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Abstract— We present a tool called DiffTrace that approaches
debugging via whole program tracing and diffing of typical and
erroneous traces. After collecting these traces, a user-configurable
front-end filters out irrelevant function calls and then summarizes
loops in the retained function calls based on state-of-the-art
loop extraction algorithms. Information about these loops is
inserted into concept lattices, which we use to compute salient
dissimilarities to narrow down bugs. DiffTrace is a clean start
that addresses debugging features missing in existing approaches.
Our experiments on an MPI/OpenMP program called ILCS and
initial measurements on LULESH, a DOE miniapp, demonstrate
the advantages of the proposed debugging approach.

Index Terms—Whole-program tracing, HPC debugging, trace
diffing, nested loop recognition, formal concept analysis

I. INTRODUCTION

Debugging high-performance computing code remains a
challenge at all levels of scale. Conventional HPC debug-
gers [1], [2] excel at many tasks such as examining the
execution state of a complex simulation in detail and allowing
the developer to re-execute the program close to the point of
failure. However, they do not provide a good understanding
of why a program version that worked earlier failed upon
upgrade or feature addition. Innovative solutions are needed
to highlight the salient differences between two executions
in a manner that makes debugging easier as well as more
systematic. A recent study conducted under the auspices of
the DOE [3] provides a comprehensive survey of existing
debugging tools. It classifies them under four software organi-
zations (serial, multithreaded, multi-process, and hybrid), six
method types (formal methods, static analysis, dynamic anal-
ysis, nondeterminism control, anomaly detection, and parallel
debugging), and lists a total of 30 specific tools. Despite this
abundance of activity and tools, many significant problems
remain to be solved before debugging can be approached by
the HPC community as a collaborative activity so that HPC
developers can extend a common framework.

Almost all debugging approaches seek to find outliers (“un-
expected executions”) amongst thousands of running processes
and threads. The approach taken by most existing tools is to
look for symptoms in a specific bug-class that they cover.

Unfortunately, this approach calls for a programmer having
a good guess of what the underlying problem might be, and
to then pick the right set of tools to deploy. If the guess is
wrong, the programmer has no choice but to refine their guess
and look for bugs in another class, re-executing the application
and hoping for better luck with another tool. This iterative loop
of re-execution followed by applying a best-guess tool for the
suspected bug class can potentially consume large amounts of
execution cycles and wastes an expert developer’s time. More
glaring is the fact that these tools must recreate the execution
traces yet again: they do not have means to hand off these
traces to another tool or cooperate in symbiotic ways.

We cannot collect all relevant pieces of information neces-
sary to detect all possible bug classes such as resource leaks,
deadlocks, and data races. Each such bug requires its attributes
to be kept. Also, debugging is not fully automatable (it is
an undecidable problem in general) and must involve human
thinking: at least to reconcile what is observed against the
deeper application-level semantics. However, (1) we believe
that it is still possible to collect one standard set of data and
use it to make an initial triage in such a way that it can
guide a later, deeper debugging phase to locate which of the
finer bug gradations (e.g., resource leaks or races) brought the
application down. Also, (2) we believe that it is possible to
engage the human with respect to understanding structured
presentations of information.

Our DiffTrace framework addresses both issues. The com-
mon set of data it uses is a whole program function call trace
collected per process/thread. DiffTrace relies on novel ways
to diff a normal trace and a fault-laden trace to guide the
debugging engineer closer to the bug. While our work has
not (yet) addressed situations in which millions of threads
and thousands of processes run for days before they produce
an error, we strongly believe that we can get there once we
understand the pros and cons of our initial implementation of
the DiffTrace tool, which is described in this paper. The second
issue is handled in DiffTrace by offering a novel collection of
modalities for understanding program execution diffs. We now
elaborate on these points by addressing the following three
problems.

a) Problem 1 – Collecting Whole-Program Heteroge-
neous Function-Call Traces Efficiently: Not only must we978-1-7281-4734-5/19/$31.00 ©2019 IEEE
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have the ability to record function calls and returns at one
API such as MPI, increasingly we must collect calls/returns at
multiple interfaces (e.g., OpenMP, PThreads, and even inner
levels such as TCP). The growing use of heterogeneous par-
allelization necessitates that we understand MPI and OpenMP
activities (for example) to locate cross-API bugs that are often
missed by other tools. Sometimes, these APIs contain the
actual error (as opposed to the user code), and it would be
attractive to have this debugging ability.

Solution to Problem 1: In DiffTrace, we choose Pin-based
whole program binary tracing, with tracing filters that allow
the designer to collect a suitable mixture of API calls/returns.
We realize this facility using ParLOT, a tool designed by
us and published earlier [4]. In our research, we have thus
far demonstrated the advantage of ParLOT with respect to
collecting both MPI and OpenMP traces from a single run of
a hybrid MPI/OpenMP program. We demonstrate that, from
this single type of trace, it is possible to pick out MPI-level
bugs and/or OpenMP-level bugs. While whole-program tracing
may sound extremely computation and storage intensive, Par-
LOT employs lightweight on-the-fly compression techniques
to keep these overheads low. It achieves compression ratios
exceeding 21,000 [4], thus making this approach practical,
demanding only a few kilobytes per second per core of
bandwidth.

b) Problem 2 – Need to Generalize Techniques for
Outlier Detection: Given that outlier detection is central to
debugging, it is essential to use efficient representations of the
traces to be able to systematically compute distances between
them without involving human reasoning. The representation
must also be versatile enough to be able to “diff” the traces
with respect to an extensible number of vantage points. These
vantage points could be diffing traces concerning process-
level activities, thread-level activities, a combination thereof,
or even finite sequences of process/thread calls (say, to locate
changes in caller/callee relationships).

