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1. Introduction

Reacting flow simulations with detailed chemistry can be computationally challenging because of the extremely short 
time scales associated with fast chemical reactions [1,2]. When using explicit time integration schemes, this can severely 
limit the maximum stable timestep, which can in turn dramatically increase the computational cost. The focus of this paper 
is on alleviating the stiffness associated with the chemical source term ω̇s in the species transport equations (see Eq. (4)). 
Consider a laminar n-heptane/air flame at standard thermodynamic conditions and an equivalence ratio φ = 0.9, solved 
with a standard detailed chemical model (see Mechanism #1 in Sec. 2). The maximum stable timesteps associated with 
the different terms in the Navier-Stokes and species transport equations are: �t = 5 · 10−10 s for chemistry, �t = 2 · 10−8

s for acoustics, �t = 2 · 10−7 s for diffusive and viscous effects, and �t = 10−6 s for convection. The maximum stable 
timestep associated with chemistry is estimated by computing the eigenvalues of the chemical Jacobian at the location of 
maximum heat release. For convection, diffusive/viscous effects, and acoustics, the maximum stable timesteps are obtained 
by assuming a minimum of 20 points per flame thickness, and a maximum CFL number of 1. These numbers do not vary 
much among hydrocarbon fuels, except for the maximum stable timestep associated with chemistry, which depends on the 
chemical mechanism employed. In many cases, chemistry is the most limiting phenomenon in terms of the maximum stable 
timestep.

For the case considered here, one could use a timestep more than one order of magnitude larger if the chemistry 
timestep restriction was lifted. To remove this restriction, one can modify the chemical mechanism beforehand. Popular 
approaches include Computational Singular Perturbation (CSP) [3], Intrinsic Low Dimensional Manifold (ILDM) [4], the Quasi-
Steady-State (QSS) approximation, and the Partial Equilibrium (PE) approximation [1]. In all these techniques, the chemical 
system is altered to alleviate its stiffness, which requires one to make assumptions that might affect the quality of the 
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solution. Instead of modifying the chemical mechanism, one can choose time integrators for chemistry that are well suited 
for stiff systems. Common techniques include operator splitting, in which the transport and reaction terms are treated 
separately, e.g., by using a stiff ordinary differential equation integrator for chemistry, such as CVODE [5]. Unfortunately, this 
decouples chemistry and transport, which can lead to so-called splitting errors [6]. Following what Savard et al. [2] have 
done under the low Mach number approximation, one can perform an implicit correction on the chemistry source term by 
computing an approximation of the chemical Jacobian. However, for compressible reacting flows, explicit time integration 
schemes are often preferred [7] for their high order of accuracy at an affordable computational cost. While a high order 
of temporal accuracy is preferred to resolve the transport of acoustic waves [8], it is usually not needed for the transport 
of species. That is why, second order time integrators are commonly used for reacting flows when the low Mach number 
approximation is employed [2], i.e., when acoustics are absent.

In summary, for fully compressible flows, one would ideally like to use an implicit scheme for the species transport 
equations, and a high order, explicit scheme for the continuity, momentum, and energy equations. This is the goal of this 
work. We extend the method proposed by Savard et al. [2] for fully compressible flows, by combining a second order semi-
implicit midpoint scheme for the transport of species with the classical fourth-order accurate Runge-Kutta (RK4) scheme for 
the other flow variables. Notably, this approach 1) does not require the chemical mechanism to be altered, and 2) integrates 
the governing equations in a coupled fashion. The RK4 scheme is chosen since it allows for a straightforward coupling with 
the midpoint scheme.

2. Methodology

2.1. Governing equations

We consider the fully compressible Navier-Stokes equations for reacting flows. The continuity, momentum, energy, and 
species transport equations are given by

∂ρ

∂t
+ ∇ · (ρu) = 0 , (1)

∂ρu

∂t
+ ∇ · (ρu ⊗ u) = −∇p + ∇ · τ , (2)

∂ρet

∂t
+ ∇ · (u (ρet + p)) = −∇ · q + ∇ · (τ · u) , (3)

