
A Framework for the Evaluation of Parallel and
Distributed Computing Educational Resources

David W. Brown
Computer Science and Information Systems

Elmhurst College
Elmhurst, IL, United States
david.brown@elmhurst.edu

Vitaly Ford
Computer Science and Math

Arcadia University
Glenside, PA, United States

fordv@arcadia.edu

Sheikh K. Ghafoor
Computer Science

Tennessee Tech University
Cookeville, TN, United States

sghafoor@tntech.edu

Abstract—This paper proposes a classification scheme for cate-
gorization of PDC educational resources. We have also proposed
an evaluation framework for assessing the PDC resources. Under
the proposed framework, each resource type has a set of criteria
and an associated score. A PDC resource will obtain a score
if evaluated under our proposed framework that is the sum
of the scores of the criteria that the resource satisfies. The
evaluation of whether a resource met a criterion is subjective. We
have also presented our evaluation of PDC educational resources
appropriate for CS1, CS2 (Computer Science 1 and 2), and DS/A
(Data Structures and Algorithms) available on the web using our
proposed framework.

Index Terms—PDC Educational Resource, Resource Evalua-
tion Framework, CS1, CS2, DS/A

I. INTRODUCTION

Parallel and Distributed Computing (PDC) has become
pervasive, from supercomputers and server farms containing
multi-core CPUs and GPUs, to individual PCs, laptops, and
mobile devices. Even casual users of computers now depend
on parallel processing. Therefore, it is important for every
computing professional (and especially every programmer) to
understand how parallelism and distributed computing affect
problem solving. It is essential for educators to impart a range
of PDC and HPC knowledge and skills at multiple levels
within the educational fabric woven by Computer Science
(CS), Computer Engineering (CE), and related computational
curricula including data science. The need for including PDC
in undergraduate computing curricula has drawn the attention
of the CS education community. NSF/IEEE-TCPP Curriculum
Initiative on Parallel and Distributed Computing – Core Topics
for Undergraduates [36] released a curriculum recommenda-
tion that contains what PDC topics should be included in first
two years of computing curriculum. PDC has been included
as a required knowledge area in ACM/IEEE 2013 curriculum
recommendation [2]. Accreditation Board for Engineering and
Technology (ABET) [1] has also required exposure to PDC
for accreditation of computing programs. Additionally, federal
funding agencies have been funding efforts in developing PDC
curriculum and instructional materials in recent years.

There are many challenges in integrating PDC in early CS
classes. The major challenges are: 1) lack of trained faculty
in PDC, 2) lack of instructional resources, and 3) lack of
awareness among CS faculty. A recent survey by the authors

of this paper in 2017 among the CS faculty (135 responded
out of about 4,000 CS faculty) indicated the lack of proper
instructional materials as one of the major challenges of
integrating PDC. Also, a recent NSF funded workshop that was
participated by thirty thought leaders from Academia, Industry,
National Lab, and Government Agencies identified a lack of
appropriate instructional resources among one of the major
impediments to effectively integrate PDC in undergraduate
computing classes.

Many educators individually or in groups have been working
in creating curriculum and instructional materials, organizing
workshops, symposiums, and integrating PDC in undergrad-
uate CS classes. Lots of PDC educational resources have
been developed/created in the last decade by these individuals
and groups. The Center for Parallel and Distributed Com-
puting Curriculum Development and Educational Resources
(CDER) [36] has been a pioneer in curriculum development
and creating a repository for PDC educational resources. There
are different types of resources (reading materials, slides,
syllabi, lab assignments, etc.) available on the web. These
resources differ with respect to quality, maturity, complete-
ness, usability, and adoptability. The community need more
instructional resources, but there is also a need for systemic
categorization, cataloging, and evaluations of the existing
resources. Such categorization and evaluation of the available
resources will help the community.

This work is a preliminary attempt of such an effort, and it
focuses on investigating what resources are available that will
help faculty to integrate PDC in undergraduate curriculum.
We want to examine what are the different types of resources
available, how easily adaptable they are, what PDC concepts
these resources cover at what level, and the quality of the
resources. While we were searching for resources, we limited
our focus on early CS classes (CS1, CS2, and data structures
and algorithms). One of the challenges we faced was that there
is no catalog which would help to find such resources with the
exception of the commonly known CDER courseware [23],
and the Internet search engines do not return any meaningful
results. We conducted our search based on our knowledge
of the community efforts and looking through the recent
publications on PDC education. Due to time limitation, our
search was primarily focused on the USA and by no means



Fig. 1. Resource Classification Tree

it was exhaustive. We are sure that we have missed many
resources.

