
26

DISTRIBUTED, STREAMING MACHINE LEARNING

IEEE SIGNAL PROCESSING MAGAZINE | May 2020 | 1053-5888/20©2020IEEE

Tsung-Hui Chang, Mingyi Hong, Hoi-To Wai,
Xinwei Zhang, and Songtao Lu

D istributed learning has become a critical enabler of the mas-
sively connected world that many people envision. This article
discusses four key elements of scalable distributed processing

and real-time intelligence: problems, data, communication, and
computation. Our aim is to provide a unique perspective of how
these elements should work together in an effective and coherent
manner. In particular, we selectively review recent techniques de-
veloped for optimizing nonconvex models (i.e., problem classes)
that process batch and streaming data (data types) across net-
works in a distributed manner (communication and computation
paradigm). We describe the intuitions and connections behind a
core set of popular distributed algorithms, emphasizing how to
balance computation and communication costs. Practical issues
and future research directions will also be discussed.

Introduction
We live in a highly connected world, and it will become exponen-
tially more so within a decade. By 2030, there will be more than
125 billion interconnected smart devices, creating a massive net-
work of intelligent appliances, cars, gadgets, and tools [41]. These
devices collect a huge amount of real-time data, perform complex
computational tasks, and provide vital services that significantly
improve our lives and enrich our collective productivity.

In a massively connected world, the four key elements dis-
cussed previously (namely, problems, data, communication,
and computation) enable scalable distributed processing and
real-time intelligence. They are closely tied to each other, as
illustrated in Figure 1. For example, without a meaningful
machine learning (ML) problem, using massive computa-
tional resources to crunch large amounts of data rarely leads
to any actionable intelligence. Similarly, despite their sophis-
ticated design and helpful interpretation from neural scienc-
es, modern neural networks may not be successful without
highly efficient computation methods. The overarching goal
of this selective review is to provide a fresh point of view that
relates how these elements should work together in the most
effective and coherent manner to realize scalable process-
ing, real-time intelligence, and, ultimately, contribute to the

Digital Object Identifier 10.1109/MSP.2020.2970170
Date of current version: 28 April 2020

Distributed Learning in the Nonconvex World
From batch data to streaming and beyond

©ISTOCKPHOTO.COM/HAMSTER3D

Authorized licensed use limited to: University of Minnesota. Downloaded on September 10,2020 at 03:33:27 UTC from IEEE Xplore. Restrictions apply.

27IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

vision of a smart, highly connected world. Some key aspects
to be taken into consideration are:

 ■ Nonconvexity: For many emerging distributed applications,
the problems that distributed nodes must solve will be highly
complicated. For instance, in distributed ML, the nodes (e.g.,
mobile devices) jointly learn a model based on local data
(e.g., the images on each device). To accurately represent the
local data, the nodes are often required to use nonconvex loss
functions, such as those that compose multiple nonlinear acti-
vation functions, through collaborative deep learning [1]–[3].

 ■ Data acquisition processes: One of the main reasons behind
the success of ML is the ability to process data at scale. This
means that one can quickly process large volumes of infor-
mation (i.e., deal with batch data) and, more importantly, it

requires the ability to handle streaming data. There is an
urgent need (and, hence, a growing body of research) to
accommodate the massive amount of streaming data from
online review platforms (e.g., Amazon), social networks
(e.g., Facebook), and so forth.

 ■ Distributed processing: The growing network size, increas-
ing amount of distributed data, and requirements for real-
time response often make traditional centralized processing
unviable. For example, self-driving cars should be carefully
coordinated when they meet at intersections, but since every
such vehicle can generate up to 40 gigabytes of data (e.g.,
from lidar and cameras) per second—an amount that over-
whelms the fastest cellular networks—it is impossible to
pool all the information for real-time central control. This

ComputationData Oracle

Batch Data

Streaming Data

Dynamical Data

ComputationData Oracle

ComputationData Oracle

ComputationData Oracle

ComputationData Oracle

Data

Data

Data

Problem

Data

(a)

(b)

Communication

W
IK

IM
E

D
IA

.O
R

G
 a

nd
 P

IX
A

B
A

Y
.C

O
M

W
IK

IM
E

D
IA

.O
R

G
 a

nd
 P

IX
A

B
A

Y
.C

O
M

W
IK

IM
E

D
IA

.O
R

G
 a

nd
 P

IX
A

B
A

Y
.C

O
M

W
IK

IM
E

D
IA

.O
R

G
 a

nd
P

IX
A

B
A

Y
.C

O
M

W
IK

IM
E

D
IA

.O
R

G
 a

nd
P

IX
A

B
A

Y
.C

O
M

W
IK

IM
E

D
IA

.O
R

G

FIGURE 1. The overview of the key elements in distributed learning. (a) The flow between different elements at a single data agent (e.g., an image) is taken
from diverse types through an oracle and processed locally before communicating with other agents. The goal is to tackle a nonconvex learning problem.
(b) Distributed learning on a network of agents.

Authorized licensed use limited to: University of Minnesota. Downloaded on September 10,2020 at 03:33:27 UTC from IEEE Xplore. Restrictions apply.

28 IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

and other examples, from small and ordinary devices (e.g.,
in-home smart appliances) to large and vitally important
infrastructure (e.g., national power-distribution networks),
show how essential fast distributed processing will be to
our collective well-being, productivity, and prosperity.
This article examines recent advances on distributed algo-

rithms. Unlike existing articles [4]–[6], this one centers around
nonconvex optimization and learning problems. We reveal con-
nections and design insights related to a core set of first-order
algorithms while highlighting the interplay among problems,
data, computation, and communication. We hope that the connec-
tions we discuss will help the readers compare the theoretical and
practical properties between algorithms and translate new features
and theoretical advances developed for one kind of algorithm to
equivalent types without the risk of “reinventing the wheel.”

Problems and data models

Problem class
Consider n interconnected agents. The network connect-
ing them is represented by a (directed or undirected) graph,

(,),G V E= where { , ..., }n1V = is the set of agents, and
E V V#3 is the set of communication links between agents.
The goal for the agents is to find a solution, =: (, ...,),n1j i i* * *
that tackles the nonconvex optimization problem

i

() (, ...,)min
n

f1 s.t. H
,

i
i

n

i n
1

1
 Ri

d
!i i i

6!i =

/ (1)

where

=: , , ..., : , (,) .i n i j1 RH Ei
d

i j 6! !i i i= =" ,
We define the sum cost function as =() : (),(/)f fn1 i

n
i i1j iR =

where : { }f RH " , 3 is a (possibly nonconvex) cost func-
tion of the ith agent. Equation (1) contains a coupling constraint
that enforces consensus. When G is undirected and connected,
we have n1 gi i= = , and an optimal solution to (1) is a mini-
mizer to the following equivalent optimization problem:

 .min
n

f1
i

i

n

1Rd
i

di =

^ h/

The consensus formulation motivates a decentralized approach
to finding high-quality solutions because each agent i can only
access its local cost function fi and process its local data
through messages exchanged with its neighbors.

Without assuming convexity for (1), one cannot hope to
find an optimal solution using a reasonable amount of effort,
since solving a nonconvex problem is, in general, NP-hard [7].
Instead, we resort to finding stationary, consensual solutions
whose gradients are small and variables are in consensus. For-
mally, letting ,0$e we say that (, ,)n1 fj i i= is an -e sta-
tionary solution to (1) if

 =Gap() : () ,
n

f1
j

n

j j
j

n

1

2

1

d #j i i i e+ -
= =

2r r/ / (2)

= .: /n1where i
n

i1i iR =r

Next, we summarize two commonly used conditions when
approaching (1).

Assumption 1
The graph, G, is undirected and connected. For , ..., ,i n1=
the cost function ()fi i is L-smooth, satisfying the follow-
ing condition:

 .() () , ,f f L Ri i
ddd d 6#i i i i i i- -l l l (3)

Furthermore, the average function : { }f RH " , 3 is lower-
bounded across the domain .H

Assumption 1, together with (1), describes a general setup
for distributed learning problems. Our goal is to find a station-
ary, consensual solution satisfying (2). We remark that several
recent works [8]–[12] have analyzed the more powerful forms of
convergence, such as second-order stationary and global optimal
solutions. However, establishing these results requires additional
assumptions, which further restricts the problem class. We refrain
from discussing these works in detail due to space limitations.