∂ρYs

∂t
+ ∇ · (ρuYs) = −∇ · js + ρω̇s , s = 1, ...,ns , (4)

where τ = μ(∇u + (∇u)T − 2/3(∇ · u)I) is the viscous stress tensor, et is the total energy, q = −λ∇T + ∑
s hs js is the heat 

diffusion flux, ns is the number of species transported, and Ys , js , ω̇s are the mass fraction, diffusion flux, and chemical 
source term of species s. Equations (1) to (4) are solved using a compressible formulation [9] of the finite-difference solver 
NGA [10]. The system of governing equations is closed with the ideal gas law p = ρRT /W , where R is the universal gas 
constant, and W is the molecular weight of the mixture. The species viscosities μi are obtained from standard gas kinetic 
theory, and the mixture-averaged viscosity μ is calculated using a modified form of Wilke’s formula [11]. The species 
thermal diffusivities are evaluated with a modified version of Eucken’s formula. The focus of this work being placed on the 
time integration, the Lewis number of all species is set to unity. Temperature T is not known explicitly, and an implicit 
equation is solved using Newton’s method

Tm+1 = Tm +
(

ρRTm

W
−

(
ρ

ns∑
s=1

hs(Tm)Ys − ρet + 1

2
ρuu

))/(
ρ

ns∑
s=1

cv,s(Tm)Ys

)
, (5)

where hs and cv,s are the species enthalpies and heat capacities at constant volume, respectively, and m is the iteration 
number. Equation (5) is solved until the desired convergence is achieved (close to machine precision), and T1 is taken to be 
the converged temperature at the previous sub-iteration/timestep. Pressure p is then obtained via the ideal gas law.

2.2. Time integration

In the next paragraphs, we first briefly summarize the semi-implicit midpoint method proposed by Savard et al. [2]. 
We then describe how it can be used to transport the species mass fractions, while the RK4 scheme is used for the other 
transported flow variables, i.e., mass, momentum, and energy.
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2.2.1. Iterative explicit midpoint method
The iterative explicit midpoint scheme applied to Eq. (4) yields

(ρY )n+1
k+1 = (ρY )n + �t

[
C∗

k + D∗
k + �∗

k

]
, s = 1, ...,ns (6)

where C , D , and � are the discretized convection, diffusion, and chemical source terms, respectively. The superscripts refer 
to the timestep at which the quantities are evaluated, n being the current timestep, while starred quantities are evaluated 
at the half timestep, e.g., �∗

k = � 
(
Y ∗

k

)
, with Y ∗

k =
(

Y n+1
k + Y n

)
/2. The subscripts refer to the sub-iteration number, k being 

the current sub-iteration.

2.2.2. Semi-implicit correction
Chemistry being the most limiting phenomenon regarding the maximum stable timestep, we seek to perform an implicit 

correction on �, i.e., we want to compute �∗
k+1 instead of �∗

k in Eq. (6). In practice, this can be done by evaluating

(ρY )n+1
k+1 = (ρY )n + �t

[
C∗

k + D∗
k + �∗

k + 1

2

(
∂�

∂(ρY )

)∗

k

(
(ρY )n+1

k+1 − (ρY )n+1
k

)]
, (7)

where (∂�/∂(ρY ))∗k is the chemical Jacobian. We can rewrite Eq. (7) as

(ρY )n+1
k+1 = (ρY )n+1

k −
(

I − �t

2

(
∂�

∂ρY

)∗

k

)−1

· θk = (ρY )n+1
k − (

J k

)−1 · θk , (8)

where J k acts as a preconditioner on the residual of Eq. (6) at the current sub-iteration

θk ≡ (ρY )n+1
k − (ρY )n − �t

[
C∗

k + D∗
k + �∗

k

]
. (9)

As discussed in more detail by Savard et al. [2], the choice of J k is somewhat arbitrary and affects the convergence prop-
erties only, e.g., setting J k = I yields the iterative explicit method. One can compute J k according to Eq. (8) [12], which 
yields a fully implicit formulation for the chemical source term. However, this can be computationally expensive, since the 
chemical Jacobian is a full matrix, and J k needs to be computed and inverted at each sub-iteration. It is simpler and faster 
to use the idea proposed by Savard et al. [2], which is to approximate the diagonal of the chemical Jacobian, i.e., set