In evaluating the PDC resources, we have proposed a
resource classification scheme that can be used to classify a
PDC educational resource. We have also proposed a resource
evaluation framework that can be used to assess a PDC edu-
cational resource and obtain a score indicative of the quality
of the resource. The proposed classification and evaluation
framework is a preliminary attempt that needs to be examined,
deliberated, and improved further in the future.

II. EVALUATION CRITERIA AND CLASSIFICATIONS

We categorize the available PDC educational resources into
three major classes: those designed to aid in the classroom
instruction (III-A), those that provide access to hardware
platforms for hands-on PDC exercises (III-B), and software
tools, libraries and games that can help with the instruction of
PDC (III-C).

Instructional: These are resources that can help in teaching
PDC concepts. These are materials that can be easily combined
with existing current course structures and materials with little
or no effort. Example of these types resources are lecture
slides, programming assignments, reading handout, course
syllabi, questions banks, and unplugged activities. Some of
these resources are meant to be used by the instructor only
and some may be by both instructor as well students. Some
resources may have a different version for instructors and
students. These resources can be further categorized based on
what level of undergraduate classes (CS1, CS2, networking
etc.) they are targeting or what PDC concept(s) they are
covering.

Hardware: These are generally parallel distributed com-
puting platforms where students and instructors can perform
hands-on PDC exercises. example of these could be a multi-
core server, a multi-node cluster with or without GPU capabil-
ity, Hadoop cluster, etc. The main characteristic of these types
of resources is the that they are freely available and easily
obtainable to students and instructors.

Tools: These types of resources encompass i) software such
as a Java OpenMP thread library that can be used to write

parallel programs, ii) games that can be used by the students
or instructors to understand or illustrate PDC concepts, iii)
libraries that can help to visualize PDC concepts or a parallel
program, iv) auto grader and or assessment software that can
help instructors and students. We are primarily focusing on
tools that are free or easily affordable.

The available PDC educational resources needs to be eval-
uated based on some criteria that would be an additional help
for an instructor to determine whether a particular material is
suitable for their class. We have proposed a resource evaluation
framework for different resources in our classification scheme.
There are several criteria with an assigned score for each type
of resource. The total score of a resource is the sum of the
scores of all criteria met by the resource. In our proposed
framework, instructional resources have 8 criteria, hardware
resources have 5 criteria, and tools have 6 criteria. These
criteria and the assigned score are our preliminary proposal
that requires further deliberation and refinement.

Following are the criteria for different types of resources
and their associated score:
Instructional - inspired by the Likert scale, these scores vary
on the scale of 5–10: 5 being the least applicable for a specified
criteria, and 10 being the most applicable.

1) IC1 - All supplied documentation is complete (score 10)
or simply in outline form (score 5)

2) IC2 - All material is current (score 10) or based on older
technology (score 5)

3) IC3 - Supplied documents are easily editable (score 10)
or do they exist only in a static form (score 5)

4) IC4 - No special requirements are necessary for adoption
(score 10) or are there significant prerequisites (score 5)

5) IC5 - Solutions to any problem sets are supplied (score
10) or is it the responsibility of the adopter to develop
them (score 5)

6) IC6 - Material is self-explanatory (score 10) or is
specialized knowledge required (score 5)

7) IC7 - Separate resources are supplied for student or in-
structor as appropriate (score 10) or are some component
resources missing (score 5)

8) IC8 - Setup and configuration instructions are complete



and easy to follow (score 10) or are they vague or
possibly misleading (score 5)

In a similar manner, for material that was determined to be
hardware-related, five criteria were chosen, while for tools and
games six standards were selected. These criteria are:
Tools and Games - the scores vary on the binary scale of
0–1: 0 being false and 1 being true.

1) TC1 - Detailed installation and configuration instruc-
tions are available (score 1)

2) TC2 - Program is simple to install and configure (score
1)

3) TC3 - Executable is available for Windows Operating
Systems (score 1)

4) TC4 - Executable is available for Apple OS/X Operating
Systems (score 1)

5) TC5 - Executable is available for Linux Operating
Systems (score 1)

6) TC6 - Sample code examples are available (score 1)
Hardware - the scores vary on the binary scale of 0–1: 0
being false and 1 being true.

