G-VALUED GALOIS DEFORMATION RINGS WHEN / # p

JEREMY BOOHER AND STEFAN PATRIKIS

ABSTRACT. For a smooth group scheme G over an extension of Z, such that the generic fiber of
G is reductive, we study the generic fiber of the Galois deformation ring for a G-valued mod p
representation of the absolute Galois group of a finite extension of Q. with £ # p. In particular, we
show it admits a regular dense open locus, and that it is equidimensional of dimension dim G.

1. INTRODUCTION

Many of the deepest arithmetic properties of modular forms (or more generally algebraic auto-
morphic representations) are encoded in the congruences between eigenforms of different level or
weight. These congruences can be interpreted as congruences between the corresponding modular
Galois representations, and this perspective, in combination with the development of modularity
lifting and potential automorphy theorems, has dramatically advanced our understanding of such
congruences. The most successful approach to producing congruences is based on a method of
Khare-Wintenberger [KW09] that in appropriate settings produces lifts of prescribed inertial type
for a potentially modular mod p representation p; when p is in fact modular, the method combines
with modularity lifting theorems to produce congruences between modular forms.

The present paper is a contribution to the local aspect of this story for Galois representations
valued in general reductive groups. Namely, the method of [KW09] depends in part on having an
adequate understanding of the structure of the generic fibers of local Galois deformation rings, and
we focus our attention here. Let ¢ and p be distinct primes, K be a finite extension of Qg, and E
be a finite extension of Q,, with ring of integers O and residue field k. Consider a smooth group
scheme G over O with reductive generic fiber,! let I'x = Gal(K /K), and consider a continuous
representation

p: ' -G (k)
The functor of lifts of p to artin local Og-algebras with residue field k is pro-represented by a
complete local noetherian Og-algebra R%. This ring may be quite singular; the object of this
paper is achieve some control over its generic fiber Rﬁm[%]. The main result is the following. First

we recall that to each homomorphism 7: Iy — G(E) that factors through a finite quotient, we
can associate a quotient (R%[%DT of R%[%] (“with inertial type 7”) which is a union of irreducible

components of R%' [Z%] .

Theorem 1. For any p: I'x — G(k) and T as above, (R%'[%

subscheme, and it is equidimensional of dimension dim(G).

)T admits a regular, dense open

We will now give some of the history behind this result. Theorem 1 generalizes a result of
Gee [Geell] in which the group G is taken to be GL,. His result in turn is the adaptation to the
¢ # p case of a corresponding result of Kisin [Kis08] that studies the generic fibers of potentially
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semi-stable deformation rings (in the case ¢ = p); Kisin introduced many new ideas on which all
subsequent work in this subject has been based. Later, Gee’s results were reproved and slightly
strengthened in [Cho09] and [BLGGT14], and in [Bell6] Bellovin proved a version of Kisin’s £ = p
result for general G.

Remark 2. The results of [Kis08, Theorem 3.3.4], and later papers like [Geell, Theorem 2.1.6]
that adapt its arguments, state there is a locus in the generic fiber that is formally smooth over
Q,, instead of stating it is regular. As discussed in Remark 16, regularity does not imply formal
smoothness in this setting, and so these results are incorrect as stated. However, this distinction is
irrelevant for the applications to computing the dimension of the generic fiber, as all that is needed
is regularity.

While we were preparing this paper, Bellovin and Gee posted a preprint that treats both the
cases £ = p and ¢ # p for general groups G [BG17] . In addition to treating the more difficult
case ¢ = p, their work gives a more refined version of our Theorem 1 (finding a dense set of “very
smooth” points), motivated by the refinement of [Geell] established and applied in [BLGGT14].
Moreover, they extensively pursue global applications to lifting results of Khare-Wintenberger type,
including applications to generalizations of the Serre weight conjecture: see the theorems in the
introduction of [BG17].

