (2007) 90–95, http://dx.doi.org/10.
1109/MCSE.2007.55.

[23] S. Plimpton, J. Comput. Phys. (ISSN: 0021-9991) 117 (1) (1995) 1–19,
http://dx.doi.org/10.1006/JCPH.1995.1039.

[24] H. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Comm.
(ISSN: 0010-4655) 91 (1–3) (1995) 43–56, http://dx.doi.org/10.1016/0010-
4655(95)00042-E.

[25] D.R. Roe, T.E. Cheatham, J. Chem. Theory Comput. (ISSN: 1549-9618) 9 (7)
(2013) 3084–3095, http://dx.doi.org/10.1021/ct400341p.

[26] D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A.
Onufriev, C. Simmerling, B. Wang, R.J. Woods, J. Comput. Chem. (ISSN:
0192-8651) 26 (16) (2005) 1668–1688, http://dx.doi.org/10.1002/jcc.20290.

[27] L. Schrödinger, The pymol molecular graphics system, version 2.3, 2019.
[28] A. Stukowski, Modelling Simulation Mater. Sci. Eng. (ISSN: 09650393) 18

(1) (2010) http://dx.doi.org/10.1088/0965-0393/18/1/015012.

http://dx.doi.org/10.1103/PhysRevX.7.021001
http://dx.doi.org/10.1103/PhysRevX.7.021001
http://dx.doi.org/10.1103/PhysRevX.7.021001
http://dx.doi.org/10.1038/s41557-018-0196-3
http://dx.doi.org/10.1021/ct500169q
http://dx.doi.org/10.1529/biophysj.108.131565
http://dx.doi.org/10.1529/biophysj.108.131565
http://dx.doi.org/10.1529/biophysj.108.131565
http://dx.doi.org/10.1145/1654059.1654099
http://dx.doi.org/10.1016/J.BPJ.2015.08.015
http://dx.doi.org/10.1016/J.BPJ.2015.08.015
http://dx.doi.org/10.1016/J.BPJ.2015.08.015
http://dx.doi.org/10.1002/jcc.21787
http://dx.doi.org/10.1002/jcc.21787
http://dx.doi.org/10.1002/jcc.21787
http://dx.doi.org/10.1109/IEMBS.2009.5335065
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<79::AID-JCC1>3.0.CO;2-B
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<79::AID-JCC1>3.0.CO;2-B
http://dx.doi.org/10.1002/(SICI)1096-987X(20000130)21:2<79::AID-JCC1>3.0.CO;2-B
http://dx.doi.org/10.1016/0263-7855(96)00018-5
http://dx.doi.org/10.1002/bip.360221211
http://dx.doi.org/10.1063/1.5021347
http://dx.doi.org/10.1063/1.5043401
http://dx.doi.org/10.1002/aic.16157
http://dx.doi.org/10.1063/1.5063802
http://dx.doi.org/10.1103/PhysRevMaterials.2.063604
http://dx.doi.org/10.1103/PhysRevMaterials.2.063604
http://dx.doi.org/10.1103/PhysRevMaterials.2.063604
http://dx.doi.org/10.1039/c6sm00620e
http://arxiv.org/abs/1803.05936
http://dx.doi.org/10.1073/pnas.1621348114
http://dx.doi.org/10.1073/pnas.1621348114
http://dx.doi.org/10.1073/pnas.1621348114
http://dx.doi.org/10.1039/c5sm01351h
http://dx.doi.org/10.1039/c5sm01351h
http://dx.doi.org/10.1039/c5sm01351h
http://dx.doi.org/10.25080/Majora-7ddc1dd1-004
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1006/JCPH.1995.1039
http://dx.doi.org/10.1016/0010-4655(95)00042-E
http://dx.doi.org/10.1016/0010-4655(95)00042-E
http://dx.doi.org/10.1016/0010-4655(95)00042-E
http://dx.doi.org/10.1021/ct400341p
http://dx.doi.org/10.1002/jcc.20290
http://refhub.elsevier.com/S0010-4655(20)30091-6/sb27
http://dx.doi.org/10.1088/0965-0393/18/1/015012


V. Ramasubramani, B.D. Dice, E.S. Harper et al. / Computer Physics Communications 254 (2020) 107275 13

[29] S.O. Yesylevskyy, J. Comput. Chem. (ISSN: 01928651) 33 (19) (2012)
1632–1636, http://dx.doi.org/10.1002/jcc.22989.