1) HC1 - Detailed instructions on how to request access to
the hardware are provided (score 1)

2) HC2 - A template for the proposal request is available
if needed (score 1)

3) HC3 - The resource has an intuitive and easy-to-use
interface (score 1)

4) HC4 - The resource availability is not limited (score 1)
5) HC5 - Student access is allowed (score 1)

Each resource was assigned a score based on the summation
of the individual points allocated through examination of
how well they fulfilled the criteria. Based on this score,
we were able to rank the resources below, comparing their
ease and effectiveness as a teaching aid. Note, that while
many resources may end up with the same score, not all ties
are equal. For this reason, a separate evaluation write-up is
included for each resource indicating our belief on its efficacy.

III. RESOURCES

Based on the classification and evaluation criteria described
in the previous section we have evaluated existing PDC edu-
cational resources that are available on the web. As mentioned
in the introduction, we have limited our search to resources
that are appropriate for CS1, CS2, and DS/A only and our
search was not exhaustive. Following are the description of
resources that we have found and evaluated for different types
of resources.

A. Instructional Resources

High quality classroom instructional materials for PDC
education are essential to help educators effectively deliver the
major concepts to their students. In this section, we discuss
the resources that are available for educators and could aid
in the introduction of PDC into the core curriculum of their
classes. Figure 2 indicates the scores each received in our
classification. In addition, explanations of our evaluation are
included below.

1) CMU 15-418 Course – Level: DS/A, Score: 42:
Carnegie Mellon University’s course [8] contains lectures and
exercises on Parallel Computer Architecture and Programming
topics. The lecture material discusses multi-core processors,
parallel programming models and basics, GPU and CUDA
programming, performance evaluation, cache coherence, mem-
ory consistency, synchronization, scheduling, heterogeneous
parallelism, parallel computing with Spark, and more. The
self-check and programming exercises help students to rein-
force the material by analyzing parallel program performance,
rendering in CUDA, developing a simple elastic web server,
and implementing multiple programs: a task queue on a multi-
core CPU, data-parallel histogram, cache coherence, atomic
operations, workload balance, fine-grained locking, transac-
tional memory, and routing in an interconnected network.
Additionally, they posted all their student final projects with
video presentations, which can give ideas for future student
projects in parallel computing classes.

This course’s prerequisites include computer systems and
strong knowledge of C/C++ and, therefore, this material
cannot be used in the introductory courses. However, the slides
and assignments are very detailed (with no solutions) and it
could be used for developing higher-level PDC coursework
and topics.

2) CSinParallel – Level: CS1 CS2, DS/A, Score: 67: The
CSinParallel [33] project is a library of teaching materials for
integrating parallel computing into computer science courses.
The materials consist of concept-driven teaching materials,
readings, homework, lab exercises, evaluation strategies, and
supplementary pedagogical advice. The modules are written
for a wide range of languages (C, C++, Java, Python, Go,
Scheme) and technologies (OpenMP [30], MPI [18], CUDA).
In addition, the modules are categorized by the course where
they can be incorporated into: from computer architecture
and database systems to graphics, algorithms, and intro to
computer science for non-majors.

Some notable examples of the exercises include Pandemic
Exemplar, Monte Carlo Simulations, UK Traffic Incidents,
Flixster Network Data, LastFM Song Dataset Analysis, Drug
Design Exemplar, Map-Reduce, and Parallel Sorting. The
exercises are self-explanatory but it is difficult to judge how
much time to allocate for each one of them as they drastically
vary in length, complexity, and special software needed to be
installed. Some exercises have lengthy instructions, others are
shorter and simpler to follow.

3) Higher-level Languages and Activity-based Laboratories
– Level: CS2, DS/A, Score: 43: Bunde and Mache [7]
created a project for teaching parallel programming concepts
based on higher-level languages (Chapel [9], Java’s Executor
framework, Habanero Java, CUDA, and Cilk) and compelling
examples. They developed thread modules and wrappers to
simplify task parallel programming, educator’s toolbox for
CUDA, and high-level parallel programming using Chapel and
Scratch.

This project only has tutorials for those special languages
and frameworks (Chapel, Habanero, Cilk) with CUDA tutorial



Fig. 2. Instructional Resources Criteria and Scores

leading to a broken link. The tutorials comprehensively cover
the specifics of those languages and they provide short pro-
gramming exercises with solutions. However, no teaching or
student material is present and little information is given about
utilization of those resources in the classroom for instructional
purposes.

4) Intel + George Washington University Partnership –
Level: DS/A, Score: 52: Intel has established a parallel com-
puting center at the George Washington University [39]. They
created a set of lectures (PDF slides) covering a wide range of
topics, from architectures and performance to a unified parallel
C, Chapel [9], OpenMP [30], and MPI [18]. No other special
education material was produced and some of these slides have
links to resources that are only available to George Washington
University students. However, these lectures could be used as
a reference guide to the other resources.