Having fixed the problem class, a distributed learning sys-
tem consists of data acquisition and local processing steps per-
formed at a local agent and a communication step to exchange
information between agents. We summarize these key ele-
ments and their interactions in Figure 1.

Data model
We adopt a local data oracle model [denoted DO ()]i ii to de-
scribe how information about cost function fi is retrieved in
distributed learning. Since we focus on first-order algorithms
in the sequel, the oracle DO ()i ii is characterized as various
estimates of the gradient .()fi id i

Batch data
This is a classical setting where the entire local data set is
available at any time; it is also known as the offline learning
setting. Denote , , ...,, , ,i i i M1 2 ip p p as the local data set of agent
i with Mi data samples. The local cost function and DO are
given by the finite sums

 DO() (;), () (),f F f
M
1

,i i i

M

i i i i
t

i i
t

i 1

i

di i i ip= =,

,=

/ (4)

where (;)F ,i i ii p , is the cost function corresponding to the
(,)i th, data sample.

Streaming data
In this setting, the data are revealed in a streaming (or online)
fashion. We first specify our cost function as a stochastic func-
tion, () (;)f FE ()i i i i ii i ii p= $+p r ,6 @ where ()·ir is a probability
distribution of .ip At each iteration t, querying the DO draws
mt independent and identically distributed (i.i.d.) samples for
the learning task; thus

 DO ; ,m F1
,i i

t
i i

t
i
t

m

t

1

1

t

di i p= ,
+

=,

^ ^h h/ (5)

Authorized licensed use limited to: University of Minnesota. Downloaded on September 10,2020 at 03:33:27 UTC from IEEE Xplore. Restrictions apply.

29IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

where (),,i
t

i t
1 $+p r,

+ , , ,m1 f, = which is an unbiased es -
timate of the gradient; i.e., DO .fE () i ii di i=$+p r ^ ^h h6 @

Assumption 2
Consider the DO in (5) and random samples p drawn as i.i.d.
from (·) .ir Assume

.

DO ,

, , ,

f

i n1

E

R

() i i

d

2
i

d

d 3

f 6

1#i i

i

v-

=

$+p r ^ ^h h8 B
 (6)

In other words, the random variable DOi i^ h has a uniformly
bounded variance. A related setting involves a large but fixed
data set ()M 1i & at agent i, denoted by { , ..., },, ,i i M1 ip p and fi
is given by (4). Accessing the full data set entails an undesirable

()MO i computation complexity. As a remedy, we can uniformly
draw at each iteration a small batch of random samples ()m Mi%
from the large data set. This results in a DO akin to (5).

Examples and challenges
We conclude this section by listing a few popular examples of
nonconvex learning problems and how they fit into the models
described previously. Moreover, we discuss the challenges with
nonconvex distributed learning that motivate the algorithms to
be reviewed in this article.

Example 1: Binary classifier training with neural network
For each { , ..., },i n1! suppose that a stream of training data

, , ..., ,i
t

i
t

1 2p p is available at the ith agent, where (,)x y, , ,i j
t

i j
t

i j
tp = is

a tuple containing the feature x R,i j
t m! and label { , } .y 0 1,i j

t !
Letting (, ...,)W W() ()L1i = be the parameters of an L-layer
neural network, we consider the model in (1) with the follow-
ing logistic loss:

 (;) () (()) (),log logx xF y h y h1 1, , , , ,i i j
t

i j
t

i j
t

i j
t

i j
ti p = - - +i i (7)

where ()xh ,i j
t

i is the sigmoid function ;xg1 ,i j
t 1

i+ -^ ^ hh such
that ;xg ,i j

t i^ h is the softmax output of the last layer of the
neural network, with x ,i j

t being the input. The hidden layer of
the neural network may be defined as ()g gu W() () ()1 1=, , ,+ +
for , ..., ,L0 1, = - where (·)u is an activation function and

.g x()
,i j

t0 = The goal of (1) is to find a set of optimal param-
eters for the neural network, taking into account the (poten-
tially heterogeneous) data received at all agents. Here, the
loss function fi i^ h is nonconvex but satisfies Assumption 1,
and the DO follows the streaming-data model.

Example 2: Matrix factorization
The ith agent has a fixed set of Mi samples, where the , th
sample is denoted by .x R, ,i i

m1!p = ,, The data received at the
agents can be encoded using the columns of dictionary matrix

;Rm m1 2!U # i.e., .x y, ,i i. U, , The goal is to learn a factor-
ization with dictionary U and codes .()Y y y, ,i i i M1 ig= Let

()X x x, ,i i i M1 ig= be the data. The learning problem is

, , , ..., ,

min X Y

Y

n

i n

1

1

 s.t. A Y

, , ,...,Y i n
i i

i

n

i i

1

2

1
F

i

! !

U

U

-

=

U =
=

/
 (8)

where ,A Yi represent some constraints on the dictionary and
codes to ensure identifiability. An interesting aspect of (8) is
that the problem optimizes a common variable, ,U and a pri-
vate variable, ;Yi in particular, the corresponding local cost is
given by: .min X Yf Yi i i

2
FYi iU U= -d^ h The common vari-

able is jointly decided by the data received at the agents, while
the private variables are nuisance parameters determined lo-
cally. Here, the cost function fi i^ h satisfies Assumption 1, and
the DO follows the batch-data model.

Handling nonconvex distributed learning problems involves
several unique challenges. First, directly applying algorithms
developed for convex problems to the nonconvex setting may
lead to unexpected algorithm behaviors. To see this, we pro-
vide a simple example below.

Example 3
Consider (1) with d = 1, n = 2 agents connected via one edge.
Let () /f 21 1 1

2i i= and () / ,f 22 2 2
2i i=- where f2 is nonconvex.

Note that any 1 2i i= is an optimal solution to the consensus
problem. However, applying the classical distributed gradient
descent (DGD) method [13] [to be discussed in the “Algo-
rithms for Batch Data” section; see (18)] with the constant step
size 02c generates the following iterates:

 .=

=

:

: ()M

t
t

t
t

t

t
t1 1

1

2
1

2
1

2
1

2
1

1

2

2
1

2
1

2
1

2
1

2
1

i i i
i

i
c

i

i

c

c
= -

-
=

-

+

c

+
+

+e e c eo o m o
1 2 3444 444

(9)

For all ,02c the spectral radius of ()M c is larger than
one, so the iteration always diverges. On the contrary, we can
verify that the DGD converges linearly to a solution satisfying

1 2i i= with any positive step sizes if we change the objective
functions to () () .f f 01 1 2 2i i= = Generally, if the problem is
convex, the DGD converges to a neighborhood of the optimal
solution when small, constant step sizes are used. This is in
contrast to (9), which diverges regardless (as long as the step
size is a constant).

Second, it is challenging to deal with heterogeneous data
when their distributions vary between agents. This is because
the local update directions can be different compared with the
information communicated from the neighbors. Considering
Example 3 again, the divergence of the DGD can be attrib-
uted to the fact that the local functions have different local
data, leading to () () .f f1 2d di i=- Other practical challenges
include implementing distributed algorithms so they scale to
large networks and model sizes. Moreover, an effective dis-
tributed algorithm should jointly design the communication
and computation protocols. Addressing these challenges is the
next focus.

Balancing communication and computation
in distributed learning
We study distributed algorithms for tackling problem (1). For
simplicity, we assume a scalar optimization variable (i.e., d = 1)
throughout this section. Distributed algorithms require a bal-
anced design to facilitate the computation and communication

Authorized licensed use limited to: University of Minnesota. Downloaded on September 10,2020 at 03:33:27 UTC from IEEE Xplore. Restrictions apply.

30 IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

capability of a distributed learning system. This section delin-
eates how existing algorithms overcome such a challenge by
using different data oracles. In a nutshell, the batch-data set-
ting can be tackled through a primal-dual optimization frame-
work or a family of gradient-tracking (GT) methods, while the
streaming-data setting is commonly resolved through the DGD
or GT approaches. A summary of the reviewed algorithms can
be found in Figure 2. Next, we review some basic concepts
about distributed processing on networks.