Solution to Problem 2: DiffTrace employs concept lat-
tices to amalgamate the collected traces. Concept lattices
have previously been employed in HPC to perform structural
clustering of process behaviors [5] to present performance
data more meaningfully to users. The authors of that paper
use the notion of Jaccard distances to cluster performance
results that are closely related to process structures (deter-
mined based on caller/callee relationships). In DiffTrace, we
employ incremental algorithms for building and maintaining
concept lattices from the ParLOT-collected traces. In addition
to Jaccard distances, in our work, we also perform hierarchical
clustering of traces and provide a tunable threshold for outlier
detection. We believe that these uses of concept lattices and
refinement approaches for outlier detection are new in HPC
debugging.

c) Problem 3 – Loop Summarization: Most programs
spend most of their time in loops. Therefore, it is important
to employ state-of-the-art algorithms for loop extraction from
execution traces. It is also important to be able to diff two
executions with respect to changes in their looping behaviors.

In our experience, presenting such changes using good visual
metaphors tends to highlight many bug types immediately.

Solution to Problem 3: DiffTrace utilizes the rigorous notion
of Nested Loop Representations (NLRs) for summarizing
traces and representing loops. Each repetitive loop structure
is given an identifier, and nested loops are expressed as
repetitions of this identifier exponentiated (as with regular
expressions). This approach to summarizing loops can help
manifest bugs where the program does not hang or crash
but nevertheless runs differently in a manner that informs the
developer engaged in debugging.

Organization: §II illustrates the contributions of this paper
on a simple example. §III presents the algorithms underlying
DiffTrace in more detail. §IV summaries the experimental
methodology before showing a medium-sized case study in-
volving MPI and OpenMP. §V shows initial measurements
and examples on LULESH [6], a DOE common mini app.
§VI summarizes selected related works. §VII concludes the
paper with a discussion.

II. DIFFTRACE OVERVIEW

A. High-level Overview

DiffTrace employs ParLOT’s whole-program function-call
and return trace-collection mechanism, where ParLOT cap-
tures traces via Pin [7] and incrementally compresses them
using a new compression scheme [4]. ParLOT can capture
functions at two levels: the main image (which does not
include library code) and all images (including all library
code). As the application runs, ParLOT generates per-thread
trace files that contain the compressed sequence of the IDs
of the executed functions. The compression mechanism is
light-weight yet effective, thus reducing not only the required
bandwidth and storage but also the runtime relative to not com-
pressing the traces. As a result, ParLOT can capture whole-
program traces at low overhead while leaving most of the
disk bandwidth to the application. Using whole-program traces
substantially reduces the number of overall debug iterations
because it allows us to repeatedly analyze the traces offline
with different filters.

Figure 1 provides an overview of the DiffTrace toolchain
in terms of the blue flows (fault-free) and red flows (faulty).
In a broad sense, code-level faults in HPC applications (e.g.,
the use of wrong subscripts) turn into observable code-level
misbehaviors (e.g., an unexpected number of loop iterations),
many of which turn into application-level issues. In our
study of DiffTrace, we evaluate success merely in terms of
the efficacy of observing these misbehaviors in response to
injected code-level faults (we rely on a rudimentary fault
injection framework complemented by manual fault injection).

The preprocessing stage removes calls/returns at the ignored
APIs. The nested loop recognition (NLR) mechanism then
extracts loops from traces. The resulting information not only
serves as a lossless abstraction to ease the rest of the trace
analysis but also serves as a per-thread measure of progress.
The FCA (Formal Concept Analysis) stage conducts a system-
atic way to arrange objects (in our case threads) and attributes
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Figure 1: DiffTrace Overview
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(we support a rich collection of attributes including the set
of function calls a thread makes, the set of pairs of function
calls made—this reflects calling context—etc.). Weber et al.’s
work [5], [8] employs FCA exactly in this manner (including
the use of pairs of calls), however, for grouping performance
information. Our new contribution is showing that FCA can
play a central role in debugging HPC applications.

While faults induce asymmetries (“aberrations”) in program
behaviors, one cannot locate faults merely by locating the
asymmetries in an overall collection of process traces. The
reason is that even in a collection of MPI processes or threads
within these processes, some processes/threads may serve as a
master while others serve as workers [9]. Thus, we must have a
base level of similarities computed even for normal behaviors
and then compute how this similarity relation changes when
faults are introduced. This is highlighted by the blue and red
rectangular patches in Figure 1 that, respectively, iconify the
Jaccard similarity matrices computed for the normal behavior
(above) and the erroneous behavior (below). This is shown as
the “diff Jaccard similarity matrix” in greyscale at the juncture
of JSMnormal and JSMfaulty.

After the JSMD matrix is computed, we invoke a hierarchi-
cal clustering algorithm that computes the “B-score” and helps
rank suspicious traces/processes. The diffNLR representation
is then extracted. Intuitively, this is a diff of the loop structures
of the normal and abnormal threads/processes. This diagram
shows (as with git diff and text diff) a main stem comprised
of green rectangles (“common looping structure”) and red/blue
diff rectangles showing how the loop structures of the normal
and erroneous threads differ with respect to the main stem. We
show that this presentation often helps the debugging engineer
locate the faults.

Last but not least, we strongly believe that a framework
such as DiffTrace can serve as an important HPC community
resource. Each debugging tool designer who uses DiffTrace
can extend it by incorporating new attributes and clustering
methods, but otherwise retain the overall tool structure. Such
a “playground” for developing and exploring new methods for
debugging does not exist in HPC. There is also the intriguing

Figure 2: Simplified MPI implementation of Odd/Even Sort

possibility that many of the 30-odd tools mentioned in §I can
be made to focus on the problems highlighted by diffNLR, thus
gaining efficiency (this will be part of our future work).

In this paper, we describe DiffTrace as a relative debug-
ging [10] tool, in that bugs are caught with respect to JSMD

which is a change from the previous code version found
working. However, many types of faults may be apparent
just by analyzing JSMfaulty: for instance, processes whose
execution got truncated will look highly dissimilar to those that
terminated normally. In those use cases of DiffTrace, the B-
score based ranking can then be made on JSMfaulty directly.

B. Example Walk-through

We now employ Figure 2—a textbook MPI odd/even sorting
example—to illustrate DiffTrace. Odd/even sorting is a parallel
variant of bubble sort and operates in two alternating phases:
in the even phase, the even processes exchange (conditionally
swap) values with their right neighbors, and in the odd phase,
the odd processes exchange values with their right neighbors.

