FPDEeTECT: Efficient Reasoning About Stencil Programs
Using Selective Direct Evaluation

ARNAB DAS, University of Utah

SRIRAM KRISHNAMOORTHY, Pacific Northwest National Laboratory
IAN BRIGGS, University of Utah

GANESH GOPALAKRISHNAN, University of Utah
RAMAKRISHNA TIPIREDDY, Pacific Northwest National Laboratory

We present FPDETECT, a low-overhead approach for detecting logical errors and soft errors affecting stencil
computations without generating false positives. We develop an offline analysis that tightly estimates the
number of floating-point bits preserved across stencil applications. This estimate rigorously bounds the values
expected in the data space of the computation. Violations of this bound can be attributed with certainty
to errors. FPDETECT helps synthesize error detectors customized for user-specified levels of accuracy and
coverage. FPDETECT also enables overhead reduction techniques based on deploying these detectors coarsely
in space and time. Experimental evaluations demonstrate the practicality of our approach.

CCS Concepts: « Hardware — Error detection and error correction; - Computer systems organization
—> Reliability; « Software and its engineering — Software verification; - Mathematics of computing —
Numerical analysis;

Additional Key Words and Phrases: Soft error detection, floating point round-off error, stencil computations,
affine analysis, interval analysis, silent data corruption, software bug detection

ACM Reference format:

Arnab Das, Sriram Krishnamoorthy, Ian Briggs, Ganesh Gopalakrishnan, and Ramakrishna Tipireddy. 2020.
FPDEeTECT: Efficient Reasoning About Stencil Programs Using Selective Direct Evaluation. ACM Trans. Archit.
Code Optim. 17, 3, Article 19 (August 2020), 27 pages.

https://doi.org/10.1145/3402451

1 INTRODUCTION

Approaching the end of Moore’s law, chip manufacturers are seeking smaller lithographies, higher
densities often achieved by emerging 3D stacking methods, newer memory/interconnect technolo-
gies, and increasing use of GPUs and other accelerators. These trends are increasing the likelihood

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research under Award No. 66905. Pacific Northwest National Laboratory is operated by Battelle for
DOE under Contract No. DE-AC05-76RL01830. This work is also supported by NSF CCF Grants No. 1704715, No. 1817073,
and No. 1918497.

Authors’ addresses: A. Das, L. Briggs, and G. Gopalakrishnan, University of Utah, 50 Central Campus Drive, Salt Lake
City, UT, 84112; emails: arnabd@cs.utah.edu, ianbriggsutah@gmail.com, ganesh@cs.utah.edu; S. Krishnamoorthy and
R. Tipireddy, Pacific Northwest National Laboratory, P.O. Box 999, MSIN J4-30, Richland, WA, 99352; emails: {sriram,
Ramakrishna Tipireddy}@pnnl.gov.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2020 Copyright held by the owner/author(s).
1544-3566/2020/08-ART19
https://doi.org/10.1145/3402451

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

https://doi.org/10.1145/3402451
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3402451

19:2 A. Das et al.

of soft errors [4, 37, 41, 43] already noticed to be high in GPU-based systems [50]. The increased
pressure toward specialization [26] may reduce the economies of scale achieved through gen-
eral purpose parts and put cost-reduction pressures on verification methods, which already are
stressed [29]. This can increase residual logical bugs in chips. The increasing complexity of com-
piler optimizations will also increase the likelihood of introducing logical bugs [3]. Software-level
error detectors can serve as uniform and application-aware ways of trapping both soft errors [38]
and logical bugs [3], and these detectors are needed more than ever before.

Unfortunately, system resilience research has seldom been transitioned into practice. Current
resilience solutions targeting soft errors do not come with rigorous guarantees, cause a slow-
down, and also generate false positives. Their possible additional benefits—such as flagging logical
errors—have not been demonstrated either.

Our main contribution in this article is to demonstrate that for a narrow class of applications—
specifically stencil-based—we can indeed develop solutions that benefit both logical error pro-
tection and soft error protection, owing to our solutions having two key attributes: (1) no false
positives and (2) acceptable overheads. With this combination, we strongly believe that resilience
solutions will be welcomed more readily, at least for their immediate impact on logical bugs.

Stencils belong to an important class of iterative solvers operating on dense D-dimensional ar-
rays modeling partial differential equations (PDEs) with applications belonging to fluid dynamics,
cosmology, combustion, and so on.! They are part of the essential building blocks for solving larger
more composite problems involving multiple PDEs.

The ability to write good assertions that capture a stencil computation’s evolving profile of data
is tricky and error-prone. Existing work on system resilience that address data integrity include
time-series data analysis methods [17] and data outlier detection methods constructed using ma-
chine learning (e.g., References [45, 47]). Unfortunately, these approaches have high overheads,
and can only help loosely characterize the expected data value ranges. They additionally bring in
training bias into the models constructed. Given that they both overestimate and underestimate
the data ranges, detectors based on them generate both false positives and false negatives. With
soft error detection, false positives are virtually unacceptable, given that the natural soft error rates
themselves are quite low (false positive needlessly engage checkpoint/recovery systems).

FPDETECT is the first approach that takes the novel approach of basing data-space protection
on accurate floating-point round-off error estimation. Like any calculation carried out by numerical
code, stencil-based calculations are also subject to floating-point rounding error. However, given
that stencils are more structured, we show that one can develop a rigorous floating-point round-off
error estimation approach for them, guaranteeing a certain number of mantissa bits after every
stencil application. Consequently, in the FPDETECT approach, if “round-off ” appears suddenly ex-
aggerated, we can attribute it reliably—without any false positives—to a logical bug or a soft error.

Contemporary floating-point error estimation approaches using interval analysis [6, 32] tend to
give excessively conservative estimates (due to loss of correlation) of round-off error—especially
for large programs that are iterated over time. These conservative estimates with large error
bounds implies guarantees for only the higher order mantissa bits, i.e., only those errors that cause
very high magnitude changes can be trapped using them.? FPTaylor [11] builds symbolic Taylor
forms for the error expressions resulting in tight guarantees but do not scale to be usable beyond
a few hundred operators. FPDETECT, however, provide tighter guarantees on the error for large
stencil programs, thus helping protect more mantissa bits and also allows a tunable approach to
trading off overhead against detection precision, as we show in this article.

IWhile our approach applies to sparse stencils, we focus on stencils operating on dense matrices.
2That is, should these methods be used to synthesize error detectors, which has not been done.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

FPDETECT: Efficient Reasoning About Stencil Programs Using Selective Direct Evaluation ~ 19:3

Classical approaches like dual modular redundancy (DMR) can rigorously detect silent data
corruptions by utilizing a duplicated execution thread and checking for result matches. This un-
fortunately can double the overall computation time. Clover [33] exercises a selective instruction
duplication strategy to bring down the SDC detection cost to around 26% using tail-DMR. How-
ever, this approach is meant only for soft errors; it cannot be used to trap compiler bugs, because
they impact both the execution threads.

In this article, we show that by focusing on a narrow (but important) class of applications—in
our case stencils—we can arrive at a unified solution for detecting compiler bugs and soft errors
while also offering rigorous guarantees. We offer our tool FPDETECT, a software-based error detector,
whose core approach is based on rigorous floating-point round-off error analysis for an iterated
application of the stencil across T computational steps. To the best of our knowledge, this is the
first work that encompasses two important correctness checks around the single central idea of
offline round-off analysis.

Roapmar: Section 2 provides an overview of FPDETECT, including error analysis, and optimiza-
tions. Section 3 is an overview of how FPDEeTECT helps detect software bugs and soft errors. To
reduce overheads, we establish a crucial result that if we leapfrog stencil applications and the de-
tectors T steps ahead do not detect a soft error, then we can establish a certified baseline that allows
earlier time steps to be forgotten. This allows FPDETECT detectors to be deployed sparsely in space
and time (e.g., once per 64 time steps) (Sections 4 and 5). We perform offline detector synthesis to
create lookup tables, and instantiate specific detectors just before execution (Section 6). Section 7
evaluates software bug detection and resilience via fault injection. Related work (Section 8) and
conclusions (Section 9) follow.

2 OVERVIEW

Floating-point error analysis: We provide only a brief overview (see References [24, 36] for
details). A floating point number system, [, in radix, 3, is a subset of the set of real numbers, and
can be expressed as a 5 tuple (f, s, m, e, p). We use binary (f§ = 2) double precision with number of
precision bits, p = 53. s € {—1,1} is the sign bit, e is the exponent in the range —1,022 < e < 1,023,
and m is the mantissa or the significand, and represents the magnitude s - m - 2°. If x € R, then
xr € [F denotes an element in I closest to x obtained by applying the rounding operator (o) to x.
We use the bound consistent for all IEE754 [1] rounding modes.

In floating point arithmetic, the absolute error is the magnitude difference between the values
yielded by computations done in the space of real numbers (“true answer”) and those done in float-
ing point. The relative error is the ratio of the absolute error and the true answer. Every x € R lying
in the range of IF can be approximated by an element x¢ € F with a relative error no larger than
the unit round-offu = 0.5 x P, Here, ' corresponds to the unit of least precision(ulp) for ex-
ponent value of 1. We use p to denote ulp(1), such that g = 2u. In our case u = 27°°, and hence
i = 2752, Hence, for all rounding modes(o), o(x) = x(1 + 8), |§] < u = p/2. Given two exactly rep-
resented floating point numbers x¢ and yy, arithmetic operators ¢ € {+, —, X} have the following
guarantees across any rounding modes:

XfofyYp = (Xf o yf)(l +0) = (Xf Oyf) + (Xf Oyf)(s, [0] < 2u =p. (1)

In our work, we employ affine arithmetic [16] for error estimation. In an affine representation,
each input variable X is represented by £ = xo + X1 x;€;, with xo denoting the central value of the
corresponding interval, and coefficients x; being finite floating point numbers. The €; are formal
noise variables, which are unknown until concretized but assumed to lie in the interval [—1, +1].

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

19:4 A. Das et al.

Detecto r.Location

K K A K pt+3
KR A K at+2
KK R pt+l

oo o o o o o

.
.
.
.
.
.
.

X-6) X+6
space

E

W

Fig. 1. Simplified 1D stencil over Fig. 2. lllustration of path domi- Fig. 3. Essential (E,) and pro-
six time steps. nance. tected widths (Pyy).

Table 1. Evolution of Coefficient Values as We Unroll the Stencil

Set Number Coefficients at Offsets

offset index — -3 -2 -1 0 1 2 3
Sety 0 0 0.25 0.5 0.25 0 0
Set, 0 0.0625 0.25 0.375 0.25 0.0625 0
Sets 0.015625 0.09375 0.234375 0.3125 0.234375 0.09375 0.015625

The x; model the noise coefficients such that the round-off error in Equation (1) can be expressed
as x; = (xf o yr) X 2, with a noise variable ¢; € [-1,1].

We define two operators, o and y, that allows us to retrieve the associated noise variable and
coefficient information for each affine variable.

e 0: Defines the mapping from an affine variable to its set of noise variables. Thus, o (%) =
(el

e y:Defines the mapping from a 2-tuple of (affine variable, noise variable)to its corresponding
noise coefficient. Thus, y (X, €;) return x; if €; € o(X) else return 0.

Using these operators, at every operator site, a fresh noise variable is introduced and their col-
lective impact in the forward path is tracked using affine analysis. For codes implemented with
the round to nearest model (as in most cases), one can configure u = y, to obtain stricter bounds.?