Because the work in [BG17] is so comprehensive, and because of the timing of our two papers, we
have not attempted to push our method to achieve the most refined results; nor have we included any
global applications, although they are the motivation behind Theorem 1. Our proof of Theorem 1 is
different from that of the corresponding result in Bellovin-Gee, and when specialized to G = GL,,,
it is different from the arguments of [Geell], [Cho09], and [BLGGT14], so we hope it may still be
of independent interest. In the remainder of this introduction, we will briefly describe the approach
to Theorem 1.

Common to all of the results related to Theorem 1 is the translation of problems about Ga-
lois representations to problems about Weil-Deligne representations. In [Geell], [BG17], and our
Theorem 1, the main (¢ # p) result is reduced using ideas of [Kis08] to a corresponding “unob-
structedness” result in an appropriate moduli space of Weil-Deligne representations; the reduction
in [Kis08] is not obvious, but it carries over essentially formally to the settings of these subsequent
papers. What is new in our paper is the proof of this unobstructedness result, Theorem 7, which
occupies §3. In brief, there is a moduli space X — Spec E (see §2) of Weil-Deligne representations,
and for any object Dy € X(A) an explicit complex C*(D,4) whose cohomology controls the defor-
mation theory of D4. Taking D4 = Dg n - to be the universal object, our problem is to show that
the cohomology measuring obstructions, H 2(Dq>7 N,r), a coherent sheaf on X, vanishes away from a
dense open subscheme of X. The strategy initiated by Kisin shows this by studying an analogous
moduli space Y that parametrizes only a monodromy operator and an inertial type, together with
the forgetful map X — Y’; the essential and non-formal content of Theorem 1 is the fact that every
irreducible component of every non-empty fiber of this map contains an unobstructed point. In
the papers [Kis08], [Geell], [Bell6], and [BG17], this is achieved essentially by constructing one
particular unobstructed point in each component. In contrast, our argument takes any point in
such a fiber and connects it by a chain of G,,’s and G,’s to an unobstructed point. It relies on
a series of applications of the Jacobson-Morozov theorem. This analysis is complicated by two
factors. Unlike the GL,, situation, the centralizer of the nilpotent monodromy operator may have
multiple components, leading to additional components in the fibers. Furthermore, the adjoint
action of the image of Frobenius twists the inertial type (see condition (3) after Definition 3), while
the analogous condition in the £ = p case is that the inertial type is preserved. The latter condition
defines a subgroup, while the former does not, complicating the argument.
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2. G-WEIL-DELIGNE REPRESENTATIONS AND DEFORMATION THEORY

Let ¢ and p be distinct primes. Let K be an ¢-adic field, with residue field of order ¢ = ¢/, and
let Wy be the Weil group of K. Let || - || : Wx — Wx/Ix ~ q% denote the homomorphism which
sends any geometric Frobenius to ¢~'. Throughout this paper, we will fix a geometric Frobenius
¢ € Wg. Next consider a finite extension F of Q, with ring of integers Op and residue field £, and
let G over O be a smooth group scheme with reductive generic fiber; for the purposes of the next
two sections, we only use the generic fiber, whereas in §4 we need a smooth group scheme over O

in order to study the deformation theory of p.

Definition 3. For an E-algebra A, a G-Weil-Deligne representation over A is a trivial G-bundle
D4, a homomorphism r : Wx — Autg(D4) whose restriction to Ix factors through a finite
quotient, and an N € Lie Autg(D4) such that Adr(g)N = ||g||N.

More concretely, if the inertial action factors through a fixed finite extension L/K, a G-Weil-
Deligne representation over A is given by a trivial G-bundle D4 equipped with a homomorphism
7 Ik — Autg(Da), an element N € Lie Autg(Da), and an invertible @ € Autg(Da) that
satisfy:

(1) Ad((g9))N = N for any g € I, /-
(2) Ad(®)N =q~'N.
(3) Ad(®)7(7) = T(pygp~!) for all v € Itk
We take ® = r(¢) and 7 = r|j,: recall that ¢ is the fixed geometric Frobenius in W

Remark 4. When A is a field, note that condition (2) implies that N is nilpotent. In particular, for
each finite dimensional G-module, N acts nilpotently on that module since (2) forces the eigenvalues
to be zero.