A waiting trap in this example is this: the user may
have swapped the Recv; Send order in the else part,
creating head-to-head ‘‘Send || Send’’ deadlock under
low-buffering (MPI EAGER limit). We will now show how
DiffTrace helps pick out this root-cause.
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Table I: Pre-defined Filters
Category Sub-Category Description

Primary Returns Filter out all returns

PLT
Filter out the ”.plt” function calls for external functions/procedures that
their address needs to be resolved dynamically from Procedure Linkage
Table (PLT)

MPI

MPI All Only keep functions that start with ”MPI ”
MPI Collectives Only keep MPI collective calls (MPI Barrier, MPI Allreduce, etc)
MPI Send/Recv Only keep MPI Send, MPI Isend, MPI Recv, MPI Irecv and MPI Wait

MPI Internal Library Keep all inner MPI library calls

OMP
OMP All Only keep OMP calls (starting with GOMP )

OMP Critical Only keep OMP CRITICAL START and OMP CRITICAL END
OMP Mutex Only keep OMP Mutex calls

System

Memory Keep any memory related functions (memcpy, memchk, alloc, malloc, etc)
Network Keep any network related functions (network, tcp, sched, etc)

Poll Keep any poll related functions (poll, yield, sched, etc)
String Keep any string related functions (strlen, strcpy, etc)

Advanced Custom Any regular expression can be captured
Everything Does not filter anything

Table II: The generated traces for odd/even execution with
four processes

T0 T1 T2 T3

... ... ... ...
main main main main
MPI Init MPI Init MPI Init MPI Init
MPI Comm Rank MPI Comm Rank MPI Comm Rank MPI Comm Rank
MPI Comm Size MPI Comm Size MPI Comm Size MPI Comm Size
... ... ... ...
oddEvenSort oddEvenSort oddEvenSort oddEvenSort
... ... ... ...
findPtr findPtr findPtr findPtr
MPI Send MPI Recv MPI Send MPI Recv
MPI Recv MPI Send MPI Recv MPI Send
... ... ... ...
findPtr findPtr findPtr findPtr
MPI Send MPI Recv MPI Send MPI Recv
MPI Recv MPI Send MPI Recv MPI Send
... ... ... ...
MPI Finalize MPI Finalize MPI Finalize MPI Finalize

C. Pre-processing

Using ParLOT’s decoder, each trace is first decompressed.
Next, the desired functions are extracted based on predefined
(Table I) or custom regular expressions (i.e., filters) and kept
for later phases. Table II shows the pre-processed traces (Ti)
of odd/even sort with four processes. Ti is the trace that stores
the function calls of process i.

D. Nested Loop Representation

Virtually all dynamic statements are found within loops.
Function calls within a loop body yield repetitive patterns in
ParLOT traces. Inspired by ideas for the detection of repetitive
patterns in strings [11] and other data structures [12], we have
adapted the Nested Loop Recognition (NLR) algorithm by
Ketterlin et al. [13] to detect repetitive patterns in ParLOT
traces (cf. Section III-A). Detecting such patterns can be used
to measure the progress of each thread, revealing unfinished
or broken loops that may be the consequence of a fault.

For example, the loop in line 3 of oddEvenSort()
(Figure 2) iterates four times when run with four processes.
Thus each Ti contains four occurrences of either [MPI_Send-
MPI_Recv] (even i) or [MPI_Recv-MPI_Send] (odd i). By

Table III: NLR of Traces
T0 T1 T2 T3

MPI Init MPI Init MPI Init MPI Init
MPI Comm Rank MPI Comm Rank MPI Comm Rank MPI Comm Rank
MPI Comm Size MPI Comm Size MPI Comm Size MPI Comm Size
L0 ˆ 2 L1 ˆ 4 L0 ˆ 4 L1 ˆ 2
MPI Finalize MPI Finalize MPI Finalize MPI Finalize

Table IV: Formal Context of odd/even sort example
MPI Init() MPI Comm Size() MPI Comm Rank() L0 L1 MPI Finalize()

Trace 0 × × × × ×
Trace 1 × × × × ×
Trace 2 × × × × ×
Trace 3 × × × × ×

keeping only MPI functions and converting each Ti into its
equivalent NLR, Table II can be reduced to Table III where
L0 and L1 represent the loop body [MPI_Send-MPI_Recv]
and [MPI_Recv-MPI_Send], respectively. The integer after
the ˆ symbol in NLR represents the loop iteration count. Note
that, since the first and last processes only have one-way
communication with their neighbors, T0 and T3 perform only
half as many iterations.

E. Hierarchical Clustering via FCA

Processes in HPC applications are known to fall into
predictable equivalence classes. The widely used and highly
successful STAT tool [14] owes most of its success for being
able to efficiently collect stack traces (nested sequences of
function calls), organize them as prefix-trees, and equivalence
the processes into teams that evolve in different ways. Coa-
lesced stack trace graphs (CSTG, [15]) have proven effective
in locating bugs within Uintah [16] and perform stat-like
equivalence class formation, albeit with the added detail of
maintaining calling contexts. Inspired by these ideas, FCA-
based clustering provides the next logical level of refinement
in the sense that (1) we can pick any of the multiple attributes
one can mine from traces (e.g., pairs of function calls, memory
regions accessed by processes, locks held by threads, etc.),
and (2) form this equivalencing relation quite naturally by
computing the Jaccard distance between processes/threads. In
general, such a classification is powerful enough to distinguish
structurally different threads from one another (e.g., MPI
processes from OpenMP threads in hybrid MPI+OpenMP
applications) and reduce the search space for bug location
to a few representative classes of traces that are distinctly
dissimilar.1

A formal context is a triple K = (G,M, I) where G is a
set of objects, M is a set of attributes, and I ⊆ G × M
is an incidence relation that expresses which objects have
which attributes. Table IV shows the formal context of the
preprocessed odd/even-sort traces. We can employ as attributes
either the function calls themselves or the detected loop bodies
(each detected loop is assigned a unique ID, and one can
diff with respect to these IDs). The context shows that all
traces include the functions MPI Init(), MPI Comm size(),
MPI Comm rank() and MPI Finalize(). The even traces con-
tain the loop L0 and the odd traces the loop L1.