[30] T.E. Oliphant, A Guide to NumPy, Trelgol Publishing, 2006.
[31] G. Lab, GSD V2.0.0, 2020, URL https://github.com/glotzerlab/gsd.
[32] G. Lab, Garnett v0.6.1, 2020, URL https://github.com/glotzerlab/garnett.
[33] W. McKinney, Data Structures for Statistical Computing in Python, Tech.

Rep., 2010, p. 51.
[34] J.A. Anderson, M. Eric Irrgang, S.C. Glotzer, Comput. Phys. Comm. (ISSN:

00104655) 204 (2016) 21–30, http://dx.doi.org/10.1016/j.cpc.2016.02.024.
[35] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press,

ISBN: 9780198556459, 1987, p. 385.
[36] J.A. Anderson, C.D. Lorenz, A. Travesset, J. Comput. Phys. (ISSN: 0021-9991)

227 (10) (2008) 5342–5359, http://dx.doi.org/10.1016/J.JCP.2008.01.047.
[37] J. Glaser, T.D. Nguyen, J.A. Anderson, P. Lui, F. Spiga, J.A. Millan, D.C. Morse,

S.C. Glotzer, Comput. Phys. Comm. (ISSN: 0010-4655) 192 (2015) 97–107,
http://dx.doi.org/10.1016/J.CPC.2015.02.028.

[38] J.A. Anderson, M. Eric Irrgang, S.C. Glotzer, Comput. Phys. Comm. (ISSN:
00104655) 204 (2016) 21–30, http://dx.doi.org/10.1016/j.cpc.2016.02.024.

[39] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, K. Smith, Comput.
Sci. Eng. (ISSN: 1521-9615) 13 (2) (2011) 31–39, http://dx.doi.org/10.1109/
MCSE.2010.118.

[40] V. Calandrini, E. Pellegrini, P. Calligari, K. Hinsen, G. Kneller, Écol. Mat.
Soc. Française de la Neutronique (ISSN: 2107-7223) 12 (2011) 201–232,
http://dx.doi.org/10.1051/sfn/201112010.

[41] E. Jones, T. Oliphant, P. Peterson, et al., Scipy: Open source scientific tools
for python, 2001, URL https://www.scipy.org/.

[42] Intel, Intel threading building blocks, 2020, URL https://github.com/intel/
tbb.

[43] Anaconda Software Distribution, Anaconda, 2020, https://anaconda.com.
[44] Glotzer Lab, Freud source code repository, 2020, URL https://github.com/

glotzerlab/freud.
[45] C. Rycroft, Voro++: a Three-Dimensional Voronoi Cell Library in C++, Tech.

Rep., Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, 2009,
http://dx.doi.org/10.2172/946741.

[46] E.A. Lazar, J. Han, D.J. Srolovitz, Proc. Natl. Acad. Sci. USA (ISSN: 10916490)
112 (43) (2015) E5769–E5776, http://dx.doi.org/10.1073/pnas.1505788112.

[47] Glotzer Lab, Fresnel v0.11.0, 2020, URL https://github.com/glotzerlab/
fresnel.

[48] P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28 (2) (1983)
784–805, http://dx.doi.org/10.1103/PhysRevB.28.784.

[49] A. Haji-Akbari, S.C. Glotzer, J. Phys. A (ISSN: 17518121) 48 (48) (2015)
485201, http://dx.doi.org/10.1088/1751-8113/48/48/485201.

[50] P. Rein ten Wolde, M.J. Ruiz-Montero, D. Frenkel, J. Chem. Phys.
(ISSN: 0021-9606) 104 (24) (1996) 9932–9947, http://dx.doi.org/10.1063/
1.471721.

