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Global demand for battery-free metrics and health monitoring devices has urged leading research agencies and
their subordinate centers to set human energy harvesting and self-powered wearable technologies as one of their
primary research objectives. After an overview of wearables market trends, different active and passive methods
of body energy harvesting for powering low-consumption electronic devices are introduced, and challenges of
device fabrication are discussed. The discussion continues with the primary emphasis on thermoelectric gen-

erators for body heat harvesting. The physiological aspects of the human body involved in heat generation are
elaborated. System requirements and the influence of different parameters on the performance of thermoelectric
generators are studied at the material, device, and system levels. Finally, the advancements in the development
of rigid and flexible thermoelectric generators for wearable and textile integration are presented.

1. Introduction

Today, communication technologies have connected people more
than ever before. The idea of “Internet of Things” (IoT), where devices
with embedded electronics, sensors, actuators, and software are con-
nected and interacted via the internet, has just gained a vast amount of
attention [1]. Wearable technology has gained great attractions with
increasing interest in personal health monitoring [2] and various
electronic sensors [3]. A combination of IoT and wearables can improve
the quality of life by reducing the cost of healthcare, improving elderly
people’s life, as well as daily body workout monitoring [4].

The required operational power for wearable devices is typically

provided by batteries. However, compared to electronics and sensors
that are continuously reducing by size according to Moore’s law [5],
batteries are still bulky and heavy. Also, they have a limited lifetime
and require frequent charging; thus, they restrict the functionality of
the wearables. For example, in some health monitoring applications
where a twenty-four/seven monitoring is needed, chargeable batteries
are not reliable due to the probable disruption in the operation during
charging. This may cause a severe lack of data acquisition and restrict
medical therapeutics.

Body energy harvesting is the primary alternative for batteries to
enhance the functionality of wearable devices and has been the subject
of many recent investigations [2-3,6-7]. A large amount of human

* Corresponding author at: Electrical and Computer Engineering Department, Monteith Research Center, North Carolina State University, Raleigh, NC 27606, USA.

E-mail address: dvashae@ncsu.edu (D. Vashaee).

https://doi.org/10.1016/j.apenergy.2019.114069

Received 12 April 2019; Received in revised form 18 October 2019; Accepted 27 October 2019

Available online 20 November 2019
0306-2619/ © 2019 Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/03062619
https://www.elsevier.com/locate/apenergy
https://doi.org/10.1016/j.apenergy.2019.114069
https://doi.org/10.1016/j.apenergy.2019.114069
mailto:dvashae@ncsu.edu
https://doi.org/10.1016/j.apenergy.2019.114069
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2019.114069&domain=pdf

A. Nogzariasbmarz, et al.

energy is released in the form of motion and heat. Therefore, technol-
ogies for body heat harvesting using thermoelectric devices [6,8-12], or
motion harvesting using piezoelectric and electromagnetic devices
[7,13,14-16] have been central for many investigations. The required
power for wearable electronic devices for medical purposes such as
wireless real-time monitoring and blood pressure sensors ranges from
few microwatts (UW) to more than one watt (W) [17]. The amount of
generated power from wearable harvesters depends on the size, posi-
tion, type, and efficiency of the harvesters.

In addition to the ability to provide the necessary power, body en-
ergy harvesters must be comfortable to wear and not limiting the nat-
ural function of the body organs. They should not be bulky and heavy or
increase the involuntary movement or metabolism of the body. The
flexibility of these energy harvesters can be another issue that can limit
the functionality of the harvester if it covers a large area of the body
[17-18].

The mechanical efficiency of the body is only about 15-30% [19],
and most of the energy provided by food is released as heat. Body heat
can be a continuous source of energy because the core body tempera-
ture is regulated at 37 °C. The total heat dissipated from the whole
human body is approximately 60-180 W depending on body activity
[18]. If one could capture this energy using thermoelectric devices with
a conversion efficiency of ~1%, the generated power would have been
~0.6-1.8 W, which is enough to power many wearable sensors [18].
However, this requires covering the whole body with thermoelectric
generators (TEG), which is impractical. Achieving the efficiency of 1%
is also challenging due to the practical limitations imposed by wear-
ability conditions. It is more practical to cover only a small part of the
body with a TEG, maximize efficiency, and minimize the load power for
wearable systems. Therefore, a precise design for the TEG at the ma-
terials, device and system level is needed to maximize the harvested
energy. Any nonoptimality at these levels can impact the output power.
Furthermore, the TEG-body attachment, convenience, weight, and re-
liability are critical factors that should be addressed when designing the
system [10,18].

The future of wearable electronic devices is dependent on reducing
their power consumption, increasing their functionality and accuracy,
as well as utilizing body energy harvesters to reduce or eliminate their
dependence on batteries. The human energy harvesters may not remove
the necessity of battery usage in wearables; however, they can decrease
the size of batteries or prolong their lifetime or the discharging time. In
this review paper, we overview the current market and the trends for
wearable technology and different wearable body energy harvesting
methods. The focus will be on thermoelectric generators, and the ma-
terials, device and system optimizations will be overviewed and the
future directions directions of wearable generators will be discussed at
the end.

2. Market research for wearable technology

The global wearables market has been forecasted to reach $34 bil-
lion in 2020 [20-21]. It is anticipated that only in 2021, 240.1 million
units of wearable gadgets will have been delivered worldwide resulting
in an 18.2% compound annual growth rate (CAGR) [22]. In North
America alone, the appearance of the largest population of senior citi-
zens in the current decade along with the thriving sports market with
the projected growth of 13.27% between 2017 ($69.3 billion) and 2021
($78.5 billion) have inspired global investments in physiological
tracking wearables [23-25]. Fig. 1 shows the expected share of wear-
able devices in the global market between 2018 and 2021 [22]. The
global market of thermoelectric generators (TEGs), for development of
self-powered metrics, is predicted to reach $547.7 M by the end of 2020
[26]. Advancements in smart textiles, with an anticipated market of
$9.3B by 2024, are a driver for the wearable TEG market [27].
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3. State-of-the-art wearable devices

Since 2012, the National Science Foundation (NSF) sponsored
Center for Advanced Self-powered Systems of Integrated Sensors and
Technologies (ASSIST) has been focused on the design, fabrication, and
evaluation of self-powered health monitoring wearables with enhanced
user comfort, robustness, and inter-device communication via the IoTs.
Thanks to the uninterrupted data acquisition, such technologies can
improve patient-doctor communication significantly and help preempt
or fix health issues more reliably. Fig. 2 shows some examples of the
ASSIST heat harvesting prototypes designed to power wearable sensors
such as an electrocardiogram (ECG) [28].

Seiko Thermic watch (Fig. 3a and b) was the first commercial body-
heated powered wristwatch, which was made in 1998 [29]. The
thermal to the electrical conversion efficiency of this watch was about
0.1%; its open-circuit voltage was 300 mV, and the output power was
approximately 25uW over 1.5°C temperature differential across the
thermoelectric modules when the watch was worn. Later in 1999, the
Citizen Watch Co., Ltd., also developed a body heat-powered watch
using rigid TEGs [30]. For 1°C temperature difference, its open-circuit
voltage was 640 mV, and it produced 13.8 uW power (Fig. 3c) [31].
PowerWatch® by Matrix Industries®, shown in Fig. 3d, is a more recent
smartwatch that is entirely powered by body heat [32]. The funda-
mental advances in the development of this watch were associated with
the TEGs, power management, and heat transfer design [33].

