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D istributed learning has become a critical enabler of the mas-
sively connected world that many people envision. This article 
discusses four key elements of scalable distributed processing 

and real-time intelligence: problems, data, communication, and 
computation. Our aim is to provide a unique perspective of how 
these elements should work together in an effective and coherent 
manner. In particular, we selectively review recent techniques de-
veloped for optimizing nonconvex models (i.e., problem classes) 
that process batch and streaming data (data types) across net-
works in a distributed manner (communication and computation 
paradigm). We describe the intuitions and connections behind a 
core set of popular distributed algorithms, emphasizing how to 
balance computation and communication costs. Practical issues 
and future research directions will also be discussed.

Introduction
We live in a highly connected world, and it will become exponen-
tially more so within a decade. By 2030, there will be more than 
125 billion interconnected smart devices, creating a massive net-
work of intelligent appliances, cars, gadgets, and tools [41]. These 
devices collect a huge amount of real-time data, perform complex 
computational tasks, and provide vital services that significantly 
improve our lives and enrich our collective productivity.

In a massively connected world, the four key elements dis-
cussed previously (namely, problems, data, communication, 
and computation) enable scalable distributed processing and 
real-time intelligence. They are closely tied to each other, as 
illustrated in Figure 1. For example, without a meaningful 
machine learning (ML) problem, using massive computa-
tional resources to crunch large amounts of data rarely leads 
to any actionable intelligence. Similarly, despite their sophis-
ticated design and helpful interpretation from neural scienc-
es, modern neural networks may not be successful without 
highly efficient computation methods. The overarching goal 
of this selective review is to provide a fresh point of view that 
relates how these elements should work together in the most 
effective and coherent manner to realize scalable process-
ing, real-time intelligence, and, ultimately, contribute to the 
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vision of a smart, highly connected world. Some key aspects 
to be taken into consideration are:

 ■ Nonconvexity: For many emerging distributed applications, 
the problems that distributed nodes must solve will be highly 
complicated. For instance, in distributed ML, the nodes (e.g., 
mobile devices) jointly learn a model based on local data 
(e.g., the images on each device). To accurately represent the 
local data, the nodes are often required to use nonconvex loss 
functions, such as those that compose multiple nonlinear acti-
vation functions, through collaborative deep learning [1]–[3].

 ■ Data acquisition processes: One of the main reasons behind 
the success of ML is the ability to process data at scale. This 
means that one can quickly process large volumes of infor-
mation (i.e., deal with batch data) and, more importantly, it 

requires the ability to handle streaming data. There is an 
urgent need (and, hence, a growing body of research) to 
accommodate the massive amount of streaming data from 
online review platforms (e.g., Amazon), social networks 
(e.g., Facebook), and so forth.

 ■ Distributed processing: The growing network size, increas-
ing amount of distributed data, and requirements for real-
time response often make traditional centralized processing 
unviable. For example, self-driving cars should be carefully 
coordinated when they meet at intersections, but since every 
such vehicle can generate up to 40 gigabytes of data (e.g., 
from lidar and cameras) per second—an amount that over-
whelms the fastest cellular networks—it is impossible to 
pool all the information for real-time central control. This 
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FIGURE 1. The overview of the key elements in distributed learning. (a) The flow between different elements at a single data agent (e.g., an image) is taken 
from diverse types through an oracle and processed locally before communicating with other agents. The goal is to tackle a nonconvex learning problem. 
(b) Distributed learning on a network of agents.
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and other examples, from small and ordinary devices (e.g., 
in-home smart appliances) to large and vitally important 
infrastructure (e.g., national power-distribution networks), 
show how essential fast distributed processing will be to 
our collective well-being, productivity, and prosperity.
This article examines recent advances on distributed algo-

rithms. Unlike existing articles [4]–[6], this one centers around 
nonconvex optimization and learning problems. We reveal con-
nections and design insights related to a core set of first-order 
algorithms while highlighting the interplay among problems, 
data, computation, and communication. We hope that the connec-
tions we discuss will help the readers compare the theoretical and 
practical properties between algorithms and translate new features 
and theoretical advances developed for one kind of algorithm to 
equivalent types without the risk of “reinventing the wheel.”

Problems and data models

Problem class
Consider n interconnected agents. The network connect-
ing them is represented by a (directed or undirected) graph, 

( , ),G V E=  where { , ..., }n1V =  is the set of agents, and 
E V V#3  is the set of communication links between agents. 
The goal for the agents is to find a solution, =: ( , ..., ),n1j i i* * *  
that tackles the nonconvex optimization problem
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where : { }f RH " , 3  is a (possibly nonconvex) cost func-
tion of the ith agent. Equation (1) contains a coupling constraint 
that enforces consensus. When G is undirected and connected, 
we have n1 gi i= = , and an optimal solution to (1) is a mini-
mizer to the following equivalent optimization problem:
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The consensus formulation motivates a decentralized approach 
to finding high-quality solutions because each agent i can only 
access its local cost function fi  and process its local data 
through messages exchanged with its neighbors.

Without assuming convexity for (1), one cannot hope to 
find an optimal solution using a reasonable amount of effort, 
since solving a nonconvex problem is, in general, NP-hard [7]. 
Instead, we resort to finding stationary, consensual solutions 
whose gradients are small and variables are in consensus. For-
mally, letting ,0$e  we say that ( , , )n1 fj i i=  is an -e sta-
tionary solution to (1) if
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Next, we summarize two commonly used conditions when 
approaching (1).