Figure 3 shows the concept lattice derived from the formal
context in Table IV and is interpreted as follows:
• The top node indicates that all traces share

MPI Init(), MPI Comm size(), MPI Comm rank()
and MPI Finalize().

1As emphasized earlier, we perform “sky subtraction” as in astronomy to
locate comets; in our case, we diff the diffs, which is captured in JSMD .
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Figure 3: Sample Concept Lattice from Object-Attribute Con-
text in Table IV
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Figure 4: Pairwise Jaccard Similarity Matrix (JSM) of MPI
Processes in Sample Code

• The bottom node signifies that none of the traces share
all attributes.

• The middle nodes show that T0 and T2 are different from
T1 and T3.

The complete pairwise Jaccard Similarity Matrix (JSM) can
easily be computed from concept lattices. For large-scale ex-
ecutions with thousands of threads, it is imperative to employ
incremental algorithms to construct concept lattices (detailed
in Section III-B). Figure 4 shows the heatmap of the JSM
obtained from the concept lattice in Figure 3. DiffTrace uses
the JSM to form equivalence classes of traces by hierarchical
clustering. Next, we show how the differences between two
hierarchical clusterings from two executions (faulty vs. nor-
mal) reveal which traces have been affected the most by the
fault.

F. Detecting Suspicious Traces via JSMD

JSMnormal[i][j] (JSMfaulty[i][j]) shows the Jaccard sim-
ilarity score of Ti and Tj from the normal trace (T ′i and
T ′j). As explained earlier, we compute JSMD to detect outlier
executions, where JSMD = |JSMfaulty−JSMnormal|.

Common

Normal

Faulty

(a) Legend

End

L1^16

MPI_Finalize

L1^7
L0^9

MPI_Init
MPI_Comm_rank 
MPI_Comm_size

Start

(b) swapBug

Figure 5: diffNLR Example

We sort the suggestion table based on the B-score similarity
metric of two hierarchical clusterings [17] (cf. Section III-C).
A single iteration through the DiffTrace loop (with a single
set of parameters shown as a dashed box in Figure 1) may
still not detect the root-cause of a bug. The user can then
(1) alter the linkage method employed in computing the hier-
archical clustering (reorder the dendrograms built to achieve
the clustering), (2) alter the FCA attributes, (3) adjust the
NLR constants (loops are extracted with realistic complexity
by observing repetitive patterns inside a preallocated buffer),
and/or (4) the front-end filters. This is shown in the iterative
loop in Figure 1.

G. Evaluation

To evaluate the effectiveness of DiffJSM, we planted two
artificial bugs (swapBug and dlBug) in the code from Figure
2 and ran it with 16 processes. swapBug swaps the order of
MPI Send and MPI Recv in rank 5 after the seventh iteration
of the loop in line 3 of oddEvenSort, simulating a potential
deadlock. dlBug simulates an actual deadlock in the same
location (rank 5 after the seventh iteration). Upon collection of
ParLOT traces from the execution of the buggy code versions,
DiffTrace first decompresses them and filters out all non-MPI
functions. Then two major loops are detected, L0 and L1
(identical to the ones in Table III), that are supposed to loop
16 times in the even and odd traces, respectively (except for
the first and last traces, which loop just eight times).

After constructing concept lattices and their corresponding
JSMs, trace 5 appears as the trace that got affected the most
by the bugs because row 5 (showing the similarity score of T5

relative to all other traces) (JSMnormal[5][i] for i ∈ [0, 16))
changed the most after the bug was introduced. The differ-
ences between the suggested suspicious trace (T ′s) and its
corresponding normal trace (Ts) is visualized by diffNLR.
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Figure 6: dlBug

1) diffNLR: To highlight the differences in an easy-to-
understand manner, DiffTrace visually separates the common
and different blocks of a pair of pre-processed traces via
diffNLR, a graphical visualization of the diff algorithm [18].
diff takes two sequences SA and SB and computes the

minimal edit to convert SA to SB . This algorithm is used in
the GNU diff utility to compare two text files and in git
for efficiently keeping track of file changes. Since ParLOT
preserves the order of function calls, each trace Ti is totally
ordered. Thus diff can expose the differences of a pair of
T s. diffNLR aligns common and different blocks of a pair
of sequences (e.g., traces) horizontally and vertically, making
it easier for the analyst to see the differences at a glance.
For simplicity, our implementation of gdiff only takes one
argument x that denotes the suspicious trace.

diffNLR(x) ≡ diffNLR(Tx, T
′
x) where Tx is the trace

of thread/process x of a normal execution and T ′x is the
corresponding trace of the faulty execution.

Figure 5b shows the diffNLR(5) of swapBug where T5 iter-
ates over the loop [MPI Recv - MPI Send] 16 times (L1ˆ16)
after the MPI initialization while the order swap is well
reflected in T ′5 (L1ˆ7 - L0ˆ9). Both processes seem to terminate
fine by executing MPI Finalize(). However, diffNLR(5) of
dlBug (Figure 6) shows that, while T5 executed MPI Finalize,
T ′5 got stuck after executing L1 seven times and never reached
MPI Finalize.

This example illustrates how our approach can locate the
part of each execution that was impacted by a fault. Having an
understanding of how the application should behave normally
can reduce the number of iterations by picking the right set
of parameters sooner.

III. ALGORITHMS UNDERLYING DIFFTRACE

A. Nested Loop Recognition (NLR)

We build NLRs based on the work by Ketterlin and
Clauss [13], who use this algorithm for trace compression, and

the work by Kobayashi and MacDougall [19], who propose
a similar bottom-up strategy to build loop nests from traces,
replacing each recognized loop with a new symbol. We adapt
these algorithms to function-call traces wherein we record
identical loops at different locations by introducing a single
new (made-up) function ID that represents the entire loop. This
process is restarted once the whole trace has been analyzed
for depth-2 loops and so on until a function-ID replacement is
performed. DiffTrace-NLR works by incrementally pushing
trace entries (function IDs) onto a stack of elements (i.e.,
function IDs representing detected loop structures). Whenever
an element is pushed onto the stack S, the upper elements of
the stack are recursively examined for potential loop detection
or loop extensions (Procedure 1).