While wearable TEGs can be used to turn on low-power wearables,
they cannot yet provide enough power for high power electronics such
as cell phones. Yap et al. [34] studied harvesting heat using TEGs for
phone charging applications. They used several TEGs on areas of the
human body including the chest, palm, and arm to reach the minimum
voltage threshold of 250 mV before being able to use a double step-up
converter to achieve 5 V. However, the output power at 5V was still too
low for practical phone charging applications. The power can be in-
creased by collecting heat from larger areas of the body. Powerpocket is
a registered trademark by Vodafone for a wearable sleeping bag that
enables charging of a cell phone while sleeping [35].

Electroencephalography (EEG) refers to the measurement of elec-
trical activity produced by the brain as recorded from electrodes placed
on the scalp [36]. The use of EEG electrodes with integrated body heat
harvesting TEGs in textiles has been previously reported [37].

gSkin is a product by greenTEG® that exploits a non-invasive TEG-
based heat flux sensor for core body temperature measurements. This
sensor measured the amplitude and phase shift of the body temperature
to monitor the physiological symptoms and early diagnosis of health
issues. While some physiological disorders such as jetlag, narcolepsy,
and insomnia affect a phase shift in the cycles of the body temperature,
others such as sleep quality and burn-out change the amplitude of the
body temperature, as shown in Table 1 [38].

4. Energy harvesting from human body

The human body can be a useful source of energy produced from
daily activities like walking, running, and swimming or from metabolic
heat dissipation. These energies can be harvested through transducers
to produce electric power for small devices. Energy harvesting can be
done via active mechanisms such as piezoelectric, electromagnetic, and
electrostatic or passive mechanisms including thermoelectric and
pyroelectric [39].

4.1. Active energy harvesting

Active energy harvesters such as piezoelectric or electrostrictive
devices convert oscillatory mechanical energy to electrical energy when
they change shape under the application of external stimuli [40-42].
Such harvesters require some voluntary movement, e.g., pressing a
spring or a kind of transducer, demanding a deliberate execution of a
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Fig. 1. The share of different wearable devices in the global market between 2018 and 2021. Figure created by authors from the data in Ref. [22].

Table 1
SSlST - Early diagnosis of health issues using gSKIN® TEG heat flux sensors via am-
plitude and phase shifts of the temperature [38].
Symptom Amplitude shift Phase shift
Jetlag Q
Narcolepsy 0
Insomnia 9
Sleep quality Q
Burnout Q
TEG Embedded | TEG Embedded Alzheimer ©
in a T-Shirt in an Armband Parkinson )
Ovulation o
Sport Q

specific action that the user would not have done for any other reason
than powering the device.

Among the existing ambient energy sources, vibrational energy is
considered as one of the reliable sources. It can be transduced into

TEG and Heat electrical energy utilizing a piezoelectric material, which works based
Spreader L . . :
on aligning internal electrical dipoles and creating an electrical polar-
Fig. 2. Thermal harvesting units embedded in a T-shirt and an armband de- ization [43]. Piezoelectric energy harvesters have high energy densities,
veloped in the ASSIST Center. Ref. [28] with permission. reciprocal conversion capability, and simple architectures, which can

be formed into microelectromechanical systems (MEMS) [43-44]. To
name a few examples, Xue et al. [45] demonstrated a harvester with
sputtered bimorph lead zirconate titanate (PZT) capable of generating a
power output of 230 pW. In other work, Yeo et al. reported a power

a) Heat dissipation into air

Heat flow \ \ \ T , f fHeat flow
x Zal

Watch movement

Voltage 7 = e . - Heat

booster | insulation
Rechargeable Thermal collector Thermoelectric
Battery Arm device i ‘ ‘

Fig. 3. (a) The schematic of a thermoelectric powered wristwatch concept. The back plate (hot side) acts as a thermal collector receiving heat from the wrist and
directing it into the TEG. The watch case (cold front) radiates the heat acting as a heat sink on top of the TEG. (b) Seiko Thermic watch generated about 25 pW from
body heat to power the watch [29]. (c) Citizen eco-drive watch generated 13.8 pW power [6]. (d) Commercialized body heat-powered smartwatch made by Matrix
Industries [32]. All References with permission.
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density of 23.4pW/cm? in a rectangular cantilever unimorph and
64.9 uW/cm? in a wrist-worn Bimorph PZT piezoelectric energy har-
vester [46].

Magnetic induction generators represent another class of ambient
energy harvesters and operate according to Faraday’s law of electro-
magnetic induction by converting magnetic energy to electricity via the
relative motion of a coil and a magnet [47]. Current studies on im-
proving the power density of microgenerators and their output voltage
aim at extending the surrounding area of coils and increasing their
magnetic flux density [48]. In the context of battery-less implantable
devices, Hannan et al. [49] investigated the means to improve the in-
strumental reliability, efficiency, and data acquisition rate while redu-
cing the size of the device. Li et al. [50] developed electromagnetic
MEMS generating 10 yW at 2V with an input frequency of 64 Hz. Ky-
missis et al. [51] measured an average power of 0.23 W in 10 Q load by
placing a magnetic generator outside of a shoe. In another study by
Hayashida [52], the average power of 58.1 mW with a peak power of
1.61 W was generated in 47 Q2 load using a magnetic generator inside of
footwear. Von Biiren et al. [53] achieved power densities in the range of
8.7-2100 uyW/cm® by optimizing type, size and the location of an in-
ertial micropower generator for human walking.

Electrostatic-based harvesters utilize a set of variable capacitor
plates, which move by human-body motion. As an example, Roundy
reported approximately 0.5-100 mW/cm?® power density for vibrations
in the range of 1-10 m/s at 50-350 Hz [16].

Solar cells [54] and triboelectric generators [55] have been recently
used for power generation in wearable devices. Solar cells are solid-
state devices that can directly convert light to electricity based on
photovoltaic effect. Although the conversion efficiency of the solar cells
compared to the other energy harvesters usually is higher, their appli-
cation in wearables is limited because they can work effectively only
under enough ambient light. Their efficiency reduces significantly
under the regular indoor lights. Nevertheless, they can charge a storage
unit, such as a battery, whenever the wearable receives sufficient light.
Numerous research studies have recently shown the potential use of the
solar cells in wearables and more work is ongoing [54,56-58].

Triboelectric generators work based on the triboelectric effect, i.e.
the common effect of generating static electricity at the contact of two
different materials where one works as an electron donor and the other
as an acceptor. When a mechanical force is applied on a triboelectric
generator, an equal amount of charges with opposite signs are gener-
ated on the surface of each contact material [59], which can be stored
to later power electronic devices. As an example, Wu et al. [60] re-
ported power density of 3.6 uW/cm? for a wearable device. Tribo-
electric nanogenerators have also recently gained a lot of attention due
to their high power densities [61]. For example, Zhu et al. [62], re-
ported power density of 50 mW/cm? using a flexible micro-grating
triboelectric nanogenerator. Further investigations are focused on sol-
ving their limitations such as low currents at high voltages [63]. A
summary of the mentioned energy harvesters and an example of their
reported high power densities are listed in Table 2.