Assumption 1
The graph, G, is undirected and connected. For , ..., ,i n1=  
the cost function ( )fi i  is L-smooth, satisfying the follow-
ing condition:

 .( ) ( ) , ,f f L Ri i
ddd d 6#i i i i i i- -l l l  (3)

Furthermore, the average function : { }f RH " , 3  is lower-
bounded across the domain .H

Assumption 1, together with (1), describes a general setup 
for distributed learning problems. Our goal is to find a station-
ary, consensual solution satisfying (2). We remark that several 
recent works [8]–[12] have analyzed the more powerful forms of 
convergence, such as second-order stationary and global optimal 
solutions. However, establishing these results requires additional 
assumptions, which further restricts the problem class. We refrain 
from discussing these works in detail due to space limitations.

Having fixed the problem class, a distributed learning sys-
tem consists of data acquisition and local processing steps per-
formed at a local agent and a communication step to exchange 
information between agents. We summarize these key ele-
ments and their interactions in Figure 1.

Data model
We adopt a local data oracle model [denoted DO ( )]i ii  to de-
scribe how information about cost function fi  is retrieved in 
distributed learning. Since we focus on first-order algorithms 
in the sequel, the oracle DO ( )i ii  is characterized as various 
estimates of the gradient .( )fi id i

Batch data
This is a classical setting where the entire local data set is 
available at any time; it is also known as the offline learning 
setting. Denote , , ...,, , ,i i i M1 2 ip p p  as the local data set of agent 
i with Mi  data samples. The local cost function and DO are 
given by the finite sums
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M
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where ( ; )F ,i i ii p ,  is the cost function corresponding to the 
( , )i th,  data sample.

Streaming data
In this setting, the data are revealed in a streaming (or online) 
fashion. We first specify our cost function as a stochastic func-
tion, ( ) ( ; )f FE ( )i i i i ii i ii p= $+p r ,6 @  where ( )·ir  is a probability 
distribution of .ip  At each iteration t, querying the DO draws 
mt  independent and identically distributed (i.i.d.) samples for 
the learning task; thus
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where ( ),,i
t

i t
1 $+p r,

+ , , ,m1 f, =  which is an unbiased es -
timate of the gradient; i.e., DO .fE ( ) i ii di i=$+p r ^ ^h h6 @  

Assumption 2
Consider the DO in (5) and random samples p  drawn as i.i.d. 
from (·) .ir  Assume
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In other words, the random variable DOi i^ h has a uniformly 
bounded variance. A related setting involves a large but fixed 
data set ( )M 1i &  at agent i, denoted by { , ..., },, ,i i M1 ip p  and fi  
is given by (4). Accessing the full data set entails an undesirable 

( )MO i  computation complexity. As a remedy, we can uniformly 
draw at each iteration a small batch of random samples ( )m Mi%  
from the large data set. This results in a DO akin to (5).

Examples and challenges
We conclude this section by listing a few popular examples of 
nonconvex learning problems and how they fit into the models 
described previously. Moreover, we discuss the challenges with 
nonconvex distributed learning that motivate the algorithms to 
be reviewed in this article.

Example 1: Binary classifier training with neural network
For each { , ..., },i n1!  suppose that a stream of training data 

, , ..., ,i
t

i
t

1 2p p  is available at the ith agent, where ( , )x y, , ,i j
t

i j
t

i j
tp =  is 

a tuple containing the feature x R,i j
t m!  and label { , } .y 0 1,i j

t !  
Letting ( , ..., )W W( ) ( )L1i =  be the parameters of an L-layer 
neural network, we consider the model in (1) with the follow-
ing logistic loss:

 ( ; ) ( ) ( ( )) ( ),log logx xF y h y h1 1, , , , ,i i j
t

i j
t

i j
t

i j
t

i j
ti p = - - +i i  (7)

where ( )xh ,i j
t

i  is the sigmoid function ;xg1 ,i j
t 1

i+ -^ ^ hh  such 
that ;xg ,i j

t i^ h  is the softmax output of the last layer of the 
neural network, with x ,i j

t  being the input. The hidden layer of 
the neural network may be defined as ( )g gu W( ) ( ) ( )1 1=, , ,+ +  
for , ..., ,L0 1, = -  where (·)u  is an activation function and 

.g x( )
,i j

t0 =  The goal of (1) is to find a set of optimal param-
eters for the neural network, taking into account the (poten-
tially heterogeneous) data received at all agents. Here, the 
loss function fi i^ h is nonconvex but satisfies Assumption 1, 
and the DO follows the streaming-data model.

Example 2: Matrix factorization
The ith agent has a fixed set of Mi  samples, where the , th 
sample is denoted by .x R, ,i i

m1!p = ,,  The data received at the 
agents can be encoded using the columns of dictionary matrix 

;Rm m1 2!U #  i.e., .x y, ,i i. U, ,  The goal is to learn a factor-
ization with dictionary U  and codes .(   )Y y y, ,i i i M1 ig=  Let 

(   )X x x, ,i i i M1 ig=  be the data. The learning problem is
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where ,A Yi  represent some constraints on the dictionary and 
codes to ensure identifiability. An interesting aspect of (8) is 
that the problem optimizes a common variable, ,U  and a pri-
vate variable, ;Yi  in particular, the corresponding local cost is 
given by: .min X Yf Yi i i

2
FYi iU U= -d^ h  The common vari-

able is jointly decided by the data received at the agents, while 
the private variables are nuisance parameters determined lo-
cally. Here, the cost function fi i^ h satisfies Assumption 1, and 
the DO follows the batch-data model.

Handling nonconvex distributed learning problems involves 
several unique challenges. First, directly applying algorithms 
developed for convex problems to the nonconvex setting may 
lead to unexpected algorithm behaviors. To see this, we pro-
vide a simple example below.

Example 3
Consider (1) with d = 1, n = 2 agents connected via one edge. 
Let ( ) /f 21 1 1

2i i=  and ( ) / ,f 22 2 2
2i i=-  where f2  is nonconvex. 