Reduce(S):
for i : 1 ... 3K do

b = i/3
if Top 3 b-long elements of S are isomorphic
then

pop i elements from S
LB = S[b : 1], LC = 3
LS = (LB,LC)
push LS to S
add LB to the Loop Table
Reduce(S)

end
if S[i] is a loop (LS) and S[i− 1 : 1]

isomorphic to its loop bodyLB then
LC = LC + 1
pop i− 1 elements from S
Reduce(S)

end
end

Procedure 1: Reduce procedure adapted from the NLR
algorithm

We store all distinct loop bodies (LBs) in a hash-table,
assigning each a unique ID, which can be applied as a heuristic
to detect loops not only in the current trace but also in
other traces of the same execution. The maximum length of
the subsequences to examine is decided by a fixed K. The
complexity of the NLR algorithm is Θ(K2N) where N is the
size of the input. While loop detection has been researched in
other contexts, its use to support debugging is believed to be
novel.

B. Concept Lattice Construction

The efficiency of algorithms for concept lattice construction
depends on the sparseness of the formal context [20]. Ganter’s
Next Closure algorithm [8] constructs the lattice from a batch
of contexts and requires the whole context to be present in
main memory and is, therefore, inefficient for long HPC traces.

We have implemented Godin’s incremental algorithm [21]
to extract attributes (Table V) from each trace (object) and
inject them into an initially empty lattice. Notice that our
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Table V: Attributes mined from traces

Attributes
{attr:freq}

attr freq

Single each entry
of the trace

Actual observed frequency

Log10 log10 of the observed frequency

Double each pair of
consecutive entries noFreq no frequency

representation already includes compression of the attributes as
(1) either the observed frequency is recorded, (2) the log10 of
the frequency is recorded, or (3) “no frequency” (presence/ab-
sence) of a function call is recorded. These are versatile knobs
to adjust for bug-location and similarity calculation.

Every time a new object with its set of attributes is
added to the lattice, an update procedure minimally modi-
fies/adds/deletes edges and nodes of the lattice. The extracted
attributes are in the form {attr:freq}. attr is either a single
entry of the trace NLR or a consecutive pair of entries. freq is
a parameter to adjust the impact of the frequency of each attr
in the concept lattice. The complexity of Godin’s algorithm
is O(22K |G|), where K is an upper bound for the number of
attributes (e.g., distinct function calls in the whole execution)
and |G| is the number of objects (e.g., the number of traces).

C. Hierarchical Clustering, Construction, and Comparison

DiffJSMs provide pair-wise dissimilarity measurements that
can be used to combine traces (forming initial clusters). To
obtain outliers (suspicious traces), we form dendrograms for
which a linkage function is required to measure the distance
between sets of traces. We currently employ SciPy (version
1.3.0. [22]) for these tasks. SciPy provides a wide range of
linkage functions such as single, complete, average, weighted,
centroid, median, and ward.

1) Ranking Table: As shown in Figure 1, each component
of DiffTrace has some tunable parameters and constants, and
the suggested suspicious traces are a function of them. Thus,
a metric is needed to serve as the sorting key of the suspicious
traces. Each parameter combination, in essence, creates a
different DiffJSM, giving us “the distance between two hi-
erarchical clusterings”. Fowlkes et al. [17] proposed a method
for comparing two hierarchical clusterings by computing their
B-score. While we have not evaluated the full relevance of
this idea, our initial experiments show that sorting suspicious
traces based on the B-score of DiffJSMs is effective and brings
interesting outliers to attention.

IV. CASE STUDY: ILCS

ILCS is a scalable framework for running iterative local
searches on HPC platforms [23]. Providing serial CPU and/or
single-GPU code, ILCS executes this code in parallel between
compute nodes (MPI) and within them (OpenMP and CUDA).

To evaluate DiffTrace, we manually injected MPI-level and
OMP-level bugs into the Traveling Salesman Problem (TSP)
running on ILCS (Listing 1). The injected bugs simulate real
HPC bugs such as deadlocks. Moreover, we inserted “hidden”

faults that do not crash the program such as violations of
critical sections and semantic bugs. The goal was to see how
effectively DiffTrace can analyze the resulting traces and how
close it can get to the root cause of the fault.

1 main(argc, argv) {
2 ... // initialization
3 MPI_Init();
4 MPI_Comm_size();
5 MPI_Comm_rank(my_rank);
6 ... // Obtain number of local CPUs and GPUs
7 MPI_Reduce(lCPUs, gCPUs, MPI_SUM); // Total # of CPUs
8 MPI_Reduce(lGPUs, gGPUs, MPI_SUM); // Total # of GPUs
9 champSize = CPU_Init();

10 ... // Memory allocation for storing local and global
champions w.r.t. champSize

11 MPI_Barrier();
12 #pragma omp parallel num_threads(lCPUs+1)
13 {rank = omp_get_thread_num();
14 if (rank != 0) { // worker threads
15 while (cont) {
16 ... // calculate seed
17 local_result = CPU_Exec();
18 if (local_result < champ[rank]) { // update local

champion
19 #pragma omp critical
20 memcpy(champ[rank], local_result);}}
21 } else { //master thread
22 do {
23 ...
24 MPI_AllReduce(); //broadcast the global champion
25 ...
26 MPI_AllReduce(); //broadcast the global champion P_id
27 ...
28 if (my_rank == global_champion_P_id) {
29 #pragma omp critical
30 memcpy(bcast_buffer, champ[rank]);
31 }
32 MPI_Bcast(bcast_buffer); // broadcast the local

champion to all nodes
33 } while (no_change_threshold);
34 cont = 0; // signal worker threads to terminate
35 }}
36 if (my_rank == 0) {CPU_Output(champ);}
37 MPI_Finalize();}
38

39 /* User code for TSP problem */
40 CPU_Init() {/* Read coordinates, calculate distances,

initialize champion structure, return structure size */
}

41 CPU_Exec() {/* Find local champions (TSP tours) */}
42 CPU_Output() {/* Output champion */}

Listing 1: ILCS Overview

We collected ParLOT (main image) traces from the exe-
cution of ILCS-TSP with 8 MPI processes and 4 OpenMP
threads per process on the XSEDE-PSC Bridges supercom-
puter whose compute nodes have 128 GB of main memory
and contain 2 Intel Haswell (E5-2695 v3) CPUs with 14 cores
each running at 2.3 - 3.3 GHz. Note that we did not provide
any GPU code to ILCS.