Considering an undirected graph (,),G V E= we define its
degree matrix as : (, ...,),D d ddiag n1= where di is the degree
of node i (excluding self-loops). The graph incidence matrix
A R | | nE! # has ,A 1ei = A 1ej =- if ,j i2 (,) ,e i j E!= and
A 0ek = for all { , }.\k i jV! Note that :A A L RG

n n!= #< is
the graph Laplacian matrix. Finally, a mixing matrix, W, satis-
fies the following conditions:

P1) 2)

P3)

{ } { }; ;

(,) , . .

I I W IW P

W i j W w0 0

1null span

 if and oEij

n n n

ij 2"

))- = -

=

(10)

For instance, the mixing matrix can be chosen as the dou-
bly stochastic matrix: For some (,),0 1!a

/ { , } (,)

(,)

() { , / / }
,

,

;

max
maxW

d d
d d

i j
i j

i j0

1 0
if

if

 if
E

E

ij

i j

j
i j

Ni

"

!a

a a a= - + - =
!

Z

[

\

]]

]
/

 (11)

see [14] for other designs. For any ,Rn!j we observe that
,WA A j j< can be calculated via message exchange among

neighboring agents.
The mixing and/or graph Laplacian matrix specifies the com-

munication pattern in distributed learning. Since (/) ,11W n1=3 <

FIGURE 2. An overview of distributed algorithms for nonconvex learning. (a) The reviewed algorithms. (b) The connections between algorithms.
Orange (respectively, green) patches refer to algorithms designed for batch (respectively, streaming) data. Lines with a single arrow indicate that one
algorithm can reduce to another; those with double arrows mean that the algorithms are equivalent. Dotted lines signify that the algorithms are related
(the conditions are given above the line). Prox-GDPA: proximal gradient primal-dual algorithm; IC-ADMM: inexact consensus, alternating-direction
method of multipliers; DSGD: distributed stochastic GD; SGP: stochastic gradient push; EXTRA: exact first-order algorithm; SONATA: successive
convex-approximation algorithm over time-varying digraphs; D2: disjunctive decomposition; GNSD: GT-based nonconvex stochastic algorithm for
decentralized training.

1
2

(In + W)W =
~

xFilter

xFilter

Primal-Dual Methods
GT Methods

DGD

EXTRA

DSGD

D2

GNSD

Primal (Only) Methods

IC-ADMM

Prox-GPDA

SONATASGP

Time-Varying and
Directed Graphs

GT

EXTRA

GT

IC-ADMM

Different
Subproblem

Different
Weighting

DGD DSGD

GNSD

D2

Prox-GPDA

µ = 0

W ≥ (W)2 ≥ 2W – In

"" "

(a)

(b)

Stochastic

Stochastic

Authorized licensed use limited to: University of Minnesota. Downloaded on September 10,2020 at 03:33:27 UTC from IEEE Xplore. Restrictions apply.

31IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

the mixing matrix enables one to distributively compute the aver-
age by repeatedly applying the mixing matrix. Because the gra-
dient () ()/n f1 i

n
i1d iR = is the average of the local gradients, the

easiest way to derive a distributed algorithm is to compute the
exact average of the gradient by applying W repeatedly. Such a dis-
tributed algorithm will behave exactly the same as the centralized
gradient algorithm, and it may save computation (gradient or data-
oracle evaluation) through a faster convergence rate; however, the
communication (message exchange) cost can be overwhelming.

Algorithms for batch data
In the batch-data setting, the data oracle returns an exact gradi-
ent DO () ()fi i i idi i= at the ith agent at any time. This setting
is typical for small-to-moderate data sets where gradient com-
putation is cheap. To this end, the general design philosophy
is to adopt techniques developed for deterministic first-order
methods and specialize them to distributed learning, consider-
ing the communication constraint.

Primal-dual methods
Letting (, ,)n1 fj i i= < be the collection of local variables,
we observe that the consensus constraint H can be rewritten as
a set of linear equalities: { (, ,) }.A 0H n1 fj ji i= = =< It
is then natural to consider the augmented Lagrangian of (1):

 (,) () ,A A
n

f c1
2

L i
i

n

i
1

2
j j jn ni= + +<

=

/ (12)

where R | |E!n is the dual variable of the constraint A 0,j =
and c > 0 is a penalty parameter. The quadratic term A

2
j

is a coupling term linking the local variables (, ...,) .n1j i i= <

The proximal gradient primal-dual algorithm (Prox-GPDA)
[15] considers a primal step that minimizes a linearized ver-
sion of (12) and the dual step that performs the gradient ascent:

,

() ,argmin f A A Ac

2
1

(,)

D

t t t t t

t
c

1

2
2

R
L

n
t t

! dj j n j j j

j j

+ + -

+ -

< <

d
!j

j n

Y

+

=

+

j

1

' 1 2 3444444 444444

 (13)

,Ac
(,)

t t t1 1

L t t1

!n n j+

dn j n

+

=

+

+
> (14)

where , , ...t 0 1= is the iteration number, () : (/)f n1d j =

((), , ())f fn n1 1d f di i < stacks up the gradients, and : diagY =

(, ,)n1 fb b is a diagonal matrix. Equations (13) and (14) lead to

() () () () ,

,

f A A A D

A A A A

c c

c

2 0t t t t t

t t t

1

1 1

d j n j j j

n n j

Y+ + + + - =

= +

< <

< < <

+

+ +

 (15)

respectively. Setting :p (,)i
t

j i j j
t

EnR= !; shows that (15) can be
decomposed into n parallel updates:

, , .

,

(),

i n

cd
f p

c

p p c

1

2
1

for any

(,)

(,)

i
t

i i
i i

t
i i

t
i
t

i
t

j
t

j i j

i
t

i
t

i
t

j
t

j i j

1

1 1 1

E

E

!

!

f

di
b

b i i

i i

i i

=

+
- -

+ +

+ -

!

!

+

+ + +

^
^
h

h
'

1/

/

(16)

This is a distributed algorithm implementable using one
message exchange (i.e., getting)(,)j i j j

t 1
EiR !;

+ and one DO
evaluation per iteration. By lending to the proofs for gen-
eral primal-dual algorithms, [15] shows that, given a proper

, { },c ib at most, (/)1O e iterations are required to find an
-stationarye solution.

Equation (16) shows that a distributed algorithm with
a balanced computation and communication cost can be
derived from the primal-dual method, which has a strong
connection with existing distributed algorithms. First, we
note that the inexact consensus, alternating-direction method
of multipliers (IC-ADMM) [16, Algorithm 2] that applies the
ADMM with an inexact gradient update follows exactly the
same form as (16). To see the connection for other algorithms,
let us subtract (15) at the tth iteration by the ()t 1 th- one:

() () () ()

() () .

f f A A A

D

c

c2 2 0

t t t t t t

t t t

1 1 1

1 1

d dj j j j

j j j

n n

Y

- + - + -

+ + - + =

< <- - -

+ -

Because () ,A A Act t t1n n j- = << - we have an equivalent
form of the Prox-GPDA:

(()) ()

() (() ()).

I D A A

D f f

c c

c

2 2

2

t
n

t t

t t

1 1 1

1 1d d

j j j

j j

Y

Y

= - + -

- + -

<+ - -

- -
(17)

We see that the Prox-GPDA has various equivalent forms in
(13)–(17). In the following, we show that a number of existing
algorithms share communication/computation steps that are
similar to the Prox-GPDA.

Decentralized GD algorithm
Initially proposed by [13] for convex problems, the decentral-
ized GD algorithm is one of the most popular distributed al-
gorithms. It uses the penalized problem ()min fi

n
i i1Rn iR +!j =

(/) ,1 2 I W
2

nja - where 02a is a penalty parameter, and ap-
plies the GD method with step size a to yield

 (), ,W f t 0 1t t t1 ! d 6j j ja- =+ (18)

We note that this is a primal method because it apparently
does not involve dual variables. Nonetheless, the decentral-
ized GD’s update formula can be derived from the Prox-GPDA
as we consider (15) with , ,D It c20t

n
16n aY= + = - and

.W I A Acn a= - < However, unlike Prox-GDPA, to guaran-
tee convergence to a stationary solution, the decentralized
GD requires a diminishing step size since /t1ta = and an
additional assumption that ()fi id i is bounded for any ii and

, ,i n1 f= [17, Th. 2].