4.2. Passive energy harvesters

Passive harvesters function based on everyday activities and the
released energies from the body without any intention of powering a

Table 2

Summary of wearable energy harvesting methods.
Energy harvesting method Power output References
Piezoelectric 64.9 uyW/cm? [46]
Magnetic induction 8.7-2100 pW/cm3 [53]
Electrostatic 0.5-100 mW/cm® [16]
Pyroelectric 15.79 uW/crn2 [64]
Triboelectric nanogenerators 50 mW/cm? [62]
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device. Breathing, blood pressure, and body heat are several primary
examples of such energy sources [39-40].

Thermal energy as a significant energy source can be converted into
electricity by utilizing either TEGs, which work based on Seebeck effect
or pyroelectric generators (PEGs) based on the re-orientation of dipoles
triggered by temperature fluctuations [65-66].

Pyroelectric coefficient and Curie temperature under a fixed electric
field are the primary selection criteria for choosing materials for PEGs
[67]. PEGs can operate in different thermal cycles like Carnot, resistive,
synchronized electric charge extraction, synchronized switch damping
on inductor (SSDI), and Olsen [68]. Among the mentioned cycles, Olsen
and SSDI are the most efficient cycles for activating PEG-based energy
harvesters [68]. Yang et al. [69] reported 0.215mW cm 3 power
generation from lead zirconate titanate (PZT) PEG films with a thick-
ness of 175um. In another study on a PZT based PEG, Potnuru and
Tadesse [64] could generate 20 yW upon 5 °C temperature differential.
Kim et al. [70] showed that PVDF-based PEGs can produce 0.154 pW
power for a temperature difference of 1.5 °C.

Among the passive harvesters, thermal energy harvesters use body
heat and do not rely on body motion. They can function unin-
terruptedly 24 h a day; therefore, they can provide more reliable elec-
trical energy than active harvesters at comparable output power.

The selection of materials for the development of TEGs is often
made based on the dimensionless thermoelectric figure-of-merit, zT,
associated with each material [44]. Typically, materials with a higher
zT are more suitable for thermal energy harvesting [65,71-72] al-
though wearable applications often impose additional restrictions that
can be more critical than the zT. Hyland et al. [28] designed BiTe-based
TEGs, which could generate a maximum power density of 20 uW/cm?.
Oh et al. [73] showed that 0.1 ym n-WS,/p-NbSe, TEGs can produce
0.05 uW/cm? from the wrist movement. In another study, a TEG com-
prising two-dimensional nanosheets of hybrid TiS,/hexylamine super-
lattices resulted in a power output of 32 uW/cm? at 20 K temperature
difference [74]. In a similar study, Shi et al. [75] demonstrated that
TEGs based on BigsSb;sTe; and BisSegsTens can generate up to
4.07 yW/cm? from wrist during walking. The power generated from
human body can be significantly enhanced by improving the heat sink
or spreader design. Leonov et al. [76] reported the production of
20 uW/cm? power density from the human wrist by using Bi,Te; TEGs
using a large heat sink. Settaluri et al. [77] generated 21.6 uW/cm?
power density by adding a heat sink and a heat spreader to Bi,Te; TEGs.
To date, the highest power density of 44.2 uyW/cm? is achieved by the
ASSIST Center, NCSU [78], via harvesting the heat from the human
wrist by a flexible heat spreader introduced to a nanocomposite-based
TEG. Table 3 shows the comparison of performance between different
reported TEG systems.

5. Self-powered systems for wearable applications

The system design and the type of transducer being used depend on
the nature of energy being harvested. The forms of energy most com-
monly collected are light via solar cells, heat via thermoelectric gen-
erators, and vibration via piezoelectric generators. The power output of
each of these transducers varies greatly depending on environmental
conditions, creating the need for voltage manipulation and energy
storage.

Due to the power fluctuations from the wearable energy harvesting
transducers, these transducers cannot be directly connected to the load
that they are powering [88]. An entire subsystem (Fig. 4) comprising a
rectification circuit, voltage converter, followed by voltage regulation,
and finally energy storage must be constructed to take the fluctuating
power from the energy harvester and convert it to a steady voltage
supply for the wearable device being powered [88-91].
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Table 3

Comparison between different TEG systems mentioned in the literature.
Author Voe (mV/cm?) Output power Condition Location Ref.
Jo et al. 0.2 0.004 nW/cm? No heat Sink Body [79]
Wang et al. 37.5 0.08 nW/cm? No heat Sink Wrist [80]
Jo et al. 0.4 4 nW/cm? No heat Sink Body [81]
Kim et al. - 8.1 nW/cm? No heat Sink Chest [82]
Im et al. - 46 nW/cm? No heat Sink Chest [83]
Strasser et al. - > 100 nW/cm? No heat Sink Hotplate [84]
Wahbah et al. 1.6 2.22 yW/cm? Large heat Sink Wrist [85]
Siddique et al. 0.35 0.01 nW/cm? No heat sink, flexible substrate, Cold environment Arm [86]
Oh et al. 4.8 0.05 |,1W/crn2 No heat sink Wrist [73]
Shi et al. 1.88 4,07 yW/cm? No heat sink Wrist [751
Hyland et al. - 20 pW/cm? 0.13mm Cu/0.07 mm Carbon film Heat Spreader Upper arm [28]
Leonov et al. - 20 pW/cm? Very large heat sink Wrist [76]
Wan et al. - 32 uW/cm? No heat sink Hotplate [74]
Settaluri et al. 10.8 21.6 yW/cm? 1.1 mm grooved heat sink and spreader, 2 mm TE legs, natural convection Wrist [771]
Nozariasbmarz et al. - 34 pW/cm2 anodized aluminum heat sink 25.4 mm X 25.4mm X 9.5 mm Arm [87]
Vashaee et al. 49.7 44.4 yW/cm? 0.1 mm x 14 cm? flexible heat spreaders, 2 mm TEG legs, natural convection Wrist [78]

5.1. Boost converters

A boost converter is a power converter that boosts an unregulated
input voltage to a higher output voltage. A DC-DC or AC-DC converter
depending on the type of the harvester is used to match the input
voltage to a level appropriate for the wearable device [88-89]. Some
transducers, such as piezoelectric generators, provide AC power;
therefore, an AC-DC converter is used [88,92]. Other transducers, such
as TEGs, use a DC-DC converter to bring the variable output voltage of
the transducer to the appropriate voltage level [88,93-94]. A regulator
proceeds to adjust the DC voltage before it reaches the energy storage
device [88-89,95]. There are numerous different designs and topolo-
gies which can be used depending on the application and type of energy
harvester being used. However, the most critical parameter is usually
the efficiency of the boost converter, [88], which is # = P;;,/Ppay, Where
P;, is the power generated by the transducer, and Pg,, is the power that
finally reaches the storage after the converter(s) stage losses. In the case
of thermoelectric generators, low-voltage start-up is an essential factor.
Further, impedance matching between the harvester and the booster is
necessary to maximize the output power. A power management unit is
also required to load the energy storage unit, such as a capacitor
properly, and to power a wearable device, such as a sensor, when
sufficient energy is available to run the device. A Li-ion battery or a
supercapacitor is often used to store the energy harvested from the
transducer [88]. It should be noted that the future of wearable tech-
nologies also demands the development of reliable energy storage units.
They may require higher energy and power densities, rapid charge/
discharge rate, smaller size, flexibility, and longer life-time [96-98].

Because the voltage output of a TEG varies greatly depending on its
environment, load impedance matching becomes difficult and leads to
variable levels of energy efficiency depending on the power being
generated [99]. This is addressed through maximum power point
tracking (MPPT), which is a means of tracking the characteristic load
impedance that gives the most efficient power transfer under a given
power generation scenario [99]. However, MPPT and adding the cir-
cuitry needed to make these adjustments create their own efficiency

overhead, which can vary from one design to another [99].