Illustrative example: We now illustrate the concepts and practical details behind FPDETECT us-
ing the simplified 1D stencil of three inputs leapfrogged (iterated) over six time steps (Figure 1). In
this example, the stencil coefficients are 0.25, 0.5, 0.25 (say, modeling discretized heat flow) working
on problem array A. The value A[x, t + 1] can be calculated to be 0.25 * A[x — 1,¢] + 0.5 = A[x, t] +
0.25 * A[x + 1, t]. We call this approach of obtaining the values at the next time step the iterated
evaluation scheme. One can also imagine obtaining the value at A[x, t + 6] through direct evalua-
tion that leapfrogs 6 steps, provided one calculates the effective path coefficients. Table 1 illustrates
how these coefficients may be calculated by taking the sum of the product of the path weights
(Set, for instance, is 0.375 = 0.25 % 0.25 + 0.25 * 0.25 + 0.5 * 0.5).

Now, given a specific unroll (leapfrog distance) of T, we can then generate a similar table for that
unroll, obtaining, for a k point stencil, (k — 1)T + 1 effective coefficients. Then, given (k — 1)T + 1
runtime values of these points, the direct evaluation scheme can obtain the value T steps ahead, and
is the basis of realizing FPDETECT detectors. We in fact implement this dot product of input values
with the effective coefficients being in higher precision, and also employ Kahan’s [30] summation

3A full derivation of error bound using affine arithmetic are presented in Reference [14] for the interested reader in
Appendix A.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

FPDETECT: Efficient Reasoning About Stencil Programs Using Selective Direct Evaluation ~ 19:5

€y ey NZ ¢
(XK t=to+To

X1 Taz,_ — 49 _q

ax, 1 7 ° ° e
S —~\Z ™
2 2 ! * :

dq S
7 g:1 3 as _ X+ w(T-t')

N t=ty + 4

Z;;i:cs) e st t=ty T x-Wr (xt5) x+wT
Fig. 4. Computational graph with high- Fig. 5. Error propagation from point (x —
lighted derivatives for one step of a 1D 1,10 +t') to (x, to + T) (1D stencil).

three-point stencil.

algorithm, as well as vectorization, thus minimizing the relative error of this answer.? Thus, we
obtain an estimate for the relative error with minimal precision loss; call it Ry for relative error
under direct evaluation.

While we know Ry, we cannot give any bounds on the number of mantissa bits preserved unless
we also know the iterated evaluation’s relative error, say Ry (s for “stencil” evaluation). A key
contribution we make is to tightly estimate R; analytically.

Iterated evaluation: There are many reconvergent computational paths to be taken into account
during iterated evaluation for generating the output at [x, ¢ + 6] from the inputs at ¢. In such
situations, unless we keep the errors on various re-convergent paths correlated, we will obtain
uselessly exaggerated error bounds. Fortunately, affine arithmetic is well known for being able to
handle error analysis in such situations. As an example, (x — x) yields 0 under affine arithmetic
(whereas interval arithmetic will yield an interval with the error in x doubled [36]).

FPDETECT comprises of an offline phase that includes static error analysis of the stencil com-
bined with conservative profiling of the stencil (detailed in Section 6) for a set of protection goals
as shown in Figure 6. Our error analysis method uses affine arithmetic building upon the works
of References [6, 12, 27] but are applied to much larger expressions. As a simple illustration, con-
sider a single step iteration of a one-dimensional (1D) three-point stencil with stencil coefficients
{c1,c2, c3} centered around x; to evaluate x; for the next time step, denoted here as S in Figure 4.
Thus, the computational graph evaluates S = ((c; X x1) + (c2 X x2)) + (c3 X x3). If €’ is a noise vari-
able belonging to o (x;), then the error contribution’s propagation at S will be

ds dS dq dz|

—————— —| =y(x1,€) e (2)

’ 'Kx = s 4 .
y(x1,€") - Ky, = y(x1,€) dS dq dz; dx

dx;

Thus, for all such €’ € o(x), the y(x1, €”) gets propagated by ¢; (and similarly for x, x3, z1, 22, 23,
and q). Effectively, every incoming node or an internal compute node has a locally generated error
term, and a propagation factor that propagates this error to the output node.

We can iteratively evaluate the stencil and arrive at this output value by (conceptually) pick-
ing all intermediate points, such as P that is highlighted in Figure 5, and first finding the error
flowing into P. Then find out how this error is modified by all the path coefficients from P to the
output. Do this for each point in the iteration space that iteratively contribute to the output at
the detector location. Accumulating these error terms and normalizing them gives us the relative
error Ry under iterated evaluation. While iterated evaluation mimics the stencil evaluation itself,
we are conservatively estimating this error during the offline phase of FPDETECT. Our error analysis
suitably combines the error for all such conceptual points P using affine arithmetic.

4We also employ vectorization to reduce overheads in the FPDETECT detector.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

19:6 A. Das et al.

-— OFFLINE PHASE DEPLOYMENT AND ONLINE PHASE ——»
Initialized Stencil,
JL udp + cov
Offline Profiler Online Embedded
Execution
Input Stencil === Profiles over sets of Scan Inputs
(a) Binades (exp values) .
Instantiate
Range of Exp (b) Look ahead (T) Embedded
i Update
binades =N (c) udp h pk Lookup Detectors
ookup Que
Find best-suited detector table & Query and ;
Protection Goals configuration, i.e., the tuple (LUT) Entries in the LUT Execute Stencil
udp + cov <dpr,T, udp, cov, Ew, (), Pw> N <exp, udp, cov> N Code
14 o V]
<dpr T, Ew, p,Pw>

Fig. 6. Overview of FPDETECT.

Detector precision (dpr): We now can define a precision threshold to be checked for correctness
at the detector locations.” Called detector precision dpr (where the subscript T indicates it is a
function of the number of lookahead Tsteps), it is a conservative bound on bits preserved, obtained
by removing the maximum of the uncertainties between the direct and iterated evaluation.
Given that we minimize Ry, the key factor impacting the number of bits preserved will be the
main stencil’s iterated evaluations. Soft errors or logical bugs that throw the actual error beyond
the dpr limit can then be trapped with the guarantee of no false positives. Furthermore, all events
whose impact falls within the guaranteed precision will be trapped. The only case of omission
(which is outside of our model) is when two faults simultaneously land within the scope of two
adjacent detectors, and both these fault-flows cancel out before reaching their respective detectors.

Offline/Online split: Our approach consists of an offline phase and an online one (Figure 6).
The user presents the uninitialized input stencil and the range of intervals (in binades—meaning
exponent spans) expected for each input. In the offline phase, we explore a rich search space.
It is composed of the exponent binade ranges and protection goals defined by required precision
accuracy and protection coverage. The goal is to obtain a best fit detector configuration for a pair of
(precision, coverage) for each exponent binade and populate a look-up table for each application.
Each application is identified by its unique coefficient set. Note that any change of coefficients for a
given stencil results in re-synthesis as a new application, creating a new entry in the lookup table.
In the online phase, we scan the input to obtain an interval that maps to a canonical exponent
binade range. This allows FPDETECT to query the LUT for any unseen data at runtime with user
defined precision and coverage goals to obtain a best fit detector configuration. The worst case
binade difference is extracted only at the beginning for the initialized input set in our experiments.
Our rigorous guarantees are with respect to these binade differences (a fact that can be optionally
revalidated at runtime).

Protected width: Our runtime goal is to not deploy the detectors at every time step, but only at
every p time steps (Figure 3, where x-axis corresponds to the grid points in the stencil evaluation)
by certifying the correctness of points within the p detection latency. Moreover, our goal is also to
spatially distribute the detectors sparsely: the p X P,, boxes shown in this figure capture this goal,
and these boxes are stacked horizontally. To arrive at these “stacking” optimizations, the user also
provides the protection goals (user defined precision or udp defined in Section 4).

Optimizations, and overall algorithm: The actual stencil computation and detector deploy-
ment in a realistic problem are as presented in Table 2. In particular, FPDETECT can handle multiple

5 A full derivation of dp7 using affine arithmetic and error analysis details are presented in Reference [14] for the interested
reader in Appendix A.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

FPDETECT: Efficient Reasoning About Stencil Programs Using Selective Direct Evaluation ~ 19:7

//D—dimensional array type Table 2. Stencil Computation Parameters

1

2 using MultiDimArray = ..;

3 //stencil routine on N multi—dimensional arrays Parameter Remark

4 auto stencil(MultiDimArray A[N]) { I={L,....Ip} lower bound of

5 for(intt=0;;t +=p){ array region

6 for(int tt=t; tt<t + p; tt++) { //in one time tile i={uy,...,up} upper bound of

7 if(converged) { array region

8 DETECT_ERRORS(); //<——(Detector—2) N number of arrays

9 return ; p time tile size

10 } Sx,y = {51, ... 50} Stencil offsets to

11 for(int x=0; x<N; x++) { //every array update each point

12 for(7 | T<ic< ﬁ) //every valid index of array Ay from

13 for(int y=0; y<N; y++) //every RHS array points in Ay

14 for(3 € Sy,) //the stencil cx,y(9) stencil coefficients

15 TMP[F] += cx.y(5) * Alyl[F + 5]; //update to update array Ax
v s o using array Ay

16 for(i | I <i < h)//every valid index

17 A[x][i] = TMP[{]; I i, and §; contain integers. N, T € Z*. Implicitly, V5 ¢

18 }//for 'x' Sx,y cx,y(;) =0.V5,x,y: cx,y(g) € [-1,1].

19 }// for 'tt!

20 DETECT_ERRORS(); //<——(Detector—1)

21 }//for't'

2 |}

Fig. 7. Stencil computation pseudo-code. Compil-
ers can transform lines 11-19 into any equivalent
form. Detector-1 is used throughout the computa-
tion at time tile boundaries. Detector-2 is used at
computation end.

computational arrays that iteratively update each other over time. With respect to the parameters
specified in Table 2, FPDETECT automatically instantiates and configures the requisite detectors.
The pseudo-code in Figure 7 also presents the automatically inserted DETECT_ERRORS() calls cor-
responding to where the error is detected.

Figure 7 presents the pseudo-code for a stencil program operating on dense D-dimensional
arrays. It involves updating the “neighborhood” of each point of every array in a given region,
denoted by [and @, with scaled values from other arrays. The neighborhood used to update
array A, from array A, is defined by the stencil S(x,y). At each time step t, every valid array

index in each array x (i.e., bounded by l; and) can be updated from the array locations in the
stencil neighborhood of all other arrays y using the coefficient function c(,,). A distinct stencil
coefficient function can be defined for each pair of arrays in an update operation. A temporary
array TMP is employed to handle write-after-read dependencies in the array being updated. The
DETECT_ERRORS() instantiates the required detectors for the corresponding time tile. In the
case of program converging and exiting before finishing the entire loop of the time tile, there is
an extra set of trailing detectors instantiated by DETECT_ERRORS at the loop exit for protection
of the end segment of the computation.

As Figure 2 shows, we can determine a collection of inputs such as [x — 4, t] that can be removed
from consideration, because they have no effect within dpr bits of precision. This calculation is
described in Section 4. Our hope to leapfrog by T steps will not be realized unless we can “seal off”
past computational points from future consideration. In Section 5, provide the analysis underlying
this strategy. In our example stencil, it will allow us to shift the baseline by p steps as illustrated

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

19:8 A. Das et al.

in Figure 3. The new baseline is obtained at p steps in the future while T is the leapfrogging step.
In fact, the following is an invariant for any detector instantiation: ¥(p,T) : p < T.

Key highlights of our approach include: (1) rigorous floating-point precision analysis made pos-
sible by exploiting the structured nature of our computations, (2) being able to define concepts such
as essential (E,,) and protected (P,,) widths that help us reduce the amount of computation neces-
sary to achieve a certain level of protection, and (3) cost analysis for optimal detector deployment
(explained in Section 5) for a given amount of protection.

3 APPLICATIONS

FPDETECT helps trap software-level bugs that may be introduced during compiler transformations
and also soft-errors within thresholded precision limit.