Let W D¢ denote the category whose objects are pairs consisting of an F-algebra A and a G-
Weil-Deligne representation (Da,r, N) over A; a morphism (A, Dg,r,N) — (A", Dy, v/, N') is an
E-algebra map A — A’ and an isomorphism D4 ® 4 A’ = D 4 of G-bundles intertwining the actions
of (r,N) and (r', N'). We may regard W D¢ as a category cofibered in groupoids over the category
of F-algebras. We define W D¢ 1, as the analogous category in which the Ix-action factors through
the fixed finite quotient Iy .

Remark 5. We can identify Autg(D4) with G by picking a trivializing section, obtaining a ho-
momorphism 7 : Wi — G(A). This is analogous to the way a free A-module of rank d with action
of a group I" can be identified with a homomorphism I' — GL4(A) after a choice of basis.

We wish to study deformation theory in WDg 1. Let ad D4 := Lie Autg D 4; the adjoint action
gives an action of I7,/x and of ® on ad D4. Consider the anti-commutative diagram

(ad DA)IL/K % (ad DA)IL/K

J/ad N lad N

Add—
(adDA)IL/K gAdP-1 (adDA)IL/K.

Let C*(D4) denote the total complex (indexed so as to be in degrees 0, 1, and 2) associated to
this double complex, and let H*(D,) denote the ith cohomology. Note that the construction of
H?(D,4) commutes with arbitrary base change.

Let A be an Artin local F-algebra with maximal ideal my, and let I C A be an ideal with
Img = 0. Let Dy € WDg ,(A/I), and define D = Dyr ®a/r A/ma. Two liftings Da and
D', are equivalent if there exists a map D4 — D’y of G-torsors compatible with the Weil-Deligne
structure that reduces to the identity modulo 1.
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Proposition 6. If H*(D) = 0, then a lift Da € W D¢ 1,(A) of Dy yp exists. The set of equivalence
classes of liftings of D a1 to A is a (possibly empty) torsor under H'(D) @ A/ma -

Proof. The proof is essentially the same as that of [Bell6, Proposition 3.2] and [Geell, Lemma
2.1.1]. 0

We let X denote the functor on the category of E-algebras which associates to an F-algebra A
the set of possible triples

(®,N,7) € G(A) x ga x Reps(I1/K)

that satisfy (1)-(3) of §2. This is represented by a finite type locally closed subscheme of the
space of all possible triples obtained by imposing the conditions. Likewise, we consider a functor
Y consisting of pairs (N, 7) satisfying condition (1). We also have Xy, X;, and Y, where the
subscripts denote a fixed choice of that variable. There are natural (forgetful) maps between these
spaces. Any object of X defines a G-Weil-Deligne representation by viewing G as a trivial G-torsor.

We write Dg n - for the universal triple on X = Spec R, and define the sheaf H on X as the
cokernel of

(1) gAdD —1@adN : gt/" @gt/" — g™

It is a coherent sheaf on X, and by semi-continuity the locus where it vanishes is open. For a
closed point x with residue field A corresponding to a G-Weil-Deligne representation D4, we see
that H, ~ H?(D,). We say a point x is unobstructed if H, = 0.

The main technical result we will prove is the following:
Theorem 7. The unobstructed points are dense in X.

The argument is inspired by the proofs of [Kis08, Lemma 3.1.5], [Geell, Lemma 2.1.3], and [Bell6,
Proposition 5.2]. We will show that the unobstructed points are dense in the fiber Xy, of X — Y
over any fixed 7 and N. As being unobstructed is an open condition, it suffices to find a single
unobstructed point in each irreducible component of the fiber. The proofs in these papers (and
the proof of [BG17, Theorem 2.3.6]) proceed by writing down a point in each component, either by
hand or by using the theory of associated cocharacters, and then directly verifying that the point
is unobstructed. In contrast, we start with an arbitrary point and connect it by a succession of
G.’s and G,;,’s to an unobstructed point. We will carry this out in the next section.