EXTRA
The exact first-order algorithm (EXTRA) was proposed in [18]
as an alternative to the decentralized GD, with a convergence
guarantee achieved by using a constant step size. Again, using
the mixing matrix ,W the algorithm is described as follows.
First, we initialize by (),W f1 0 0! dj j ja- then EXTRA is
given by

Authorized licensed use limited to: University of Minnesota. Downloaded on September 10,2020 at 03:33:27 UTC from IEEE Xplore. Restrictions apply.

32 IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

() ()

[() ()], , ,

I W I W

f f t

2
1

1 2

t
n

t
n

t

t t

1 1

1

!

d d 6

j j j

j ja

+ - +

- - =

+ -

-

 (19)

A distinctive feature of (19) is that the equation computes
the weighted difference between the previous two iterates, tj
and .t 1j - Interestingly, the preceding form of EXTRA is a
special instance of the Prox-GPDA. Setting D Ic2 n

1aY+ = -
in (17), we obtain

() ()

[() ()]. , , ...

I A A I A A

f f

c c

t

2 2
2
1 2 2

1 2

t
n

t
n

t

t t

1 1

1

!

d d 6

j j j

j j

a a

a

- - -

- - =

< <+ -

-

(20)

By choosing W I A Ac2n a= - < and the preceding update,
we recover (19). The original proof in [18] assumes convex-
ity for (1), but due to the previously stated equivalence, the
proof for the Prox-GPDA for nonconvex problems carries
over to the EXTRA. It is worth mentioning that the original
EXTRA in [18] takes a slightly more general form. That is,
the term (/) ()I W1 2 n + in (19) can be replaced by another
mixing matrix, ,Wu which satisfies () ,/I W WW2n * *+ u
and { } { }.I W 1null spann - =u However, it is not clear if this
general form works for nonconvex distributed problems.

Rate-optimal schemes
A fundamental question about the distributed problem in
(1) is: What are the minimum computation and commu-
nication costs required to find an stationary-e solution?
An answer is given in [19]. For any distributed algorithm
using gradient information, at least ((()))LG

1e pX -
communication rounds and ()1eX - rounds of gradient
evaluation are required to attain an stationary-e solution,
where () : () / ()L L Lmin maxG G Gp m m= is the ratio between the
smallest nonzero and largest eigenvalues of the graph La-
placian matrix, .LG [In every gradient evaluation, each
local node i evaluates ()fi $d once.] Interestingly, the Prox-
GPDA, EXTRA, and IC-ADMM achieve the lower com-
munication and computation bounds in star and fully con-
nected networks. For the general network topology, [19]
proposed a near-optimal scheme, xFilter, which updates
j by considering

.

() ()argmin f A

Ac
2 2

1

t t t

t

1

2 2

Rn
dj j j j n j

j j j

= - +

+ + -

< <

!j

Y

+

1

'

(21)

Compared to (13), the quadratic term /)(Ac 2
2

j is not
linearized. This term couples the local variables, so (21) itself
does not lead to a distributed update for .t 1j + To resolve this
issue, the authors proposed to generate t 1j + by using the
Qth-order Chebychev polynomial to approximately solve (21).
They showed that setting (/ ())LQ 1O Gp= u suffices to pro-
duce an algorithm that requires ((()))LO G

1e p -u communica-
tion rounds and ()O 1e- gradient-evaluation rounds, where the
notation ()O $u hides a log function of n (which is usually small).

This matches the aforementioned lower bounds. Similarly, the
communication effort required is nearly optimal (up to a multi-
plicative logarithmic factor). Further, compared with the other
batch methods reviewed in this article, this is the only algo-
rithm whose gradient-evaluation complexity is independent of
the graph structure.

GT-based methods
Another class of algorithms that can deal with the noncon-
vex problem in (1) leverages the GT technique. The method
is based on the simple idea that if every agent has access to
the global gradient / /n nf1 1i

n
i j

n
j
t

1 1d iR R= = ,^ h the (centralized)
GD can be performed at each agent. The GT technique pro-
vides an iterative approach to do so approximately. The algo-
rithm performs two message exchanges during each iteration
[with Wt satisfying (10)]:

,

() (), , ,

W g

g Wg f f t 1 2

t t t

t t t t

1

1 1

!

! d d 6

j j

j j

a-

+ - =

+

+ +

t

t
(22)

The ith element gi
t of gt is the local estimate of the global

gradient at each agent i, obtained by mixing the estimates of
its neighbors and refreshing its local .fid As shown in [20], GT
algorithm (22) converges at a rate of (/)1O e to a stationary
point. One key strength of the GT-based methods is that they
can also work in directed and time-varying graphs; see [20] for
more discussions.

We remark that the GT-based method is related to the gen-
eral form of the EXTRA. To see this, we subtract the updates
of t 1j + and tj and apply the update of gt to obtain

(() ()),

, ,

W W f f

t

2

1 2

t t t t t1 2 1 1! d d

6

j j j j ja- - -

=

+ - -t t

(23)

It can be shown that if Wt satisfies () ,W W IW 2 n
2* * -t t t

the algorithm takes the same form as the generalized EX-
TRA discussed after (20); see [21, Sec. 2.2.1]. However, the
analysis for the generalized EXTRA works only on convex
problems and does not carry over to the GT method in the
nonconvex setting. We remark that all of the previous algo-
rithms except the decentralized GD converge for Example 3.
This is because for the latter example, the gradient can
be unbounded.

Algorithms for streaming data
In the streaming-data setting, the data oracle returns
DO (),i i

ti which is an unbiased estimator of (),fi i
td i with fi-

nite variance under Assumption 2. This data model is typi-
cal for processing large-to-infinite data sets. Balancing the
communication and computation costs is an important issue
since even the centralized algorithm may have slow conver-
gence. The first study of distributed stochastic algorithms
dates to Tsitsiklis et al. [22] who studied the asymptotic
convergence of the DSGD algorithm reviewed here. The
DSGD algorithm is relevant to the distributed estimation
problem that is important in adaptive signal processing;

Authorized licensed use limited to: University of Minnesota. Downloaded on September 10,2020 at 03:33:27 UTC from IEEE Xplore. Restrictions apply.

33IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

therefore, many works study its transient behavior (of bias,
mean-squared error, and so forth); e.g., [23] and [24] and the
overview in [5]. Unfortunately, those works mainly focus on
convex problems. We review the more recent results dedi-
cated to the nonconvex learning setting with nonasymptotic
convergence analysis.

DSGD algorithm
This class of algorithm replaces the deterministic oracle in the
decentralized GD with the stochastic oracle (5). It takes the
following form:

 DO(), , , ...,W t 1 2t t t t1 ! 6j j ja- =+ (24)

where 0t 2a is the step size and DO(DO) : ((), ,t t
1 1 fj i=

DO ()) .n n
ti < Obviously, the DSGD can be implemented in a dis-

tributed manner via mixing matrix .W The study of such an
algorithm in the nonconvex setting dates to the work in [22].
Among other results, the authors showed that if the step-size
sequence satisfies /c tt #a for some ,c 02 the DSGD algo-
rithm almost certainly converges to a first-order stationary so-
lution. However, [22] mainly provides asymptotic convergence
conditions without a clear indication of whether the DSGD can
outperform its centralized counterpart.

Recently, the DSGD (as well as decentralized, parallel sto-
chastic GD) was applied in [3] for the decentralized training
of neural networks, and the convergence rate was analyzed in
[25]. In the analysis by [25], the following condition for the
data across agents is assumed:

 () () , .
n

f f1 Ri
i

n
2

1

2d d 3 61; ; # !i i w i-
=

/ (25)

Such an assumption can be difficult to verify, and it is required
only when analyzing the DSGD convergence rate for noncon-
vex problems. For example, if the loss function is a quadratic
function of the form, () ,f a b1 2i i i

2
i i= + the correspond-

ing gradient is a linear function of (): .f a bi i idi i i= + The
left-hand side of (25) is unbounded if /() ;a n a1i jj

n

1
!