3.1 Software Bug Detection

There has been a renewed interest in the generation of optimized programs that exploit CPU
and GPU architectures, instruction sets, and customized hardware. Loop optimization frameworks
(Pluto [7] that performs polyhedral transformations and Pochoir [48] that generates efficient im-
plementations of stencil computations from high-level specification) are two examples. The gen-
erated code must be checked for bugs early in the toolchain. Building fully verified toolchains is
non-trivial. FPDETECT can be used as part of the testing toolchain for these tools as they are de-
veloped. Thus, FPDETECT can enable faulty compilers being identified and corrected before being
used in production environments. Specifically, compiler transformed programs can harbor bugs, as
shown in the work on Polycheck [3]. Prior efforts have studied the design of approaches to verify
or check the correctness of code generated by such optimizers [3, 40, 52]. These approaches detect
bugs that impact the changes in control and data flow, with limited support for semantic transfor-
mations. Unlike the control or data-flow-based approaches, FPDETECT is not limited by the nature
of the transformations employed and carefully captures the semantics of the stencil operations. A
drawback is that the analysis is imprecise in a different fashion than control or data flow analysis
that are not affected by the floating point round-off errors.

We show that, with respect to the benchmarks chosen, commonly considered loop transfor-
mation bugs can be trapped with around 2% overhead, allowing tested by unverified codes to be
shipped to third-parties who may keep the detectors turned on till gaining sufficient trust.

3.2 Soft-error Detection

FPDETECT is intrinsically designed and optimized to help protect applications by detecting SDCs
with small enough detection latency. We consider a single event error model wherein a single error
at some time ¢ transiently corrupts one or more values of one or more participating arrays in the
computation resulting in a soft-error. These errors are non-permanent (transient) in nature and
cannot be replicated making them extremely difficult to detect and isolate.

The soft error detectors generated using the FPDETECT approach are, by construction, devoid
of any modeling bias unlike those are generated through machine learning [45, 47] or time-series
data analysis methods [17], which tend to reflect modeling bias. FPDETECT’s detectors faithfully
represent the evaluation of the stencil by sampling the actual data space sparsely. It computes the
output generated by a stencil application by faithfully accounting for the precision contribution
of each point in the detector’s dependence cone (as noted in Section 2). FPDETECT enables the user
with a parametric knob called the user-defined precision (udp), with which they can define the
required accuracy at the program output. Given a udp value of, say, 20, and a detector designed
for T-step direct evaluation with an error bound of dpr, FPDETECT finds the minimal set of points
which contribute at least 20 bits of precision to retain dpr bits of precision at the detector.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

FPDETECT: Efficient Reasoning About Stencil Programs Using Selective Direct Evaluation ~ 19:9

We actually develop two detection strategies in the context of FPDeTECT. The first employs one
direct evaluation and the other employs two direct evaluations. The latter is necessary given that
the last leapfrogging step may not finish at a multiple of T steps; in those cases, the second direct
evaluation provides the effect of a trailing detector at the end of the stencil computation.

Single-direct detector: At time t,, direct evaluation is used to compute the estimated value of a
point A, [ty + T] [i], T time steps ahead. When the iterative stencil computation reaches time t, + T
and evaluates this point, it is compared with the previously estimated value. If the two values differ
more than can be ascribed to floating-point round-off error, then it indicates an error impacting
either the direct evaluation or in some part of the iterative evaluation leading to that point, trigger-
ing a soft-error detection event. This strategy involves a single additional dot-product. The error
is detected after T time steps, requiring that the computation executes at least till time step o + T.

Double-direct detector: Values at two time steps t; and t,+t’ can be used to estimate a value at
a future time to+T (T>t’). This involves two direct evaluations, one each at time steps o and to+1’,
whose estimates can be compared in the latter of the two time steps. This allows flexible detection
and does not require that the iterative computation reach time t, + T. A mismatch between the
two estimated values (beyond the bound on floating-point round-off error) indicates an error in the
computation between time steps t; and t, + t’. This detection strategy requires two dot products,
potentially doubling the overhead. We minimize the overall overhead by using the single-direct
detector as much as possible, and use the double-direct detector only at the expected end of the
computation (typically determined by monitoring convergence).

A crucial efficiency consideration built into FPDETECT is that it detects soft errors by placing
detectors at time-tile boundaries (line 20 of Figure 7). This allows a programmer or an optimizer to
transform the statements within each time tile into any semantically equivalent form. For example,
apolyhedral optimizer (e.g., Pluto [7] or PolyOpt [51]) can optimize this stencil without interference
from the detector.

4 OPTIMIZED DETECTOR SYNTHESIS

At a high level, FPDETECT operates by comparing the iterative and direct evaluations within dpr
bits of precision. However, during the time interval t=t; to t=ty + T, not all points in the detector’s
dependence cone contribute to dpr bits of precision; this is because of the round-off effects of using
(finite-precision) floating-point arithmetic. This allows us to selectively carve out points from the
input space. Two key concepts® introduced in this section—namely, that of Essential Width (E,,)
and Protected Width (P,,)—helps define the amount of computation that can be carved out while
still offering our guarantees. In Section 5, we describe an optimized detector synthesis scheme
based on these concepts.

FPDEeTECT works by synthesizing detectors for the expected ranges of binades that the com-
putation begins with, and is also assumed to be present at every certified baseline. A T-step
detector’s support comprises of (2 = T = w + 1) points centered around ¥, that is the points in
Xp = [X¥ — wT, X + wT], where w represents the footprint of one iteration of the stencil expressed
as a vector to include higher dimensional spaces. Each point x; in the Xp belongs to the tight-
est encompassing interval I. Upon multiplying each x; by their respective T-step coefficients, c;,
generates separate intervals for each individual product term denoted as

[yi, 7i] = [min(e;x;, ¢;X7), max(cix;, ¢;%7)].
This results in a new set of N points, Y = [y, vz, ...,yn], where N = (2Tw + 1).

SThese are presented in more detail as “Precision Driven Optimizations” in Appendix B of Reference [14].

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

19:10 A. Das et al.

Define summation Sy = ij\il [y y;]. which falls in the interval [Sy, Sy]. If [2, y;] does not in-
fluence Sy in the scope of dpr, then point y; is a candidate for removal. We do this s pointwise
analysis for each y;. For this, we define Sy\; = Zjvl £ [y], y;] and its bounds as [Sy\l, Sy\,] Now
define dpin (y;) as the distance between the exponent of the lower bound of Sy\i and the exponent
of the upper bound for y;:

dmin (y;) = max(0, exp(Sy\i) — exp(yi)). ®)

This equation and the next help check whether y;’s maximal contribution manages to affect the
minimal contribution from all the remaining points (if not, then due to the exponent differences, the
magnitude contributed by y; gets “shifted out” during the process of normalizing the exponents
while doing floating-point addition):

maxContriby(y;, Sy) = p — dmin(y:). ©

Equation (4) gives the maximal precision contribution of point y; to the final sum Sy when Sy is
computed up to p precision bits. A y; becomes part of the exclusion set, if maxContrb, (y;, Sy) < 0.
Note that y; = (c; X x;) already includes one multiplicative term adding an extra half ulp error to
the analysis.

Now, for a detector placed at A, [X, ty + T], we define Essential Width (E,,) as the width of the
multidimensional rectangular region around ¥ such that the direct evaluation over E,, is sufficient
to guarantee dpr precision at the detector.” Specifically, the region is defined by extents E,,; and
E, such that E,, = E,; + E,,, + 1. The caveat from Equation (4) is that all such excluded candi-
dates could collectively affect the output within the precision limits; therefore, we must engage in
an iterative process of considering subsets of points to carve out such that Equation (5) holds. In
the general case, E,, is a vector and is written E:, Figure 3 illustrates E,, for evaluation of a 1D
stencil over T-steps.

LEMMA 4.1. In the absence of an error, direct evaluation over the essential width (E.,) ensures the
correctness of the computation to at least dpr bits of precision at the detector location.

For all points in the region excluded from ELNX : X C ([+wT] - E:,), the following holds:
Vx; € X : maxContribg,, (Z(yi =c; X xi),Sy) <0. (5)

One form of false positives involves detection of soft errors when no error affects any iteration
point on which the detector depends (aka the detector’s dependence cone). The preceding lemma
guarantees that, despite the reduced evaluation cost, in the absence of errors affecting the depen-
dence code, the direct evaluation is equivalent to the iterative evaluation within dpr bits and no
soft error notification (false alarms) is triggered.

Covering multiple points with a single detector: Protected Width (P,,): As depicted in
Figure 5, each point inside the dependence cone of the detector has varying contribution depend-
ing on its effective path contribution. To guarantee that an error affecting a bit at an iteration point
is detected by a detector protecting it, the minimum contribution of that bit must impact the dp
bits at the detector. This will result in the values computed by iterative and direct evaluation being
different, triggering a soft error notification.

To quantify the minimal possible influence a y; has on the final sum Sy, we define another
distance metric dmax (y;) as the distance between the exponent of the upper bound of Sy\; and the

"The word “sufficient” is important, because we might, in general, have non-contiguous chunks of inputs that can be
discarded. In FPDETECT, we extend E,, to make it a contiguous region.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

FPDETECT: Efficient Reasoning About Stencil Programs Using Selective Direct Evaluation 19:11

lower bound of y;:
i (y) = max(0, exp(Syy7) - exp(y))- (©)

Then, the minimal influence y; has on the final sum when computed correct to dpr bits of precision
is evaluated as

minContriba,, (yi, Sy) = dpt — dmax (y:)- (7)

A detector’s reach can then be configured to guarantee an user defined precision (udp) by carv-
ing out a set Y4, from X such that

Yuap = [yi : minContribay,, (yi, Sy) = udp, y; € Y]. (8)

The most significant udp bits of precision of each point inside Y, 4, is then protected if Sy is
evaluated correctly to dpr bits of precision. Equation (8) leads to our primary soft-error detection
model that provides the guarantee that an error affecting within the most significant udp bits of
points inside Yuap is detected. In our stencil model, for a detector placed at A, [X, ty + T], we define
Protected Width (P,, (T, p, udp)) as the width of a multidimensional rectangular region centered
around ¥ such that with respect to a detector placed at time , + T and spatial position ¥, for each
p € X+ P, (T, p,udp) at time ty+p, the above guarantee holds.

LEMMA 4.2. An error affecting any of the MSB udp bits of a point inside the protected width is
detected.

For a point y; in y, if y; belongs to Y, 4, and its minimal precision contribution is p; at the final
output, then p; > udp. If y; € [y;,y;], then an error, erry, affecting within the MSB udp bits will

be bounded by err,, > 2°P¥0P*! Since we are matching dpr bits at the detector, hence the

threshold of detectable error is bounded by 2exp(Sy)=dp+1,

For our guarantee to hold, generated error > error threshold. This means 2P+t >

pexp(Sy)=dpr+1, Taking logarithms and simplifying the above terms leads to the following rela-
tion that must hold true for all points inside the P,, region: exp(Sy) — exp(y;) < dpr — p; and

udp < p; < dpr — (exp(Sy) — exp(y:))-

In determining the protected reg,Ton, where a detector is used to protect iteration points in mul-
tiple time steps, we choose p such that the protected width chosen at p is also valid for all time
pOil’ltS by <t <ty)+p:

YO0<t<p:P,(T,p,udp) <Py(T,t,udp). 9)

This enclosed region forms the protected region for the given detector location. Figure 3 illustrates
the protected region in terms of P,, and p steps for a given udp.