As mentioned, another issue with the design of boost converters for
self-powered applications is the need for a startup voltage to begin the
voltage conversion [100]. Voltage from an external capacitor or vi-
brations from a switch press can sometimes be used to provide the in-
itial voltage required to start the boost converter [99]. One application
was designed such that it could achieve a self-startup using an LC white
noise and a positive feedback loop, thereby eliminating the need for an
external power supply to provide the startup voltage [99].

Many designs are now being developed to incorporate multiple
types of energy harvesting in a single system to compensate for the
liabilities of any one method of energy harvesting [101]. This provides
more consistent power to the applications being used but comes at the
cost of increased design complications and overhead to account for the
multiple circuits that are needed to harvest energy from various sources
[101]. One design attempted to overcome this challenge by making use
of a single inductor for three energy harvesting circuits to avoid re-
dundancy and increase the efficiency of the design [101]. Table 4
compares the efficiency of several power-management units reported in
the literature [99-103].

6. Body temperature and skin thermal resistance

The human body maintains a core temperature ranging between
36.5°C and 37.5°C [105]. This is achieved by keeping the balance
between the energy generated due to metabolism and the heat dis-
sipated to the environment through convection, radiation, and eva-
poration [106]. The core temperature, controlled by circadian rhythm,
varies periodically during the day within the range mentioned above,
with a high of 37.5°C from 10:00 am to 6:00 pm and low of 36.5°C
from 2:00 am to 6:00 am [107]. The body core temperature is generally
independent of ambient temperature due to physiological thermo-reg-
ulatory systems [108] discussed below:

The thermal conductivity of the skin is reported to be in the range of
0.26-0.3 W/mK depending on the skin temperature and thickness
[109]. Heat exchange with the environment takes place through the

Type of Energy Harvester/Transducer Power Processing Unit Storage/Usage
Thermal > TEG [ A \ Battery
Radio Frequency (RF) — RF Energy Harvester Rectification DC-DC or AC-DC Voltage

Vibrational ————— Piezoelectric Harvester Circuit Boost Converter ~ Regulator

Solar ——— > Solar Energy Harvester Load

Fig. 4. Diagram of energy harvesting system components.
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Table 4
Performance and feature comparison between TEG energy harvesting circuits.
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Harvested Energy Startup Voltage Startup Method MPPT Used* Vout Max Py, Max Efficiency Ref.

Thermal 40 mV Positive Feedback & White Noise Yes 2V 600 uW (Vi, = 500 mV) 61% [99]

Thermal 20 mV External Voltage No 1V 175 uW (Vi = 100 mV) 65% [100]
Thermal, Solar, Vibration 20mV External Voltage Yes Not Stated 1.3 mW (V;, = 160 mV) 64% [101]
Thermal, Solar 220 mV RF Kick-Start Yes 11V 22 mW (Vi, = 300 mV) 83% [102]
Thermal 70 mV Startup Capacitor No 1.25V 62.5 uW 58% [103]
Thermal 60mV Self-starting low voltage oscillator No 4.7V 220 yW 69% [104]

* MPPT: maximum power point tracking.
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Fig. 5. Variation of skin temperature at the wrist, forehead, and fingertips with
respect to an environmental temperature of 20 °C. Ref. [112] with permission.

skin interface [105]. The amount of this heat is controlled by vasodi-
lation and vasoconstriction [110]. Since blood transports heat, small
changes in skin blood flow can affect the amount of heat being ex-
changed with the environment significantly [111]. Fig. 5 shows the
variations in skin temperature at different locations on the human body
with respect to air temperature [112].

Different parts of the human body can be geometrically modeled as
concentric cylinders with each layer representing bone, muscle, fat,
dermis, and epidermis (Fig. 6) [113-115]. One of the first heat transfer
models assuming isotropic blood perfusion was developed by Pennes
[116]. Other proposed models involve more parameters such as arterial
temperature variation during branching, blood perfusion anisotropy,
counter-current heat exchange, and directional convection [117,118].

Heat loss mechanisms can be either active or passive [105]. In the
case of the human body, a passive system consists of convective and
radiative losses, which are uncontrollable by the body and depend on
ambient conditions [105]. The convective heat loss can be calculated
using Newton’s law of cooling and depends on the skin roughness and
dynamic hair shaft mechanism [119]. Radiative losses can be

Evaporation Convection

Radiation

Cross section
of arm

Boné ’
v
Muscle Fat

Epidermis
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determined using Stephen-Boltzmann Law. On the other hand, an active
system maintains the core temperature by controlling the blood flow
rate through skin, sweating, and shivering [105]. Different mathema-
tical models based on active mechanisms have been proposed in the
literature [119-121].

7. Thermoelectric generators (TEGs)

The thermoelectric phenomenon has been known since the dis-
coveries made by Seebeck in 1821, followed by Peltier in 1834 and
Thomson in 1851. Thermoelectric materials provide reliable conversion
of heat to electricity and vice versa [122-123]. The quality of the
thermoelectric materials is introduced by the dimensionless figure of
merit, zT, according to

. &)

where S is the Seebeck coefficient, o is the electrical conductivity, k is
the thermal conductivity (including lattice component «;, electronic
component k., and bipolar component «;;), and T is the absolute tem-
perature [124-125]. According to Pisarenko relation [126], higher
carrier concentration, leading to higher o, results in lower S, while
crystal defects reduce both k and o. Therefore, zT components are in-
terrelated and require careful optimization of the material properties to
improve.

A thermoelectric module is an array of p- and n-type semi-
conductors, which are electrically in series and thermally in parallel
[127]. A thermoelectric module can be used either as a cooler, based on
the Peltier effect, or a power generator, based on the Seebeck coeffi-
cient. Generally, the efficiency of the generator can be enhanced via
increasing zT [127], which is the focus of many investigations in the
realm of thermoelectric technology [127-131]. The conversion effi-
ciency (n) of a TEG is a fraction of Carnot efficiency, the maximum
efficiency for a reversible cycle, which is calculated using [127]:

Evaporation Convection Radiation

T 1

Conduction heat transfer

Blood perfusion
Metabolic heat generation
Conduction heat transfer

Fig. 6. Illustration of different aspects of modeling of the human body. Ref. [114,115] with permission.
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where Ty and T¢ are the temperatures of the hot and the cold sides,
respectively. The term (Ty — T¢)/Ty is the Carnot efficiency, and ZT is
the dimensionless figure of merit for the thermoelectric module. Note
that zT (with lower case z) is used to represent the material’s figure of
merit and ZT (with upper case Z) for the device’s figure of merit [132].
Due to parasitic effects, mainly from metal contacts, ZT is generally less
than zT [133]. Therefore, it is ultimately the device ZT that must be
maximized for the working temperature to deliver maximum power and
efficiency.

7.1. TEG materials requirements for wearables

To ensure the high performance of a wearable heat harvesting
platform, the embedded TEG must be optimized on materials, devices,
and system levels. In addition to high zT, the material must have low
thermal  conductivity = to  increase  temperature  gradient
(AT = Thot — Teoa) across TEG [2]. This requirement is mainly due to
the skin thermal resistance and the constraints for using a large heat
spreader in a wearable platform [8]. For the integration of the TEGs in a
wearable electronic device, the material must also have a high Seebeck
coefficient to generate a useful voltage for the efficient operation of the
subsequent DC-DC boost converter [134].