5) Intel + Georgia Tech University Partnership – Level:
DS/A, Score: 52: Another course on Intel processors was
offered at Georgia Tech University [38]. They developed
undergraduate and graduate presentations as well as under-
graduate assignments on C++, including matrix multiplication
performance evaluation using OpenMP [30], communication
latency and bandwidth measurement using MPI [18], Con-
way’s Game of Life using MPI, simulation of soft particles
collections, and movie ratings prediction using Netflix data set
and MPI. The slides cover such topics as code optimization
(cache, BLAS, SIMD), measuring and reporting performance,
interconnects, algorithms for collective communication, par-

allel data analysis, DGEMV and DGEMM algorithms, and
partitioning problems in PDC.

The presentations are made to cover specialized topics and,
therefore, are not coherent to be used as a lecture material.
However, they can serve as a good reference when those
subjects are being covered in the classroom. The assignments
are descriptive for students to understand what is required from
them but there is no teaching guide and solutions that would
help educators prepare.

6) Intel + University of Oregon Partnership – Level: DS/A,
Score: 58: The University of Oregon has partnered with Intel
to develop lectures (slides) and hands-on lab modules for the
parallel computing course in C/C++ [27]. Their project covers
such topics as parallel computer architecture, performance,
map, collective, data reorganization, stencil, recurrence, fork-
join, pipeline, message passing, parallel algorithms, multi-
core, and GPU. The labs contain C++ starter code on the topics
of a map, collective, data reorganization, stencil, fork/join, and
pipeline. They also include a sample proposal for the final
group term project.

The lectures comprehensively cover the introduced topics.
The lab instructions are presented as a few slides per lab and in
most cases, the labs are self-explanatory, given the starter code.
It is not clear if the solutions are available. Some of the code
is quite complex so students are expected to be comfortable
in C++ programming. Only a few labs among those that are
available could be used in the introductory courses; others are
more suitable for very specialized PDC courses.



7) iPDC – Level: CS1, CS2, Score: 72: Through their
NSF grant on creating a workshop series as part of a Summer
Institute for Integrating Parallel and Distributed Computing
in Introductory Programming Classes, Ghafoor et al. [14]
developed a sequence of PDC educational modules for CS0,
CS1, and CS2 courses. Their work contains both unplugged
and plugged modules. The unplugged modules focus on
demonstrating PDC concepts without the usage of technology,
applicable for any course: finding the youngest student in
class, card sorting, M&M sorting, etc. The plugged modules
are provided in two languages: C++ and Java. They are
categorized as CS1 and/or CS2 and presented as assignments
on the topics of parallel min-max, pi estimation, parallel sum,
parallel sort, matrix multiplication, parallel image processing,
cache awareness, and data races.

iPDC assignments have detailed self-explanatory instruc-
tions for students to carry out the tasks at hand. Teacher
and student versions of the materials are combined in one
document that is available in both PDF and Word formats
for editing when needed. The assignments require standard
programming software to be installed. Solutions are available
upon request via email. Some of the Java activities are based
on Pyjama [34] that will require spending some time to get
familiar with and learn how to configure it.

8) Lectures for TCPP Book – Level: CS1, CS2, DS/A,
Score: 61: Varga has published a set of lectures on-
line [40] related to topics in parallel and distributed com-
puting as described in the book “Topics in Parallel and
Distributed Computing: Introducing Concurrency in Under-
graduate Courses” [25]. The lectures include presentations
and coding examples. There is no other instructional material
available in this repository but it is a good resource to use
when following the topics from the above-mentioned book in
your classroom.

9) LLNL Introduction to Parallel Computing – Level: CS1,
CS2, DS/A, Score: 62: Barney [5] at the Lawrence Livermore
National Laboratory has developed and published online an
Introduction to Parallel Computing web-course, covering a
variety of PDC topics, such as major concepts (Flynn’s taxon-
omy, general PDC terminology), parallel computer memory
architecture (shared and distributed memory), parallel pro-
gramming models (shared memory model, threads, message
passing model, data parallel model, SPMD, MPMP), and
designing parallel programs (partitioning, communications,
synchronization, data dependencies, load balancing, I/O, per-
formance analysis, and granularity).

Barney created a few examples of parallel array processing,
pi calculation, heat equation, and 1D wave equation. A unique
characteristic of this resource is that it contains lots of pictures
facilitating better understanding of PDC concepts. This mate-
rial can be used as a guide for educators to prepare for lectures
and students to learn PDC concepts through supported visuals.