Probabilistic detection: While the above strategy guarantees detection, the stencil structure and
user-specified udp requirements can severely constrain the protection region, incurring high de-
tection overheads. To further trade-off overheads for detection capability, we consider a detector
that only provides the detection guarantee on only a fraction of the points in the protected region
associated with a detector. Given a specified coverage requirement cov, we choose the protected
width P,, such that the fraction of points with guaranteed protection is at least cov. An error im-
pacting the MSB udp bits of an iteration point is guaranteed to detected by its enclosing detector,
if it is among the points for which the detection is guaranteed. Alternatively, such an error is
detected with probability of at least cov.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

19:12 A. Das et al.

5 OPTIMIZED DETECTOR PLACEMENT

Dampening errors: We consider a single event fault model wherein a single fault occurring at
time t can transiently corrupt one or more participating arrays. Based on properties discussed
in the preceding section, an error at time ¢ escaping detection by the nearest set of detectors
must have impacted less significant bits. Suppose the coefficient set C = {c;}_; denotes the set of
forward contributions of a point in the stencil. Then Lemmas 5.1 and 5.2 given below hold under
the following assumptions:

e Vi, |c;| < 1:This implies all forwards contributions move the error magnitude toward the
least significant bits

e > ;c; <1:The collective error spread from an affected point to all neighboring points in
the forward path is less than equal to itself

e There is no error cancellation within the scope of a detector. Multiple detectors may trigger
a detection event as long as the triggering errors are localized to the scope of those detectors
without any intervening error cancellations from its neighbors.®

The first two conditions are driven by stability criteria and smoothening impact of the stencil.
LEMMA 5.1. An error may never amplify in the forward path.

LEmMMA 5.2. Error dampening guarantees an error missing detection does not affect future compu-
tations within the required precision limits.

Assuming dampening, detectors can be arranged to cover the iteration space as follows:

e Certified baselines: Error dampening allows us treat computations up to ¢ that have passed
error detection checks as effectively error-free. These checked points at t will be used as
new certified baselines to perform direct evaluation of the next detector.

e Horizontal detector placement:If a set of detectors is placed horizontally, i.e., at the same time
step t, P,, apart in all dimensions, then the points at time ¢, once they pass the detection
checks, will constitute a new certified baseline. Thus, for a d-dimensional stencil of size
N:{N,—};i:1 along each dimension, if the detectors are placed PM,:{p\a/,-}fl:1 apart along each
dimension, then the number of detectors required is H?zl (Ni/pw;).

o Vertical detector placement: Stacking. Because the detector characteristics are influenced by
the input range, at every baseline the input range needs to be computed. Alternatively,
a bound on the input range can be predetermined based on the initial/boundary condi-
tions and used for the entire computation. In both scenarios, the detectors can be vertically
stacked to create new certified baselines as execution moves forward.

Ilustration: Figure 8 illustrates the placement of detectors for the first two certified baselines for a
1D stencil. Dy;, Dy, and so on, show the placement of the first set of detectors at time step T. These
are computed from the array values at time step 0. D1, . . ., the second set of detectors at time T + p,
computed from the certified baseline at time step p. The detectors are vertically spaced p time steps
apart, and horizontally spaced P,, apart. The protected regions are marked as squares and labeled
at the right top. For example, Py is the region protected by detector Dy;. The shaded region denotes
the boundary region unprotected by the detectors. Of this region, the shaded gray region has no
influence on the detectors protecting points in that time step (outside their dependence cones).
Errors in this region are not detected. The remaining region has an influence on at least one of the

8Such cancellations, if they occur, do not affect the final output.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

FPDETECT: Efficient Reasoning About Stencil Programs Using Selective Direct Evaluation 19:13

time

PW
o .Dll .DlZ .Dli
P 2 Py Py~
= I D= Do Doo | Dos | o

protected array elements

Fig. 8. Detector arrangement for a 1D stencil. Horizontal: array elements; vertical: time steps.

detectors. Errors in this region might be detected but are not part of guaranteed coverage.

d
N, i 2wT
0 = —_— | *
%cov El[(N) 100 (10)
Boundaries: Although our method is applicable to the boundary points, the contributions from
the boundary points need to computed differently from the interior, incurring additional over-
head. For cases where time dependent boundary conditions and Neumann boundary conditions [2]
exists, FPDETECT lacks prior knowledge of how the boundary points are forced in the interme-
diate time tiles. For fixed Dirichlet boundary conditions, we can provide full coverage. To sim-
plify the implementation, we ignore protection for the boundary regions in the generalized cases.
Specifically, any computation point influenced by the boundary between certified baselines is not
checked. Note that this reduces the maximum possible coverage to be below 100%, however, still
providing an accurate bound on the guaranteed coverage per Equation (10) akin to probabilistic
coverage that exemplifies the flexibility afforded by trade-off detection quality versus cost.

An error affecting such an unprotected region can spread to the rest of the computation space
and result in erroneous output. This is akin to probabilistic coverage, with the probability of detec-
tion reduced by fraction of the total computation space left unprotected at the boundaries. Let N;
denote the problem size along i’th dimension in a d-dimensional problem. Equation (10) gives the
percentage of covered region for detectors instantiated with Tstep = T (w is the stencil width?).

Optimal detector configuration: For a given choice of detector, the essential width E,, is a
function of the T'step, the input exponent range, and the detector precision (dp). P,, additionally
depends on udp and p. The cost function is evaluated as the relative cost with respect to the actual
stencil evaluation. Section 6.1 details the cost function and the offline analysis used to construct
optimal detector configurations.

6 OVERALL ALGORITHM

FPDETECT performs an offline manuever to obtain a look-up table with optimal detectors config-
urations for the detectors. For each anticipated choice of udp, probability of detection, and antic-
ipated input range, the offline analysis (Section 6.2) determines the detector configuration to be
used during online execution. A detector configuration consists of: T, the distance at which the
single-direct detector is evaluated; p, the number of iterations between certified baselines; E,,,
the essential width to evaluate the detector; Detector coefficients for the support in the essential
width; and P,, the spatial separation between detectors in the same time step. These parameters
completely specify the detector configuration at runtime.

9The implementation uses the exact expression, accounting for stencil asymmetry and non-Cartesian shapes.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

19:14 A. Das et al.

6.1 Offline Determination of Detector Configurations

Constraints on detector configuration: We use offline analysis to efficiently identify optimal
detector configurations for use during online execution. To constrain the search space of possi-
ble configurations, we use an upper-bound on the Tstep (say, Tmax = 256 in our evaluation) that
one might use for the detector evaluation. Larger Tstep values are useful and often minimize the
detector operational cost. However, this requires larger coefficient sets, needed for the direct eval-
uation, to be stored in memory. For a d-dimensional stencil with N-arrays, the space overhead
encountered to store the effective coefficient space is O(N - T2+!). The range of udp values to be
considered is bounded by the number of bits (1-53) and the maximum precision (dp) that can be
preserved by both direct and iterative stencil evaluations informed by the round-off error analysis.
We determine the detector configurations for a finite set of coverage choices between 0% and 100%,
corresponding to the fraction of points in a detector’s protected region that are protected to the
desired udp bits. The actual coverage including the boundary is computed online.

Relativized input exponent ranges: Consider two exact floating point numbers represented
in triplet form as ar = (sq, Mg, €,) and bf = (sp, mp, p), where the mantissa m, and m;, are rep-
resented in p = 53 bits. For a floating point addition (subtraction), the mantissa of the number
with the lower of the two exponents has to be shifted by |e, — e;| to match their exponent values.
Thus, the binary addition (subtraction) of the mantissa depends the relative distance between the
exponents for shifting (not on actual exponents).

In stencils, update rules are modeled as weighted sums involving only addition (subtraction
based on sign) and multiplication. Multiplication by exact scalars involves binary multiplication
of the mantissa, followed by addition of the exponent terms, maintaining linearity in the ex-
ponents. For example, let the coefficients associated with ar and by be a; = (s4,, Mg, , €4,) and
a2 = (Say» Ma,, €ay), respectively. The product ayar will have an exponent of (e, + e,) and aby
will have (eq, + ep). Thus, the relative distance of exponents between these two terms will be
|(eq, — eq,) + (eq — €p)], which depends essentially on the coefficient’s exponents (that remain un-
changed) and the relative operand exponent differences. This fact can be utilized to map different
interval ranges to some canonical exponent range that models the maximum relative distance of
points inside the interval. To do this, we scan the input to find the smallest data point (in magni-
tude) and the largest data point (in magnitude) and characterize that interval with the exponent
difference between these two data points. For an input interval, if (m,, e,) represents the smallest
value (in magnitude) and (my, ep,) is the largest value (in magnitude) seen in the interval, then fac-
toring out e, produces the following mapping: [(mg, €,), (mp, ep)] = (1, e4)[(mg, 0), (Mp, ep — €4)].

We can further factor out the corresponding mantissa and increment the mapped exponent
interval width by 1 to have a larger bounding interval for the given input range. Since our anal-
ysis is conservative, bounds that hold for larger exponent ranges also hold for smaller exponent
ranges:

[(ma €a), (mp, €)] = (ma, €q) [(1,0), (Z—Z,eb - ea)] =[(1,0), (1, e —eq + 1)]. (11)

The operation of a stencil on an input range can be relativized to a small number of canonical
exponent ranges. This allows us to use the offline analysis performed on specific exponent ranges
on different set of actual exponents that belong to the same range. In our experimental setup, we
profiled exponent ranges form 0 through 20 (expmax = 20). The maximum udpis set as 40. Given the
range of exponents and udp choices, the offline algorithm construct a lookup table that returns a 5-
tuple (T, p, dp, P,,, E,,) corresponding to an optimal detector configuration for the given interval,
required udp, and minimum detection probability.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

FPDETECT: Efficient Reasoning About Stencil Programs Using Selective Direct Evaluation 19:15

Offline algorithm!’: We consider all T and p such that T < Ty, p < T. For a d-dimensional
stencil, P,, is d-dimensional vector, corresponding to protected region of iteration points centered
at the detector. E,, is represented by a rectangular region with a computed number of points along
left and right of the detector along each direction. The cost function is derived as the ratio of the
total detector overhead to the total cost of the stencil application evaluation. Post simplification of
the cost function for a 5-tuple detector configuration (exp, udp, T, p, Coef f's) is given as

d
Cost = ! 1—[(ﬂ) (12)

P iy \PWi
derived fraction of overhead cost to total stencil compute cost. Even though the tuple elements
exp, T, udp, and Coe f f's do not explicitly appear in the cost function, they implicitly influence the
cost through E,, and P,,.

The algorithm takes as input parameters for which an offline profiles need to be determined:
the maximum number of time steps (Tmax), the set of input ranges (as exponents in exp_set), set
of udp values (as udp_set), and probabilistic coverage values (cov_set). The algorithm determines
the configurations one input range choice at a time. Using floating-point round-off analysis, the
maximum number of bits that will be preserved for each possible time step ¢ is computed (as
maxdp). For each t, the cost of evaluating each detector is computed as the product of the E,,
dimensions to guarantee maxdp[t] bits of precision of the direct evaluation ¢ time steps away.
Then, for each candidate protected region, the fraction of points with guaranteed coverage of b
bits (where b is a candidate udp in the input parameter udp_set) is computed. If this fraction is
greater than a desired coverage and if the associated cost is lower than that of any configuration
seen thus far, then this configuration is chosen. After evaluating all feasible solutions, the algorithm
returns the last chosen configurations.

The cost of the offline procedure is dominated by dimensionality of the space to be explored.
While this exhaustive evaluation of every feasible configuration can be expensive, for the bench-
marks considered (in the next section), each offline procedure completes within several minutes.
Search-space exploration techniques might further lower this cost.