Among the known thermoelectric materials, bismuth telluride-based
alloys are the best candidates for room-temperature applications. They
have been extensively developed in the last few decades. Fig. 7 com-
pares room temperature Seebeck coefficient, thermal conductivity, and
zT of the state-of-the-art p-type (BiSb; _,),Tes [135-140] and n-type
BiyTe;_,Se, alloys [141-149].

Although some of these alloys show zT > 1, they do not fulfill the
material requirement for wearable applications. In comparison to the
commercial alloys [135,141], nanostructured materials mainly provide
smaller thermal conductivity and higher zT
[134-135,138-139,144-146,149-150]. Therefore, nanostructured
(BixSb; —x)2Tesz and Bi;Tes _4Sey alloys are the best candidates for body
heat harvesting applications.

Rigid TEGs have been traditionally used for power generation.

Applied Energy 258 (2020) 114069

Properties of the constituent materials determine the efficiency of rigid
TEGs. For example, in comparison to p-type, n-type alloys show weaker
thermoelectric properties at room temperature (Fig. 7). N-type alloys
theoretically suffer from low zT due to the smaller number of valleys
near the conduction band edge. Further improvement in the efficiency
of the rigid TEGs for a wearable application requires enhancement in zT
together with a reduction in the thermal conductivity of n-type
Bi,Te;_,Se, alloys and p-type (BiySb;_y)-Tes. Historically, the main
challenge in materials requirements is zT improvement. This requires
more experimental research and breakthroughs to obtain zT > 2 at
room temperature for both n- and p-type materials to improve the ef-
ficiency near the body temperature. Recently, researchers are focusing
on flexible and printable TEGs [151-153]. These devices are generally
less efficient than rigid TEGs; however, their flexibility makes them
attractive for wearable and textile integration applications.

7.2. TEG device requirements for wearables

At the device level, careful consideration must be paid to several
factors in the design of TEG devices to maximize their power output.
These factors include thermal load matching [12,154-155], the effect
of heat spreaders [8,28] choices of filler material(s) [156-160], type of
metal interconnects, and substrate [151,161-165], and thermoelectric
leg geometry [8,166-167].

7.2.1. Filler material

Lateral heat losses through fillers can reduce the AT and impair the
TEG power output [112]. The ratio of the planar area taken up by the
thermoelectric material over the total surface area of the module is
called the fill factor [168]. For example, for a device with a fill factor of
10%, thermoelectric leg thermal conductivity of 0.3 W/mK, and filler
conductivity of 0.03 W/mK, the total thermal conductance of the
thermoelectric material and that of the filler are equal; hence, half of all
heat is lost through conduction in the filler lowering the power output.
Finding fillers with minimal thermal conductivity is crucial to im-
proving the power output of a TEG. Air is a convenient TEG filler ma-
terial with a low thermal conductivity of about 0.024 W/mK and does
not require an airtight seal [158]. Silica aerogels are excellent thermal
insulants with a potentially lower thermal conductivity than that of air
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Fig. 7. Comparison of the room temperature Seebeck coefficient, thermal conductivity and zT of the state-of-the-art p-type (BiySb; _x)2Tes [134-140] and n-type
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Table 5
Specific skin resistance, skin/object resistance, and contact area reported in the
literature.

Specific skin resistance Skin/object resistance Contact area Ref.

6.25 X 103 Km*/W 125K/W 50 mm? [169]
5.6 x 1073 Km*>/W 110 K/W 50 mm? [109]
1.1 x 10”2 Km*/W 12.2K/W 900 mm? [10]

3 x 10~ 2 Km*/W - - [155]
1 x 10725 x 10~2 Km*/W - - [170]
5.4 x 1072 Km*/W - - [171]

capable of improving structural integrity while adding minimal mass to
the module [156,159-160].

7.2.2. Thermal load matching

The device performance is dictated by TEG thermal resistance,
which must be high and comparable to the parasitic thermal resistances
in series with the TEG. The TEG thermal resistance can be enhanced by
reducing the fill factor, i.e., reducing the number of p- and n- legs, in-
creasing the aspect ratio of the legs, and/or decreasing the thermal
conductivity of the legs [8].

Three primary sources of thermal resistances at the skin-TEG and
TEG-ambient interface can limit the TEG device performance: (1)
human skin, known as a thermal insulator, results in resistance between
the TEG and body core. (2) The contact resistance between the interface
of the skin and TEG due to the surface roughness of the skin. (3) The
thermal resistance at the interface of TEG and ambient, which depends
on air convection [8]. This TEG-air interface resistance is often the
dominant thermal resistance if no heat sink is used on top of the TEG.
The thermal resistance, which is a determinative parameter for body
heat exchanges, is estimated with experimental equations, and it can be
varied by skin characteristics and contact pressure [109]. The max-
imum generated power from a TEG can be decreased by ~30% when it
is located on body skin [10]. Table 5 shows a list of specific skin re-
sistance, skin/object resistance, and contact area reported in the lit-
erature.

From the thermal circuit perspective, the thermal generator consists
of a human body and air, and a thermal load includes a TEG and its
corresponding parasitic resistances (Fig. 8) [154]. Thermal resistance
matching between the TEG and the thermal generator is vital for
maximizing power output [155]. The optimal thermal resistance of a
TEG is defined as [112,172]:

RF (Rskin + Rair)

Rrec,optimal =
Z(Rskin + Rair)+RF

where Ry is the parasitic thermal resistance due to the filler material in
parallel with the TEG, Rgyj, is the thermal resistance between the body
core and the surface of the skin, and R,;, is the thermal resistance of the
ambient air.

20-25°C 25°C
‘ ‘ tAmEient' t I Ra

R
‘ Skin JJ RSki
0,
37°C 37°C
Fig. 8. TEG Thermal circuit for body heat harvesting. Rekin, R1eg, Rr, and Rajr

are the thermal resistance of the skin, TEG, the filler thermal resistance, and the
air, respectively.
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Fig. 9. The effect of the heat spreader surface area on the power output of TEGs
under two conditions of with and without airflow. Ref. [28] with permission.

7.2.3. Heat spreaders

The overall performance of a wearable TEG can be improved by
using heat spreaders. The advantage of a heat spreader compared to a
fin heat sink is its lower weight and flexibility, which is desired for
wearable applications. Heat spreaders with high thermal conductivity
can be placed on both the cold and hot sides of a TEG to enhance the
power output. For example, carbon and copper foils, with thermal
conductivity (k) of ~1000 W/mK and ~400 W/mK, and thickness (t) of
~100 um and ~ 250 um, respectively, have been used as heat spreaders
to maximize the generated power [28]. The results did not show a
significant difference between these two materials, which can be un-
derstood considering similar «t factor. As shown in Fig. 9, increasing the
surface area of a spreader raises the power output up to a certain point,
after which the lateral thermal resistance begins to dominate, and the
role of the spreader becomes less significant. According to the experi-
mental results [28] and the analytical modeling [8], the optimum heat
spreader size for this case was 4cm X 4cm. Compared to a TEG
without the heat spreader, the output power increased by 100% using a
16 cm? spreader.