10) National Center for Supercomputing Applications –
Level: DS/A, Score: 46: The National Center for Super-
computing Applications provides a variety of free courses
on PDC topics [22]. The Center also prepares researchers to

use XSEDE [11] resources. The courses include but are not
limited to simulating PetaFLOPS supercomputers, introduc-
tion to MPI [18], introduction to OpenMP [30], introduction
to multi-core performance, multilevel parallel programming,
performance tuning for clusters, and using the XSEDE user
portal.

The materials introduced in these courses can be used as
a reference guide to support PDC lectures in the classroom.
Besides those courses, this resource does not provide any
educational materials and there is more research-oriented than
educational-based support.

11) Parallella Boards and Raspberry Pi Course Integra-
tion – Level: CS2, DS/A, Score: 59: Matthews [19], [21]
integrated the Parallella [31] (18-core single board computer)
into an undergraduate PDC course. Some of the major PDC
modules that were covered in the course included pthreads,
OpenMP, Epiphany, and MPI. A total of four assignments were
given to students in C language. The students had to conduct
benchmarking tests, comparing parallel and serial programs.
The most challenging part of Parallella course integration was
working with the Epiphany documentation. As a result of that
experience, Matthews decided to replace Parallella boards with
Raspberry Pi, OpenMP, and CSinParallel [33] to teach PDC
to educators [20] and their students.

This resource includes handouts, worksheets, and slides on
only a few topics, such as integration (computing the area
under a curve), drug design exemplar, and Raspberry Pi laptop
connection. The available material is concise, editable, and it
does not require too much time to learn, making it suitable
for introductory courses.

B. Hardware Resources

A real concern for many professors attempting to integrate
PDC into the curriculum is the lack of High Performance
Computing (HPC) resources that are available to them at their
home institutions. While HPC resources are becoming more
affordable, they still remain outside the reach of most small
institutions. Depending on the researchers’ location, a few free
options are available, and several others exist at low or no cost
thresholds, saving the need to purchase and maintain expensive
systems.

In this section, we discuss the hardware resources that are
available for educators and could be beneficial to use in the
classroom. Figure 3 indicates the scores each received in our
classification.

1) Alabama Supercomputing Authority – score 3: On a
more limited scope, educators in the state of Alabama can
take advantage of resources provided by the Alabama Super-
computing Authority (https://www.asc.edu/). This group was
created in 1989 by the state to provide resources to develop
and operate supercomputing and telecommunications systems
throughout the state. The Dense Memory Cluster (DMC) at
the center has 2,360 CPU cores and 14 terabytes of distributed
memory. The DMC also contains a high performance GPFS
storage cluster, which has 93 terabytes of high performance



Fig. 3. Hardware Resources Criteria and Scores

storage accessible from each node. Access to the centers
resources are free to all educators throughout the state.

2) DiaGrid – score 4: DiaGrid [10] provides free instant
access to high performance, high throughput computing to
users via their browsers. It provides “bioinformatics (BLAST,
BEAST, etc), simulations (GROMACS, NAMD, CryoEM,
etc.), visualization tools (ParaView, PyMol, etc) and general
purpose computational tools such as IDEs with plugins for
submitting jobs to HPC resources (e.g., RStudio, Spyder for
Python, SubmitR for serial, parallel and parameter sweeps
jobs, etc.)”

3) Jetstream – score 4: Jetstream project [35] is available
for free as part of an NSF ACI-1445604. It provides a user-
friendly interface to allocate computing and storage resources
via trial, startup, education, and research allocations available
through XSEDE [37]. The trial provides 1,000 CPU hours,
startup and education 50,000-100,000 CPU hours, and research
1,000,000 CPU hours and more. Educators can use those
high performance computing resources for both teaching and
researching.

4) CDER cluster at Georgia State University’s Cluster –
score 4: NSF/IEEE-TCPP allows instructors and students to
use a heterogeneous cluster for PDC education maintained at
their center at Georgia State University [24]. At the time of
writing, the cluster has 28 nodes featuring 656 cores, 1 TB
RAM, 4 NVIDIA V100s, SLURM scheduler, Apache Spark.
Access to the cluster can be requested directly from the centers
website.

C. Tools

As important as instructional resources and hardware are for
the education of PDC topics, specialized tools and software as
well as simulators can be invaluable in capturing students’
attention. The resources in this section may be found in
Figure 4 while explanations of our evaluations are included
below.