3. MODULI SPACES FOR G-WEIL-DELIGNE REPRESENTATIONS

Let e be a nilpotent element in Lie Gz. The proof of Theorem 7 repeatedly uses cocharacters
that interact well with V.

Definition 8. For a subgroup H C G with e € Lie H, a cocharacter A : G, — H is adapted to
e provided that Ad A(t)e = t2e.

As we are in characteristic zero, the nilpotent e can be extended to an sls-triple by the Jacobson-
Morozov theorem. If we exponentiate the triple and restrict to the diagonal G,,, we obtain a
cocharacter adapted to e. This process also provide examples of the associated cocharacters used
in [Bell6]. Note that a general cocharacter adapted to N is not necessarily associated to N.

Let H be a reductive subgroup of G, and set h = Lie H. Consider a semi-simple g € G(E) such
that Ad g(h) = b, and a non-zero nilpotent e € b such that Ad(g)e = ae for some non-zero a € E.
We will find a cocharacter adapted to N that interacts well with g.

Lemma 9. There exists a cocharacter \ : G,, — H® adapted to e such that for all t

AdA(t)Adg = AdgAd A(t).
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Proof. We learned this argument from [GR10, Lemma 2.1]. Consider the adjoint action of g on the
Lie algebra . We will construct the desired cocharacter by constructing an sly-triple compatible
with the eigenspace decomposition
b= nw),
I

where h(u) is the eigenspace for Adg with eigenvalue p. (As g is semi-simple, we do not need
generalized eigenspaces.) The Jacobson-Morozov theorem gives an sly-triple (e, ho, fo) in h. Note
that e € h(«). For any h, € g(p),

Ad(g)[hy, ] = [Ad(g)hy, Ad(g)e] = palhy, €],

80 [hy, €] is an element of h(pa). Now decompose hg = h + A’ with h € h(1) and 1’ € D, b(p).
Using that 2e = [ho,e] = [h,e] + [W,e] € h(a) and considering eigenspaces, we conclude that
2¢ = [h,e]. In particular, (1) # 0. Likewise, we decompose fo = f + f’ with f € h(a™!) and
f" € D,za-1 b(1) and keep track of eigenspaces in the relation hy = e, fo] = [e, f] + [e, f'] to

conclude that h = [e, f]. Likewise we see that [h, f] = —2f, so (e, h, f) is another slo-triple; to
obtain the cocharacter adapted to e, we exponentiate and restrict to the diagonal G,,. Then we
see that AdgAd A(t) = AdA(t) Adg as h € h(1). O

We now proceed with the proof of Theorem 7.

Proof. Fix 7: I/ — G(E). It suffices to show every non-empty fiber Xy, of the forgetful map
X, — Y, contains a dense open subset on which H vanishes. As this is an open condition, it suffices
to find a single closed point x in each irreducible component of Xy ; for which H, = 0.

Consider the fiber Xy ; over a fixed N € (Lie G)(E’) for some finite extension E'/FE; assume it
is non-empty, so that we have additionally a ® € G(E) such that the relations (1)-(3) of §2 hold
for ®, N, 7; in this particular fiber we are only allowed to vary ®. To find an unobstructed point
in the fiber, we may work over E, and to simplify notation, we change notation and let G (and
similarly N) be defined over E. Fix a square root of ¢ in E. By Remark 4, N is nilpotent.

We break into cases depending on whether N = (0. In both cases, the strategy is to connect ® by
G,’s and G,,’s to an unobstructed point. A basic but important observation is that the fiber Xy -
isa Zg(N)NZg(7)-torsor. As the fiber is a torsor under Zg(N)NZg(7), the irreducible components
are the same as connected components. Furthermore, for homomorphisms A : G, — Zg(N)NZg(7)
or: Gg — Za(N)N Zg(r), PA(t) and P1(s) are in the same component of the fiber as ®.

Case 1: When N = 0, to be unobstructed means that ¢ Ad® — 1 is invertible on gIL/ K, Given
P € X(),T(E) such that g Ad® — 1 is not invertible, we will find a ® in the same component as
® such that the generalized eigenspace of Ad ®’ with eigenvalue ¢! has smaller dimension. By
induction, this produces an unobstructed point.