J k = I + �t

2

(
ω̇−

s

Ys

)∗

k

, (10)

where ω̇−
s is the consumption rate of species s. This is a very good approximation of the diagonal of [∂�/∂(ρY )]∗k since the 

production rate of a species ω̇+
s is usually not a function of its own mass fraction, and ω̇−

s is usually linear in the species 
mass fraction, i.e.,

∂ρω̇s

∂(ρY )s
= ∂ρω̇+

s

∂(ρY )s
− ∂ρω̇−

s

∂(ρY )s
≈ 0 − ω̇−

s

Ys
. (11)

Note that since one has to compute ω̇−
s to get �s , this approach only amounts to one extra division applied to the residuals 

of the species transport equations. This approximation is expected to perform extremely well since the maximum timestep 
due to the acoustics is small, see Secs. 5.1 to 5.3 in [2].

2.2.3. Embedding within the RK4 scheme
The RK4 scheme requires the evaluation of the time derivative at the half timestep (2nd and 3rd stages) and at the full 

timestep (4th stage). The iterative midpoint method yields both, hence we can embed the midpoint method within the RK4 
scheme in a straightforward manner. Note that we still solve for the flow variables Q = [ρ, ρu, ρet] with the RK4 scheme. 
The proposed method is detailed below:

Step Function evaluation Flow (RK4) Species (semi-implicit midpoint)

1 f n = f
(

Q n, (ρY )n
)

k1 = �t f n
Q (ρY )∗1 = (ρY )n +

(
I + (�t/2)

(
ω̇−/Y

)n)−1
(�t/2) f n

Y

2 f (1) = f
(

Q n + k1/2, (ρY )∗1
)

k2 = �t f (1)
Q (ρY )∗2 = (ρY )∗1 +

(
I + (�t/2)

(
ω̇−/Y

)∗
1

)−1 (
(ρY )n − (ρY )∗1 + (�t/2) f (1)

Y

)
3 f (2) = f

(
Q n + k2/2, (ρY )∗2

)
k3 = �t f (2)

Q (ρY )n+1
3 = 2 (ρY )∗2 − (ρY )n +

(
I + (�t/2)

(
ω̇−/Y

)∗
2

)−1 (
2
[
(ρY )n − (ρY )∗2

] + �t f (2)
Y

)
4 f (3) = f

(
Q n + k3, (ρY )n+1

3

)
k4 = �t f (3)

Q (ρY )n+1
4 = (ρY )n+1

3 +
(

I + (�t/2)
(
ω̇−/Y

)n+1
3

)−1 (
(ρY )n − (ρY )n+1

3 + (�t/2)
(

f n
Y +

f (3)
Y

))
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Fig. 1. Staggered grid arrangement in 2D. The scalars are stored at the cell centers (circles), the x-momentum on the vertical edges (crosses), and the 
y-momentum on the horizontal edges (squares).

completed with Q n+1 = Q n + k1/6 + k2/3 + k3/3 + k4/6, and (ρY )n+1 = (ρY )n+1
4 . In the absence of semi-implicit cor-

rection, the first three iterations of the iterative explicit midpoint method and the first three stages of the RK4 scheme are 
mathematically identical, which is what makes the embedding simple.

As part of the evaluation of f , Y is obtained as Y = (ρY )/ 
∑ns

s=1(ρY )s . This specification is important since discretely 
ρ �= ∑ns

s=1(ρY )s , as a result of using different time integrators for continuity and the species transport equations. The 
discrepancy between ρ and 

∑ns
s=1(ρY )s is quantified in Sec. 3.2. Finally, in the absence of mixing and/or chemistry, this 

approach reverts to the RK4 scheme and is hence 4th order. This property is verified in Sec. 3.2.3.

2.3. Spatial discretization

The compressible solver used in this work is based on the code developed by Boeck et al. [9], which is itself based on the 
low Mach number flow solver NGA [10]. The compressible and low Mach number solvers share a lot in common, especially 
regarding the spatial discretization. We briefly review the discretization and only point out the differences between the low 
Mach and fully compressible discretizations. The reader is referred to Ref. [10] for more details.

