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We produce a trimerized kagome lattice for ultracold atoms using an optical superlattice formed
by overlaying triangular lattices generated with two colors of light at a 2:1 wavelength ratio. Adjust-
ing the depth of each lattice tunes the strong intra-trimer (J) and weak inter-trimer (J ′) tunneling
energies, and also the on-site interaction energy U . Two different trimerization patterns are distin-
guished using matter-wave diffraction. We characterize the coherence of a strongly interacting Bose
gas in this lattice, observing persistent nearest-neighbor spatial coherence in the large U/J ′ limit,
and that such coherence displays asymmetry between the strongly and the weakly coupled bonds.

Ultracold atoms in optical lattices provide highly tun-
able implementations of condensed matter models. Var-
ious lattice geometries have been realized, including pla-
quette lattices, in which identical few-site plaquettes,
with strong intra-plaquette coupling, are arrayed in a
lattice and weakly coupled to one another. Fine quan-
tum control of the few-body states and dynamics within
plaquettes have enabled experimental demonstrations of
superexchange, resonant valence states, quantum mag-
netism, and anyonic statistics [1–4].

In this work, we realize a lattice of triangular plaque-
ttes. The resulting trimerized (or “breathing”) kagome
lattice has received theoretical interest [5–7] as a stepping
stone to understanding quantum antiferromagnetism in
the kagome lattice, whose ground state properties are
not fully known [8–10]. The trimerized kagome lattice is
obtained by choosing one orientation of triangular pla-
quettes of the kagome lattice to have strong intersite
tunnelling (J) and letting plaquettes of the other ori-
entation have weak intersite tunnelling (J ′), as shown in
Fig. 1 d. For antiferromagnetically coupled spins, the
strongly coupled trimers support microscopic spin frus-
tration. The addition of weak inter-trimer coupling leads
to robust spin-liquid ground states on macroscopic scales
[5–7].

Here, we consider interacting Bose gases within a
trimerized kagome lattice with widely tunable trimeriza-
tion ratio J/J ′. In the tight-binding limit, our system is
modeled by the Hamiltonian

H = −
∑
〈p,q〉

Jpq
(
a†paq + h.c.

)
+
U

2

∑
p

np(np − 1) (1)

where 〈p, q〉 denotes summation over all pairs of neigh-
boring lattice sites p and q, Jpq = J(J ′) for strongly
(weakly) coupled bonds, and np is the number operator
for site p. Here, J and J ′ > 0 .

We study the effects of trimerization on the low-energy
dynamics and spatial coherence of an ultracold Bose gas
of 87Rb atoms trapped in this lattice. The spatial inver-
sion asymmetry of the trimerized kagome lattice reveals
itself in the momentum distribution of weakly interacting

superfluids that are prepared in the trimerized lattice and
allowed to undergo transient dynamics after the lattice
is perturbed.

For strongly interacting bosons, the trimerized kagome
lattice is predicted to support Mott insulating states in
which atoms remain coherently delocalized within trimer
plaquettes while inter-trimer coherence is suppressed by
interactions [11–13]. We study the spatial coherence of
the low-temperature Bose gas in the U/J ′ � 1 limit by
analyzing the distribution of atoms released from the lat-
tice. We observe that lattice trimerization causes the
nearest-neighbor coherence to remain strong even in the
deep Mott insulating limit, long after long-range phase
coherence has been lost. Transiently imprinting site-
selective energy shifts on the lattice-trapped gas shows
that this spatial coherence resides almost exclusively
within the strongly coupled trimer plaquettes.

We form an optical superlattice by overlaying two com-
mensurate triangular lattices, one twice the spacing of
the other [14, 15]. Each triangular lattice is formed by
the intersection of three focused laser beams at equal an-
gles and lying in a single (horizontal) plane [16]. The
short-wavelength (SW) lattice (lattice spacing a4 = 355
nm) is formed by in-plane polarized, 532-nm-wavelength
light, while the long-wavelength (LW) lattice is formed
by out-of plane polarized 1064-nm-wavelength light. The
relative position of these two lattices is stabilized inter-
ferometrically to better than 2 nm.