By hypothesis, there is an N’ € g/Z/5 such that ¢ Ad(®)N’ = N’. Note that N’ is nilpotent as it
is conjugate to ¢! N’ and so acts nilpotently on every finite-dimensional G-module by consideration
of eigenvalues.

Lemma 10. There exists ®5 in the same component of the fiber Xo, as ® such that @ is semi-
simple. There is a cocharacter \ : Gy, — Zg(7) adapted to N' such that

Ad D, AdA(t) = AdA(t) Ad D,

Proof. Consider the Jordan decomposition ® = ®,®, where ®; € G(F) is semi-simple and ®, €
G(E) is unipotent. The relation Ad®(7(v)) = 7(¢y¢ ') for v € Ir ) implies that there is an
integer n such that ®" € Zg(7)(E). As ®4 and ®, commute, we see that ®* = ®7®". This
is also the Jordan decomposition for ®" in Zg(7). Since Jordan decomposition is compatible
with inclusions of groups, we see ®" € Zg(7)(E). As ®7 is unipotent, we may write it as ®7 =
exp(nY) for a nilpotent Y € Lie Zg(7) (for any unipotent group U in characteristic zero, there is
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an isomorphism of schemes exp: Lie(U) — U induced by embedding Lie(U) into some Lie algebra
of strictly upper-triangular nilpotent matrices, and then applying the usual power series of the
exponential; if U is commutative, exp is moreover an isomorphism of group schemes). This shows
that @, = exp(Y) lies in Zg (7). As the fiber is a Zg(7)-torsor, we see that ®;exp(tY’) lies in the
fiber for every ¢, and hence that ® and &, are in the same component.

The second statement is Lemma 9 applied to Zg(7) C G; note that Zg(7) is reductive by
repeatedly applying the fact that for a reductive group H and a semisimple element h € H, Zg(h)
is reductive [Hum95, Theorem 2.2]. O

We will conclude the proof of Case 1 by showing that for a generic choice of ¢, the dimension
of the ¢~ '-eigenspace of Ad(®,\(t)) on g’t/¥ is less than the dimension of the ¢~ '-eigenspace of
Ad ®,. This will suffice, as ®, ®,, and ®;A(¢) all lie in the same component of Xy, and the
¢ '-generalized eigenspace for Ad ® has the same dimension as the ¢~ !-eigenspace for Ad ®,.

We decompose

g'erx = D g'erm ()
I

where g/L/5 (1) is the p-eigenspace of Ad ®,. Now Ad \(t) preserves g'/x (1) as Ad ®, and Ad A(t)
commute. On the finitely-many non-zero g’2/5 (1) with u # ¢, the condition that Ad ®,\(t) not
have ¢~! as an eigenvalue is simply the condition that Ad A(t) not have ¢~ 'u~! as an eigenvalue.
This is a non-empty, open condition (consider ¢t = 1). Furthermore, we compute that

Ad(® ()N = ¢ 2N,

So if t # +1, we see that the eigenvalue for N’ is not ¢~!. Thus for a generic choice of ¢, Ad(®\(t))
has a smaller ¢~ !-eigenspace than Ad(®;), and we conclude by induction.

Case 2: The case N # 0 follows the same strategy, but is more involved. We will first find a
semi-simple point in a given component of the fiber, and then modify it using cocharacters valued
in Zg(N)N Zg(7) so it is unobstructed. A key technique is passing between points in the fiber and
points of Zg(N): for any cocharacter X adapted to N and ® in the fiber, we see ®A(¢'/?) € Zg(N)
as

Ad(®A(¢'*))N = ¢ 1 (¢"*)’N =N

Lemma 11. In each non-empty component of the fiber Xy, of X; — Y, above N, there exists a
semi-simple point ®. There is a cocharacter X : Gy, — Zg(7)° adapted to N such that for all t

Ad D AdA(t) = Ad A(t) Ad ®.