[51] G. van Anders, N.K. Ahmed, R. Smith, M. Engel, S.C. Glotzer, ACS
Nano (ISSN: 19360851) 8 (1) (2014) 931–940, http://dx.doi.org/10.1021/
nn4057353,

[52] G. van Anders, D. Klotsa, N.K. Ahmed, M. Engel, S.C. Glotzer, Proc. Natl.
Acad. Sci. (ISSN: 0027-8424) 111 (45) (2014) E4812–E4821, http://dx.doi.
org/10.1073/pnas.1418159111,

[53] P. Ramachandran, G. Varoquaux, Comput. Sci. Eng. 13 (2) (2011) 40–51,
http://dx.doi.org/10.1109/MCSE.2011.35.

[54] E.S. Harper, G. van Anders, S.C. Glotzer, Proc. Natl. Acad. Sci. USA (ISSN:
10916490) 116 (34) (2019) 16703–16710, http://dx.doi.org/10.1073/pnas.
1822092116.

[55] P.F. Damasceno, M. Engel, S.C. Glotzer, Science (ISSN: 0036-8075) 337
(6093) (2012) 453–457, http://dx.doi.org/10.1126/science.1220869.

[56] M. Dzugutov, Phys. Rev. Lett. (ISSN: 00319007) 70 (19) (1993) 2924–2927,
http://dx.doi.org/10.1103/PhysRevLett.70.2924.

[57] J.W. Roth, R. Schilling, H.R. Trebin, Phys. Rev. B (ISSN: 01631829) 51 (22)
(1995) 15833–15840, http://dx.doi.org/10.1103/PhysRevB.51.15833.

[58] J. Roth, A.R. Denton, Phys. Rev. E (ISSN: 1063-651X) 61 (6) (2000)
6845–6857, http://dx.doi.org/10.1103/PhysRevE.61.6845.

[59] M. Engel, P.F. Damasceno, C.L. Phillips, S.C. Glotzer, Nature Mater. (ISSN:
1476-1122) 14 (1) (2015) 109–116, http://dx.doi.org/10.1038/nmat4152.

[60] A.S. Keys, C.R. Iacovella, S.C. Glotzer, J. Comput. Phys. (ISSN: 0021-9991)
230 (17) (2011) 6438–6463, http://dx.doi.org/10.1016/J.JCP.2011.04.017.

[61] E.G. Teich, G. van Anders, S.C. Glotzer, Nature Commun. (ISSN: 2041-1723)
10 (1) (2019) 64, http://dx.doi.org/10.1038/s41467-018-07977-2.

[62] A.S. Karas, J. Dshemuchadse, G. van Anders, S.C. Glotzer, Soft Matter (ISSN:
1744-683X) (2019) http://dx.doi.org/10.1039/C8SM02643B.

[63] B.R. Brooks, C.L. Brooks, A.D. Mackerell, L. Nilsson, R.J. Petrella, B. Roux,
Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui,
A.R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T.
Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M.
Schaefer, B. Tidor, R.M. Venable, H.L. Woodcock, X. Wu, W. Yang, D.M. York,
M. Karplus, J. Comput. Chem. (ISSN: 01928651) 30 (10) (2009) 1545–1614,
http://dx.doi.org/10.1002/jcc.21287.

[64] J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. (ISSN: 0022-3654) 91 (19)
(1987) 4950–4963, http://dx.doi.org/10.1021/j100303a014.

[65] A.A. Hagberg, D.A. Schult, P.J. Swart, in: G. Varoquaux, T. Vaught, J. Millman
(Eds.), Proceedings of the 7th Python in Science Conference, Pasadena, CA
USA, pp. 11–15.

[66] N. Wilkins-Diehr, D.T. Crawford, Comput. Sci. Eng. (ISSN: 1558366X) 20
(5) (2018) 26–38, http://dx.doi.org/10.1109/MCSE.2018.05329813.