The unit cell of the superlattice contains four sites
of the SW lattice (labeled A – D in Fig. 1), and one
site of the LW lattice. The trimerized kagome lattice is
obtained when the LW lattice site is centered between
three equidistant nearest-neighbor sites of the SW lat-
tice, which now form the trimer of the trimerized lattice.
For example, two trimerizations, with opposite spatial
inversion asymmetry, are obtained by centering the LW
lattice sites within either the A-B-C trimer or the A-C-D
trimer. The LW lattice has three effects on the overall
superlattice. First, the energies of the three sites in the
trimer are lowered relative to the fourth one roughly by
∆V ≈ 1

2VLW where VLW is the depth of the LW lat-
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FIG. 1. Construction of the optical trimerized kagome lattice. (a) A SW triangular lattice of spacing a4 = 355 nm is formed
by in-plane polarized 532-nm-wavelength light. Sites of a 2×2 unit cell are labeled A–D. Two locations of the LW lattice site,
corresponding to right and left trimerizations are shown as filled and open white dots, respectively. (b) A LW triangular lattice
of spacing 2a4 is formed by out-of-plane polarized 1064-nm-wavelength light. Black dots indicate sites of the SW lattice. (C)
Combined superlattice potential for the right trimerized kagome lattice. (d) Tight binding model of the trimerized kagome
lattice, with strong intra-trimer tunneling J and weak inter-trimer tunneling J ′.

tice potential. When ∆V is sufficiently high, the fourth
site is unoccupied and a kagome structure is realized.
Second, the LW lattice modifies the tunneling between
sites by decreasing the tunneling barrier height between
sites within a trimer and increasing the tunneling bar-
rier between trimers. Third, the LW lattice potential
causes the combined lattice to “breathe,” with the spac-
ing between trimer sites (a) decreasing, and the nearest-
neighbor spacing between trimers (a′) increasing.

We visualize the spatial asymmetry of the trimerized
kagome lattice through the coherent diffraction of a su-
perfluid from the lattice. For this, we prepare nearly
pure Bose-Einstein condensates of 5× 104 87Rb atoms in
a hybrid optical and magnetic harmonic trap, with trap
frequencies (ωx, ωy, ωz) = 2π× (40, 70, 80) Hz, with z be-
ing the vertical axis. The atoms are then loaded into the
superlattice by simultaneously increasing depths of the
SW and LW lattices to to VSW /h = 45 kHz, VLW /h = 15
kHz by an exponential ramp [17]. The relative position
of the two lattices is adjusted to produce C6 symmet-
ric diffraction patterns of gases released from the lattice.
The gas remains only loosely confined along the trans-
verse (vertical) direction.

The momentum space distribution of this superfluid
in equilibrium, shown in Fig. 2 a, does not manifest
the broken inversion symmetry and reduced rotational
symmetry of the lattice, since the superfluid order pa-
rameter has uniform phase. To fully characterize the
lattice, we imprint complex phases onto the superfluid
wavefunction through transient dynamics. After allow-
ing the superfluid 20 ms to equilibrate in the trimerized
kagome lattice, we suddenly extinguish the SW lattice
potential and allow the atoms to evolve for a variable
time 0 < τ < 150µs in the remaining LW lattice. We
then switch off all potentials, allow the atoms to expand
freely for 20 ms, and image their spatial distribution by
absorption imaging.