7.2.4. Metal interconnects and substrates

As mentioned, a TEG consists of p- and n-type thermoelectric legs
which are electrically in series. The electrical connection between the
legs is through metal interconnects mounted on an insulating substrate,
usually a ceramic. Metal interconnects should possess high electrical
conductivity and a matching thermal expansion coefficient as that of
the thermoelectric legs [161]. Typically, they are made of copper or
gold-coated copper that can be as thin as 20 um. The interfacial contact
resistance between the legs and the interconnects can limit the device
performance if the leg resistance becomes comparable to the contact
resistance. This usually happens if the contact resistance exceeds 10%
of pL/2, where p is the electrical resistivity, and L is the length of the
leg. For example, for a BiyTez leg with p ~ 10"3Qcm, and a contact
resistance of 10~ 6 Q cm?, the leg length should be above 0.2 mm [173].

In rigid TEGs, legs and interconnects are typically affixed to a highly
thermally conductive ceramic substrate, such as alumina (k~30W/
mK) or aluminum nitride (x ~ 285 W/mK) [164]. In flexible TEGs, the
eutectic alloy of gallium and indium (EGaln) as a liquid-metal inter-
connect has offered both flexibility and self-healing properties, ensuring
the integrity of the module even after experiencing severe strains [151].
The two substrates mostly used in flexible devices are poly-
dimethylsiloxane (PDMS) and Kapton HN. Flexible substrates, com-
pared to the rigid ones, can impede heat flow from the human body to
the TEG due to their higher thermal resistance [151,165].
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Fig. 10. Effect of varying fill factor on AT, TEG output voltage, TEG output power, and boost converter output power for given thermal conductivities of k = 0.5 W/

mK, and 1.5 W/mK.

7.2.5. Number of legs and leg geometry

A large number of legs results in a reduction of TEG thermal re-
sistance and AT. For example, on a human body condition, for a low
thermally resistive TEG module, once the fill-factor is higher than about
10%, the maximum AT is less than 2 °C in a typical commercial bismuth
telluride thermoelectric devices [8]. By increasing leg length (aspect
ratio), altering leg shape, and decreasing fill factor, AT across the
module, and thus output power can be improved [8,174]. It should be
noted that although a smaller fill factor is desirable for higher power,
e.g., as a module with a fill factor between 0.3 and 3% can produce over
several times more power per unit area than devices with fill factor of
above 25% [167], a module with a fill factor of < 20% may compro-
mise the mechanical integrity [8]. For systems with a small AT, rec-
tangular legs are optimal for maximum power generation [166]. The
effect of the fill factor on AT, TEG voltage, and TEG power output is
shown in Fig. 10. The quantities are calculated for a TEG with rectan-
gular legs of 0.6 x 0.6 mm? cross-section area and 2 mm height using a
similar model as in ref [8]. The p- and n-type materials’ figure-of-merits
are assumed to be 1 and 0.7, respectively, similar to typical commercial
bismuth telluride-based materials. Seebeck coefficients are considered
to be 200 pV/K for both materials. Two values of thermal conductivities
are considered, 1.5 W/mK and 0.5 W/mK. The electrical conductivity is
adjusted to keep the same values of zTs for both TEGs. A heat spreader
of 10 cm? on top of the TEG and natural convection is assumed. It can
be seen that FF ~ 6% results in the highest value of TEG power output
for k = 1.5W/mK (e.g., a typical commercial thermoelectric device).
This value increases to FF ~ 18% for k = 0.5 W/mK with almost similar
peak TEG power output. However, for the first TEG (x = 1.5 W/mK),
the DC-DC boost converter has zero power output at FF ~ 6% due to the
small TEG voltage output, which is not sufficient to turn on the boost
converter. The boost converter power output shows a strong de-
pendency on the material’s thermal conductivity for the same reason. It
is, therefore, essential that the TE material and the TEG device para-
meters should be optimized to maximize the power available to the
system at the output of the boost converter (not the output of the TEG).

Fabrication of TEG devices is a challenging process. Along with the
optimum design of the device, which discussed earlier, the headers
material, quality of the interconnects, contact resistance between TE
legs and interconnects, repeatability, and mechanical properties of
TEGs are highly effective on device performance and efficiency. Further
improvement in body heat harvesting directly depends on minimizing
the contact resistance of TE legs and maximizing the stability of the
modules at different environments and infinite energy generation cy-
cling.

7.2.6. Environmental effects
Environment temperature and air velocity are the two main factors

that influence the generated power from the TEG. As discussed in
Section 6, the core body temperature is usually independent of the
ambient temperature due to the physiological thermo-regulatory
system. Therefore, the skin surface temperature is a small function of
the ambient temperature and does not change significantly with the
environment. When the ambient temperature increases and is below the
surface body temperature, the AT across the TEG decreases. In a warm
climate that the ambient temperature rises above the surface body
temperature (~33-35C), the TEG can still produce power. In such
cases, a bipolar boost convertor can regulate the polarity of the output
voltage. Only when the ambient temperature is precisely equal to the
skin temperature, the TEG cannot produce power because there is no
AT across the TEG. In addition to external parameters, thermoelectric
material properties are also functions of temperature. However, their
variation is usually small over the typical changes in the ambient
temperature.

Air velocity is another critical factor that affects the TEG perfor-
mance. Higher air velocity can enhance the generated power sig-
nificantly due to a higher heat rejection from the cold side. The heat
rejection saturates at very high air velocity. Suarez et al. [8] showed
that at the air velocity of 0.9m/s, 5x more power than steady-state
condition can be achieved (Fig. 11).

It is worth knowing that other environmental effects such as hu-
midity and air pressure can also affect the TEG performance; however,
their influences have not been yet studied in the literature.

8. Flexible TEGs

Flexible TEGs have been of interest for wearable applications due to
their lightweight, low thermal resistance, breathability, long-term

160 = ™
140 With Heatsin o
° Custom module o
120
§1oo
g 80
5 60
40 U
20 Commercial module
0
0 0.2 0.4 0.6 0.8 1
Air Velocity (m/s)

Fig. 11. Experimental comparison of generated power versus air velocity for
commercial and custom thermoelectric modules. Ref. [8] with permission.
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Fig. 12. (a) Schematic and (b) a fabricated flexible TEG using bulk thermoelectric legs embedded in PDMS and connected with liquid metal. Ref. [151] with

permission.

Table 6

Summary of generated power outputs reported in the literature.
Technique Year AT/Ambient Power (LW/ cm?) Ref.
Bulk Materials 2017 Ambient = 5°C 8.75 [151]
Bulk Materials 2017 Ambient = 20°C 3.2 [152]
Bulk Materials 2017 AT =1°C 2 [184]
Bulk Materials 2018 Ambient = 25°C 7.31 [185]
Bulk Materials 2018 Ambient = 24°C 5.6 [186]
Electrodeposition 2018 Ambient = 15°C 3 [193]
Fabrics 2016 AT = 10°C 2 [192]
Fabrics 2015 AT =72°C 0.0006 [191]
Organic Solution 2016 Ambient = 5°C 0.03 [190]
Screen printing 2016 AT =1°C 7.3 [194]

comfort, high coverage on the skin, ease of incorporation to fabrics, and
conformal contact to the skin while being aesthetically pleasing
[162,175-176]. Such TEGs can be fabricated by methods such as
printing [175,177], lift-off [178], flash evaporation [179], and elec-
trochemical deposition [162] with integration into various substrates
including nanowires [180], thin films [181], coils [182], CNTs [179],
bulk flexible matrices [175], and textiles [28,183].