To improve the accuracy of the divergence term in the continuity equation, the computational grid is staggered in space, 
i.e., the scalars are stored at the cell centers, while momentum is stored at the cell faces. This arrangement is depicted in 
Fig. 1 for a two-dimensional mesh. We perform simulations on a uniform Cartesian mesh. We use second-order accurate 
interpolation and differentiation stencils. In the x1 direction, they are given by

ψ
x1 = ψ(x1 + �x1/2, x2, x3) + ψ(x1 − �x1/2, x2, x3)

2
,

δψ

δx1
= ψ(x1 + �x1/2, x2, x3) − ψ(x1 − �x1/2, x2, x3)

�x1
,

(12)

and are similarly defined in the x2 and x3 directions. Defining gi = ρui , the semi-discrete continuity equation is identical to 
its low Mach counterpart and is given by

∂ρ

∂t
+

3∑
i=1

δgi

δxi
= 0 . (13)

The treatment of the momentum equation and species transport equations is identical to the one given in [10]. The 
third-order Bounded QUICK scheme [13] is used for the species transport. For the energy equation, the convective term 
is discretized using central differences.

The compressible formulation requires the discretization of two additional terms compared to the low Mach number 
formulation. First, to determine the temperature (Eq. (5)), the term ρuu is computed as 

∑3
i=1 giui

xi to be consistent with 
the low Mach formulation (see Eq. 22 in Ref. [10]). Second, the spatial discretization of the viscous term in the energy 
equation is given by

3∑
i=1

⎛⎝ δ

δxi

⎛⎝ 3∑
j=1

(
u j

x j
xi
μxi

(
ũi, j

xi + ũ j,i
xi − 2

3

3∑
k=1

ũk,k
xi
δi j

))⎞⎠⎞⎠ , (14)

where δi j is the Kronecker delta, and

ũi, j = δ

δx j

(
ui

xi
x j

)
. (15)

Unnecessary interpolations are avoided, e.g., ũi,i = δui/δxi .
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Fig. 2. Modified wavenumber diagram. The numerical results are shown by blue circles. The thick and thin dashed lines show the analytical wavenumber 
relations for staggered and non-staggered grids, respectively. The solid line is the theoretical relation in absence of dispersion errors. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

3. Results

We first verify that the solver behaves as expected for non-reacting flows. We then proceed with reacting flows, focusing 
on the performance of the proposed time integration scheme.

3.1. Verification: non-reacting cases

To assess the spatial accuracy, we perform a series of inviscid one-dimensional simulations, including a traveling acoustic 
wave and an entropy wave in periodic domains. The first flow configuration is specific to the compressible formulation, 
whereas the second one assesses the ability of the solver to capture large density gradients typical of reacting flows.

3.1.1. Traveling acoustic wave
A one-dimensional traveling acoustic wave is the solution to the linearized Navier-Stokes equations with the following 

initial conditions

p = p0 + f (kx) , ρ = ρ0 + 1

c2
0

f (kx) , u = 1

ρ0c0
f (kx) , ρet = p

γ − 1
+ ρu2

2
, (16)

where c0 is the sound speed, k is the wavenumber, and ω = kc0 is the angular frequency. The computational domain is 
periodic with length L. We choose a sinusoidal initial pressure field f (kx) = A p sin (kx), and k = 2π/L. Since the solution 
given by Eq. (16) is valid for Ap � p0 only, we choose Ap = 10−5 p0.

As discussed in Sec. 2.3, we use second-order central differentiation operators. These schemes are not diffusive, however 
they introduce dispersion errors. When solving a simple advection equation, i.e.,

∂φ

∂t
+ a

∂φ

∂x
= 0 , (17)

this causes waves φk(x) = sin(kx) to move at a modified speed a′ that depends on the wavenumber k. This behavior is tra-
ditionally characterized with a modified wavenumber diagram such as the one presented in Fig. 2. For the simple advection 
equation, the modified wavenumber k′ is related to a′ by

k′ = ka′

a
. (18)

In the context of acoustics, dispersion errors cause waves to move at a modified sound speed c′
0. In Fig. 2, the blue circles 

show the numerical modified wavenumber relations observed numerically. We evaluate k′ by using Eq. (18) with a′ = c′
0. 

The latter is computed as c′
0 = L/ttravel , where ttravel is the time it takes for the acoustic wave to travel the length of the 

domain, evaluated by fitting a sine wave to p(x = 0, t). The thick dashed line shows the analytical modified wavenumber 
relation for a staggered grid arrangement. The thin dashed line shows the relation for a regular (i.e., non-staggered) grid to 
emphasize the improved accuracy obtained by using a staggered grid. The analytical and numerical results are in excellent 
agreement.