Note that any 1 2i i=  is an optimal solution to the consensus 
problem. However, applying the classical distributed gradient 
descent (DGD) method [13] [to be discussed in the “Algo-
rithms for Batch Data” section; see (18)] with the constant step 
size 02c  generates the following iterates:
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(9)

For all ,02c  the spectral radius of ( )M c  is larger than 
one, so the iteration always diverges. On the contrary, we can 
verify that the DGD converges linearly to a solution satisfying 

1 2i i=  with any positive step sizes if we change the objective 
functions to ( ) ( ) .f f 01 1 2 2i i= =  Generally, if the problem is 
convex, the DGD converges to a neighborhood of the optimal 
solution when small, constant step sizes are used. This is in 
contrast to (9), which diverges regardless (as long as the step 
size is a constant).

Second, it is challenging to deal with heterogeneous data 
when their distributions vary between agents. This is because 
the local update directions can be different compared with the 
information communicated from the neighbors. Considering 
Example 3 again, the divergence of the DGD can be attrib-
uted to the fact that the local functions have different local 
data, leading to ( ) ( ) .f f1 2d di i=-  Other practical challenges 
include implementing distributed algorithms so they scale to 
large networks and model sizes. Moreover, an effective dis-
tributed algorithm should jointly design the communication 
and computation protocols. Addressing these challenges is the 
next focus.

Balancing communication and computation  
in distributed learning
We study distributed algorithms for tackling problem (1). For 
simplicity, we assume a scalar optimization variable (i.e., d = 1) 
throughout this section. Distributed algorithms require a bal-
anced design to facilitate the computation and  communication 
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capability of a distributed learning system. This section delin-
eates how existing algorithms overcome such a challenge by 
using different data oracles. In a nutshell, the batch-data set-
ting can be tackled through a primal-dual optimization frame-
work or a family of gradient-tracking (GT) methods, while the 
streaming-data setting is commonly resolved through the DGD 
or GT approaches. A summary of the reviewed algorithms can 
be found in Figure 2. Next, we review some basic concepts 
about distributed processing on networks.

Considering an undirected graph ( , ),G V E=  we define its 
degree matrix as : ( , ..., ),D d ddiag n1=  where di is the degree 
of node i (excluding self-loops). The graph incidence matrix 
A R | | nE! #  has ,A 1ei =  A 1ej =-  if ,j i2  ( , ) ,e i j E!=  and 
A 0ek =  for all { , }.\k i jV!  Note that :A A L RG

n n!= #<  is 
the graph Laplacian matrix. Finally, a mixing matrix, W, satis-
fies the following conditions:
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For instance, the mixing matrix can be chosen as the dou-
bly stochastic matrix: For some ( , ),0 1!a
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see [14] for other designs. For any ,Rn!j  we observe that
,WA A j j<  can be calculated via message exchange among 

neighboring agents.
The mixing and/or graph Laplacian matrix specifies the com-

munication pattern in distributed learning. Since ( / ) ,11W n1=3 <  

FIGURE 2. An overview of distributed algorithms for nonconvex learning. (a) The reviewed algorithms. (b) The connections between algorithms. 
Orange (respectively, green) patches refer to algorithms designed for batch (respectively, streaming) data. Lines with a single arrow indicate that one 
algorithm can reduce to another; those with double arrows mean that the algorithms are equivalent. Dotted lines signify that the algorithms are related 
(the conditions are given above the line). Prox-GDPA: proximal gradient primal-dual algorithm; IC-ADMM: inexact consensus, alternating-direction 
method of multipliers; DSGD: distributed stochastic GD; SGP: stochastic gradient push; EXTRA: exact first-order algorithm; SONATA: successive 
convex-approximation algorithm over time-varying digraphs; D2: disjunctive decomposition; GNSD: GT-based nonconvex stochastic algorithm for 
decentralized training.
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the mixing matrix enables one to distributively compute the aver-
age by repeatedly applying the mixing matrix. Because the gra-
dient ( ) ( )/n f1 i

n
i1d iR =  is the average of the local gradients, the 

easiest way to derive a distributed algorithm is to compute the 
exact average of the gradient by applying W repeatedly. Such a dis-
tributed algorithm will behave exactly the same as the centralized 
gradient algorithm, and it may save computation (gradient or data-
oracle evaluation) through a faster convergence rate; however, the 
communication (message exchange) cost can be overwhelming.

Algorithms for batch data
In the batch-data setting, the data oracle returns an exact gradi-
ent DO ( ) ( )fi i i idi i=  at the ith agent at any time. This setting 
is typical for small-to-moderate data sets where gradient com-
putation is cheap. To this end, the general design philosophy 
is to adopt techniques developed for deterministic first-order 
methods and specialize them to distributed learning, consider-
ing the communication constraint.

Primal-dual methods
Letting ( , , )n1 fj i i= <  be the collection of local variables, 
we observe that the consensus constraint H  can be rewritten as 
a set of linear equalities: { ( , , )  }.A 0H n1 fj ji i= = =<  It 
is then natural to consider the augmented Lagrangian of (1):

 ( , ) ( ) ,A A
n

f c1
2

L i
i

n

i
1

2
j j jn ni= + +<

=

/  (12)

where R | |E!n  is the dual variable of the constraint A 0,j =  
and c > 0 is a penalty parameter. The quadratic term A

2
j  

is a coupling term linking the local variables ( , ..., ) .n1j i i= <

The proximal gradient primal-dual algorithm (Prox-GPDA) 
[15] considers a primal step that minimizes a linearized ver-
sion of (12) and the dual step that performs the gradient ascent:
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where , , ...t 0 1=  is the iteration number, ( ) : ( / )f n1d j =

( ( ), , ( ))f fn n1 1d f di i <  stacks up the gradients, and : diagY =

( , , )n1 fb b  is a diagonal matrix. Equations (13) and (14) lead to
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respectively. Setting :p ( , )i
t

j i j j
t

EnR= !;  shows that (15) can be 
decomposed into n parallel updates:
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This is a distributed algorithm implementable using one 
message exchange (i.e., getting )( , )j i j j

t 1
EiR !;

+  and one DO 
evaluation per iteration. By lending to the proofs for gen-
eral primal-dual algorithms, [15] shows that, given a proper 

, { },c ib  at most, ( / )1O e  iterations are required to find an 
-stationarye  solution.