Bulk thermoelectric legs can be integrated into a flexible platform
using elastic interconnects. Eom et al. [152] created a modular bracelet-
like wristband device using bulk thermoelectric material blocks. The
device consisted of ten small rigid thermoelectric legs, which were
connected via flexible copper wires and elastic polymer links, allowing
for structural flexibility across the module. Jeong et al. [184] explored
the use of Eutectic Gallium-Indium, which is liquid at room tempera-
ture, as a flexible and stretchable interconnect between bulk thermo-
electric legs. Suarez et al. [151] created flexible TEGs using bulk
commercially available Bi,Tes-based legs connected electrically with
EGaln. The whole structure was embedded in PDMS for mechanical
robustness. Jo et al. [79], used Bi,Te3 in PDMS and incorporated flex-
ible electrical circuit boards as interconnects. Kim et al. [185] fabri-
cated a flexible TEG using bulk thermoelectric legs, soldering paste
interconnects, and a proprietary filler polymer with a low thermal
conductivity of 0.03 W/mK. Fig. 12 shows an example of a flexible TEG
made with bulk rigid thermoelectric legs embedded in a flexible sub-
strate.

Park et al. [186] built a fully flexible TEG by placing bulk bismuth
telluride legs inside Bakelite holders. In their design, holders were
connected via flexible wires, thermoelectric legs were interconnected
via a flexible printed circuit board (FPCB), flexible thin films of de-
posited Ni/Au were attached to thermoelectric legs using soldering, and
a solid-state cooling gel was used on the cold side to perform as a heat
sink.

Organic and solution-based materials can be used in thin-film
thermoelectric devices [187-189] to make them breathable and pro-
vide long-term comfort. Yang et al. [190] constructed a device using
poly vinyl alcohol (PVA) gel electrolytes doped with ferric chloride and

10

potassium ferricyanide. Oh et al. [73] proposed a device fabricated with
exfoliated transition metal dichalcogenide nanosheets on top of a PDMS
substrate and used Ag and Au wires as electrical interconnections. Du
et al. [191] coated polyester fabric with a PEDOT:PSS solution and
fabricated a planar device. The coated polyester strips were attached to
a larger polyester substrate by silver paint, and finally, silver wires were
used for electrical interconnection between each strip. Lee et al. [192]
made a device with nanofibers coated with n- and p-type Bi,Tes
sheaths. Polyacrylonitrile (PAN) nanofiber sheets were sputtered a final
Au film connecting n- and p-type sheets. The flat sheet was twisted into
a single fiber containing alternating sections of the thermoelectric
material. Huu et al. [193] grew wide lateral legs on a flexible substrate
and connected them vertically to the hot and cold side using copper
studs. This TEG had the advantages of a vertical device, and at the same
time, material growth could be controlled more reliably. Kim et al.
[194] created a vertical device utilizing screen printed top and bottom
copper contacts on Ni coated Si wafers. The thermoelectric legs were
made using a ball-milled ternary bulk thermoelectric materials. The
legs were coated with an additional Ni layer to reduce the electrical
contact resistance between the legs, and Sb/Au paste, which bonded the
copper interconnects and the legs. Table 6 represents a summary of the
power levels for the mentioned flexible TEGs.

The primary challenge of the flexible TEGs is their lower output
power. For most of the cases, the high power is sacrificed for flexibility.
New ideas are demanded to make the generated power from flexible
TEGs comparable to rigid ones while the flexibility is maintained.
Attachment of a miniature and reliable heat sink, or a capable heat
spreader, can enhance the flexible device performance as for the case of
rigid TEGs.

8.1. Flexible TEGs with rigid interconnects

To ensure proper contact at the device and skin interface, and thus
higher output power, Liu et al. [195] fabricated wearable TEG devices
with optimized heat spreaders via packaging the bulk thermoelectric
legs in the flexible thermal spreaders. Fig. 13a shows the device in
which thermoelectric legs were soldered directly onto the layer of metal
contact deposited on a flexible PDMS substrate [195]. The challenge in
the fabrication of this device was the cracking of the layer of the metal
contact, and thus losing conductivity when the substrate was subjected
to stretching and bending. The PDMS substrate was steam-etched and
cured to create a porous surface to address this challenge. Despite
partial cracking in the metal layer, this technic helped to preserve al-
ternate channels across the layer allowing for electrical conductance
during stretching and bending. The output power of the fabricated TEG
under different airflow speeds is shown in Fig. 13b [195]. The gener-
ated power output was between 1 and 8 pW/cm? at different airflow
speeds ranging between 0 m/s and 7 m/s. The metal interconnect in this
device was 500 nm thick, which resulted in high electrical resistance.
The power can be improved by using thicker metal interconnects [195].
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Fig. 13. (a) A flexible TEGs with rigid interconnects, (b) The output power of the TEG at different airflows. Adapted from Ref. [195] with permission.

9. Integration of harvesters in textiles

TEG-incorporated textiles can address some limitations such as the
lack of wearability, mechanical stability, foldability, flexibility, wash-
ability, and lightweight while transducing a range of energies based on
triboelectric, piezoelectric, photovoltaic, and thermoelectric effects
[196]. AiQ Smart Clothing®, MYANT®, and Ohmatex® are companies
that are developing physiological and environmental sensors for in-
tegration into sportswear, medical devices, and protective clothing
[197-199]. Their R&D focuses on aspects such as fiber fabrication,
design, and body placement to maximize power output, comfort, and
durability. The ASSIST center at North Carolina State University is
working on the integration of electronic sensors and TEGs in textiles for
health and environmental monitoring applications [2,28].

In a review by Zhang et al. [200], state-of-the-art fiber-based TEGs
have been compared from different standpoints, including operational
principles, fabrication methods, materials, characterization, device
structures, and potential applications. Two critical criteria in the design
of TEG-incorporated textiles are the location of the TEG unit on the
body and the capability of maintaining both adequate airflow and
ambient temperature differential to produce maximum output power
[28,201]. Fig. 14 shows the variations in the power generated by a bulk
TEG at different body locations (upper arm, wrist, chest, and T-shirt)
when exposed to different air velocities ranging from 0 to 1.4 m/s [28].

Kim et al. [202] developed a fiber composite TEG comprising
carbon nanotubes (CNT: 10-50 wt%)/poly(3,4-ethylenediox-
ythiophene):poly(styrene sulfonate) via wet-spinning and post-treat-
ment technics. As shown in Fig. 15a, the design consisted of 12 pairs of
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Fig. 14. The power generated by a bulk TEG at various body locations. Ref.
[28] with permission.
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Fig. 15. (a) Photograph of the fiber composite TEG consisted of 12 pairs of n-
type, p-type fibers connected with silver paste (b) P-I and IV curves resulting
from the 10 K temperature difference between the two ends of the fiber. Ref.
[202] with permission.

p- and n-type thermoelectric fibers connected with silver paste. The
temperature difference between the two ends of the fiber was adjusted
by Peltier devices, and the Seebeck coefficients and electrical con-
ductivities of the fibers were measured using gold probe tips. The
maximum Seebeck coefficient and generated power output power over
10 °C temperature difference were found to be 18 uV/K and 0.430 uW,
respectively. The corresponding I-V and P-I curves over the same
temperature range are shown in Fig. 15b. These values are obviously
too low for any or most practical applications. Under the on-body
conditions, the temperature difference will be much less than 10 °C,
resulting in even lower voltage and power values.