6.2 Online Detector-embedded Execution

We briefly discuss the algorithm'® to obtain the detector configurations and embed the detectors
within the original stencil code. During online deployment of FPDETECT’s detectors, the input
values are scanned to compute the input exponent range to be handled in the floating-point space.
To account for the unprotected boundary regions, FPDETECT maps user’s input coverage value to
an equivalent internal coverage value (as in_cov) that corresponds to the detection probability on
the grid excluding the boundaries. The adjustment is done with the guarantee that the fraction of
points covered due to (in_cov) is at least as many required by cov over the entire computation space. If
FPDETECT fails to find an equivalent mapping, then it conveys an error message for unsupported
coverage. The input range, user-specified udp, and modified detection probability (in_cov) are used
to lookup the detector configuration.

After an initial evaluation of the detector and the stencil for p iterations, the execution of the
stencil is split into two segments: iterations till the next detector evaluation (eval_detector)
and iterations till the next detector check (detector_check). Thus, the stencil is executed with
interleaved detector evaluation and checking. Note that the algorithm assumes p is greater than half
the detector evaluation T-step. This scenario requires at most two “live,” i.e., unchecked detectors

10The algorithmic listing is available in the supplementary material (Appendix C) of Reference [14].

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

19:16 A. Das et al.

[Dirichlet initial/boundary condi-

Parabolic (heat): tion] o o
U = V2u(x,y)+f hl.f={-2-2a,u = 1+x +ay?+{t [Neumann lmtlal/_b,ffgga,ry Corﬁilon] f=0
a=30=1.2 h2.f=0,u=1+x%+ay?+(t h4. u(x,y, t)=e 2smﬂ(T)
h3.f=20 - 2-2a, h5. u(x, y, 1) = 4 + e /2 cos w(X2Y)
u=1+x?+ay’+{t? h6.1;(x,y,t):2+
e~ /2 [sin n(#) + cos ﬂ(xzﬂ)]
Poisson equation: [Neumann initial/boundary condition]
u _ %u _ [Deflection in a membrane] _(x20.9% 4057
_9%u _ 9u _pyg - du -
oo 1 = 4500t g-o.0?) BT RHS = 10em TS, G, y) =
, ,. —sin(5x)
[Dirichlet initial/boundary condi- p; = 2e_5((x_0'3)4 +(y—0.3)') p8. RHS = 0, %(x, y) = —sin(5x)
tion] ps = 4e-5((x=0.3)*+(y=0.6)*) (x-0.25)% +(y—0.25)% S
PLRHS = —6, u = 1 + x% + y? p4.RHS = py, u = 0 p9.' RHS = 20e 001 s galey) =
pz. RHS=—-6(2+x+y), u=1+x>+ pSRHS=p; +pp u =0 —sin(5x)
Y p6.RHS =p1 + p2 + p3, u =0

P3.RHS = —2-12y, u = 1+x% +2¢°

Hyperbolic (Second-order wave): [initial and boundary conditions: ¢ = 0.7,

du _ Hyperbolic (convection diffu-
2 =0] Yp
Pi(x,y,) = V2u(x, y, 1) at sion):
ou 2
4. u(x,y, t) =16 + Gr +aVulx,y) = {Vu(x, y)
[initial/boundary conditions: ¢ = 1, gu _ o] v u(;c s) x . . /bound dition £
at 2 sin(£ x) sin(£ y) cos(Zc?t) initial/boundary condition from
wl u(x, y, t) = w5 u(‘*x 1 2les - ulx, y, t) -
cos(V2rt) sin(rx) sin(ry) + x? — 1 RN Y o x 2 —(x—at=0.52~(y-at0.5)
w2, u(x, g t) = sin(% x) sin(% x) cos(F c“t) LA
cEA D B wé.u(x, y, t) = 16 + 42+l
sin(V27t) cos(rx) cos(ry) + x% — 1 2 sin((lxy) co)s(lx) sin(Z c21)
w3. u(x, y, t) = 2 4 2 cl.a=0.8¢ =0.01

sin(V27t) cos(rrx) cos(my) + x% — y? 2.a=04,7=04
3. a=0.1,=0.8

Fig. 9. Benchmark PDEs (p1-p9, h1-h6, w1-w3, c1-c3) solved using the stencil finite-difference method.
Initial and boundary conditions are derived from the equations provided. All stencils span the [0, 1] spatial
domain and are run 4,000 time steps.

per spatial position in the iteration space, at any time. If not, then at each spatial position, multiple
detectors need to be evaluated and retained until they are checked. When all iterations have been
executed, the iterations past the last certified baseline need to be checked. These leftover iterations
are checked using the trailing detection strategy.

7 EVALUATION

Benchmarks: We evaluate FPDETECT on the stencil kernels shown in Figure 9. We choose a set of
benchmark problems from elliptic, parabolic, and hyperbolic PDEs evaluated as stencils using the
explicit finite difference method. Benchmark examples considered are Poisson equation with dif-
ferent combinations of Dirichlet and Neumann boundary conditions, heat equation with different
initial and boundary conditions, and second-order wave and convection-diffusion equations. Our
error analysis and optimization techniques are based on the input data interval and not the exact
values. We test our hypothesis rigorously by exercising each benchmark equation with multiple
initial and boundary conditions. In addition to the exponent and sign bits, fault-injection-based
evaluation was conducted for a user-defined precision of 15 mantissa bits. This corresponds to a
total protection of 27 most significant bits.

Experimental setup: All benchmarks were compiled using ICC 18.0.5 with —qopenmp-03 options
and run on dual 14-core Intel Xeon CPU E5-2680v4 2.60 GHz CPUs system (total 28 cores) with
64 GB of RAM. Pluto optimized code was generated with “PLUTO version 0.11.4-350-g8debc44.”

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

FPDETECT: Efficient Reasoning About Stencil Programs Using Selective Direct Evaluation 19:17

00 T T T T T T T T T T T T T T TR T 100 = ™ T T T T T T T T T
90 | A A npAnnnag 0 90 060 unprotected [Seavavevs] c90- unprotected —
80 ta [Al dl AL |] el el BB R R L e H 80 E
70 — 70 |- .
60 60 |-]
50 [+ — 50 |- .
40 g 40 .
30 [H - 30 |]
it o e RN
10 [cbo-p rotected c90-protected y 10 *g_‘ é_‘ é_‘é_‘é_‘é_‘é_‘é_‘é_‘
0 O E AT T R PP LRI PP E T L I T PI P T PILPTTFYL 0

SUALAIIRRIAGAASAATS, SRBEIEALHRRR ;%,Q%W% ,

Fig. 10. Detection rates of single bit-flip error injections in bits protected (left) and unprotected (right) by
the detector (A.M.: arithmetic mean; G.M.: geometric mean).

Detector coverage excluding boundaries: To reduce the complexity of the detection strategy,
we did not protect statement instances impacted by the boundary between certified baselines. This
limits the maximum coverage that can be guaranteed by our implementation. For all benchmarks
and configurations evaluated, we observed this fraction to be greater than 90% of the computation
space, demonstrating the simplification does not significantly limit detection ability.

Space overheads: At stencil runtime, FPDETECT requires space to store:

o the set of all possible coefficients of interest,
o the direct evaluation configurations for specific input ranges and precision needs, and
o the result of the selective direct evaluation by each detector.

We bound the offline analysis with Ty, = 256 iterations and require the full coefficient set for
T=0 to Tyax. This allows a runtime choice of time tile size between 1 and 256. This incurs a space
overhead of 128 MB. While incurring a large memory footprint, only a fraction of this data—one
rectangular portion the single-direct detector—is used during online execution and the accessed
portions are reused for all detectors at a time step. In addition, the trailing detector accesses one
rectangular portion determined by the number of iterations not executed by the last tile. This
results in good cache behavior, limiting their impact on overall performance.

The offline configuration lookup table is built by profiling over 20 exponents, 40 udp and
coverage values from 0 to 100% (in increments of 5%). Thus, the offline lookup table is in-
dexed by a 3- tuple of (exp, udp, cov) with each lookup returning a 6-tuple configuration of
(T, p, dp, PW,EWI, Ewr) where EWI, EW, and P are d—dimensional vectors for a d—dimensional
stencil program. Here, Ewl and Ewr corresponds to the left and right extents of E,,.!' FPDETECT
scans the data at runtime to determine the necessary exponent range. This is combined with the
user-specified precision and coverage to index the lookup table and obtain the corresponding de-
tector configuration. For a 2-dimensional problem, a key-value pair in the table occupies a space of
48 bytes. Over all the profiled configurations, the configuration lookup table requires a total space
of ~750 KB per benchmark.

In addition to the coefficients and the lookup table, we require one floating-point number per
array at each detector location to store the value computed through selective direct evaluation. The
maximum number of instantiated detectors comes to around 2,546K for the wave benchmarks. For
most other benchmarks is around 100K for a problem size of 10K X 10K and Ty, = 256.

H1E ,; and E,,, are equal in the case of symmetric stencils.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

19:18 A. Das et al.

7.1 Software Bug Detection

We evaluate the effectiveness of FPDETECT in detecting logical errors injected into the code gener-
ated for the stencil programs in Table 9 optimized by Pluto [8]. Specifically, we inject three classes
of bugs injected in the evaluation of PolyCheck [3], a tool designed to check errors introduced by
loop transformers: incorrect loop bounds, invalid array accesses, and invalid loop reorderings.

For each software bug introduced, we evaluated its impact using bitwise comparison of the
result with that of the non-buggy version. Any mismatch is treated as a bug. Some bugs might not
result in an erroneous result for the problem instances evaluated. FPDETECT cannot aid in their
detection.

The bugs introduced in the source potentially affect multiple runtime operations, making them
easier to detect than soft errors. Exploiting this, we evaluate FPDETECT ’s effectiveness in detecting
software bugs when deployed with a small udp value of 4. For each benchmark, the default detector
precision (dp) determined for this udp is used in the evaluation.

Pluto-generated code: To generate optimized versions using Pluto, we implemented all the sten-
cils in the form of affine loop nests enclosed in scop pragmas. This code input to Pluto has con-
sists of median 53 source lines of code (SLOC)!? per benchmark. Pluto takes these scop-annotated
benchmarks as input to generate optimized versions with median 1157 SLOC. The median of the
number of loops in the transformed code was 365 across all the benchmarks with a median nesting
depth of 6. Checking such complex codes is greatly helped by FPDETECT.

Loop bound and array access bugs: We automated the injection of loop bound bugs. For loop
bounds, the injected bug either offsets the lower bound by one in the positive direction or offsets
the upper bound by one in the negative direction. We automated the injection of array access bugs.
Specifically, array accesses were made incorrect by doubling or halving the indexing term.

False positives: Some bugs do not result in any difference in our bitwise comparison of the result
with the non-buggy version. Therefore, our approach incurs no false positives in our evaluation.
This is because some source-level bugs do not manifest at runtime. For example, a loop iterator
might be constrained by multiple loop bounds (e.g., min or max of multiple expressions), with the
loop bound never reaching the error-injected expressions.!® In a situation with multiply nested
loops where the indexing for an inner loop depends conditionally on outerloop indices, a bug
impacting the outer loop bound doesn’t often affect the inner loop, and hence the stencil’s output.

Table 3 summarizes FPDETECT’s bug detection effectiveness for the above two categories of
bugs. The table only lists detection percentages when the bitwise comparison with the non-buggy
version flags an error-injected version as being in error.

The #SL enumerate all the possible source locations for the types of bug injected. #RL enumer-
ates the number of source locations that were reached at runtime. %det denotes the fraction of
errors flagged by bitwise comparison with correct execution that was detected by FPDETECT. We
observe that FPDETECT has a high but not perfect detection rate. We investigated the scenarios in
which FPDETECT missed detection and all of them were a result of the logical error having a low
impact on the stencil’s output. Specifically, the impacted point’s effect on the stencil was beyond
the required detector precision (dp) evaluated by our conservative error analysis.