=
/

i.e., whenever the cost function is heterogeneous.
Under (25) and Assumptions 1 and 2, for any sufficiently

large ,T if we set /()n TOt 2a v= ^ h for all ,t 0$ the DSGD
finds an approximate stationary solution to (1), satisfying

Gap /[()] ,nTE Otj v=
u ^ h where tu is uniformly drawn from

, , T1 f" , [25, Cor. 2]. Compared to the centralized SGD
algorithm where a single sample is used each time, a speedup
factor of / n1 is observed, which is due to the variance-
reduction effect that results from averaging the samples from
the n nodes. Yet achieving this requires ()1O2w = so that
the data are homogeneous across the agents. See [11] and
[12], which show that the DSGD algorithm converges to a
second-order stationary solution under a condition similar to
(25). In summary, the DSGD algorithm is simple to imple-
ment, but it has a major limitation when dealing with het-
erogeneous data, a shortcoming that is demonstrated in our
numerical experiments.

D2 algorithm
To remove the local data assumption in (25) from the DSGD,
the D2 algorithm was proposed in [26]. Using mixing matrix

,W the recursion of D2 is given as

DO(DO(

, , .

)) ,W W W

t 1 2

2 t t 1t t t t1 1!

6 f

j j j j ja

=

- - -+ - -^ h
 (26)

In addition to the previous conditions for the weight matrix
in (10), the D2 requires a special condition, /() ,W 1 3min 2m -
which implies that the weight of combining the current node
is greater than that of combining its neighbors. Together
with Assumptions 1 and 2, for any sufficiently large ,T
we set /()n TOt 2a v= ^ h for all ,t 0$ and the D2 finds
an approximate stationary solution [26] to (1), satisfying

/i i ,n f nTE On
j

t
j

1
1

2d i v=-
=

u^ ^h h8 B/ where tu is uniformly
drawn from , , .T1 f" ,

Comparing (26) with (23) reveals a close similarity
between the D2 and GT: Both algorithms use the current and
the previous DOs, and both require two local communication
rounds per iteration. The difference is that the GT method
applies a squared mixing matrix, ,W2 on t 1j - instead of
mixing matrix W for the ,D2 and a W multiplies the differ-
ence of the gradient estimates. Such a seemingly minor dif-
ference turns out to be one major limiting factor for the .D2

Example 4
Consider a line network consisting of three nodes, with ()f xi =
() ,x bi

2- , ,i 1 2 3= (for some fixed),bi and mixing matrix
[. , . , ; . , , . ; , . , .],W 0 5 0 5 0 0 5 0 0 5 0 0 5 0 5= which has eigenval-

ues . , . , .0 5 0 5 1-" , One can show that the D2 diverges for any
constant .0 25t #a or diminishing step size / .t1ta =

Distributed stochastic GT algorithm
How can we design algorithms that can deal with heteroge-
neous data and require conditions weaker than that of ?D2 The
GNSD algorithm was proposed in [28]; essentially, it is a sto-
chastic version of the GT method in (23):

 DO(DO(,)) , ,W W t2 1 2t t t t t t1 2 1 1! 6j j j j ja- - - =+ - -6 @
 (27)

It can be shown that the GNSD has convergence guarantees
that are similar to the ,D2 without requiring the assumption in
(25) and condition /() .W 1 3min 2m -

To summarize, the D2 and GNSD address the challenge
posed by heterogeneous data that are unique to the streaming-
data setting, while simple methods, such as the DSGD, require
data to be homogeneous. On the other hand, the D2 and
GNSD require additional communication per iteration, com-
pared with the DSGD. There appears to be no work extending
primal-dual type algorithm/analysis to the streaming setting.

Other distributed algorithms
Despite the differences in the DOs used and assumptions need-
ed for convergence, the reviewed algorithms may be regarded

Authorized licensed use limited to: University of Minnesota. Downloaded on September 10,2020 at 03:33:27 UTC from IEEE Xplore. Restrictions apply.

34 IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

as variants of unconstrained GD methods for a single param-
eter (vector) on a fixed communication graph. However, special
communication and computation architectures may arise in
practice. We conclude the section by highlighting a few works
in relevant directions.

Coordinate descent methods
When the optimization model in (1) involves multiple vari-
ables, it is often beneficial to adopt a coordinate descent meth-
od, which optimizes only one variable at a time, holding the
others constant. The matrix factorization problem discussed
in Example 2 is one such instance. Specifically, [15] and [29]
respectively propose to combine the Prox-GPDA and GT with
coordinate descent to tackle the distributed dictionary-learning
problem (batch data), with some convergence guarantees.

Directed and time-varying graphs
We have assumed that the graph connecting the agents is un-
directed and static. However, directed and time-varying graph
topology may arise in practice; e.g., with unreliable networks.
Several works have been proposed for various settings [20],
[30], [31]. For batch data, [20] suggested the SONATA algo-
rithm, which combines GT with the push-sum technique; for
streaming data, [31] offered the SGP algorithm, which incor-
porates the SGD and push-sum approach. SONATA and SGP
are shown to converge sublinearly to a stationary solution on
time-varying and directed graphs.

Practical issues and numerical results
We discuss practical issues related to the implementation of
distributed algorithms and aim to demonstrate how system and
algorithm parameters, such as the network size, computation/
communication speed, and batch and model sizes, should be
jointly considered to decide on the most suitable algorithm. In
particular, we compare the effects of parameters on the overall
runtime performance of algorithms.

Our experiments are conducted on two computer clusters,
one provided by the Minnesota Supercomputing Institute
(MSI), the other by Amazon Web Services (AWS). The MSI
cluster has better independent computation power at each node
but a worse communication bandwidth than the AWS cluster;
see Figure 3(b). The MSI nodes have Intel Haswell E5-2680v3
CPUs at 3.2 GHz and 14-gigabytes/s internode communi-
cation, while the AWS nodes have Intel Xeon E5-2686v4
CPUs at 3 GHz, NVIDIA K80 GPUs, and 25-gigabytes/s
internode communication.

Two sets of experiments are conducted. The first compares
different algorithms on a single machine. Since the distributed
implementation is only simulated, the purpose of this set is to
understand the algorithms’ theoretical behavior. The second
set showcases the algorithm performance on truly distributed
systems. These algorithms are implemented in Python 3.6 with
the Message Passing Interface communication protocol. We
benchmark the algorithms by using Gap()j in (2).

Experiment set 1
We consider tackling a regularized logistic regression problem
with a nonconvex regularizer in a distributed manner. We use
notations similar to those in Example 1; i.e., the feature is ,xi

,
and the label is .yi

, Letting ,m 02t be the regularizer’s pa-
rameters, each local cost function fi is given by

() .log exp xf
M

y1 1
1 ,

,
i i

i

M

i i i
i s

i s

s

d

1
2

2

1

i

i i m
ti

ti
= + - +

+
<

,

, ,

= =

^^ hh/ /

All algorithms are implemented in MATLAB. We set the
dimension at d 10= and generate M 400i = synthetic data
points on each of the n 32= agents; the communication net-
work is a random regular graph of degree five. The stationarity
gap versus the number of gradient evaluation for the surveyed
batch algorithms is shown in Figure 3(a). In terms of the num-
ber of full gradient evaluations, the xFilter is the fastest.

Cost per Iteration Computation (m) Communication (n)

Settings 128 8 64 256 2 8 32

8.872.380.31MSI, DSGD

MSI, GNSD 1 0.64 4.78 19.4

4.121.470.141AWS, DSGD

AWS, GNSD 1 0.17 1.6 4.21

MSI, DSGD 1 1.09 1.36 2.61

MSI, GNSD 1 1.12 1.45 8.47

10–3

10–6

10–10

S
ta

tio
na

ry
 G

ap

0 2 4 6 8
Gradient Evaluation ×105

DGD
GT
EXTRA
xFilter

(a) (b)

FIGURE 3. (a) The stationarity gap against the iteration number of different algorithms with a synthetic data set and n = 32 agents. Note that the curves
for the GT and EXTRA overlap. (b) The normalized running time per iteration/message-exchange round on the MSI and AWS clusters under different
settings for batch size m and network size n. DGD: decentralized gradient descent.