1) Deadlock Empire Game – score 6: Deadlock Em-
pire [15], [32] is a C# based web-game teaching about certain
PDC principles including scheduling, concurrency, synchro-
nization, locks, deadlocks, semaphores, producer-consumer,
and critical sections. It does not require any installation and
can be run from any browser, allowing students to analyze
the task-parallel code straight on the website. The game is

structured in a unique way: the players act as schedulers whose
objective is to exploit flaws in the programs, making them
crash or otherwise malfunction.

The game is simple to understand and no interactive coding
is required; students would just need to analyze the short
pieces of code and attempt to schedule the tasks in a manner
that would intentionally crash the program. Even though the
game is C#-based, students with knowledge of any other lan-
guage would be able to quickly understand what is happening
in front of them. No teaching instructions are provided but
the game is self-explanatory. Being available on GitHub makes
this game customizable but for only experienced programmers
because there is no instructions on how to do it. However,
the authors welcome contributions and suggestions for new
levels and challenges that could be requested via email or pull
requests on GitHub [16].

2) Intel Distribution for Python – score 6: Intel Distribution
for Python [17] accelerates python computing for almost all
computational packages out-of-the-box with minimal changes
to the original Python code. It can be used on any OS and
installed from conda, PIP, APT, YUM, and Docker. This tool
accelerates and scales the compute-intensive Python packages
NumPy, SciPy, and mpi4py as well as allows for faster
machine learning and high performance computing on Python.

3) Numba for Python – score 6: Numba [26] makes python
code faster and parallel with just a few directives. Five minutes
is enough to learn it. The speed of computations of Python
code with Numba is comparable with C and Fortran. It allows
for parallelizing loops (as in OpenMP), SIMD vectorization,
and GPU acceleration (both NVIDIA’s CUDA and AMD’s
ROCm drivers) straight from Python. It would work in any OS
and would be useful for all classes where parallel algorithms
make sense to be run.

Numba represents a great solution for the global interpreter
lock problem in Python as it compiles the code before running
it. As a result, it could be a perfect fit for both introductory
as well as more advanced courses like data mining due to
Python being a simple to understand and versatile language. A
good example of the performance evaluation of Numba is [12]
where researchers compare the performance of Go, C++, and
Python on N-Queens problem (both sequential and parallel
algorithms).



Fig. 4. Tool Resources Criteria and Scores

4) Parallel Game – score 6: Parallel Game is a 2D game
developed by Santiago Ontañón et al. [28], [29] where players
interactively manipulate arrows by placing semaphores and
signals in order to achieve the map objectives. This game
visually teaches students about concurrency, deadlocks, mul-
tiple tasks, threads, speedup, critical section, signals, and race
conditions. This game is constantly updated, open source, and
available for any OS. It is also simple to install and has an
intuitive interface allowing students to learn the PDC concepts
without any special training. There are no special educational
materials for teachers besides the topics that students would
learn when playing this game.

In this game, players design a synchronization mechanism
allowing multiple threads to complete their tasks, avoiding
deadlocks and starvation. This resource does not provide any
extra educational materials but the game itself is easy to follow
and understand thanks to the tooltips and explanations that are
available to players.

5) Pyjama for Java – score 6: Pyjama [34] is a parallel
computing library that allows utilizing OpenMP-like GUI-
aware directives in Java, making it possible to solve problems
in parallel on Android or any other Java application. It has not
been updated since 2017 and not all OpenMP-like directives
are supported. It is simple to use given that the parallel
directives are similar to the standard OpenMP and students
would not need to change much in their code to make Java
applications become parallel. Pyjama installation could take
some effort to make sure that it works well with the current
version of Java and is included in the IDE or as a command-
line tool to compile the programs. It can run on any OS where
Java is installed.

6) Thread Safe Graphics Library for C++ – score 5:
A Thread Safe Graphics Library (TSGL) in C++ [3] allows
drawing on a 2D canvas from multiple threads at near real-
time. In [4], Adams et al. demonstrated how visualization can
depict the realities of the parallel processing of images. TSGL
works straight out of the box with parallel loops and can be

easily integrated into the existing code that processes images,
visualizing the parallel nature of image processing with just
a few extra lines of C++ code. Installation documentation is
available for Windows, Linux, and MacOS. TSGL abstracts
away the complexities of race conditions, locks, and deadlocks
and helps students focus on the visual concepts of parallel
processing, making this library suitable for all course levels.

7) WebMapReduce – score 5: WebMapReduce [13] is an
easy-to-use Hadoop Map-Reduce algorithm implemented as
a web interface where students learn about task and data
parallelism, scalability, speedup, and fault-tolerance. It can
be deployed as a standalone server on a local machine or
in the cloud through their existing AWS EC2 instance. In
combination with AWS Educate program, this would be the
ideal way to deploy WebMapReduce with minimal technical
administration efforts.