To illustrate, consider two cases where FPDETECT detect such an impact and another where it
escapes FPDETECT’s detection. In the first case, the detector evaluates to the expected value to
0x40101b539cbac780 (we present in hex values for readability), while the bug affected stencil
computes 0x40101b53a11cf49f. They match in the first 23 bits of the mantissa. This example,

1230urce lines of code are measured using sloccount tool.
13 An example can be found in Appendix D of the supplementary material in Reference [14].

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

FPDETECT: Efficient Reasoning About Stencil Programs Using Selective Direct Evaluation 19:19

Table 3. Software Bug Detection Results

Loop bound Array access Loop bound Array access

#SL #RL %det #SL #RL %det #SL #RL %det #SL #RL %det
H1 374 374 100 300 267 99 H2 370 370 100 300 258 100
H3 374 374 100 300 267 98 H4 486 106 99 300 26 100
H5 486 106 100 300 26 100 Ho 486 106 100 300 26 100
P1 10 10 100 18 17 100 P2 12 12 100 18 17 100
P3 12 12 100 18 17 100 P4 370 310 100 300 223 87
P5 370 310 96 300 223 82 P6 370 310 96 300 223 82
P7 414 104 98 300 48 97 P8 416 104 100 300 44 98
P9 416 104 98 300 44 98 W1 360 280 100 300 215 55
W2 360 280 44 11 6 54 W3 360 350 31 300 266 45
W4 260 280 45 300 215 60 W5 360 280 53 300 215 62
W6 360 350 100 300 266 100 Cl1 360 360 100 300 262 100
C2 360 360 100 300 262 100 C3 360 360 100 300 262 100

evaluated for W1 has dp = 30, hence is trapped. In the second scenario, detector evaluate the
expected value to 0x4004178de3e4ab00 while the buggy stencil evaluates 0x4004178de3e4aac4,
differing in only the last 9 bits of mantissa. Given the low detector precision of 30 for wave
benchmarks, this error goes undetected. In general, our conservative error analysis and low udp
choice predicts only upto dp bits at the detector, attributing precision beyond dp bits to round-off
errors. While this leads to missed detection opportunities, we still observe high detection rates.

Loop order bugs: Unlike changes to array accesses and loop bounds, changing loop orders re-
quired non-local changes to the Pluto-generated code. Therefore, we handcrafted the error injected
versions. The handcrafted scenarios included swapping nested loop pairs and re-ordering of non-
nested loop blocks. The optimized codes included a maximum of 360 nested for loops with a
maximum loop nesting depth of 11. Testing all possible combinations of loop reorderings will be
prohibitively expensive. We limited our testing to 15 loop order bug injections per benchmark.

Across all benchmarks, a median of 3 injected bugs per benchmark did not result in a bitwise
difference in the output. This could either be due to the reordered version being correct due to
commutativity of loops, or the error being too small to persist under finite precision arithmetic for
the inputs chosen. These bugs were also not detected by FPDeTECT. Other than benchmarks W1
and W3, loop order bugs injected in all other benchmarks were detected. In W1 and W3, there was
one injected bug in each that resulted in the bitwise comparison flagging an error was not detected
by FPDETECT. In both cases, the difference was within 8 least significant bits (corresponding to
< 107'2 relative error), and could not be distinguished from floating point round-off errors.

In summary, we observe that FPDETECT can detect a large class of software bugs with a low
udp of as low as 4 bits. In all cases evaluated, we observed negligible overheads (<2%), making it a
useful component in a test suite or as a low cost online checking tool for flagging systematic errors.
As observed earlier, increasing the udp and dp can improve the percentage of bugs detected, at the
cost of greater runtime overheads. Note the a change of udp only changes the number of points
being sampled for detection. The P,, corresponding to this udp only decides the relative distance
between the sampled points.

Soft error detection: We performed fault injection experiments to validate the coverage guaran-
tees provided by FPDETECT. Single bit flips were injected in the kernel source code by corrupting

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

19:20 A. Das et al.

array locations involved in the stencil computation. Such a fault model abstracts the cause of the
fault to an anomalous behavior in data evolution. FPDETECT is designed to detect an anomalous
behavior in data evolution with a precision guarantee irrespective of where it originates as long as
it impacts the computation. The time steps and bit locations subject to injection were selected ran-
domly with equal probability across the iteration space, array index space, and bit locations. The bit
flips were injected with equal probability on all array locations, including the unprotected bound-
aries. Each benchmark was exercised through a fault injection campaign comprising of 10,000
executions to determine the detection rate. In the reported results, FPDETECT was evaluated for
detector configurations guaranteeing 15 bits of mantissa precision (total of most significant 27 bits
including 11 exponent bits and 1 sign bit) with a coverage of 60-90%.

We observe that, across all benchmarks and including the boundary region, errors injected
within the most significant udp bits (the guaranteed protection) were detected 92-99% of the cases
for the 90% coverage, and 78-90% of the cases for the 60% coverage configuration. We observed
similar trends when multiple errors are injected, at multiple and randomly selected locations in
the iteration space. Figure 10 shows the detection rates for the two coverage scenarios when only
considering error affecting the protected region (the most significant 15 bits, labeled “protected”)
and only those affecting the unprotected region (labeled “unprotected”). Furthermore, we observe
that flips in bits beyond the unprotected region (not guaranteed to be detected) were detected on
average 26% (13%) of the cases for 90% (60%) coverage scenario. Hence, even with a conservative
configuration for guaranteeing user-defined bits of protection, in practice, our approach empiri-
cally protects a larger fraction of the computation space and error scenarios.

Recent studies [39] show that single-bit errors yield a higher percentage of SDCs in most cases,
compared to multi-bit errors. In cases of data corruption, two or more bit flips in the opposite
direction, can reduce the overall error magnitude thus filtering it out of the detectable range. We
performed a small scale multi-bit flip experiment to check FPDETECT’s detection ability in such
scenarios over a selected number of representative benchmarks for a coverage guarantee of 90%.
Given that the space of multi-bit flip errors is large, we restrict ourselves to double bit-flip errors
with each injection executed at a random time step, splitting the data array into 16 byte sections
and selecting one section randomly within which 2 random bits are flipped.

For multi-bit flip campaigns including at least one bit flipped inside the protected range, errors
were detected in 90-99% of the cases. Furthermore, multi-bit flips encountered outside the protec-
tion range were detected on average for 35% of the cases. Thus, even though our guarantees are
restricted to single bit errors, empirically the detectors can handle multi-bit errors.

Comparative study: Our detector synthesis strategy provides a variety of tuning knobs for flexi-
bility in terms of minimum precision and protection coverage with precise bounds. To ascertain the
effectiveness of our tool, we compare them with two state-of-the-art soft error detectors, AID [17]
and SSD [46], which build data value centric model for soft error detection.

SSD builds an epsilon-insensitive support vector machine regression model to detect SDCs. As
spatial features, it includes values of a given point’s neighboring data points as the training data. It
runs into scalability issues by requiring the generation of data traces of every point in the simula-
tion over all time steps before being fed to the learning model. We had to scale down the problem
to a small size of 1k points per dimension. It learns the classifier first, triggering false positives
for early stages of the simulation trace. In particular, we encountered false positives in initial one
to five iterations. Hence, we devised the fault injection mechanism after atleast 10 iterations have
passed. SSD did not trigger a detection in any of our error-injected runs past the first 10 itera-
tions. We believe, in these benchmarks, the variations observed in the first few iterations make
SSD consider the error-injected behavior appear normal.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

FPDETECT: Efficient Reasoning About Stencil Programs Using Selective Direct Evaluation 19:21

1.6e+06

Hl
1.4e+06 P1 - x--
80 we W3 T [wh ' [Ws ' [we | udp20 —+— 1.20+06 WL
60 - | L 1 L 1 i udp15 --o - 1.0e+06
udpt0 % 80105 # o
40 A4 4 H + -+ R s
5 A / 600405 | o
20 r'* L 1,-* I ,g—ﬁ/ﬂ ’,:“ A4 e 4.0e+05 Soxo ;\;\?\ .
20 } L S S8 VIR S i 2.0e+05 ST
Hi H2 H3 Ha H5 H6 ci c2 c2 0.06+00
15 T T T T T T T T 1 0123456789
10+ + + + + + + + + :
5 M/g/j(1 4 | | | | | | Fig. 12. Protected region
20 o e A 2 - wﬁr%f”r%fww volume per detector (op-
15 I G R AT L A LS timal configuration) with
] ,///, // input exponent range for
= S P T TS e o S four benchmarks, udp=15
g T = ¥ .
‘ ‘ ‘ ‘ ‘ and 80% coverage. x-axis:

0 - I I
60 8060 8060 80 60 8060 8060 8 60 80 60 80 60 80 0 o1
exponent range (2%, 2", ..);

Fig. 11. Sequential benchmark execution overheads for three different y-axis: number of itera-
user-defined precision (udp) values (20, 15, and 10) and varying. X-axis: tion points in the pro-
coverage; y-axis: execution time overhead in percentages. tected region per detector.

AID is an adaptive SDC detector wherein a best-fit prediction model gets selected adaptively
based on local online data. AID faired better with our benchmarks than SSD. However, the de-
tection rates and overheads were extremely conservative. The comparative analysis by Kestor
et al. [31] reports significant slowdown at a maximum of 1.4X for AID when snapshots were
taken for every time step. We observed similar overheads when taking snapshots at every step.
To reduce the overhead, we performed two experiments with snapshot every three steps and ev-
ery 10 steps. In the former case, AID reported similar overheads averaging around 80% with a
maximum detection rate of 54%. In the latter case, the overhead reduced to the 20-30% range,
while the average detection rate was around 25% with a maximum and minimum of 37% and 21%,
respectively.

Sequential overheads: Figure 11 shows the sequential execution overheads of our detection ap-
proach for three udp-coverage configurations: 10, 15, and 20 bits. We observe that the overhead de-
pends on the user-required coverage guarantee, with overheads, in general, below 10% for udp=15
and 80% coverage, for heat, Poisson, and convection-diffusion benchmarks. Overall, we observe
that protecting additional bits or providing greater coverage increases the overhead. All wave
benchmarks (and some Poisson benchmarks for 90% coverage) incur far greater overheads, reach-
ing over 60% for udp of 20 bits and 90% coverage. This is due to the nature of the stencils that, as
discuss below, leads to a sharp reduction in the protected region (Figure 12). Despite this increase,
these results demonstrate the approach’s flexibility in supporting low detection guarantees when
a reduced overhead is desired.

Scalability: Figure 15 shows the scalability of the baseline and detector-embedded versions on
up to 24 threads using OpenMP. Across all benchmarks, both variants achieve similar speedups,
demonstrating that the detectors do not interfere with efficient parallel execution. While not
shown here, we observed similar trends (in terms of low overheads) with various thread counts
for other user-defined precision and coverage values.

For the wave (“W”) benchmarks, which model hyperbolic PDE equations, we encounter reduced
scalability for stricter configurations of high udp and coverage. We believe this is due to higher udp
values requiring more detectors. This coupled with the larger E,, results in potentially increased
cache contention and hence the associated reduced scalability.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

19:22 A. Das et al.

50 50 50 50 50 50

45 | P 45 - 1 45 - 45 - 1 45+ L 45 +

40 | <] 40 | o 0 | - af © 0 | LA 40 | ©]

3B lees 3 35 | H. 35 - st - 35 . 3B lees 3

0T T 30ty , s . 30 | - 30 . 30 e 1 30 |

25 25 — 25 - ..t 25|, — 25|

20 1 20 | , 20 | - 20—:', 1 20 | — 20 |

15| 1 15 | 1 151, - 15 ¢ 1 15 g 15 |

10t 1 10t g 10 - - 1ot 1 10 g 10

ETETE TR

0 sE 0 0 0 0 : o LR
12481624 12481624 12481624 12481624 12481624 12481624

Fig. 13. Detection overheads across all Fig. 14. Detection overheads across all

benchmarks for 80% coverage for udp values benchmarks for udp 20 and coverage of 60%,
20, 15, and 10. x-axis: thread count; y-axis: 70%, and 80%. x-axis: thread count; y-axis:
execution overhead in percentage. execution time overheads in percentage.