The collected traces (faulty and normal) are fed to Diff-
Trace. We enabled the MPI, OpenMP, and custom (ILCS-TSP
user code) filters and set the NLR constant K to 10 for all
experiments. The current version of DiffTrace is implemented
and built using C++ GCC 5.5.0, Pin 3.8, Python 2.7, and Scipy
1.3.0.

We present the results in the form of ranking tables that
show which traces (processes and threads) DiffTrace considers
“suspicious”. Since DiffTrace output is highly dependent to
“parameters”, each row in ranking tables starts with parameters
whom the suspicious traces are the result of.
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Figure 7: Three diffNLR outputs

The linkage method that converts JSMs to flat clustering
is “ward” for all of the top reported suspicious traces that
we removed from tables for better readability. Ward linkage
function in SciPy uses Ward variance minimization algorithm
to calculate the distance between newly formed clusters [22].
Furthermore, we show diffNLRs for selected traces.

A. ILCS-TSP Workflow

The TSP code starts with a random tour and iteratively
shortens it using the 2-opt improvement heuristic [24] until
a local minimum is reached. ILCS automatically and asyn-
chronously distributes unique seed values to each worker
thread, runs the TSP code, reduces the results to find the best
solution, and repeats these steps until the termination criterion
is met. It employs two types of threads per node: a master
thread (MPI process) that handles the communication and
local work distribution and a set of worker threads (OpenMP
threads) that execute the provided TSP code. The master thread
forks a worker thread for each detected CPU core. Each worker
thread continually calls CPU_Exec() to evaluate a seed and

records the result (lines 14-20). Once the worker threads are
running, the master thread’s primary job is to scan the results
of the workers to find the best solution computed so far (i.e.,
the local champion). This information is then globally reduced
to determine the current system-wide champion (lines 22-32).
ILCS terminates the search when the quality has not improved
over a certain period (lines 33-34).

B. OpenMP Bug: Unprotected Memory Access

The memory accesses performed by the memcpy calls on
lines 20 and 30 are protected by an OpenMP critical section.
Not protecting them results in a data race that might lead to
incorrect final program output. To simulate this scenario, we
modified the ILCS source code to omit the critical section in
worker thread 4 of process 6.

Table VI lists the top suspicious traces that DiffTrace
finds when injecting this bug. Each row presents the results
for different filters and attributes. For example, the filter
“11.mem.ompcit.cust.0K10” removes all function returns and
.plt calls from the traces and only keeps memory-related calls,
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Table VI: Ranking table - OpenMP bug: unprotected shared
memory access by thread 4 of process 6

Filter Attributes B-score Top
Processes

Top
Threads

11.plt.mem.cust.0K10 doub.noFreq 0.244 7, 3, 4 6.4, 7.3, 1.4, 3.3, 3.4, 4.2
11.plt.mem.cust.0K10 doub.log10 0.244 7, 3, 4 6.4, 7.3, 1.4, 3.3, 3.4, 4.2
01.plt.mem.cust.0K10 doub.noFreq 0.244 7, 3, 4 6.4, 7.3, 1.4, 3.3, 3.4, 4.2
01.plt.mem.cust.0K10 doub.log10 0.244 7, 3, 4 6.4, 7.3, 1.4, 3.3, 3.4, 4.2

01.mem.ompcrit.cust.0K10 sing.log10 0.262 3 6.4, 7.1, 3.3, 4.1, 5.1, 6.1
01.mem.ompcrit.cust.0K10 sing.noFreq 0.262 3 6.4, 7.1, 3.3, 4.1, 5.1, 6.1
11.mem.ompcrit.cust.0K10 sing.log10 0.262 3 6.4, 7.1, 3.3, 4.1, 5.1, 6.1
11.mem.ompcrit.cust.0K10 sing.noFreq 0.262 3 6.4, 7.1, 3.3, 4.1, 5.1, 6.1

11.plt.mem.cust.0K10 doub.actual 0.273 7 6.4, 2.4, 3.4, 4.2, 4.4
01.plt.mem.cust.0K10 doub.actual 0.273 7 6.4, 2.4, 3.4, 4.2, 4.4

OpenMP critical-section functions, and the custom function
“CPU Exec”. The “K10” at the end of filter means that the
filtered traces are converted into an NLR with K=10. The bold
numbers in the rightmost column of the table flag trace 6.4
(i.e., process 6, thread 4) as the trace that was affected the
most by the bug.

The corresponding diffNLR(6.4) presented in Figure 7a
clearly shows that the normal execution of ILCS (green and
blue blocks) protects the memcpy while the buggy execu-
tion (green and red blocks) does not. Here, L0 represents
CPU_Exec, which is called multiple times in both the fault-
free and the buggy version (the call frequencies are different
due to the asynchronous nature of ILCS).

C. MPI Bug: Deadlock Caused by Fault in Collective

By forcing process 2 to invoke MPI Allreduce (line 24)
with a wrong size, we can inject a real deadlock. Because the
deadlock happens early in the execution, the resulting traces
are very different from their fault-free counterparts. Conse-
quently, DiffTrace marks almost all processes as suspicious
(cf. Table VII). Clearly, this is not helpful for debugging.
Nevertheless, diffNLR still yields useful information. Since
most of the traces are suspicious, we do not know which one
the real culprit is and randomly selected trace 4. By looking
at the diffNLR(4) output shown in Figure 7b, we immediately
see that both the normal and the buggy trace are identical
up to the invocation of MPI Allreduce. This gives the user
the first (correct) hint as to where the problem lies. Beyond
this point, the bug-free process continues to the end of the
program (it reaches the MPI Finalize call) whereas the buggy
process does not. The last entry in the buggy trace is a call to
MPI Allreduce (the last green box), indicating that this call
never returned, that is, it deadlocked. This provides the user
with the second (correct) hint as to the type of the underlying
bug.