WebMapReduce has extensive documentation with exam-
ples in such languages as C/C++/C#/Java/Python. It is a part
of CSinParallel project [6] with learning goals, teaching ma-
terials/notes/tips. Some notable examples of the assignments
are poker hands, movie data analysis, flight data analysis,
Google N-Grams dataset analysis, and efficiently merging
tables. All examples are concise and simple to understand.
WebMapReduce contains teaching materials in Word, PDF,
and Latex. This tool would be a good fit for the introductory-
level courses.

IV. CONCLUSION

In this paper, we attempted to create instructional, hardware,
and tool criteria as well as a classification framework that can
be utilized and modified as necessary for evaluating the PDC
resources. We did not seek providing an exhaustive listing
of available resources but rather looked at multiple materials
as an example of how the framework could assist educators
considering to integrate PDC concepts into their curriculum
as recommended by ACM/IEEE/ABET.

While gathering information for this paper, the researchers
were pleased to note that the number of assets available to aid



in the inclusion of PDC topics in the CS coursework continues
to grow. However, further development of PDC resources is
still required to encourage broader adoption. Some examples
are:

1) Tools to help debug and score student programs are
necessary to help instructors grade student submissions.
An automatic grader to compile and test the applica-
tions students create has not been developed. Without
this grader, instructors who are often unfamiliar with
the topics are challenged to successfully gauge how
effective the programs are at taking advantage of system
resources.

2) Tools to help visualize what is actually occurring in
parallel programming will help instructors showcase
the material in an easy to understand format for their
students. Some visualization suites for PDC do exist,
most notably TSGL [3] and the Parallel Game [29].
However, TSGL only provides limited functionality and
is not yet intuitive enough for many instructors to create
their own visualizations of the material they wish to
highlight, whereas the Parallel Game abstractly teaches
the PDC concepts without any coding.

V. ACKNOWLEDGEMENTS

The authors would like to thank the PDC community for
developing the resources described in this paper.

REFERENCES

[1] ABET. Computing accreditation commission, computer science program
criteria. https://www.abet.org/accreditation/accreditation-criteria.

[2] ACM-IEEE. Computer science curricula 2013. https://www.acm.org/
binaries/content/assets/education/cs2013\ web\ final.pdf.

[3] Joel Adams, Elizabeth Koning, and Ian Adams. Github-hosted repository
of the thread safe graphics library. https://github.com/Calvin-CS/TSGL.

[4] Joel C Adams, Patrick A Crain, and Christopher P Dilley. Seeing multi-
threaded behavior using tsgl. In 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pages 972–
977. IEEE, 2016.

[5] Blaise Barney. Introduction to parallel computing. https://computing.
llnl.gov/tutorials/parallel/ comp.

[6] Richard Brown and Libby Shoop. Map-reduce computing for introduc-
tory students using webmapreduce. https://csinparallel.org/csinparallel/
modules/IntroWMR.html.

[7] David Bunde and Jens Mache. Teaching parallel computing with higher-
level languages and activity-based laboratories. http://faculty.knox.edu/
dbunde/parallel.html.

[8] Carnegie Mellon University Course 15-418/618. Parallel computer archi-
tecture and programming. http://15418.courses.cs.cmu.edu/spring2015.

[9] Cray. The chapel parallel programming language. https://chapel-lang.
org/education.html.

[10] DiaGrid. Get instant access to high throughput, high performance, cam-
pus, and national supercomputers via browser. https://diagrid.org/home.

[11] Extreme Science and Engineering Discovery Environment (XSEDE).
High performance computing and clusters for research. https://portal.
xsede.org/training/overview.

[12] Pascal Fua and Krzysztof Lis. Comparing python, go, and c++ on the
n-queens problem. arXiv preprint arXiv:2001.02491, 2020.

[13] Patrick Garrity, Timothy Yates, Richard Brown, and Elizabeth Shoop.
Webmapreduce: an accessible and adaptable tool for teaching map-
reduce computing. In Proceedings of the 42nd ACM technical sym-
posium on Computer science education, pages 183–188, 2011.

[14] Sheikh Ghafoor, Michael Rogers, and David Brown. Cybertraining:
Cdl: ipdc - summer institute for integrating parallel and distributed
computing in introductory programming classes. https://www.csc.tntech.
edu/pdcincs/index.php/ipdc-modules/.