AT wswaw/ws u20-090 ——

12 | A - Za Al . g N - u20-c60 ---x--
3 R / u10-c90
8| %’, ;/,, VA 110-c60
A S 1 . 1A 1 i no-det —e—
Oéému 0.5 —
B T T T TR T T T T e T T e T TR T T H1
12 b /'z!//},, al pu al | __al _al _al -1 0.4 81 R W/
8r T T T b T T T T b Wi —a— /
4 / T f B / / f / B 0.3 2
O\\\\\\ Llalalalal Lalalalill Lalalolall Lalalalalyl Lalalalall Lalalalalol Lalalalall /lj
16 57 T TR TR T TR T TR TR TR TS 0.2 =7
Y B B = B B I N =l Nl Dﬂﬂﬂz
o EI}

0 0 8 16240 8 16240 8 16240 8 16240 8 16240 8 16240 8 16240 8 16240 8 1624 0246 8101214161820

Fig. 15. Scaling on up to 24 threads for the baseline without detec- Fig. 16. Optimal cost from
tors and with detectors over three combinations of udp and coverage Equation (12) (y-axis) vs. udp
[(u=udp,c=cov)=(20,90), (10,90), (20,60), (10,60)]. x-axis: thread count; (x-axis) for four benchmarks.
y-axis: speedup over single-threaded execution with no detectors.

Summarizing the overheads, Figure 13 shows the distribution of overheads for 80% coverage
and three udp values. Figure 14 shows the distribution of overheads for a fixed udp (20) and three
different coverage percentages. In both cases, we observe greater coverage percentage or udp re-
quirement can increase overheads. However, the median overhead remains close to 5% and does
not increase with scale.

Table 4 summarizes the optimal configuration, number of detectors instantiated, detection rates
and overhead factors for user defined protection goals requiring udp = 20 and 90% coverage for a
problem size of 10K X10K. We select the summary for a subset of the example benchmarks that
have shown the largest variations in their configuration and detection rates in their class of kernels.

7.2 Analysis of the Overhead Cost Function

Since FPDETECT’s detection strategy is sensitive to the specific stencil and the characteristics of the
initial/boundary conditions, we have chosen multiple benchmarks and configurations, including
different initial and mixed boundary conditions. For a broader analysis of the space of choices
evaluated in the offline phase, we examine four candidate benchmarks—hl, c1, wi, and pl-in
detail.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

FPDETECT: Efficient Reasoning About Stencil Programs Using Selective Direct Evaluation = 19:23
Table 4. Summary Table for Optimal Configurations, Number of Detectors, Detection Rate,
Sequential Overhead Overhead and Scalability Factors (k Threads) for udp of 20
and Coverage 90% for a Problem Size of 10Kx10K

optimal confi % det Scalability factor
Benchmark _ophimal contie Num Dets - - — % Seq ovh Scaiabinty factor
(T.dpr) (ew,pw) single-bit Multi-bit k=2 k=8 k=24
H1 (254,39) (63.14) 107584 96.14 94.66 8.0 176 6.18 12.41
H4 (256,38) (63,14) 107584 90.47 91.08 3.81 1.84 6.54 12.03
P1 (160,40) (69,24) 37620 94.12 93.88 7.59 1.78 6.27 10.41
P4 (160,37) (69,17) 76729 93.65 94.92 15.55 1.67 5.78 9.96
pP7 (160,37) (69,17) 76729 93.65 95.05 11.43 1.65 6.02 10.35
W1 (10,36) (203) 1575261 99.25 99.48 60.78 120 4.13 10.07
W4 (10,36) (20,6) 2546440 99.25 99.74 41.91 1.15 4.03 9.67
C1 (250,38) (66,15) 94249 92.10 90.76 3.72 1.82 6.54 12.03
P ; T
w0 T716W1 e ci é B j g o //T\i{
\T=32 -- - a6 4 i 4 s
350, 4 N 3 J ; P IR
\T%g‘x — - 44 o 2 PR =
o 30 [e o 42 (1) o oe"] §
o 257& ‘XXX: (=] 40 - 0O 1 2 3 4 5 6 7 8 9 0O 1t 2 3 4 5 6 7 8 9
20 | ES‘-S’ zz Fig. 18. Optimal con- Fig. 19. Optimal con-
b R figuration’s cost for dif- figuration’s E,, to Py,

5
0123456789
exponent range

34

0123456789
exponent range

Fig. 17. Maximum bits preserved by iter-
ative stencil (y-axis) as function of input
exponent range (x-axis), determined by our
analysis, for two benchmarks (w1 and c1)
for different maximum T-step choices.

ferent input exponent
ranges for a udp of
20 and 60% coverage.
x-axis: input exponent
range (29,21, .); y-axis:
cost for optimal con-
figuration (from Equa-
tion (12)).

ratio for different input
exponent ranges for a
udp of 20 and 90% cov-
erage. x-axis: input ex-
ponent range (20, 21,),
y-axis: E,,/P,, for opti-
mal configuration (from
Equation (12)).

Variation of essential and protected widths: Figure 12 shows the variation in optimal P,, vol-
ume with input exponent range. W1, a second-order wave equation representing hyperbolic PDEs,
exhibits the highest overhead and cost, since its P,, volume rapidly diminishes with increasing ex-
ponent sizes. Benchmarks h1 and c1 exhibit a slower change in the optimal P,,.

Figure 19 plots the ratio of E,, to P,, for their optimal configuration with varying input exponent
range for a fixed udp and cov. Larger binade differences in the input values result in increasing
separation between the E,, and P,, values, often increasing the E,, to P,, ratio. Together with p
(Equation (12)) this can potentially lead to an increase in detector overhead.

Impact of input range and udp: Figure 18 shows the cost function values for four benchmarks
(h1, c1, p1, and w1) for hypothetical range of input values from 2° to 2° and user-defined precision
of 20 bits. We observe that cost increases with input range, especially for w1. Thus, accurate yet
efficient evaluation of the input range can help reduce the detector overheads.

Figure 16 shows the evaluated cost function value as udp is varied. Similar to the input exponent
range, we observe that some benchmarks (especially w1) are more sensitive than others to increase
in udp. Thus, careful choice of udp can maximize coverage while minimizing overhead.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

19:24 A. Das et al.

8 ADDITIONAL RELATED WORK

Floating-point error analysis was the central driving concept in our work. Boldo [5, 6],
Darulova [13], Magron [34], and Solovyev [44] are three recent pieces of work that conduct rig-
orous error analysis. Zhang [56] uses reduced precision check to detect errors in the floating point
units as a hardware solution. Daumas et al. reason about floating-point operations using interval
arithmetic [15]. These tools focus on programs operating on fixed and small number of inputs.
They are unable to handle the kinds of complexity presented by stencil expressions unfolded in
time. They also do not steer their analysis toward the synthesis of online error detectors like in
this work.

We exploit the structure of stencil operations to simplify analysis of parametrically sized pro-
grams. Kramer established worst-case bounds for interval arithmetic [32]. We build on the guaran-
tees for individual operations (IEEE 754 [30]) to analyze worst-case bounds for stencil programs.

Chisel [35] and Rely [9] consider potentially erroneous execution of portions of a program by an-
alyzing the probability of the output being erroneous. They track the probability of an erroneous
output rather than its magnitude. Soft error analysis has been performed for specific algorithm
classes (e.g., linear algebra [53, 54] and iterative solvers [20, 49]). Huang and Abraham introduced
algorithm-based fault tolerance (ABFT) [28] to detect errors in matrix multiplication related op-
erations. Elliott et al. [19] present selective reliability to provide numerical bounds on anticipated
behavior and use this analysis in the design of resilient algorithms [18, 21]. Our work focuses on
soft error detection for stencil programs. Application-independent approaches for iterative pro-
grams rely on observing the evolution of a value over time to detect anomalies (e.g., AID [17] uses
curve fitting, SSD [46] uses support vector machines (SVM) regression, and Reference [42] uses a
machine learning-based approach to build regression models for synthesizing low cost detectors).
Gomez and Capello exploits multivariate interpolation to detect and correct corruption in stencil
application [25]. Xiaoguang [55] presents a grid sampling-based DMR scheme that determines the
sampling points based on the error propagation pattern in the grid.

Gamell considers local recovery from fail-stop errors affecting stencil programs [23]. Fang et al.
[22] analytically model application overhead of recovery from detected soft errors via localized
recovery. Our approach can complement such recovery algorithms via efficient error detection.

9 CONCLUSIONS AND FUTURE WORK

In this article, we present FPDETECT, an approach to detect both logical bugs and soft errors in
the data space of stencil computations. Schemes comparable to FPDETECT have been observed to
generate false positives, incur higher overheads, or not provide similar rigorous guarantees. We
report FPDETECT’s overheads for different thread counts as well as its performance in conjunction
with polyhedral optimizations for various user-defined precision values. We believe FPDETECT can
be used as part of a holistic error detection system (e.g., involving cross-layer concerns [10]) in
which the most impactful of errors affecting stencil programs can be protected.

As future work, we will investigate the use of FPDeTECT for runtime precision profiling, given
that developers often use high precision as a safety net for floating point errors, which may
be wasteful in many cases. FPDETECT’s evaluation units are uniquely designed to allow it to
serve as a very close proxy to real values at runtime. Thus, it can help profile runtime precision
requirements. In addition to re-instating confidence in the evolving results, this approach may
enable the user to dynamically tune the working precision based on the stability of the evolving
results. To this end, we have prototyped a machine learning model built on profiled simulation
data that attempts to predict the minimum precision around a rectangular region centered around
a point for which FPDETECT’s evaluation unit was instantiated. Current results show encourag-

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

FPDETECT: Efficient Reasoning About Stencil Programs Using Selective Direct Evaluation = 19:25

ing trends with prediction accuracies within two precision bits. Some of our ongoing work aims
to leverage this information in tuning simulation parameters for improved performance. Further-
more, multi-bit flips will encompass a larger detectable cross section (unless they cancel out), hence
specialized detectors for this purpose might allow for better detection and increased coverage.

REFERENCES

[1] IEEE. 2008. IEEE standard for floating-point arithmetic. IEEE Std 754-2008 (Aug. 2008), 1-70.

[2] George A. Articolo. 2009. Partial Differential Equations & Boundary Value Problems with Maple, Second Edition (2nd
ed.). Academic Press, Orlando, FL.

[3] Wenlei Bao, Sriram Krishnamoorthy, Louis-Noél Pouchet, Fabrice Rastello, and P. Sadayappan. 2016. PolyCheck:
Dynamic verification of iteration space transformations on affine programs. In Proceedings of the POPL. 539-554.

[4] R.Baumann. 2005. Soft errors in advanced computer systems. IEEE Design Test Comput. 22, 3 (May 2005), 258-266.
DOT : https://doi.org/10.1109/MDT.2005.69

[5] Sylvie Boldo and Jean-Christophe Fillidtre. 2007. Formal verification of floating-point programs. In Proceedings of the
ARITH. 187-194.

[6] Sylvie Boldo and Thi Minh Nguyen. 2011. Proofs of numerical programs when the compiler optimizes. Innov. Syst.
Softw. Eng. 7, 2 (June 2011), 151-160. DOI : https://doi.org/10.1007/s11334-011-0151-6

[7] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan. 2008.
Automatic transformations for communication-minimized parallelization and locality optimization in the polyhedral
model. In Proceedings of the ETAPS CC.