In another study by Lu et al. [183], p- and n-type thermoelectric
materials were hydrothermally synthesized and deposited onto both
sides of silk fabric to form thermoelectric columns, which were con-
nected with silver foils to fabricate an array of 12 thermocouples. The
silk fabric embedded with thermoelectric legs and the interconnects,
shown in Fig. 16a, generated a maximum voltage and output power of
approximately 1 mV/cm? and 1 nW/cm?, respectively [183]. Siddique
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Fig. 16. Several examples of textiles integrated with TEGs. (a) a silk cloth with TE materials deposited on both sides of the fabric and connected with silver foils
[183], (b) a polyester clothes embedded with thermoelectric legs manually dispensed out of paste in between the fibers [86], (c) A silk-based TEG [183]. All

References with permission.

et al. [86] developed polyester fabric clothes embedded with p-type
(Bi,Sb),Te; and n-type Bi(SeTe); legs of 5 X 5 X 1.4 mm?> legs. In this
process, thermoelectric pastes were first prepared by mixing the ther-
moelectric powders with Durabond-950 binder. The pastes were
manually dispensed in between the polyester fibers and were elec-
trically connected using silver threads. The cloth was subsequently
cured at 160 °C for 2h in a furnace. The fabric was tested at different
conditions. A maximum power density of 0.06 nW/cm? was measured
from the arm. In a similar approach, a polymer-based clothe was fab-
ricated with printed TE materials [203]. In this study, a silver con-
ductive thread was sewn onto the fabric and cut by the location of the
TE legs. A thermoelectric paste, made of the mixture of TE powders and
the Durabond-950 binder, was dispensed into the spaces among the
fibers and subsequently cured at 100 °C for 2h. The energy generated
from the clothing worn by a human subject was approximately 0.054
nW/cm?,

The screen-printing of thermoelectric films onto fabrics can make a
significant leap in scaling-up the TEG-embedded textiles
[181,204-205]. Typical printing processes require a large concentra-
tion of binder additives, which interfere with electrical transport on
printed thermoelectric layers. Shin et al. developed a screen-printing
method using a class of methyl cellulose to create printable TE slurries
with a low concentration (0.45-0.6 wt%), mitigating the detrimental
effect of the binders on electrical conductivity [206]. Wu and Hu [207]
developed textile yarns (polyester and cotton) coated with waterborne
polyurethane-based thermoelectric composites consisting of 20 wt%
MWCNT, 1:4 ratios of MWCNT to PH1000, and 5 wt% DMSO doping.
The optimal electrical conductivity, Seebeck coefficient, and the power
factor achieved at room temperature were 138 S/cm, 10 uV/K, and
1.41 pWm ™1 K™ 2, respectively.

Note that the harvested energy from the textiles-based TEGs is yet so
small that even if the whole body is covered with them, they cannot
produce sufficient power for wearable applications. The low harvested
energy is partially due to the fabrication methods, such as adding
binders and printing, that impacts the thermoelectric materials prop-
erties. Another important factor is related to thermal management
when the TEG is integrated into textiles. Even though there is about
10-15 degrees temperature difference between the core body tem-
perature and the ambient, only a small amount of that drops across the
TE legs due to numerous parasitic series and parallel thermal resistance
that would reduce the heat available to the TEG. Therefore, the stra-
tegies for integration of TEGs in textiles must be implemented ac-
cording to the tight constraints imposed by thermal management on the
human body while maintaining both the body comfort and device re-
liability.

10. Future directions

The global demand for wearable technologies is anticipated to
surpass a $78B market by 2021. The world’s growing fascination with

12

performance monitoring has brought the wearables market from bulky
powered vests developed in the 1980s to seemingly ubiquitous wrist-
band pedometers and activity monitors. In this sector, efficient body
energy harvesters can open new opportunities ranging from battery-less
wearable electronics for monitoring of human health and environ-
mental conditions to the sport and recreational gadgets. Watches, belts,
headbands, cuffs, smart jewelry, and smart textiles can all provide
platforms for monitoring health, wellness, and users’ immediate en-
vironment. The benefits of networks made with small self-powered
devices are truly revolutionary.

Beyond the early applications of activity monitors and pedometers,
digital and connected mobile health promises to revolutionize the
planning and delivery of medical care and empower health teams to
support patient monitoring and recovery. Thermoelectric generators in
this regard seem to be closer to commercialization with several wear-
able products already been introduced to the market, such as Matrix
PowerWatch [32], Embr wave thermoelectric wristband [208], and
Climaware dhama innovations heat jacket [209].

The integration of energy harvesters in clothing is another direction
that is being currently researched and evaluated. In this regard, despite
the efforts for inclusion of TEGs in textiles, the power levels are still too
low for practical applications. Methods based on bulk TEGs, compared
to printed or thin-film approaches, have shown significantly higher
power due to their ability to maintain a more significant temperature
differential across the thermoelectric junctions. However, they may not
have the desired form factor for textile integration.

Indeed, the recent substantial progress in engineering materials
with unprecedented thermoelectric efficiencies has not yet evolved into
the emergence of thermoelectric devices with sizable performance im-
provement. Currently, commercial thermoelectric devices are fabri-
cated similarly as they were made fifty years ago. New device archi-
tectures that allow integration of high-efficiency thermoelectric
materials, can maintain a high-temperature differential in a low-profile
geometry and produce large voltage output, such as thin-film quasi-
planar designs, are highly desired for wearables and textile integration
[210]. Such devices can generate orders of magnitude larger voltage
and mitigate the poor performance of the DC-DC boost converters at
low voltages.

11. Conclusion

The application of body energy harvesters for powering wearables is
a new field, which still requires further research and development to
create a viable technology. Wearable devices powered by body energy
can reduce the global environmental impact of batteries and save mil-
lions of dollars in energy costs per year. Such devices are expected to
have broad market acceptance by eliminating the need for frequent
charging of the wearable devices. The mode of action and the resulting
output power of different active and passive harvesters appropriate for
harvesting energy from human body were discussed and compared
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where applicable. Thermoelectric generators are passive harvesters
because they require no action from the wearer and harness the body
temperature. They seem to be the closest technology for integration into
wearable systems with several products already been introduced to the
market. Small and lightweight thermoelectric generators can be in-
tegrated into wearable devices making continuous and long-term
monitoring a reality. For such devices to become market acceptable,
several crucial requirements must be met such as body comfort, form
factor, durability, reliability, cost, figure-of-merit, and ease of operation
dictated by the end application.

To date, thermoelectric material research has been mostly pro-
gressing independently from the application needs. The commercial
devices do not have the optimum geometry or form factor desired for
wearability. For wearables, further developments require materials that
are designed and optimized specifically to meet the device and system-
level requirements. Low profile device architectures that can maintain
significant temperature differential and simultaneously generate large
voltage output can make wearable thermoelectric generators more at-
tractive for textile integration.

Finally, it is worth mentioning that for the integration of wearable
harvesters and devices into textiles become a reality, the comfort
clothing, and aesthetic factors should not be compromised. For ex-
ample, the size of the thermoelectric generator or any other energy
harvester integrated into textile must be scaled so that the harvester can
generate the required electrical power. Several small rigid thermo-
electric generator may produce more power than a large area printed
thermoelectric generator covering the whole body. A device that can
make 10 uW/cm? can be 1000 x smaller than one that can make
10 nW/cm? Therefore, this seems logical that device efficiency be-
comes a central issue so that the technical wearable designs remain in
compliance with the comfortability and market acceptance.
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