The two trimerization configurations lead to strong but
opposite inversion-asymmetric diffraction patterns. We
focus on the first order diffraction peaks, occurring at

reciprocal lattice vectors G1 = k2 − k3 (et cycl.), where
ki are wavevectors of the LW lattice beams. We observe
the diffracted populations PGi

at wavevectors Gi to dif-
fer from those at −Gi, as shown in Fig. 2(b). We quan-
tify the observed differences by an asymmetry parameter
A = (

∑
i (PGi

− P−Gi
)) / (

∑
i (PGi

+ P−Gi
)) [18]. We

observe equal and opposite oscillations of A as a func-
tion of hold time τ , shown in 2 c, clearly distinguishing
the opposite inversion asymmetry of the two trimeriza-
tion patterns.

To realize the strongly interacting Bose-Hubbard
Hamiltonian, we introduce an additional one-dimensional
optical lattice, formed by a retroreflected 1064-nm-
wavelength light beam propagating along z. This lat-
tice, with depth V⊥/h = 50 kHz, divides the gas into
about 40 layers, each with trap frequencies (ωx, ωy, ωz) =
2π×(61, 61, 22×103) Hz. As the tunneling time between
layers of 400 ms is slower than the timescale of the ex-
periment, the system can be considered as an ensemble
of isolated, two dimensional systems [19].

The superlattice is ramped up as above, but to variable
final lattice depths. The ramp is adiabatic with respect to
the band gap, the interaction energy U , and the tunneling
energies J and J ′. During the ramp, an additional single-
pass, vertically propagating, 1064-nm-wavelength light
beam is introduced to provide confinement and maintain
a constant Thomas-Fermi radius in each layer.

After being held on for 40 ms, all potentials are simul-
taneously switched off, and the gas is allowed to expand
for 16 ms before being imaged. The observed distribution
approximates the momentum distribution of the lattice-
trapped gas [20].

In the tight binding limit, the momentum distribution
of a lattice-trapped Bose gas is given by

n(k) = w∗p(k)wq (k)
all∑
p,q

eik·(rp−rq)〈b†pbq〉 (2)

where 〈b†pbq〉 is the coherence between site p and q,
with rp being the position and wp(k) is the Fourier-space
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FIG. 2. Trimerization-dependent momentum space asym-
metry. (a) Momentum distribution of a superfluid within
the trimerized kagome lattice shows no asymmetry between
diffraction orders at Gi (solid circles) and −Gi (dashed cir-
cles). (b) Strong inversion asymmetry is seen after τ = 20µ
s of evolution in the LW lattice potential, with opposite sign
for right (blue triangle) and left (red triangle) trimerzations.
(c) Oscillations of the asymmetry parameter A vs. τ occur
with opposite sign for the right and left trimerizations. Each
data point represents average over 2-7 iterations. (d) Expla-
nation of the population asymmetry at early τ . Red arrows
show the direction of acceleration experienced by the Wannier
functions at sites A, B and C for the two different trimeriza-
tions. The resultant impulses displace the Wannier functions
(contours shown as blue circles) in momentum space. Imbal-
ance between PG2 and P−G2 results from interference of these
displaced Wannier functions.

Wannier function at site p, and the summation runs over
all lattice sites [20]. When the coherence length of the
system is infinite the Fourier sum evaluates to delta func-
tions at the reciprocal lattice vectors, leading to charac-
teristic sharp diffraction peaks observed in the momen-
tum distribution in the superfluid phase.

For larger U/J ′ the system is in the Mott insulating
regime, and 〈b†pbq〉 vanishes rapidly for distant p and q.
To leading order we consider only the nearest neighbor
(n.n.) terms. Then the momentum distribution can be
approximated as [16, 21, 22]

n(k)

N
' |w̃(k)|2

(
1+

cell∑
p<q

Re
[
ζpqe

ik·apq +ζ ′pqe
ik·a′

pq
])

(3)

where N is the total atom number, ν is the average filling
per site, and the indices p and q now run over sites A –
C in the unit cell. Here, apq = rp − rq is the (intra-
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FIG. 3. Time-of-flight images of strongly interacting atoms re-
leased from either the (a) trimerized kagome lattice or (c) tri-
angular lattice. As U/J ′ is increased at constant U/J , sharp
diffraction peaks are lost, leaving a broad sixfold symmetric
modulation. This modulation persists at large U/J ′ in the
trimerized kagome lattice, but disappears in the triangular
lattice. (b) Extracted n.n. coherence α for the trimerized
kagome (blue, green circles) and triangular lattice (triangles).
Data points are the average of 3-9 measurements. Error bars
are standard errors of mean.