3.1.2. Entropy wave
To further assess the spatial accuracy, we perform a series of inviscid simulations of entropy waves being convected at a 

uniform velocity u∞ in a 1D periodic domain. The initial fields are

u = u∞ , p = p0 , ρ = ρ0 + g(x) , (ρet) = p0

γ − 1
+ ρu2∞

2
. (19)

We choose u∞ = c0/2 and the following density distribution
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Fig. 3. Comparison of the initial density field (dashed line) with the numerical solution at t f = L/u∞ for L/�x = 256 (solid line).

Fig. 4. Normalized error of the numerical solution of Eq. (19) at t f = L/u∞ for different spatial resolutions.

g(x) =
{ −αρ0 (1 − exp (−Rκ/x exp (R/(x − R))) if |x| ≤ R

0 if |x| > R
, (20)

which is C∞ and has compact support. We set α = 0.5, κ = 1, and R = L/4. We run the simulation for one flow-through 
time, i.e., t f = L/u∞ . The initial and final density field are shown in Fig. 3 for a simulation with L/�x = 256. Small oscilla-
tions in the wake of the density profile can be observed and are characteristics of centered schemes.

The normalized error, computed as√√√√∫
x

(
ρ(x, t f ) − ρ(x,0)

)2
dx

/∫
x

ρ(x,0)2dx

is shown in Fig. 4 for different spatial resolutions. The expected order of convergence (namely second) is observed.

3.2. Main results: reacting cases

The focus of this paper is on flows in which both transport and chemistry are present. Hence, we do not consider homo-
geneous reactors. Instead, we look at premixed flames as they are a perfect example of the tight coupling between chemistry 
and transport. We consider the combustion of a premixed n-heptane/air mixture under standard conditions and φ = 0.9. The 
two flow configurations studied are a one-dimensional flat flame, and a statistically-stationary three-dimensional turbulent 
case.

3.2.1. Chemical models
We provide results using the same detailed chemical model used by Savard et al. [14], referred to as Mechanism #1. It 

includes 35 species and 217 reactions. For the one-dimensional case, we also carry out simulations using JetSurF version 2.0 
[15], from which the aromatic species and the molecules containing more than 7 carbon atoms have been removed, which 
is justified by the slightly lean conditions considered. This reduced model is referred to as Mechanism #2, and contains 180 
species and 2168 reactions.

The inverses of the eigenvalues of the chemical Jacobian τJac, full correspond to the different chemical timescales of the 
system [2]. They are plotted in Fig. 5 for the two mechanisms considered. The chemical Jacobians are evaluated in the flame 
at the location of maximum heat release, using the one-dimensional flat flame configuration. The species associated with 
each eigenvalue can be determined using the approximation of the diagonal of the chemical Jacobian detailed in Sec. 2.2. As 
shown in Fig. 5a, the two smallest timescales for Mechanism #1 are O(10−9s) and are associated with the pentyl and heptyl 
radicals. For Mechanism #2, the smallest timescale is O(10−14s) and is also associated with a pentyl radical. However, it 
is smaller than for Mechanism #1 by six orders of magnitude. After careful inspection of the thermodynamic properties 
of 2 − C5H11, we found out that its enthalpy of formation was erroneous. More precisely, it is about 115kJ/mol higher 
than for 1-pentyl radicals, whereas the values for 2-alkyl radicals are commonly lower than for 1-alkyl radicals by about 
10kJ/mol [16].

A new chemical Jacobian was computed, using the thermodynamic properties of 3 − C5H11 instead of the original ones 
for 2 − C5H11. For this new chemical Jacobian, the timescale associated with 2 − C5H11 is significantly larger, and closer 
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Fig. 5. Comparison of the timescales for the full chemical Jacobian τJac, full and its diagonal approximation τJac, diag .

to the other pentyl radicals. It is shown by the red dot in Fig. 5b. It is possible that JetSurF version 2.0 suffers from other 
issues that artificially increase its stiffness. However, the goal of this paper is to show that the proposed integration scheme 
can handle very stiff mechanisms well. That is why, the unmodified JetSurF mechanism will be used for all simulations.