Authorized licensed use limited to: University of Minnesota. Downloaded on September 10,2020 at 03:33:27 UTC from IEEE Xplore. Restrictions apply.

35IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

Experiment set 2
We focus on the DSGD and GNSD algorithms for stream-
ing data and apply them to train a neural network, as in Ex-
ample 1, and classify handwritten digits from the Modified
National Institute of Standards and Technology (MNIST)
data set. The neural network contains two hidden layers with
512 and 128 neurons each and .4 68 105# parameters. The
training-data set has .4 8 104# entries and is divided evenly
among n nodes. The DSGD and GNSD algorithms adopt the
streaming-data oracle in the “Problems and Data Models”
section, and all agents use the same minibatch sizes .m mt =
The communication graph is a random regular graph with
degree five.

Before we compare the performance of different algo-
rithms, we examine the computation/communication out-
come for our two clusters running the DSGD/GSND. In the
upper part of Figure 3(b), we compare the relative computa-
tion and communication costs on MSI and AWS. It is clear
that the AWS cluster has better communication efficiency.
For example, consider running the GNSD on a network with
n 8= nodes, and set the computational time per iteration as
one unit of time. Observe that AWS uses 1.6 units of time
for communication, while MSI uses 4.78.

Network scalability
We analyze how the network size n affects the overall con-
vergence speed. Intuitively, if the communication cost is rela-
tively lower than that of computation, it is beneficial to use a
larger network and involve more agents to share the computa-
tional burden. In Figure 4(a) and (b), we see that the runtime
performance of the DSGD/GNSD algorithms on AWS sig-
nificantly improves as the number of nodes increases (from
n 8= to),n 32= while there is no significant improvement
for the experiments on MSI. This confirms our intuition,

since AWS has a high-speed communication network. Be-
sides, one can observe in Figure 4(a) the benefit of distrib-
uted learning ()n 12 compared with the centralized scheme
(),n 1= where the DSGD with multiple agents can reach a
smaller optimality gap. On both platforms, we observe that
the GNSD achieves an even smaller optimality gap compared
with the DSGD but requires more time to complete the given
number of epochs. This is reasonable because, as discussed in
the “Algorithms for Streaming Data” section, the DSGD re-
quires one round of communication per DO evaluation, while
the GNSD requires two.

Graph topology
Another key parameter that has a significant impact on the algo-
rithm performance is the graph topology. It is important to note
that, although theoretical analysis indicates that well-connected
graphs [which have a large ()]LGp have a faster convergence
rate, factors such as the maximum degree of the agents also mat-
ter. In Figure 4(b), we compare the runtime with n 32= agents
on different types of topology, including a complete graph, ran-
dom regular graph with degree five, hypercube graph, and cir-
cle graph. We observe that well-connected sparse graphs (e.g.,
random regular and hypercube) are preferred, since there are
fewer communication overheads compared with dense graphs
(e.g., the complete graph) and poorly-connected graphs (e.g., the
circle graph).

Minibatch size
The choice of minibatch size m is another important param-
eter. While it speeds up the convergence with a large minibatch
size, it can be computationally expensive and requires extensive
memory. We examine the tradeoff with the minibatch size in
Figure 5(a), where the experiments are run on the MSI cluster.
Increasing the batch size improves the GNSD algorithm more

100

10–2

10–4

10–6

S
ta

tio
na

ry
 G

ap

100

10–2

10–1

10–4

10–5

10–3

S
ta

tio
na

ry
 G

ap

10–2

10–1

10–4

10–5

10–3

S
ta

tio
na

ry
 G

ap

0 0 200 400 600 800 0 3,000 6,000 9,0002,000 4,000 6,000
Runtime (s)

(a)
Runtime (s)

(b)
Runtime (s)

(c)

Centralized SGD
DSGD, n = 2
DSGD, n = 8
DSGD, n = 32
GNSD, n = 2
GNSD, n = 8
GNSD, n = 32

DSGD, n = 2
DSGD, n = 8
DSGD, n = 32
GNSD, n = 2
GNSD, n = 8
GNSD, n = 32

DSGD, Complete
DSGD, Random D = 5
DSGD, Hypercubic
DSGD, Circle
GNSD, Complete
GNSD, Random D = 5
GNSD, Hypercubic
GNSD, Circle

FIGURE 4. The runtime comparison of streaming algorithms on (a) MSI with n = 1, 2, 8, 32 agents and batch size m = 128 for all algorithms, terminated
in 450 epochs; (b) AWS with n = 2, 8, 32 agents and batch size m = 128, terminated in 128 epochs; and (c) MSI with different types of graph topologies
with n = 32 agents and batch size m = 128, terminated in 256 epochs.

Authorized licensed use limited to: University of Minnesota. Downloaded on September 10,2020 at 03:33:27 UTC from IEEE Xplore. Restrictions apply.

36 IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

significantly than the DSGD does. In the lower part of Fig-
ure 3(b), we provide the normalized per-iteration computation
and communication times for different minibatch sizes. Notice
that for the DSGD, it takes 1.09 and 1.36 units of computation
time with minibatch sizes of m 64= and ,m 256= compared to
the baseline setting with .m 8= A larger minibatch size seems
to be more efficient.

Heterogeneous data
We illustrate the effect of heterogeneous data on different algo-
rithms by again using Figure 5. In this experiment, we divide
the data according to their labels and exclusively assign each
agent to two classes. We can see that the performance of the
DSGD becomes significantly worse compared with the GNSD,
especially when the batch size becomes larger (in which case
the variance caused by sampling becomes smaller; hence the
heterogeneous-data effect is more pronounced). This observa-
tion corroborates the theoretical results in the section “Algo-
rithms for Streaming Data,” where the GNSD does not require
any assumption about the distribution of the data, while the
DSGD does.

Model size
Intuitively, small models may benefit from distributed algo-
rithms because there is a modest amount of information to
exchange, especially in systems where the communication
is slower than the computation. As shown in Figure 5(b), we
compare three neural networks—a small network (a two-layer
fully connected neural network with 8 103# parameters), a
medium network (LeNet-5 with two convolutional layers, three
fully connected layers, and 6 104# parameters), and a large
network (the Keras example for the MNIST, with four convo-
lutional layers, three fully connected layers, and .4 07 105#
parameters)—that run on the MSI cluster with the DSGD. As
the model size increases, the communication-cost growth out-
weighs the computation cost.

Related issues
Another active research area relates to improving the commu-
nication efficiency in distributed algorithms. Taking the DSGD
as an example, a possible idea is to perform SGD updates mul-
tiple times (say,)I at an agent before exchanging the parameters
with the neighbors. Using this scheme, [32] shows that with

/(),I 1 eH= the distributed algorithm run on a star-graph topol-
ogy requires only /()1O e respectively, /1O /3 2e^ h6 @ message
exchanges for a homogeneous (respectively, heterogeneous)
data set to find an -e stationary solution to (1). Alternatively, [33]
proposes to skip unnecessary communication steps when the
deviation of the local variables is small. Lastly, to reduce the time
expense to synchronize across agents and make distributed learn-
ing less vulnerable to straggling agents, there are works that en-
able asynchronous communication; see [31] and [34] for examples.

Conclusions and open problems
This article reviewed some selected developments of noncon-
vex distributed learning algorithms. It showed the interplay
among problems, data, and computation and communication,
leading to different algorithms. These algorithms are com-
pared by using numerical experiments on computer clusters to
show their practical potential. To conclude, we list a few direc-
tions for future research.

Dynamic data
Beyond batch and streaming data, an open problem relates
to developing distributed algorithms for dynamic data. We
consider a DO that takes the same form as the first equation
in (5), but the data samples ,i

t M1
1p , ,

+
=
," , are drawn, instead,

from parameterized distribution (;).i
t$ jr The new data

model corresponds to a dynamic data acquisition process
controlled by the iterates. The output of this DO will be used
by the algorithm to compute the next iterate. This is relevant
to policy optimization where tj is the joint policy exercised
by the agents, and the data acquired are state/action pairs

100

10–5

100 102 104

S
ta

tio
na

ry
 G

ap

Runtime (s)
(a) (b)

100

80

60

40

20

0

N
or

m
al

iz
ed

 T
im

e
C

os
t

Small Medium
Model Size

Large

DSGD, m = 8
DSGD, m = 64
DSGD, m = 256
GNSD, m = 8
GNSD, m = 64
GNSD, m = 256

Communication Time
Computation Time

FIGURE 5. (a) The runtime comparison of minibatch size m = 8, 64, 256 on MSI, terminated after 256 epochs. The data are heterogeneous where each node
is assigned exclusive classes. (b) The small-model normalized computation and communication cost for different model sizes on MSI with n = 32 agents.