trimer) distance vector between sites p and q, and ζpq =
2
ν 〈b
†
pbq〉 quantifies their mutual coherence, evaluated over

a bond with large tunneling energy J . Similarly, a′, ζ ′ are
evaluated over an inter-trimer bond with small tunneling
energy J ′. We simplify this expression by assuming an
identical cylindrically symmetric Wannier function w̃(k)
at each site, neglecting small site-dependent ellipticity at
the settings of our experiment.

We measure spatial coherence in the trimerized kagome
lattice at two fixed intra-trimer interaction strengths,
U/J = 5.9 and 19 [23]. As we increase U/J ′, the sharply
peaked momentum distribution of the superfluid gives
way to a broad momentum distribution in the Mott in-
sulating regime (U/J ′ � 1)), indicating the loss of long-
range phase coherence.

However, even in the strongly interacting regime, the
momentum distribution still shows modulations that in-
dicate the persistence of short-ranged spatial coherence.

We quantify the n.n. coherence by fitting the observed
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distribution with the function

n(k)

N
= |w̃(k)|2

(
1+

cell∑
p<q

[
αpq cos(k·apq)+βpq sin(k·apq)

])
.

(4)
Compared with Eq. 1, this expression is simplified by

including only one periodicity in the momentum-space
distribution along each lattice direction. This simplifica-
tion is justified both for weak trimerization, where the
lengths a and a′ are nearly equal, and also for strong
trimerization, where (as we show) the intra-trimer co-
herence dominates over the inter-trimer coherence. As
such, we identify αAB ' Re(ζAB + ζ ′BA) and βAB '
Im(ζAB + ζ ′BA), and similar for other bond directions.
Both the Gaussian width of w̃(k) and also the bond
length a are used as fitting parameters and extracted
from the images.

For the data of Fig. 3, we set βpq = 0 since the coher-
ence in this case is expected to be real valued. A single
value for the n.n. coherence function α is taken as the
average of αpq along the three bond directions. Close to
the superfluid regime, finer modulations in momentum
space, indicating coherence beyond the nearest neighbor,
are also present in the images; however, through numer-
ical simulation, we verify that these additional modula-
tions do not affect the fits by which the n.n. coherence is
extracted.

Our measurements on the trimerized kagome lattice
are benchmarked by additional measurements performed
on atoms in the primitive triangular lattice. For this, we
prepare the gas as before, with the exception that the
LW lattice light is left off. The coherence function α is
measured by the same method described above.

The fitted n.n. coherences demonstrate the influence of
trimerization of the lattice. At low values of U/J ′, in the
superfluid regime, the n.n. coherences of the triangular
and trimerized kagome lattices are similar. At larger val-
ues of U/J ′ and strong trimerization ratio J/J ′, there is a
stark difference. In the triangular lattice, the n.n. coher-
ence tends to zero in the Mott insulating limit, scaling
as α ∝ (U/J)−0.87(9), which is roughly consistent with
a perturbative treatment of a Mott insulator with uni-
form tunneling energies [16, 21, 22]. In contrast, for the
trimerized kagome lattice n.n. coherence remains large
due to persistent tunnelling within trimers. We also ob-
serve that α is smaller for larger U/J , showing the effect
of interactions to suppress coherence in a few-site system.