D. MPI Bug: Wrong Collective Operation

By changing the MPI MIN argument to MPI MAX in the
MPI Allreduce call on line 24 of Listing 1, the semantics
of ILCS change. Instead of computing the best answer, the
modified code computes the worst answer. Hence, this code
variation terminates but is likely to yield the wrong result. We
injected this bug into process 0.

The first few suspicious processes listed in Table VIII are
inconclusive. However, the filters that include MPI all agree

Table VII: Ranking table - MPI bug: wrong collective size in
process 2

Filter Attributes B-score Top
Processes

Top
Threads

11.mpicol.cust.0K10 sing.log10 0.439 0, 7, 2, 4, 5, 6 1.1, 1.3, 3.1, 3.2, 3.4
11.mpicol.cust.0K10 sing.noFreq 0.439 0, 7, 2, 4, 5, 6 1.1, 1.3, 3.1, 3.2, 3.4

11.mpi.cust.0K10 doub.noFreq 0.457 0, 7, 2, 4, 5, 6 1.4, 3.3, 3.4
11.mpi.cust.0K10 doub.actual 0.457 0, 7, 2, 4, 5, 6 1.4, 3.3, 3.4

11.mpiall.cust.0K10 doub.noFreq 0.457 0, 7, 2, 4, 5, 6 1.4, 3.3, 3.4
11.mpiall.cust.0K10 doub.actual 0.457 0, 7, 2, 4, 5, 6 1.4, 3.3, 3.4
11.mpicol.cust.0K10 doub.noFreq 0.457 0, 7, 2, 4, 5, 6 1.4, 3.3, 3.4
11.mpicol.cust.0K10 doub.actual 0.457 0, 7, 2, 4, 5, 6 1.4, 3.3, 3.4

11.mpi.cust.0K10 sing.log10 0.465 0, 7, 2, 4, 5, 6 1.1, 1.3, 3.1, 3.2, 3.4
11.mpi.cust.0K10 sing.noFreq 0.465 0, 7, 2, 4, 5, 6 1.1, 1.3, 3.1, 3.2, 3.4

11.mpiall.cust.0K10 sing.log10 0.465 0, 7, 2, 4, 5, 6 1.1, 1.3, 3.1, 3.2, 3.4
11.mpiall.cust.0K10 sing.noFreq 0.465 0, 7, 2, 4, 5, 6 1.1, 1.3, 3.1, 3.2, 3.4
11.mpi.cust.0K10 doub.noFreq 0.543 0, 7, 2, 4, 5, 6 1.4, 3.3, 3.4
11.mpi.cust.0K10 doub.actual 0.543 0, 7, 2, 4, 5, 6 1.4, 3.3, 3.4

Table VIII: Ranking Table - MPI-Bug: Wrong Collective
Operation ,Injected to Process 0

Filter Attributes B-score Top
Processes

Top
Threads

01.plt.cust.0K10 doub.log10 0.271 2 6.2, 7.3, 2.2, 5.2, 5.3
11.plt.cust.0K10 doub.log10 0.271 2 6.2, 7.3, 2.2, 5.2, 5.3
01.plt.cust.0K10 sing.actual 0.276 1 3.1, 1.4, 6.4, 3.4
11.plt.cust.0K10 sing.actual 0.276 1 3.1, 1.4, 6.4, 3.4
01.plt.cust.0K10 doub.noFreq 0.285 2 6.2, 7.3, 2.2, 5.2, 5.3
11.plt.cust.0K10 doub.noFreq 0.285 2 6.2, 7.3, 2.2, 5.2, 5.3
01.plt.cust.0K10 sing.log10 0.292 1, 4, 5 3.1, 4.3
11.plt.cust.0K10 sing.log10 0.292 1, 4, 5 3.1, 4.3

01.mpicol.cust.0K10 sing.actual 0.312 5 3.2, 6.4, 5.4, 4.2
11.mpicol.cust.0K10 sing.actual 0.312 5 3.2, 6.4, 5.4, 4.2

11.mpi.cust.0K10 sing.actual 0.331 5 3.2, 6.4, 5.4, 4.2
11.mpiall.cust.0K10 sing.actual 0.331 5 3.2, 6.4, 5.4, 4.2
01.mpiall.cust.0K10 sing.actual 0.331 5 3.2, 6.4, 5.4, 4.2

01.mpi.cust.0K10 sing.actual 0.331 5 3.2, 6.4, 5.4, 4.2
11.mpi.cust.0K10 sing.actual 0.371 5 3.2, 6.4, 5.4, 4.2

11.mpiall.cust.0K10 sing.actual 0.371 5 3.2, 6.4, 5.4, 4.2

that process 5 changed the most. Looking at the corresponding
diffNLR(5) output in Figure 7c makes it clear why process
5 was singled out. In the buggy run, it executes many more
MPI Bcast calls than in the bug-free run because the frequency
in which local “optimums” are produced has changed. Though
this should affect all traces equally, which has reflected in
the diffNLR of other traces. We are presenting these tables
and figures to show that DiffTrace can reveal the impact of
silent bugs like the wrong operation. Such data representation
via suggested tables and diffNLRs helps developers to gain
insight into the general behavior of the execution. More
accurate results can be obtained by refining the parameters and
collecting more profound traces (e.g., ParLOT(all images)).
This would be part of our future work to find the set of
parameters for different classes of bugs to maximize accuracy.

V. LULESH2 EXAMPLES

Our ultimate goal is to apply DiffTrace to complex HPC
codes. As a more complex example, we have executed the
single-cycle LULESH2[6] with 8 MPI processes and 4 OMP
threads (system configuration described in §IV) and collected
ParLOT (main image) function calls.