3.2.2. Freely propagating one-dimensional flame
We now consider a one-dimensional flat n-heptane/air premixed flame at φ = 0.9. The flame is freely propagating in 

a still unburnt mixture. We first show results obtained using Mechanism #1. Fig. 6a shows the mass fraction of 1-pentyl 
radical as a function of temperature, using the proposed method with �t = 2 · 10−8 s (corresponding to an acoustic CFL of 
0.9), and using the RK4 scheme for the species with �t = 5 · 10−10 s and �t = 2 · 10−8 s. The 1-pentyl radical is chosen 
since it is associated with the largest eigenvalue (smallest timescale) of the chemical Jacobian. Clearly, the simulation using 
the RK4 scheme for the species with �t = 2 · 10−8 s is unstable, and predicts negative pentyl mass fractions. In contrast, 
the results obtained using the proposed method with �t = 2 · 10−8 s are in excellent agreement with the results obtained 
using the RK4 scheme for the species with �t = 5 · 10−10 s. The accuracy plot shown in Fig. 6b confirms that the overall 
approach yields 2nd order accurate results in time, as expected. The normalized errors for the different species are evaluated 
in temperature space as√√√√∫

T

(
Ys − Ys,ref

)2
dT

/∫
T

Y 2
s,ref dT ,

with a reference solution Ys,ref obtained with �t = 10−10 s.
The results obtained with Mechanism #2 are shown in Fig. 7. Fig. 7a shows the mass fraction of 2 −C5H11 in temperature 

space, using the proposed framework with �t = 2 · 10−8 s, and using the RK4 scheme with �t = 10−12 s and �t = 10−15 s. 
First, one observes that max(Y2−C5H11 ) is very small, as a result of the erroneously short consumption timescale generated 
by the chemical Jacobian (Fig. 5b). Second, using the RK4 scheme for the species with �t = 10−12 s yields unphysical results, 
as the chemical timescale associated with 2 − C5H11 is much smaller (τ2−C5H11 ∼ 10−14 s). Third, the results obtained using 
the proposed approach with �t = 2 · 10−8 s are in excellent agreement with the ones obtained employing the RK4 scheme 
for the species with �t = 10−15 s. Fig. 7b shows the temporal accuracy for different species, which is found to be 2nd order 
accurate. For very small timesteps, the error for 2 − C5H11 plateaus, which is likely due to its tiny mass fraction compared 
to the other species.

As discussed in Sec. 2.2.3, using two different time integrators introduces inconsistencies between the density field 
obtained from continuity and the one given by the species mass fractions, i.e., ρ �= ∑ns

s=1 (ρY )s . To quantify this error, we 
compute the normalized density error ε = | ρ − ∑

s (ρY )s |/ρ for the two cases considered in this section. This quantity is 
found to be small, i.e., max (ε) = 4 · 10−6 when using Mechanism #1 and max (ε) = 5 · 10−5 when using Mechanism #2. In 
summary, the method described in this work stabilizes the solution and yields 2nd order accurate results for the species 
mass fractions, while introducing minimal discrepancies between the two density fields.

3.2.3. Interaction of an acoustic wave with a one-dimensional flame
In this section, flame-acoustics interactions are investigated by looking at the dynamics of an acoustic wave impacting 

the one-dimensional flame considered in Sec. 3.2.2. The goal is to determine the accuracy of the proposed time integration 
scheme for the transport of acoustic waves. We employ Mechanism #1. A right-traveling acoustic wave is initially introduced 
ahead of the flame. Its pressure profile is shown by a solid black line labeled A in Fig. 8a. First, the wave travels from A→ B 
in the unburnt mixture. Then, from B→C, the wave is partially transmitted/reflected by the flame. To evaluate the temporal 
accuracy, we extract (ρu) at the locations where |p − p0| is maximum, shown by the red stars in Fig. 8a. In Fig. 8b, we 
show the accuracy of the proposed method for each of the two segments (ψ = (ρu)). The scheme is seen to be 4th order 
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Fig. 6. Performance of the proposed method for the laminar one-dimensional case using Mechanism #1.

Fig. 7. Performance of the proposed method for the laminar one-dimensional case using Mechanism #2.