[67] A. Krylov, T.L. Windus, T. Barnes, E. Marin-Rimoldi, J.A. Nash, B. Pritchard,
D.G. Smith, D. Altarawy, P. Saxe, C. Clementi, T.D. Crawford, R.J. Harrison,
S. Jha, V.S. Pande, T. Head-Gordon, J. Chem. Phys. (ISSN: 00219606) 149
(18) (2018) 180901, http://dx.doi.org/10.1063/1.5052551.

http://dx.doi.org/10.1002/jcc.22989
http://refhub.elsevier.com/S0010-4655(20)30091-6/sb30
https://github.com/glotzerlab/gsd
https://github.com/glotzerlab/garnett
http://refhub.elsevier.com/S0010-4655(20)30091-6/sb33
http://refhub.elsevier.com/S0010-4655(20)30091-6/sb33
http://refhub.elsevier.com/S0010-4655(20)30091-6/sb33
http://dx.doi.org/10.1016/j.cpc.2016.02.024
http://refhub.elsevier.com/S0010-4655(20)30091-6/sb35
http://refhub.elsevier.com/S0010-4655(20)30091-6/sb35
http://refhub.elsevier.com/S0010-4655(20)30091-6/sb35
http://dx.doi.org/10.1016/J.JCP.2008.01.047
http://dx.doi.org/10.1016/J.CPC.2015.02.028
http://dx.doi.org/10.1016/j.cpc.2016.02.024
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1051/sfn/201112010
https://www.scipy.org/
https://github.com/intel/tbb
https://github.com/intel/tbb
https://github.com/intel/tbb
https://anaconda.com
https://github.com/glotzerlab/freud
https://github.com/glotzerlab/freud
https://github.com/glotzerlab/freud
http://dx.doi.org/10.2172/946741
http://dx.doi.org/10.1073/pnas.1505788112
https://github.com/glotzerlab/fresnel
https://github.com/glotzerlab/fresnel
https://github.com/glotzerlab/fresnel
http://dx.doi.org/10.1103/PhysRevB.28.784
http://dx.doi.org/10.1088/1751-8113/48/48/485201
http://dx.doi.org/10.1063/1.471721
http://dx.doi.org/10.1063/1.471721
http://dx.doi.org/10.1063/1.471721
http://dx.doi.org/10.1021/nn4057353
http://dx.doi.org/10.1021/nn4057353
http://dx.doi.org/10.1021/nn4057353
http://dx.doi.org/10.1073/pnas.1418159111
http://dx.doi.org/10.1073/pnas.1418159111
http://dx.doi.org/10.1073/pnas.1418159111
http://dx.doi.org/10.1109/MCSE.2011.35
http://dx.doi.org/10.1073/pnas.1822092116
http://dx.doi.org/10.1073/pnas.1822092116
http://dx.doi.org/10.1073/pnas.1822092116
http://dx.doi.org/10.1126/science.1220869
http://dx.doi.org/10.1103/PhysRevLett.70.2924
http://dx.doi.org/10.1103/PhysRevB.51.15833
http://dx.doi.org/10.1103/PhysRevE.61.6845
http://dx.doi.org/10.1038/nmat4152
http://dx.doi.org/10.1016/J.JCP.2011.04.017
http://dx.doi.org/10.1038/s41467-018-07977-2
http://dx.doi.org/10.1039/C8SM02643B
http://dx.doi.org/10.1002/jcc.21287
http://dx.doi.org/10.1021/j100303a014
http://dx.doi.org/10.1109/MCSE.2018.05329813
http://dx.doi.org/10.1063/1.5052551

	freud: A software suite for high throughput analysis of particle simulation data
	Introduction
	Design
	Implementation
	Features
	General utilities
	Analysis modules
	Potentials of mean force and torque
	Local environments
	Bond-orientational order diagrams
	Spherical harmonic descriptors
	Environment matching
	Angular separation

	Data generation and plotting

	Examples
	Computing an RDF and an MSD from a LAMMPS simulation
	On-the-fly analysis with HOOMD-blue
	Analyzing atomistic trajectories from GROMACS
	Common neighbor analysis

	Conclusion
	Acknowledgments
	Declaration of competing interest
	References