Authorized licensed use limited to: University of Minnesota. Downloaded on September 10,2020 at 03:33:27 UTC from IEEE Xplore. Restrictions apply.

37IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

generated through interactions with the environment (and
therefore dependent on the current policy);tj the state/ac-
tion pairs will be used to compute the policy gradient for
updating .t 1j +

Distributed algorithms based on the dynamic DO are chal-
lenging to analyze since the computation, communication, and
data acquisition have to be jointly considered. To the best of
our knowledge, such a setting has been studied only recently
for a centralized algorithm in [35]. In a distributed setting,
progress has been made in multiagent reinforcement learn-
ing; for instance, [36] applied a linear function approximation
to simplify the nonconvex learning problem as a convex one.
Nevertheless, a truly distributed, nonconvex algorithm with a
dynamic DO has been neither proposed nor analyzed. Another
challenging dynamic scenario concerns the online setting,
where no statistical assumption is imposed on the DO output.
However, most of the developments are still restricted to con-
vex problems; see [37].

Distributed feature
In many applications, leveraging additional features from an-
other domain or party can further improve the inference per-
formance. However, data with these features may constitute
private records that cannot be shared. This imposes the chal-
lenging question of how to enable the agents that own different
sets of features to collaborate on the learning task; see [16]
and [38].

Federated and robust learning
To improve user privacy, federated learning (FL) is proposed
for distributed learning in edge networks. Unlike traditional
distributed learning, FL emphasizes on the ability to deal
with unbalanced data and poorly connected users. Security
is another concern for FL, and algorithms that are resilient
to adversary attacks or model poisoning are critical; for ex-
ample, [39].

Distributed learning with statistical guarantees
The algorithms surveyed in this article aim to compute high-
quality solutions so that optimization-based conditions, such
as (2), are satisfied. It is also interesting to investigate wheth-
er these algorithms can achieve strong statistical guarantees
for specific ML problems, such as nonconvex M-estimation
[40], so that ground-truth parameters can also be recovered.

Acknowledgments
We would like to thank the anonymous reviewers as well as Dr.
Gesualdo Scutari and Dr. Angelia Nedić for helpful comments
that significantly improved the quality of the article. Tsung-Hui
Chang was supported, in part, by the National Key R&D Pro-
gram of China (grant 2018YFB1800800), National Natural Sci-
ence Foundation of China (grant 61731018), and Shenzhen Fun-
damental Research Fund (grants JCYJ20190813171003723 and
KQTD2015033114415450). Hoi-To Wai was supported by the
Chinese University of Hong Kong (direct grant 4055113). Min-
gyi Hong, Songtao Lu, and Xinwei Zhang were supported, in

part, by the National Science Foundation (grants CMMI-172775
and CIF-1910385) and Army Research Office (grant 73202-CS).
This work was done when Songtao Lu was a postdoctoral fellow
at the University of Minnesota.

Authors
Tsung-Hui Chang (tsunghui.chang@ieee.org) is an associate
professor in the School of Science and Engineering, The
Chinese University of Hong Kong, Shenzhen, as well as the
Shenzhen Research Institute of Big Data, China. He has held
research positions at the National Tsing Hua University,
Hsinchu, Taiwan, and the University of California, Davis. His
research interests include data communications and distributed
optimization and its applications. He received the IEEE
Communications Society Asia-Pacific Outstanding Young
Researcher Award in 2015 and the IEEE Signal Processing
Society Best Paper Award in 2018. He served or serves as asso-
ciate editor of IEEE Transactions on Signal Processing, IEEE
Transactions on Signal and Information Processing Over
Networks, and IEEE Open Journal of Signal Processing. He is a
member of the IEEE Signal Processing for Communications and
Networking Technical Committee. He is a Senior Member of
the IEEE.

Mingyi Hong (mhong@umn.edu) received his Ph.D.
degree from the University of Virginia, Charlottesville, in
2011. He is an assistant professor in the Department of
Electrical and Computer Engineering at the University of
Minnesota, Minneapolis. He serves on the IEEE Signal
Processing for Communications and Networking and Machine
Learning for Signal Processing Technical Committees. His
research interests include optimization theory and applications
in signal processing and machine learning. He is a Member of
the IEEE.

Hoi-To Wai (htwai@cuhk.edu.hk) received his Ph.D.
degree in electrical engineering from Arizona State
University (ASU), Tempe, and his B.Eng. and M.Phil.
degrees in electronic engineering from the Chinese University
of Hong Kong (CUHK). He is an assistant professor in the
Department of Systems Engineering and Engineering
Management at CUHK and previously held research posi-
tions at ASU; the University of California, Davis; Telecom
ParisTech; Ecole Polytechnique; Laboratory for Information
& Decision Systems; and the Massachusetts Institute of
Technology. His research interests include signal processing,
machine learning, and distributed optimization. His disserta-
tion received the Dean’s Dissertation Award from ASU, and
he received a Best Student Paper Award at the International
Conference on Acoustics, Speech, and Signal Processing. He
is a Member of the IEEE.

Xinwei Zhang (zhan6234@umn.edu) received his B.S.
degree in automation from the University of Science and
Technology of China, Anhui, in 2018 and is pursuing his Ph.D.
degree in the Electrical and Computer Engineering Department
at the University of Minnesota, Minneapolis. His research inter-
ests include distributed optimization and power-system control.
He is a Student Member of the IEEE.

Authorized licensed use limited to: University of Minnesota. Downloaded on September 10,2020 at 03:33:27 UTC from IEEE Xplore. Restrictions apply.

38 IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

Songtao Lu (songtao@ibm.com) received his Ph.D. degree
in electrical engineering from Iowa State University, Ames, in
2018. He is a research scientist in the IBM Re search Artificial
Intelligence residency program at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, and previously
was a postdoctoral associate with the Department of Electrical
and Computer Engineering, University of Minnesota,
Minneapolis. He received the Graduate and Professional
Student Senate Research Award from Iowa State University in
2015, Research Excellence Award from the Graduate College
of Iowa State University in 2017, and Student Travel Awards
from the 20th International Conference on Artificial Intelligence
and Statistics in 2017 and 36th International Conference on
Machine Learning. His research interests include artificial
intelligence, optimization, signal processing, and machine learn-
ing. He is a Member of the IEEE.

References
[1] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,” in Proc.
31st Int. Conf. Neural Information Processing System, 2017, pp. 1508–1518. doi:
10.5555/3294771.3294915.

[2] J. Daily, A. Vishnu, C. Siegel, T. Warfel, and V. Amatya, GossipGraD: Scalable
deep learning using gossip communication based asynchronous gradient descent.
2018. [Online]. Available: arXiv:1803.05880

[3] Z. Jiang, A. Balu, C. Hegde, and S. Sarkar, “Collaborative deep learning in fixed
topology networks,” in Proc. 31st Int. Conf. Neural Information Processing
System, 2017, pp. 5906–5916. doi: 10.5555/3295222.3295340.

[4] A. Nedić and A. Ozdaglar, “Cooperative distributed multi-agent optimiza-
tion,” in Convex Optimization in Signal Processing and Communications, D. P.
Palomar and Y. C. Eldar, Eds. Cambridge, U.K.: Cambridge Univ. Press, 2010,
pp. 340–386.

[5] A. H. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z. J. Towfic, “Diffusion strategies
for adaptation and learning over networks: An examination of distributed strategies
and network behavior,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 155–171,
2013. doi: 10.1109/MSP.2012.2231991.

[6] V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for big data:
Scalable, randomized, and parallel algorithms for big data analytics,” IEEE Signal
Process. Mag., vol. 31, no. 5, pp. 32–43, 2014. doi: 10.1109/MSP.2014.2329397.