[8] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A practical automatic polyhedral paral-
lelizer and locality optimizer. In Proceedings of the PLDI. ACM, New York, NY, 101-113.

[9] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. 2013. Verifying quantitative reliability for programs that
execute on unreliable hardware. In Proceedings of the OOPSLA. 33-52.

[10] Eric Cheng, Shahrzad Mirkhani, Lukasz G. Szafaryn, Chen-Yong Cher, Hyungmin Cho, Kevin Skadron, Mircea R.
Stan, Klas Lilja, Jacob A. Abraham, Pradip Bose, and Subhasish Mitra. 2018. Tolerating soft errors in processor cores
using CLEAR. IEEE Trans. CAD Integr. Circ. Syst. 37, 9 (2018), 1839-1852.

[11] Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev, Ganesh Gopalakrishnan, and Zvonimir Rakamaric.
2017. Rigorous floating-point mixed-precision tuning. In Proceedings of the POPL. 300-315.

[12] Eva Darulova and Viktor Kuncak. 2014. Sound compilation of reals. In Proceedings of the POPL. 235-248.

[13] Eva Darulova and Viktor Kuncak. 2017. Towards a compiler for reals. ACM Trans. Program. Lang. Syst. 39, 2 (Mar.
2017).

[14] Arnab Das, Sriram Krishnamoorthy, Ian Briggs, Ganesh Gopalakrishnan, and Ramakrishna Tipireddy. 2020. FPDetect:
Efficient Reasoning About Stencil Programs Using Selective Direct Evaluation. arxiv:cs.DC/2004.04359.

[15] Marc Daumas, Guillaume Melquiond, and César A. Munoz. 2005. Guaranteed proofs using interval arithmetic. In
Proceedings of the ARITH. 188-195.

[16] Luiz Henrique de Figueiredo and Jorge Stolfi. 2004. Affine arithmetic: Concepts and applications. Numer. Algor. 37, 1
(Dec. 2004), 147-158.

[17] Sheng Diand Franck Cappello. 2016. Adaptive impact-driven detection of silent data corruption for HPC applications.
Trans. Parallel Distrib. Syst. 27, 10 (2016), 2809-2823.

[18] James Elliott, Mark Hoemmen, and Frank Mueller. 2014. Evaluating the impact of SDC on the GMRES iterative solver.
In Proceedings of the IPDPS. 1193-1202.

[19] James Elliott, Mark Hoemmen, and Frank Mueller. 2014. Resilience in numerical methods: A position on fault models
and methodologies. CoRR abs/1401.3013 (2014).

[20] James Elliott, Mark Hoemmen, and Frank Mueller. 2015. A numerical soft fault model for iterative linear solvers. In
Proceedings of the HPDC. 271-274.

[21] James Elliott, Mark Hoemmen, and Frank Mueller. 2016. Exploiting data representation for fault tolerance. J. Comput.
Sci. 14 (2016), 51-60.

[22] Aiman Fang, Aurélien Cavelan, Yves Robert, and Andrew A. Chien. 2017. Resilience for stencil computations with
latent errors. In Proceedings of the ICPP. 581-590.

[23] Marc Gamell, Keita Teranishi, Michael A. Heroux, Jackson Mayo, Hemanth Kolla, Jacqueline Chen, and Manish
Parashar. 2015. Local recovery and failure masking for stencil-based applications at extreme scales. In Proceedings of
the SC. 70:1-70:12.

[24] David Goldberg. 1991. What every computer scientist should know about floating-point arithmetic. ACM Comput.
Surv. 23, 1 (Mar. 1991), 5-48.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

https://doi.org/10.1109/MDT.2005.69
https://doi.org/10.1007/s11334-011-0151-6

19:26 A. Das et al.

[25]
[26]
(27]
(28]
[29]
(30]

(31]

[32]
(33]
[34]
[35]
[36]
(37]
(38]
(39]
[40]

[41]
[42]

[43]

[44]

[45]

[46]

(47]
(48]

[49]

[50]

L. A. B. Gomez and F. Cappello. 2015. Detecting and correcting data corruption in stencil applications through mul-
tivariate interpolation. In Proceedings of the CLUSTER. 595-602.

John L. Hennessy and David A. Patterson. 2019. A new golden age for computer architecture. Commun. ACM 62, 2
(Jan. 2019), 48—-60. DOI : https://doi.org/10.1145/3282307

Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms (2nd ed.). Society for Industrial and Applied
Mathematics. Retrieved from https://epubs.siam.org/doi/pdf/10.1137/1.9780898718027.

Kuang-Hua Huang and Jacob A. Abraham. 1984. Algorithm-based fault tolerance for matrix operations. IEEE Trans.
Comput. 33, 6 (1984), 518-528.

Padma Jayaraman and Ranjani Parthasarathi. 2017. A survey on post-silicon functional validation for multicore ar-
chitectures. ACM Comput. Surv. 50, 4 (Aug. 2017). DOI : https://doi.org/10.1145/3107615

William Kahan. 1996. IEEE standard 754 for binary floating-point arithmetic. Lecture Notes Status IEEE 754, 94720-1776
(1996), 11.

Gokcen Kestor, Burcu Ozcelik Mutlu, Joseph Manzano, Omer Subasi, Osman Unsal, and Sriram Krishnamoorthy.
2018. Comparative analysis of soft-error detection strategies: A case study with iterative methods. In Proceedings of
the CF. 173-182.

Walter Kramer. 1997. A priori worst-case error bounds for floating-point computations. In Proceedings of the ARITH.
64.

Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2015. Clover: Compiler directed lightweight soft
error resilience. SIGPLAN Not. 50, 5 (June 2015). DOI : https://doi.org/10.1145/2808704.2754959

Victor Magron, George Constantinides, and Alastair Donaldson. 2017. Certified roundoff error bounds using semi-
definite programming. ACM Trans. Math. Softw. 43, 4 (Jan. 2017).

Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C. Rinard. 2014. Chisel: Reliability- and accuracy-
aware optimization of approximate computational kernels. In Proceedings of the OOPSLA. 309-328.

Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jeannerod, Vincent Lefévre, Guillaume
Melquiond, Nathalie Revol, Damien Stehlé, and Serge Torres. 2009. Handbook of Floating-Point Arithmetic. Birkhauser.
H. Quinn and P. Graham. 2005. Terrestrial-based radiation upsets: A cautionary tale. In Proceedings of the FCCM.
193-202. DOI : https://doi.org/10.1109/FCCM.2005.61

Jude A. Rivers, Meeta S. Gupta, Jeonghee Shin, Prabhakar N. Kudva, and Pradip Bose. 2011. Error tolerance in server
class processors. IEEE Trans. CAD Integr. Circ. Syst. 30, 7 (2011), 945-959.

B. Sangchoolie, K. Pattabiraman, and J. Karlsson. 2017. One bit is (not) enough: An empirical study of the impact of
single and multiple bit-flip errors. In Proceedings of the DSN. 97-108.

Markus Schordan, Pei-Hung Lin, Daniel J. Quinlan, and Louis-Noél Pouchet. 2014. Verification of polyhedral opti-
mizations with constant loop bounds in finite state space computations. In Proceedings of the ISOLA. 493-508.

N. Seifert. 2010. Radiation-induced Soft Error: A Chip-level Modeling. Delft, The Netherlands.

Vishal Sharma, G. Gopalkrishnan, and Greg Bronevetsky. 2015. Detecting soft errors in stencil based computations.
In the 11th IEEE Workshop on Silicon Errors in Logic — System Effects (SELSE’15).

Marc Snir, Robert W. Wisniewski, Jacob A. Abraham, Sarita V. Adve, Saurabh Bagchi, et al. 2014. Addressing failures
in exascale computing. Proceedings of the ITHPCA 28, 2 (2014), 129-173.

Alexey Solovyev, Marek S. Baranowski, Ian Briggs, Charles Jacobsen, Zvonimir Rakamaric, and Ganesh Gopalakr-
ishnan. 2019. Rigorous estimation of floating-point round-off errors with symbolic Taylor expansions. ACM Trans.
Program. Lang. Syst. 41, 1 (2019), 2:1-2:39.

Omer Subasi, Sheng Di, Prasanna Balaprakash, Osman S. Unsal, Jesus Labarta, Adrian Cristal, Sriram Krishnamoor-
thy, and Franck Cappello. 2017. MACORD: Online adaptive machine learning framework for silent error detection.
In Proceedings of the CLUSTER. 717-724.

Omer Subasi, Sheng Di, Leonardo Bautista-Gomez, Prasanna Balaprakash, Osman S. Unsal, Jesus Labarta, Adrian
Cristal, and Franck Cappello. 2016. Spatial support vector regression to detect silent errors in the exascale era. In
Proceedings of the CCGrid. 413-424.

Omer Subasi and Sriram Krishnamoorthy. 2017. A gaussian process approach for effective soft error detection. In
Proceedings of the CLUSTER. 608-612.

Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk, and Charles E. Leiserson. 2011. The
pochoir stencil compiler. In Proceedings of the SPAA. 117-128.

Dingwen Tao, Shuaiwen Leon Song, Sriram Krishnamoorthy, Panruo Wu, Xin Liang, Eddy Z. Zhang, Darren J.
Kerbyson, and Zizhong Chen. 2016. New-Sum: A novel online ABFT scheme for general iterative methods. In Pro-
ceedings of the HPDC. 43-55.

Devesh Tiwari, Saurabh Gupta, George Gallarno, Jim Rogers, and Don Maxwell. 2015. Reliability lessons learned from
GPU experience with the titan supercomputer at oak ridge leadership computing facility. In Proceedings of the SC.
ACM, New York, NY.

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

https://doi.org/10.1145/3282307
https://epubs.siam.org/doi/pdf/10.1137/1.9780898718027
https://doi.org/10.1145/3107615
https://doi.org/10.1145/2808704.2754959
https://doi.org/10.1109/FCCM.2005.61

FPDETECT: Efficient Reasoning About Stencil Programs Using Selective Direct Evaluation = 19:27

(51]
(52]
(53]

(54]

[55]

[56]

Ohio State University. 2012. the PolyOpt Polyhedral Compiler. Retrieved from http://hpcrl.cse.ohio-state.edu/wiki/
index.php/Polyhedral _Compilation.

Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. 2012. Equivalence checking of static affine programs
using widening to handle recurrences. ACM Trans. Program. Lang. Syst. 34, 3 (2012), 11:1-11:35.

Panruo Wu and Zizhong Chen. 2014. FT-ScaLAPACK: Correcting soft errors on-line for ScaLAPACK cholesky, OR,
and LU factorization routines. In Proceedings of the HPDC. 49-60.

Panruo Wu, Nathan DeBardeleben, Qiang Guan, Sean Blanchard, Jieyang Chen, Dingwen Tao, Xin Liang, Kaiming
Ouyang, and Zizhong Chen. 2017. Silent data corruption resilient two-sided matrix factorizations. In Proceedings of
the PPoPP. 415-427.

Ren Xiaoguang, Xu Xinhai, Wang Qian, Chen Juan, Wang Miao, and Yang Xuejun. 2015. GS-DMR: Low-overhead
soft error detection scheme for stencil-based computation. Parallel Comput. 41 (2015), 50-65.

Yaqi Zhang, Ralph Nathan, and Daniel J. Sorin. 2015. Reduced Precision Checking to Detect Errors in Floating Point
Arithmetic. arxiv:cs.NA/1510.01145.

Received November 2019; revised April 2020; accepted May 2020

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 3, Article 19. Publication date: August 2020.

http://hpcrl.cse.ohio-state.edu/wiki/index.php/Polyhedral_Compilation
http://hpcrl.cse.ohio-state.edu/wiki/index.php/Polyhedral_Compilation