Equation (16) shows that a distributed algorithm with 
a balanced computation and communication cost can be 
derived from the primal-dual method, which has a strong 
connection with existing distributed algorithms. First, we 
note that the inexact consensus, alternating-direction method 
of multipliers (IC-ADMM) [16, Algorithm 2] that applies the 
ADMM with an inexact gradient update follows exactly the 
same form as (16). To see the connection for other algorithms, 
let us subtract (15) at the tth iteration by the ( )t 1 th-  one:
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Because ( ) ,A A Act t t1n n j- = << -  we have an equivalent 
form of the Prox-GPDA:
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We see that the Prox-GPDA has various equivalent forms in 
(13)–(17). In the following, we show that a number of existing 
algorithms share communication/computation steps that are 
similar to the Prox-GPDA.

Decentralized GD algorithm
Initially proposed by [13] for convex problems, the decentral-
ized GD algorithm is one of the most popular distributed al-
gorithms. It uses the penalized problem ( )min fi

n
i i1Rn iR +!j =

( / ) ,1 2 I W
2

nja -  where 02a  is a penalty parameter, and ap-
plies the GD method with step size a  to yield

 ( ), , .....W f t 0 1t t t1 ! d 6j j ja- =+  (18)

We note that this is a primal method because it apparently 
does not involve dual variables. Nonetheless, the decentral-
ized GD’s update formula can be derived from the Prox-GPDA 
as we consider (15) with , ,D It c20t

n
16n aY= + = -  and 

.W I A Acn a= - <  However, unlike Prox-GDPA, to guaran-
tee convergence to a stationary solution, the decentralized 
GD requires a diminishing step size since /t1ta =  and an 
additional assumption that ( )fi id i  is bounded for any ii  and 

, ,i n1 f=  [17, Th. 2].

EXTRA
The exact first-order algorithm (EXTRA) was proposed in [18] 
as an alternative to the decentralized GD, with a convergence 
guarantee achieved by using a constant step size. Again, using 
the mixing matrix ,W  the algorithm is described as follows. 
First, we initialize by ( ),W f1 0 0! dj j ja-  then EXTRA is 
given by
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A distinctive feature of (19) is that the equation computes 
the weighted difference between the previous two iterates, tj  
and .t 1j -  Interestingly, the preceding form of EXTRA is a 
special instance of the Prox-GPDA. Setting D Ic2 n

1aY+ = -  
in (17), we obtain
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(20)

By choosing W I A Ac2n a= - <  and the preceding update, 
we recover (19). The original proof in [18] assumes convex-
ity for (1), but due to the previously stated equivalence, the 
proof for the Prox-GPDA for nonconvex problems carries 
over to the EXTRA. It is worth mentioning that the original 
EXTRA in [18] takes a slightly more general form. That is, 
the term ( / ) ( )I W1 2 n +  in (19) can be replaced by another 
mixing matrix, ,Wu  which satisfies ( ) ,/I W WW2n * *+ u  
and { } { }.I W 1null spann - =u  However, it is not clear if this 
general form works for nonconvex distributed problems.

Rate-optimal schemes
A fundamental question about the distributed problem in 
(1) is: What are the minimum computation and commu-
nication costs required to find an stationary-e  solution? 
An answer is given in [19]. For any distributed algorithm 
using gradient information, at least (( ( )) )LG

1e pX -  
communication rounds and ( )1eX -  rounds of gradient 
evaluation are required to attain an stationary-e  solution, 
where ( ) : ( ) / ( )L L Lmin maxG G Gp m m=  is the ratio between the 
smallest nonzero and largest eigenvalues of the graph La-
placian matrix, .LG  [In every gradient evaluation, each 
local node i evaluates ( )fi $d  once.] Interestingly, the Prox-
GPDA, EXTRA, and IC-ADMM achieve the lower com-
munication and computation bounds in star and fully con-
nected networks. For the general network topology, [19] 
proposed a near-optimal scheme, xFilter, which updates 
j  by considering

 
.

( ) ( )argmin f A
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t t t
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(21)

Compared to (13), the quadratic term / )( Ac 2
2

j  is not 
linearized. This term couples the local variables, so (21) itself 
does not lead to a distributed update for .t 1j +  To resolve this 
issue, the authors proposed to generate t 1j +  by using the 
Qth-order Chebychev polynomial to approximately solve (21). 
They showed that setting ( / ( ))LQ 1O Gp= u  suffices to pro-
duce an algorithm that requires (( ( )) )LO G

1e p -u  communica-
tion rounds and ( )O 1e-  gradient-evaluation rounds, where the 
notation ( )O $u  hides a log function of n (which is usually small). 

This matches the aforementioned lower bounds. Similarly, the 
communication effort required is nearly optimal (up to a multi-
plicative logarithmic factor). Further, compared with the other 
batch methods reviewed in this article, this is the only algo-
rithm whose gradient-evaluation complexity is independent of 
the graph structure.