The simultaneous lack of long range coherence and per-
sistence of nearest-neighbor coherence implies that the
spatial coherence in the trimerized lattice is spatially
asymmetric, with large differences between the coher-
ences 〈b†pbq〉J and 〈b†pbq〉J′ . We demonstrate this fact
directly by an interferometric measurement, in which we
imprint a site-specific phase on the atomic spatial co-
herence [24]. For this, we turn off one beam of the LW
lattice (Fig. 4(a)) for a brief time τ , raising the energy of
one site in each trimer (A) above the energy of the other
two sites (B and C) by an amount ∆V ' 0.2 × VLW .
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FIG. 4. Revealing coherence asymmetry via phase imprint-
ing. (A) Change in the trimerized kagome lattice potential
when one LW lattice beam is switched off. Site A is detuned
from sites B and C by ∆V . (b) The phase imprint from
applying this energy offset for variable τ causes the initially
symmetric momentum distribution (τ = 0) to evolve. Dashed
lines have the same directions as the lattice distance vectors
and indicate the directions of modulation. (c) Qualitatively
similar momentum distributions are calculated for a superpo-
sition of three identical Gaussian wavefunctions at the sites of
a trimer, with a complex phase applied at one site. The width
of the Gaussian function and the visibility of interference are
based on experimental parameters. (d) Coherence functions
αAB and βAB obtained from fitting Eq. 4 to the observed mo-
mentum distributions oscillate out of phase. The equal am-
plitudes of oscillation for strong trimerization (U/J ′ = 215
and 571) show that n.n. coherence resides nearly exclusively
on the strongly coupled bonds. Data points are averages of
2-3 measurements. Error bars are standard errors of mean.

This energy offset causes the coherence functions to be-
come complex, evolving as ζAB(τ) = eiφζAB(0) and
ζ ′AB(τ) = e−iφζ ′CA(0), and similar for ζAC and ζ ′AC , with
φ = ∆V τ/~.

This phase imprint has a pronounced effect on the mo-
mentum distribution (Fig. 4). In the limit that n.n. co-
herence remains only on the intra-trimer bonds, we ex-
pect αAB ∝ cos(φ) and βAB ∝ sin(φ) to oscillate out



5

of phase and with equal amplitude with τ . Fitting the
observed momentum distribution using Eq. 4 while al-
lowing for non-zero βpq and time-varying spacing apq, we
observe such equal amplitude oscillations for the case of
strong interactions and strong trimerization, demonstrat-
ing that, for these settings, n.n. coherence resides nearly
exclusively on the intra-trimer bonds. In the case of
weaker trimerization and closer to the superfluid regime,
we still observe oscillations in βAC , but with diminished
amplitude with respect to those in αAC . This observa-
tion demonstrates that, while n.n. coherences in this case
are still stronger on the intra-trimer bonds, there exists
discernible coherence also on the inter-trimer bonds.

The temporal oscillations of α(τ) (β(τ)) are not purely
cosinusoidal (sinusoidal), and appear to decay in time.
This feature may be explained by residual effects of in-
teractions and tunneling after the lattice modification.
A three-site Bose-Hubbard model calculation, account-
ing for the interaction energy U , tunneling energy J and
energy offset ∆V within a single trimer, reproduces the
observed behavior as resulting from the few-body energy

spectrum, up to an overall scaling of the coherence [25].
The trimerized kagome lattice presents a new set-

ting for experimental quantum simulation of condensed-
matter and many-body quantum physics. Our present
work is performed on gases with a high filling factor,
reaching as high as ν = 8/3 atoms per site (8 atoms per
trimer) at the center of the gas. Reaching filling fac-
tors below ν = 1 would allow for definitive studies of the
predicted fractional (per site) Mott insulating state [12].
Future experiments may identify few-body eigenstates
within single trimers can be identified by precise spec-
troscopy. These eigenstates include circulating states, to
which atoms can be driven to to realize quantum simu-
lations of materials with orbital magnetism [26]. Alter-
nately, trapping two-state fermions within the trimerized
kagome lattice at half filling can simulate the spin-1/2
Heisenberg antiferromagnet, which is expected to have a
spin-liquid ground state [26–28].