[15] Petr Hudeček and Michal Pokorný. The deadlock empire. http:
//deadlockempire.github.io.

[16] Petr Hudeček and Michal Pokorný. Github-hosted repository
of the deadlock empire game. https://github.com/deadlockempire/
deadlockempire.github.io.

[17] Intel and Anaconda. Intel distribution for python. https://software.intel.
com/en-us/distribution-for-python.

[18] Lawrence Livermore National Laboratory. Message passing interface
(mpi). https://computing.llnl.gov/tutorials/mpi.

[19] Suzanne Matthews. Teaching materials by suzanne j. matthews. http:
//www.suzannejmatthews.com/teaching.html.

[20] Suzanne Matthews, Joel Adams, Richard Brown, and Elizabeth Shoop.
Exploring parallel computing with openmp on the raspberry pi. https:
//csinparallel.org/csinparallel/raspberry\ pi.html.

[21] Suzanne J Matthews. Teaching with parallella: A first look in an under-
graduate parallel computing course. Journal of Computing Sciences in
Colleges, 31(3):18–27, 2016.

[22] National Center for Supercomputing Applications. Cyberinfrastructure
tutor. https://www.citutor.org.

[23] NSF/IEEE-TCPP. Courseware management. https://tcpp.cs.gsu.edu/
curriculum/?q=courseware\ management.

[24] NSF/IEEE-TCPP. Heterogeneous cder cluster for pdc education. http:
//tcpp.cs.gsu.edu/curriculum/?q=node/21615.

[25] NSF/IEEE-TCPP. Topics in parallel and distributed computing: Intro-
ducing concurrency in undergraduate courses. https://tcpp.cs.gsu.edu/
curriculum/?q=cedr\ book.

[26] Numba. Open source jit compiler that translates a subset of python and
numpy code into fast machine code. https://numba.pydata.org.

[27] University of Oregon. Intel parallel computing center - parallel curricu-
lum development. http://ipcc.cs.uoregon.edu/curriculum.html.

[28] Santiago Ontañón, Jichen Zhu, Brian K Smith, Bruce Char, Evan Freed,
Anushay Furqan, Michael Howard, Anna Nguyen, Justin Patterson, and
Josep Valls-Vargas. Designing visual metaphors for an educational game
for parallel programming. In Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems, pages
2818–2824, 2017.

[29] Santiago Ontañón, Brian Smith, Jichen Zhu, and Bruce Char. Learning
parallel programming concepts through an adaptive game. http://digm.
drexel.edu/pxl/parallel-programming.

[30] OpenMP. The openmp api specification for parallel programming. https:
//www.openmp.org.

[31] Parallella. 18-core credit card sized computer. https://www.parallella.
org/.

[32] Michael Pokorny. The deadlock empire, 2016.
[33] Elizabeth Shoop and Richard Brown. Parallel computing in the computer

science curriculum. https://csinparallel.org/.
[34] Oliver Sinnen and Nasser Giacaman. Pyjama: an active research project

aiming at supporting openmp-like directives for java. http://parallel.
auckland.ac.nz/ParallelIT/PJ\ About.html.

[35] Craig A Stewart, Timothy M Cockerill, Ian Foster, David Hancock,
Nirav Merchant, Edwin Skidmore, Daniel Stanzione, James Taylor,
Steven Tuecke, George Turner, et al. Jetstream: a self-provisioned,
scalable science and engineering cloud environment. In Proceedings
of the 2015 XSEDE Conference: Scientific Advancements Enabled by
Enhanced Cyberinfrastructure, page 29. ACM, 2015.

[36] The NSF/IEEE-TCPP Curriculum Committee. Nsf/ieee-tcpp curricu-
lum initiative on parallel and distributed computing - core topics for
undergraduates, 2012. http://tcpp.cs.gsu.edu/curriculum/?q=system/files/
NSF-TCPP-curriculum-version1.pdf.

[37] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly
Gaither, Andrew Grimshaw, Victor Hazlewood, Scott Lathrop, Dave
Lifka, Gregory D Peterson, et al. Xsede: Accelerating scientific
discovery. Computing in Science & Engineering, 16(5):62–74, 2014.

[38] Georgia Tech University. A course on high performance scientific
computing on intel processors. https://www.cc.gatech.edu/∼echow/ipcc/
hpc-course/.

[39] The George Washington University. Intel parallel computing center -
ipcc lectures. https://ipcc.seas.gwu.edu/lectures.

[40] Ervin Varga. Material for lectures related to topics in
parallel and distributed computing. https://github.com/evarga/
parallel-computing-lectures.