GT-based methods
Another class of algorithms that can deal with the noncon-
vex problem in (1) leverages the GT technique. The method 
is based on the simple idea that if every agent has access to 
the global gradient / /n nf1 1i

n
i j

n
j
t

1 1d iR R= = ,^ h  the (centralized) 
GD can be performed at each agent. The GT technique pro-
vides an iterative approach to do so approximately. The algo-
rithm performs two message exchanges during each iteration 
[with Wt  satisfying (10)]:

 
,  

( ) ( ), , , ....

W g

g Wg f f t 1 2 

t t t

t t t t

1

1 1

!

! d d 6

j j

j j

a-

+ - =

+

+ +

t

t  
(22)

The ith element gi
t  of gt  is the local estimate of the global 

gradient at each agent i, obtained by mixing the estimates of 
its neighbors and refreshing its local .fid  As shown in [20], GT 
algorithm (22) converges at a rate of ( / )1O e  to a stationary 
point. One key strength of the GT-based methods is that they 
can also work in directed and time-varying graphs; see [20] for 
more discussions.

We remark that the GT-based method is related to the gen-
eral form of the EXTRA. To see this, we subtract the updates 
of t 1j +  and tj  and apply the update of gt  to obtain

 
( ( ) ( )),

, , ....

W W f f

t

2

1 2

t t t t t1 2 1 1! d d

6

j j j j ja- - -

=

+ - -t t
 

(23)

It can be shown that if Wt  satisfies ( ) ,W W IW 2 n
2* * -t t t  

the algorithm takes the same form as the generalized EX-
TRA discussed after (20); see [21, Sec. 2.2.1]. However, the 
analysis for the generalized EXTRA works only on convex 
problems and does not carry over to the GT method in the 
nonconvex setting. We remark that all of the previous algo-
rithms except the decentralized GD converge for Example 3. 
This is because for the latter example, the gradient can 
be unbounded.

Algorithms for streaming data
In the streaming-data setting, the data oracle returns 
DO ( ),i i

ti  which is an unbiased estimator of ( ),fi i
td i  with fi-

nite variance under Assumption 2. This data model is typi-
cal for processing large-to-infinite data sets. Balancing the 
communication and computation costs is an important issue 
since even the centralized algorithm may have slow conver-
gence. The first study of distributed stochastic algorithms 
dates to Tsitsiklis et al. [22] who studied the asymptotic 
convergence of the DSGD algorithm reviewed here. The 
DSGD algorithm is relevant to the distributed estimation 
problem that is important in adaptive signal processing; 
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therefore, many works study its transient behavior (of bias, 
mean-squared error, and so forth); e.g., [23] and [24] and the 
overview in [5]. Unfortunately, those works mainly focus on 
convex problems. We review the more recent results dedi-
cated to the nonconvex learning setting with nonasymptotic 
convergence analysis.

DSGD algorithm
This class of algorithm replaces the deterministic oracle in the 
decentralized GD with the stochastic oracle (5). It takes the 
following form:

 DO( ), , , ...,W t 1 2t t t t1 ! 6j j ja- =+  (24)

where 0t 2a  is the step size and DO( DO) : ( ( ), ,t t
1 1 fj i=  

DO ( )) .n n
ti <  Obviously, the DSGD can be implemented in a dis-

tributed manner via mixing matrix .W  The study of such an 
algorithm in the nonconvex setting dates to the work in [22]. 
Among other results, the authors showed that if the step-size 
sequence satisfies /c tt #a  for some ,c 02  the DSGD algo-
rithm almost certainly converges to a first-order stationary so-
lution. However, [22] mainly provides asymptotic convergence 
conditions without a clear indication of whether the DSGD can 
outperform its centralized counterpart.

Recently, the DSGD (as well as decentralized, parallel sto-
chastic GD) was applied in [3] for the decentralized training 
of neural networks, and the convergence rate was analyzed in 
[25]. In the analysis by [25], the following condition for the 
data across agents is assumed:

 ( ) ( ) , .
n

f f1 Ri
i

n
2

1

2d d 3 61; ; # !i i w i-
=

/  (25)

Such an assumption can be difficult to verify, and it is required 
only when analyzing the DSGD convergence rate for noncon-
vex problems. For example, if the loss function is a quadratic 
function of the form, ( ) ,f a b1 2i i i

2
i i= +  the correspond-

ing gradient is a linear function of ( ): .f a bi i idi i i= +  The 
left-hand side of (25) is unbounded if /( ) ;a n a1i jj

n

1
!

=
/  

i.e., whenever the cost function is heterogeneous.
Under (25) and Assumptions 1 and 2, for any sufficiently 

large ,T  if we set /( )n TOt 2a v= ^ h for all ,t 0$  the DSGD 
finds an approximate stationary solution to (1), satisfying 

Gap /[ ( )] ,nTE Otj v=
u ^ h  where tu  is uniformly drawn from 

, , T1 f" , [25, Cor. 2]. Compared to the centralized SGD 
algorithm where a single sample is used each time, a speedup 
factor of / n1  is observed, which is due to the variance-
reduction effect that results from averaging the samples from 
the n  nodes. Yet achieving this requires ( )1O2w =  so that 
the data are homogeneous across the agents. See [11] and 
[12], which show that the DSGD algorithm converges to a 
second-order stationary solution under a condition similar to 
(25). In summary, the DSGD algorithm is simple to imple-
ment, but it has a major limitation when dealing with het-
erogeneous data, a shortcoming that is demonstrated in our 
numerical experiments.

D2  algorithm
To remove the local data assumption in (25) from the DSGD, 
the D2  algorithm was proposed in [26]. Using mixing matrix 

,W  the recursion of D2  is given as

 
DO( DO(

, , .

) ) ,W W W

t 1 2

2 t t 1t t t t1 1!