[7] K. G. Murty and S. N. Kabadi, “Some NP-complete problems in quadratic and
nonlinear programming,” Math. Program., vol. 39, no. 2, pp. 117–129, June 1987.
doi: 10.1007/BF02592948.

[8] M. Hong, M. Razaviyayn, and J. Lee, “Gradient primal-dual algorithm converges
to second-order stationary solution for nonconvex distributed optimization over net-
works,” in Proc. 35th Int. Conf. Machine Learning, 2018, pp. 2009–2018.

[9] A. Daneshmand, G. Scutari, and V. Kungurtsev, Second-order guarantees of
distributed gradient algorithms. 2018. [Online]. Available: arXiv:1809.08694

[10] B. Swenson, S. Kar, H. V. Poor, and J. M. F. Moura, Annealing for distributed
global optimization. 2019. [Online]. Available: arXiv:1903.07258

[11] S. Vlaski and A. H. Sayed, Distributed learning in non-convex environments–
part I: Agreement at a linear rate. 2019. [Online]. Available: arXiv:1907.01848

[12] S. Vlaski and A. H. Sayed, Distributed learning in non-convex environments–
part II: Polynomial escape from saddle-points. 2019. [Online]. Available:
arXiv:1907.01849

[13] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-agent
optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61, 2009. doi:
10.1109/TAC.2008.2009515.

[14] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on a graph,”
SIAM Rev., vol. 46, no. 4, pp. 667–689, 2004. doi: 10.1137/S0036144503423264.

[15] M. Hong, D. Hajinezhad, and M.-M. Zhao, “Prox-PDA: The proximal primal-
dual algorithm for fast distributed nonconvex optimization and learning over net-
works,” in Proc. 34th Int. Conf. Machine Learning, 2017, pp.1529–1538. doi:
10.13140/RG.2.2.25204.14729.

[16] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimization via
inexact consensus ADMM,” IEEE Trans. Signal Process., vol. 63, no. 2, pp. 482–
497, Jan 2015. doi: 10.1109/TSP.2014.2367458.

[17] J. Zeng and W. Yin, “On nonconvex decentralized gradient descent,” IEEE
Trans. Signal Process., vol. 66, no. 11, pp. 2834–2848, June 2018. doi: 10.1109/
TSP.2018.2818081.

[18] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order algorithm
for decentralized consensus optimization,” SIAM J. Optim., vol. 25, no. 2, pp. 944–
966, 2014. doi: 10.1137/14096668X.

[19] H. Sun and M. Hong, “Distributed non-convex first-order optimization and
information processing: Lower complexity bounds and rate optimal algorithms,”
IEEE Trans. Signal Process., vol. 67, no. 22, pp. 5912–5928, July 2019. doi:
10.1109/TSP.2019.2943230.

[20] G. Scutari and Y. Sun, “Distributed nonconvex constrained optimization over
time-varying digraphs,” Math. Program., vol. 176, nos. 1–2, pp. 497–544, 2019. doi:
10.1007/s10107-018-01357-w.

[21] A. Nedić, A. Olshevsky, and W. Shi, “Achieving geometric convergence for dis-
tributed optimization over time-varying graphs,” SIAM J. Optim., vol. 27, no. 4, pp.
2597–2633, 2017. doi: 10.1137/16M1084316.

[22] J. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed asynchronous deter-
ministic and stochastic gradient optimization algorithms,” IEEE Trans. Autom.
Control, vol. 31, no. 9, pp. 803–812, 1986. doi: 10.1109/TAC.1986.1104412.

[23] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for distributed esti-
mation,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1035–1048, 2009. doi:
10.1109/TSP.2009.2033729.

[24] S. Kar, J. M. Moura, and K. Ramanan, “Distributed parameter estimation in
sensor networks: Nonlinear observation models and imperfect communication,”
IEEE Trans. Inf. Theory, vol. 58, no. 6, pp. 3575–3605, 2012. doi: 10.1109/
TIT.2012.2191450.

[25] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can decen-
tralized algorithms outperform centralized algorithms? A case study for decentralized
parallel stochastic gradient descent,” in Proc. 31st Int. Conf. Neural Information
Processing Systems, 2017, pp. 5330–5340. doi: 10.5555/3295222.3295285.

[26] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2: Decentralized training
over decentralized data,” in Proc. 35th Int. Conf. Machine Learning, July 10–15,
2018, pp. 4848–4856.

[27] J. Zhang and K. You, Decentralized stochastic gradient tracking for empirical
risk minimization. 2019. [Online]. Available: arXiv:1909.02712

[28] S. Lu, X. Zhang, H. Sun, and M. Hong, “GNSD: A gradient-tracking based non-
convex stochastic algorithm for decentralized optimization,” in Proc. IEEE Data
Science Workshop (DSW), June 2019, pp. 315–321. doi: 10.1109/DSW.2019.8755807.

[29] A. Daneshmand, Y. Sun, G. Scutari, F. Facchinei, and B. M. Sadler,
“Decentralized dictionary learning over time-varying digraphs,” J. Mach. Learn.
Res., vol. 20, pp. 1–62, Sept. 2019.

[30] R. Xin, A. K. Sahu, U. A. Khan, and S. Kar, “Distributed stochastic optimiza-
tion with gradient tracking over strongly-connected networks,” in Proc. IEEE 58th
Conf. Decision and Control (CDC), 2019.

[31] M. Assran, N. Loizou, N. Ballas, and M. Rabbat, “Stochastic gradient push for dis-
tributed deep learning,” in Proc. 36th Int. Conf. Machine Learning, 2019, pp. 344–353.

[32] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of communication
efficient momentum sgd for distributed non-convex optimization,” in Proc. 36th Int.
Conf. Machine Learning, 2019, pp. 7184–7193.

[33] R. Aragues, G. Shi, D. V. Dimarogonas, C. Sagues, and K. H. Johansson,
“Distributed algebraic connectivity estimation for adaptive event-triggered consen-
sus,” in Proc. American Control Conf. (ACC), June 2012, pp. 32–37. doi: 10.1109/
ACC.2012.6315110.

[34] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized parallel
stochastic gradient descent,” in Proc. 35th Int. Conf. Machine Learning, July
10–15, 2018, pp. 3043–3052.

[35] B. Karimi, B. Miasojedow, E. Moulines, and H.-T. Wai, “Non-asymptotic
analysis of biased stochastic approximation scheme,” in Proc. Int. Conf. Learning
Theory, 2019, pp. 1944–1974.

[36] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized multi-
agent reinforcement learning with networked agents,” in Proc. Int. Conf. Machine
Learning, 2018, pp. 9340–9371.

[37] S. Shahrampour and A. Jadbabaie, “Distributed online optimization in dynam-
ic environments using mirror descent,” IEEE Trans. Autom. Control, vol. 63, no. 3,
pp. 714–725, 2017. doi: 10.1109/TAC.2017.2743462.

[38] Y. Hu, D. Niu, J. Yang, and S. Zhou, “FDML: A collaborative machine learning
framework for distributed features,” in Proc. ACM Int. Conf. Knowledge Discovery
& Data Mining, Aug. 2018, pp. 2232–2240.

[39] Z. Yang and W. U. Bajwa, “Byrdie: Byzantine-resilient distributed coordinate
descent for decentralized learning,” IEEE Trans. Signal Inf. Process. Netw., vol. 5,
no. 4, pp. 611–627, 2019. doi: 10.1109/TSIPN.2019.2928176.

[40] P.-L. Loh and M. J. Wainwright, “Regularized m-estimators with nonconvexi-
ty: Statistical and algorithmic theory for local optima,” J. Mach. Learn. Res., vol.
16, no. 19, pp. 559–616, 2015.

[41] M. T. Jones, “Security and the IoT ecosystem: Implementing security during the
design phase,” IBM Developer, Mar. 26, 2018. [Online]. Available: https://developer
.ibm.com/articles/se-iot-security/

SP

Authorized licensed use limited to: University of Minnesota. Downloaded on September 10,2020 at 03:33:27 UTC from IEEE Xplore. Restrictions apply.