Before bug injection, we analyzed LULESH2 traces and
computed some statistics to gain insight into the general
control flow of LULESH2 and also to evaluate DiffTrace’s
performance and effectiveness. Our primary results show that
ParLOT instruments and captures 410 distinct function calls
on average per process, and stores them in compressed trace
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Table IX: Ranking Table for LULESH

Filter Attributes B-score Top Processes
11.1K10 sing.noFreq 0.295 2 , 3 , 4 , 5 , 6 , 7
01.1K10 sing.noFreq 0.354 0 , 1 , 2 , 3 , 4 , 5
01.1K10 sing.actual 0.383 2 , 3 , 4 , 5 , 6 , 7
11.1K10 sing.noFreq 0.408 2 , 3 , 4 , 5 , 6 , 7
11.1K10 sing.noFreq 0.408 2 , 3 , 4 , 5 , 6 , 7
01.1K10 doub.noFreq 0.433 4 , 5 , 6
01.1K10 doub.noFreq 0.433 4 , 5 , 6
11.1K10 doub.noFreq 0.433 5 , 1 , 6
01.1K10 doub.noFreq 0.455 1 , 2 , 3 , 4 , 7
11.1K10 doub.noFreq 0.458 5 , 1 , 6
11.1K10 doub.noFreq 0.458 4 , 5 , 6 , 7
01.1K10 sing.log10 0.459 1 , 2 , 3 , 4 , 5 , 6
01.1K10 doub.noFreq 0.472 0 , 1 , 2 , 3 , 4 , 5
01.1K10 sing.log10 0.475 1 , 3 , 4 , 5 , 6 , 7
01.1K10 sing.log10 0.478 1 , 2 , 3 , 4 , 5 , 6
01.1K10 sing.log10 0.478 1 , 2 , 3 , 4 , 5 , 6

files of size less than 2.8 KB on average per thread. Upon de-
compression, each per process trace file turns into a sequence
of 421503 function calls on average. The equivalent NLR of
each trace file reduces the sequence size by a factor of 1.92
and 16.74, for constant K set to 10 and 50, respectively.

For further evaluation of DiffTrace, we injected a fault into
the LULESH source code so that the process with rank 2
would not invoke the function LagrangeLeapFrog that is
in charge of updating “domain” distances and send/receive
MPI messages from other processes.

Table IX reflects the ID of processes (rightmost column)
that DiffTrace’s ranking system suggests as the most affected
traces by the bug. Since the fault in process 2 prevents other
processes from making progress and successfully terminate,
all of the process IDs appeared in the table. The generated
diffNLRs clearly showed the point at which each process
stopped making progress. Due to lack of space, we did not
include the relatively large diffNLRs of LULESH in this paper.
However, all diffNLRs and related observations are available
online via [25].

VI. RELATED WORK

Three major recent studies have emphasized the need for
better debugging tools and the need to build a community
that can share debugging methods and infrastructure: the DOE
report mentioned earlier [3], an NSF workshop [26], and
an ASCR report on extreme heterogeneity [27]. Our key
contribution in this paper is a fresh approach to debugging
that (1) incorporates methods to debug across the API-stack
by resorting to binary tracing and thereby being able to
“dial into” MPI bugs and/or OpenMP bugs (as shown in
the ILCS case study), (2) makes initial triage of debugging
methods possible via function-call traces, and (3) enables
the verification community to cohere around DiffTrace by
allowing other tools to extend our toolchain (they can tap into
it at various places).

Many HPC debugging efforts have emphasized the need
to highlight dissimilarities and incorporate progress mea-
sures on loops. We now summarize a few of them. Au-
tomaDeD [28][29] captures the application’s control flow

via Semi Markov Models and detects outlier executions.
PRODOMETER [30] detects loops in AutomaDeD models and
introduces the notion of least progressed tasks by analyzing
progress dependency graphs. DiffTrace’s DiffNLR method
does not (yet) incorporate progress measures; it only computes
changes in loop structure. Prodometer’s methods are ripe
for symbiotic incorporation into DiffTrace. We also plan to
incorporate happens-before computation as a progress measure
using FCA-based algorithms by Garg et al. [31], [32]. FCA-
based approaches have been widely used in data mining [33],
machine learning [34], and information retrieval [35].

In terms of computing differences with previous execu-
tions, we draw inspirations from Zeller’s delta-debugging [36]
and De Rose et al.’s relative debugging [10]. The power
of equivalence classes for outlier detection is researched in
STAT [14], which merges stack traces from processes into
a prefix tree, looking for equivalence-class outliers. STAT
uses the StackWalker API from Dyninst [37] to gather stack
traces and efficiently handles scaling issues through tree-
based overlay networks such as MRnet [38]. D4 [39] detects
concurrency bugs by statically analyzing source-code changes,
and DMTracker [40] detects anomalies in data movement.
The communication patterns of HPC applications can be
automatically characterized by diffing the communication ma-
trix with common patterns [41] or by detecting repetitive
patterns [42]. ScalaTrace [43] captures and compresses com-
munication traces for later replay. Synoptic [44] is applied to
distributed system logs to find bugs.

VII. DISCUSSIONS & FUTURE WORK

DiffTrace is the first tool we know of that situates debugging
around whole program diffing, and (1) provides user-selectable
front-end filters of function calls to keep; (2) summarizes
loops based on state-of-the-art algorithms to detect loop-level
behavioral differences; (3) condenses the loop-summarized
traces into concept lattices that are built using incremental
algorithms; (4) and clusters behaviors using hierarchical clus-
tering and ranks them by similarity to detect and highlight the
most salient differences. We deliberately chose the path of a
clean start that addresses missing features in existing tools and
missing collectivism in the debugging community. Our initial
assessment of this design is encouraging.

In our future work we will improve DiffTrace components
as follows: (1) Optimizing them to exploit multi-core CPUs,
thus reducing the overall analysis time; (2) Converting ParLOT
traces into Open Trace Format (OTF2) [45] by logically times-
tamping trace entries to mine temporal properties of functions
such as happened-before [46]; (3) Conducting systematic bug-
injection to see whether concept lattices and loop structures
can be used as elevated features for precise bug classifications
via machine learning and neural network techniques; and
(4) Taking up more challenging and real-world examples to
evaluate DiffTrace against similar tools, and release it to the
community.
Acknowledgements: Supported in part by NSF awards CCF
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