Fig. 8. Results for an acoustic wave impinging on a one-dimensional flame.

accurate for A → B , where there is no chemistry nor mixing. From B → C , as the acoustic wave goes through the flame, the 
scheme is 2nd order accurate, as expected.

3.2.4. Turbulent flame
We now examine a turbulent case, which corresponds to Flame C1 in Lapointe et al. [11]. The unburnt temperature is 

Tu = 800 K, pressure is p = 1 atm, and Mechanism #1 is used. Two-dimensional slices showing temperature and pentyl 
mass fraction isocontours are shown in Fig. 9. These results are obtained with �t = 10−8 s, which corresponds to an 
acoustic CFL of 0.9. This configuration remains entirely subsonic, with local Mach numbers reaching 0.5. Fig. 10 shows the 
joint probability density function of pentyl mass fraction and temperature for simulations performed using the original RK4 
scheme for the species, and the proposed method. Again, negative mass fractions are predicted when using the RK4 scheme 
for the species transport with �t = 10−8 s, a problem which is solved using the framework presented in this work.

Fig. 11 shows the spatial distribution of the normalized density error ε . This error is concentrated in the turbulent flame 
brush and disappears on the burnt side. In Fig. 12, we quantify this error as a function of time for three different timestep 
sizes. All simulations are such that ρ = ∑

s(ρY )s initially. Time is normalized with the eddy turnover time τ0. In all cases, 
the errors remains bounded and almost constant over time at a value determined by the timestep size. Three phenomena 
contribute to ε: the different time integrators for continuity (RK4) and for the species transport (midpoint), the semi-implicit 
treatment of chemistry, and the use of a non-linear spatial transport scheme for the species mass fractions. The combined 
error due to the semi-implicit treatment of chemistry and the different time integrators is expected to decrease with the 
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Fig. 9. Two-dimensional slices showing isocontours for the turbulent case (�t = 10−8 s). Two temperature isolines are superimposed in white (T = 1000 K 
and T = 1900 K).

Fig. 10. Joint probability density function of pentyl mass fraction and temperature for the turbulent case. The black dashed line represents the conditional 
mean.

Fig. 11. Two-dimensional slice showing isocontours of ε for the turbulent case (�t = 10−8 s). Two temperature isolines are superimposed in white (T =
1000 K and T = 1900 K).

Fig. 12. Maximum density error max(ε) as a function of time for the turbulent case, using different schemes for the species transport.

timestep size as �t2, since the proposed method blends a 2nd midpoint method and the 4th order RK4 scheme. To explore 
this further, we present in Figs. 12a and 12b results obtained with the linear transport scheme QUICK [17]. In this particular 
case, max (ε) ∼ �t2. This is highlighted in Fig. 12b, where max (ε) is rescaled by assuming a 2nd order convergence rate.

The error due to the scalar transport scheme deserves more attention. The BQUICK scheme, along with other popular 
transport schemes such as WENO [18] and BCH [19], is non-linear. Non-linear schemes are desirable because they combine 
high accuracy, low dissipation, and boundedness. However, their non-linearity induces a discrepancy between the convective 
terms from the continuity equation (Eq. (1)) and the sum of the convective terms from the species transport equations 
(Eq. (4)), i.e., 

∑
s ∇ ·(ρuYs)) �= ∇ ·(ρu). Hence, as shown in Fig. 12c, max (ε) decreases with the timestep size, but eventually 

reaches a plateau around max (ε) ∼ 10−4. It should be noted that this error is not due to the proposed method and will be 
present anytime a non-linear scheme is used for the species transport equations. In all cases, the discrepancy between the 
two density fields remains very small.

4. Conclusion

The stiffness associated with the chemical source terms can severely impact the quality of a solution to the reacting 
Navier-Stokes equations when explicit time integration schemes are used. In this paper, we presented a simple method to 
remove this stiffness when the RK4 scheme is employed. We solve the species transport equations with the semi-implicit 
midpoint method proposed by Savard et al. [2], and we employ the RK4 scheme for the integration of the other flow 
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variables. Using laminar and turbulent premixed n-heptane / air flames as examples, we showed that the proposed method 
stabilizes the simulations, and yields accurate results. Specifically, the method was shown to be second-order accurate in 
the presence of chemistry and/or mixing, and fourth-order accurate otherwise.
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