6 f

j j j j ja

=

- - -+ - -^ h
 (26)

In addition to the previous conditions for the weight matrix 
in (10), the D2  requires a special condition, /( ) ,W 1 3min 2m -  
which implies that the weight of combining the current node 
is greater than that of combining its neighbors. Together 
with Assumptions 1 and 2, for any sufficiently large ,T  
we set /( )n TOt 2a v= ^ h for all ,t 0$  and the D2  finds 
an approximate stationary solution [26] to (1), satisfying 

/i i ,n f nTE On
j

t
j

1
1

2d i v=-
=

u^ ^h h8 B/  where tu  is uniformly 
drawn from , , .T1 f" ,

Comparing (26) with (23) reveals a close similarity 
between the D2  and GT: Both algorithms use the current and 
the previous DOs, and both require two local communication 
rounds per iteration. The difference is that the GT method 
applies a squared mixing matrix, ,W2  on t 1j -  instead of 
mixing matrix W  for the ,D2  and a W  multiplies the differ-
ence of the gradient estimates. Such a seemingly minor dif-
ference turns out to be one major limiting factor for the .D2

Example 4 
Consider a line network consisting of three nodes, with ( )f xi = 
( ) ,x bi

2-  , ,i 1 2 3=  (for some fixed ),bi  and mixing matrix 
[ . , . , ; . , , . ; , . , . ],W 0 5 0 5 0 0 5 0 0 5 0 0 5 0 5=  which has eigenval-

ues . , . , .0 5 0 5 1-" ,  One can show that the D2  diverges for any 
constant .0 25t #a  or diminishing step size / .t1ta =

Distributed stochastic GT algorithm
How can we design algorithms that can deal with heteroge-
neous data and require conditions weaker than that of ?D2  The 
GNSD algorithm was proposed in [28]; essentially, it is a sto-
chastic version of the GT method in (23):

 DO( DO( ,) ) , , ....W W t2 1 2t t t t t t1 2 1 1! 6j j j j ja- - - =+ - -6 @  
 (27)

It can be shown that the GNSD has convergence guarantees 
that are similar to the ,D2  without requiring the assumption in 
(25) and condition /( ) .W 1 3min 2m -

To summarize, the D2  and GNSD address the challenge 
posed by heterogeneous data that are unique to the streaming-
data setting, while simple methods, such as the DSGD, require 
data to be homogeneous. On the other hand, the D2  and 
GNSD require additional communication per iteration, com-
pared with the DSGD. There appears to be no work extending 
primal-dual type algorithm/analysis to the streaming setting.

Other distributed algorithms
Despite the differences in the DOs used and assumptions need-
ed for convergence, the reviewed algorithms may be regarded 
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as variants of unconstrained GD methods for a single param-
eter (vector) on a fixed communication graph. However, special 
communication and computation architectures may arise in 
practice. We conclude the section by highlighting a few works 
in relevant directions.

Coordinate descent methods
When the optimization model in (1) involves multiple vari-
ables, it is often beneficial to adopt a coordinate descent meth-
od, which optimizes only one variable at a time, holding the 
others constant. The matrix factorization problem discussed 
in Example 2 is one such instance. Specifically, [15] and [29] 
respectively propose to combine the Prox-GPDA and GT with 
coordinate descent to tackle the distributed dictionary-learning 
problem (batch data), with some convergence guarantees.

Directed and time-varying graphs
We have assumed that the graph connecting the agents is un-
directed and static. However, directed and time-varying graph 
topology may arise in practice; e.g., with unreliable networks. 
Several works have been proposed for various settings [20], 
[30], [31]. For batch data, [20] suggested the SONATA algo-
rithm, which combines GT with the push-sum technique; for 
streaming data, [31] offered the SGP algorithm, which incor-
porates the SGD and push-sum approach. SONATA and SGP 
are shown to converge sublinearly to a stationary solution on 
time-varying and directed graphs.

Practical issues and numerical results
We discuss practical issues related to the implementation of 
distributed algorithms and aim to demonstrate how system and 
algorithm parameters, such as the network size, computation/
communication speed, and batch and model sizes, should be 
jointly considered to decide on the most suitable algorithm. In 
particular, we compare the effects of parameters on the overall 
runtime performance of algorithms.

Our experiments are conducted on two computer clusters, 
one provided by the Minnesota Supercomputing Institute 
(MSI), the other by Amazon Web Services (AWS). The MSI 
cluster has better independent computation power at each node 
but a worse communication bandwidth than the AWS cluster; 
see Figure 3(b). The MSI nodes have Intel Haswell E5-2680v3 
CPUs at 3.2 GHz and 14-gigabytes/s internode communi-
cation, while the AWS nodes have Intel Xeon E5-2686v4 
CPUs at 3 GHz, NVIDIA K80 GPUs, and 25-gigabytes/s 
internode communication.

Two sets of experiments are conducted. The first compares 
different algorithms on a single machine. Since the distributed 
implementation is only simulated, the purpose of this set is to 
understand the algorithms’ theoretical behavior. The second 
set showcases the algorithm performance on truly distributed 
systems. These algorithms are implemented in Python 3.6 with 
the Message Passing Interface communication protocol. We 
benchmark the algorithms by using Gap( )j  in (2).

Experiment set 1
We consider tackling a regularized logistic regression problem 
with a nonconvex regularizer in a distributed manner. We use 
notations similar to those in Example 1; i.e., the feature is ,xi

,  
and the label is .yi

,  Letting ,m  02t  be the regularizer’s pa-
rameters, each local cost function fi is given by

( ) .log exp xf
M

y1 1
1 ,

,
i i

i
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All algorithms are implemented in MATLAB. We set the 
dimension at d 10=  and generate M 400i =  synthetic data 
points on each of the n 32=  agents; the communication net-
work is a random regular graph of degree five. The stationarity 
gap versus the number of gradient evaluation for the surveyed 
batch algorithms is shown in Figure 3(a). In terms of the num-
ber of full gradient evaluations, the xFilter is the fastest.