We thank Y.M. Tso for experimental assistance. This
work was supported by the NSF, and by the AFOSR
and ARO through the MURI program (grant numbers
FA9550-14-1-0035 and W911NF-17-1-0323, respectively).
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SUPPLEMENTARY MATERIAL

I. BOSE-HUBBARD CALCULATION

In our explanation of the phase-imprint technique in the text, we referred to a three site Bose-Hubbard model
calculation. In this section we provide further details of both this calculation, and its explanation of the observed
temporal decay of the coherences αAB and βAB in the phase imprint technique.

The calculation begins by exactly diagonalizing the three site Bose-Hubbard model HI below in the N particle
sector,

HI = −J
∑
<p,q>

b†pbq +
U

2

∑
p=A,B,C

np(np − 1), (5)

where np is the number of atoms on site p ∈ {A,B,C}.
We then diagonalize the same Hamiltonian with an energy offset ∆V on site A:

HPI = HI + ∆V nA. (6)

We project the ground state of HI onto the eigenstates of HPI , evolve eigenstates at eigenfrequencies and construct
the nearest-neighbor coherences,

αAB =
2

v
Re(b†AbB) (7)

βAB =
2

v
Im(b†AbB). (8)

We do not account for changes to U and J in the new potential. We also neglect occupation of the 4th site and
tunneling between plaquettes, which is appropriate only for short timescales.

A. Data Comparison

We find good agreement between the coherences αAB and βAB calculated from this model and those obtained in
data for a range of particles per trimer, as shown in figure S1. We note that all of the theoretical coherences have
been scaled by a constant factor of 2/3 to obtain a good agreement. We believe that this constant scaling accounts
for the non-zero temperature of the data. The decay of both the αAB and βAB coherences is clearly visible in the
theory.

B. Explanation

To illuminate the cause of this decay, we focus on the N = 3 sector. The ground state of the initial Hamiltonian
HI has equal population in the sites A, B and C. This ground state is primarily projected into three eigenstates of
HPI , which are shown in figure S2. The most populated state is an excited state with energy ∆V + O(U) but the
ground state of energy O(U) and an excited state of energy 2∆V +O(U) are also substantially populated. Interference
between the most populated state and the other two states leads to an oscillation in the coherence at approximately
∆V , but because the interaction energies of all three of these states are different, we see a two frequency oscillation.
Over the short section of data taken this two frequency evolution is not well resolved and looks like decay.
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FIG. S1. Comparison of the nearest neighbor coherence data (circles) to an exact solution of the three site Bose-Hubbard model
(solid lines) for the phase imprint experiment. Theory lines have been uniformly scaled by 2/3 in the y-axis. The multiple
theory lines correspond to different particle number ν per trimer.



9

A

B

C

Lorem ipsum

Lorem ipsum

Ground State
E = 0 kHz
Population  0.12

5th Excited State
E = 11.0 kHz
Population  0.8

8th Excited State
E = 24.8 kHz
Population  0.07

V532 = 85 kHz
V1064 = 62 kHz
N = 3

A B C
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
E = 0 kHz (weight = 0.12)
E = 11kHz (weight = 0.8)
E = 24.8 kHz (weight = 0.08)

(a)

(b)

FIG. S2. (a) Densities of the eigenstates responsible for the beating in the phase imprint experiment. The ground band of the
trimerized kagome lattice at VSW /h = 85 kHz, VLW /h = 62 kHz (U =1.7 kHz, J = 3 Hz) mostly projects into three eigenstates
of the new potential. The populations of these eigenstates in the three sites A, B and C are depicted by the areas of the blue
circles. The largest population is an equal density state (5th excited state) but a significant population exists in the ground
state and the eighth excited states, all of which have different interaction energies. Interference occurs between the ground and
5th excited state at 11.0 kHz, and between the fifth and eight excited states at 13.8 kHz. (b) The probability density at the
three sites of a trimer for the three most highly populated engenstates in the new basis.
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