Cost per Iteration Computation (m) Communication (n)

Settings 128 8 64 256 2 8 32

8.872.380.31MSI, DSGD

MSI, GNSD 1 0.64 4.78 19.4

4.121.470.141AWS, DSGD

AWS, GNSD 1 0.17 1.6 4.21

MSI, DSGD 1 1.09 1.36 2.61

MSI, GNSD 1 1.12 1.45 8.47
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FIGURE 3. (a) The stationarity gap against the iteration number of different algorithms with a synthetic data set and n = 32 agents. Note that the curves 
for the GT and EXTRA overlap. (b) The normalized running time per iteration/message-exchange round on the MSI and AWS clusters under different 
settings for batch size m and network size n. DGD: decentralized gradient descent. 
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Experiment set 2
We focus on the DSGD and GNSD algorithms for stream-
ing data and apply them to train a neural network, as in Ex-
ample 1, and classify handwritten digits from the Modified 
National Institute of Standards and Technology (MNIST) 
data set. The neural network contains two hidden layers with 
512 and 128 neurons each and .4 68 105#  parameters. The 
training-data set has .4 8 104#  entries and is divided evenly 
among n  nodes. The DSGD and GNSD algorithms adopt the 
streaming-data oracle in the “Problems and Data Models” 
section, and all agents use the same minibatch sizes .m mt =  
The communication graph is a random regular graph with 
degree five.

Before we compare the performance of different algo-
rithms, we examine the computation/communication out-
come for our two clusters running the DSGD/GSND. In the 
upper part of Figure 3(b), we compare the relative computa-
tion and communication costs on MSI and AWS. It is clear 
that the AWS cluster has better communication efficiency. 
For example, consider running the GNSD on a network with 
n 8=  nodes, and set the computational time per iteration as 
one unit of time. Observe that AWS uses 1.6 units of time 
for communication, while MSI uses 4.78.

Network scalability
We analyze how the network size n  affects the overall con-
vergence speed. Intuitively, if the communication cost is rela-
tively lower than that of computation, it is beneficial to use a 
larger network and involve more agents to share the computa-
tional burden. In Figure 4(a) and (b), we see that the runtime 
performance of the DSGD/GNSD algorithms on AWS sig-
nificantly improves as the number of nodes increases (from 
n 8=  to ),n 32=  while there is no significant improvement 
for the experiments on MSI. This confirms our intuition, 

since AWS has a high-speed communication network. Be-
sides, one can observe in Figure 4(a) the benefit of distrib-
uted learning ( )n 12  compared with the centralized scheme 
( ),n 1=  where the DSGD with multiple agents can reach a 
smaller optimality gap. On both platforms, we observe that 
the GNSD achieves an even smaller optimality gap compared 
with the DSGD but requires more time to complete the given 
number of epochs. This is reasonable because, as discussed in 
the “Algorithms for Streaming Data” section, the DSGD re-
quires one round of communication per DO evaluation, while 
the GNSD requires two.

Graph topology
Another key parameter that has a significant impact on the algo-
rithm performance is the graph topology. It is important to note 
that, although theoretical analysis indicates that well-connected 
graphs [which have a large ( )]LGp  have a faster convergence 
rate, factors such as the maximum degree of the agents also mat-
ter. In Figure 4(b), we compare the runtime with n 32=  agents 
on different types of topology, including a complete graph, ran-
dom regular graph with degree five, hypercube graph, and cir-
cle graph. We observe that well-connected sparse graphs (e.g., 
random regular and hypercube) are preferred, since there are 
fewer communication overheads compared with dense graphs 
(e.g., the complete graph) and poorly-connected graphs (e.g., the 
circle graph).

Minibatch size
The choice of minibatch size m is another important param-
eter. While it speeds up the convergence with a large minibatch 
size, it can be computationally expensive and requires extensive 
memory. We examine the tradeoff with the minibatch size in 
Figure 5(a), where the experiments are run on the MSI cluster. 
Increasing the batch size improves the GNSD algorithm more 
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FIGURE 4. The runtime comparison of streaming algorithms on (a) MSI with n = 1, 2, 8, 32 agents and batch size m = 128 for all algorithms, terminated 
in 450 epochs; (b) AWS with n = 2, 8, 32 agents and batch size m = 128, terminated in 128 epochs; and (c) MSI with different types of graph topologies 
with n = 32 agents and batch size m = 128, terminated in 256 epochs.
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significantly than the DSGD does. In the lower part of Fig-
ure 3(b), we provide the normalized per-iteration computation 
and communication times for different minibatch sizes. Notice 
that for the DSGD, it takes 1.09 and 1.36 units of computation 
time with minibatch sizes of m 64=  and ,m 256=  compared to 
the baseline setting with .m 8=  A larger minibatch size seems 
to be more efficient.

Heterogeneous data
We illustrate the effect of heterogeneous data on different algo-
rithms by again using Figure 5. In this experiment, we divide 
the data according to their labels and exclusively assign each 
agent to two classes. We can see that the performance of the 
DSGD becomes significantly worse compared with the GNSD, 
especially when the batch size becomes larger (in which case 
the variance caused by sampling becomes smaller; hence the 
heterogeneous-data effect is more pronounced). This observa-
tion corroborates the theoretical results in the section “Algo-
rithms for Streaming Data,” where the GNSD does not require 
any assumption about the distribution of the data, while the 
DSGD does.

Model size
Intuitively, small models may benefit from distributed algo-
rithms because there is a modest amount of information to 
exchange, especially in systems where the communication 
is slower than the computation. As shown in Figure 5(b), we 
compare three neural networks—a small network (a two-layer 
fully connected neural network with 8 103#  parameters), a 
medium network (LeNet-5 with two convolutional layers, three 
fully connected layers, and 6 104#  parameters), and a large 
network (the Keras example for the MNIST, with four convo-
lutional layers, three fully connected layers, and .4 07 105#  
parameters)—that run on the MSI cluster with the DSGD. As 
the model size increases, the communication-cost growth out-
weighs the computation cost.

Related issues
Another active research area relates to improving the commu-
nication efficiency in distributed algorithms. Taking the DSGD 
as an example, a possible idea is to perform SGD updates mul-
tiple times (say, )I  at an agent before exchanging the parameters 
with the neighbors. Using this scheme, [32] shows that with 

/( ),I 1 eH=  the distributed algorithm run on a star-graph topol-
ogy requires only /( )1O e  respectively, /1O /3 2e^ h6 @ message 
exchanges for a homogeneous (respectively, heterogeneous) 
data set to find an -e stationary solution to (1). Alternatively, [33] 
proposes to skip unnecessary communication steps when the  
deviation of the local variables is small. Lastly, to reduce the time 
expense to synchronize across agents and make distributed learn-
ing less vulnerable to straggling agents, there are works that en-
able asynchronous communication; see [31] and [34] for examples.

Conclusions and open problems
This article reviewed some selected developments of noncon-
vex distributed learning algorithms. It showed the interplay 
among problems, data, and computation and communication, 
leading to different algorithms. These algorithms are com-
pared by using numerical experiments on computer clusters to 
show their practical potential. To conclude, we list a few direc-
tions for future research.

Dynamic data
Beyond batch and streaming data, an open problem relates 
to developing distributed algorithms for dynamic data. We 
consider a DO that takes the same form as the first equation 
in (5), but the data samples ,i

t M1
1p , ,

+
=
," ,  are drawn, instead, 

from parameterized distribution ( ; ).i
t$ jr  The new data 

model corresponds to a dynamic data acquisition process 
controlled by the iterates. The output of this DO will be used 
by the algorithm to compute the next iterate. This is relevant 
to policy optimization where tj  is the joint policy exercised 
by the agents, and the data acquired are state/action pairs 
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generated through interactions with the environment (and 
therefore dependent on the current policy );tj  the state/ac-
tion pairs will be used to compute the policy gradient for 
updating .t 1j +

Distributed algorithms based on the dynamic DO are chal-
lenging to analyze since the computation, communication, and 
data acquisition have to be jointly considered. To the best of 
our knowledge, such a setting has been studied only recently 
for a centralized algorithm in [35]. In a distributed setting, 
progress has been made in multiagent reinforcement learn-
ing; for instance, [36] applied a linear function approximation 
to simplify the nonconvex learning problem as a convex one. 
Nevertheless, a truly distributed, nonconvex algorithm with a 
dynamic DO has been neither proposed nor analyzed. Another 
challenging dynamic scenario concerns the online setting, 
where no statistical assumption is imposed on the DO output. 
However, most of the developments are still restricted to con-
vex problems; see [37].

Distributed feature
In many applications, leveraging additional features from an-
other domain or party can further improve the inference per-
formance. However, data with these features may constitute 
private records that cannot be shared. This imposes the chal-
lenging question of how to enable the agents that own different 
sets of features to collaborate on the learning task; see [16] 
and [38].

Federated and robust learning
To improve user privacy, federated learning (FL) is proposed 
for distributed learning in edge networks. Unlike traditional 
distributed learning, FL emphasizes on the ability to deal 
with unbalanced data and poorly connected users. Security 
is another concern for FL, and algorithms that are resilient 
to adversary attacks or model poisoning are critical; for ex-
ample, [39].

Distributed learning with statistical guarantees
The algorithms surveyed in this article aim to compute high-
quality solutions so that optimization-based conditions, such 
as (2), are satisfied. It is also interesting to investigate wheth-
er these algorithms can achieve strong statistical guarantees 
for specific ML problems, such as nonconvex M-estimation 
[40], so that ground-truth parameters can also be recovered.
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[13] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-agent 
optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61, 2009. doi: 
10.1109/TAC.2008.2009515.

[14] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on a graph,” 
SIAM Rev., vol. 46, no. 4, pp. 667–689, 2004. doi: 10.1137/S0036144503423264.

[15] M. Hong, D. Hajinezhad, and M.-M. Zhao, “Prox-PDA: The proximal primal-
dual algorithm for fast distributed nonconvex optimization and learning over net-
works,” in Proc. 34th Int. Conf. Machine Learning, 2017, pp.1529–1538. doi: 
10.13140/RG.2.2.25204.14729.

[16] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimization via 
inexact consensus ADMM,” IEEE Trans. Signal Process., vol. 63, no. 2, pp. 482–
497, Jan 2015. doi: 10.1109/TSP.2014.2367458. 

[17] J. Zeng and W. Yin, “On nonconvex decentralized gradient descent,” IEEE 
Trans. Signal Process., vol. 66, no. 11, pp. 2834–2848, June 2018. doi: 10.1109/
TSP.2018.2818081.

[18] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order algorithm 
for decentralized consensus optimization,” SIAM J. Optim., vol. 25, no. 2, pp. 944–
966, 2014. doi: 10.1137/14096668X. 

[19] H. Sun and M. Hong, “Distributed non-convex first-order optimization and 
information processing: Lower complexity bounds and rate optimal algorithms,” 
IEEE Trans. Signal Process., vol. 67, no. 22, pp. 5912–5928, July 2019. doi: 
10.1109/TSP.2019.2943230. 

[20] G. Scutari and Y. Sun, “Distributed nonconvex constrained optimization over 
time-varying digraphs,” Math. Program., vol. 176, nos. 1–2, pp. 497–544, 2019. doi: 
10.1007/s10107-018-01357-w. 
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