Proof. Let ®' be a point in the desired component of the fiber. Let X : G,, — Zg(r) be
any cocharacter adapted to N. It is easy to check that ¥ := &N (¢'/?) € Zg(N)(E) satisfies
Ad(W)7(y) = T(¢pyp~ 1) for v € I, k. As before, some power U™ is in Zg(N) N Zg(7)(E).
Consider the Jordan decomposition ¥ = ¥, ¥, in Zg(N) with ¥,, and ¥, commuting unipotent
and semi-simple elements. As ¥ = VW7 is a Jordan decomposition for ¥ and Jordan decom-
position is compatible with inclusions of groups, we see that ¥ € Zg(N) N Zg(7)(E). As ¥, is

unipotent, it follows that ¥, € Zg(N) N Zg(7)(E). This shows that
Ad(W XN ()N =¢7'N  and AN (¢72)7(y) = (797"

for v € I'r, /. Note that @' andW,\ (¢~ 1/2) = &' N (¢"/?)W; 1N (¢~'/?) lie in the same component of
the fiber.

The above used an arbitrary cocharacter adapted to IN. Using Lemma 9, now pick a cocharacter
A Gy, — Zg(1) adapted to N whose adjoint action commutes with that of Wy, Define & =
U A\(g~'/?). As before, we check that ® is in Xy ,(E). Furthermore, note that ® and ¥\ (¢~ /2)
lie in the same component of the fiber, as the family

By = U N PN
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interpolates between them. Finally, ® is semi-simple as the adjoint actions of ¥y and )\(q_l/ 2
commute and are semi-simple, and it is clear that the adjoint actions of ® and A(t) commute. [

Recall that a point (@', N) is unobstructed if
gAd® —1@ad N : gle/x @ gle/x — gle/x

is surjective. If @’ is semi-simple, then so is ¢ Ad ®' — 1. Hence gIL/ K is a direct sum of the kernel
and the image of ¢ Ad ®' — 1. In this case, (', N) is unobstructed provided that ker(¢ Ad®' —1) C
Im(ad N). We now continue with the ® and A produced by Lemma 11.

We decompose
QIL/ K= Z In

nez
where g, is the space where Ad A(t) acts by t". For n < 0, we set gh*" := ker(ad(N)|;"*!) and
g, = Im(ad(N)|g,_,), and decompose

law.
On = gn D g,""
Here gl are the lowest weight vectors of the sly-triple containing N that was used to define .
Note ad N gives an isomorphism between g,,—2 and g/,.

Lemma 12. For any n < 0, we have Ad ®(gh*") = gh*- and Ad ®(g,) = ¢/,

Proof. First note that Ad(®) preserves g, since Ad(®) and Ad(\(t)) commute. For v € gh"", we
compute that

(ad N)™" "L (Ad(®)v) = ¢ "L Ad ® ((ad N)_”+1v) =0.
Since ® acts invertibly (Ad ®~! is an inverse), this gives the first equality. For the second, consider
v € gl,. Writing v = ad N (v') for v' € g,,—2, we compute that

Ad®(v) = [Ad®(N),Ad®(v)] = ¢ L ad N(Ad ®(v)).
Thus Ad®(v) € ad N(gn—2) = g,- Since ® acts invertibly, we are done. O

Note that all g, with n > 0 lie in the image of ad N, as do g, for n < 0. To check that
ker(¢g Ad®" —1) C Im(ad N), by the Lemma it suffices to show that Ad &' does not have eigenvalue
¢! on any of the gl"-. We will modify ® so this holds.

Consider the element ¥, = (ID)\(ql/ 2). There are two cases to consider, depending on whether
Ad(¥s) has infinite or finite order. First suppose it has finite order, say m, so that Ad(®)™ =
Ad(\(¢*/?))~™. Consider any eigenvector v € gk (for some n < 0) of Ad(®), with eigenvalue a.
Then

o™y = Ad(®)™(v) = Ad(\(q™™/2)) = ¢/ 2,
and we clearly cannot have o = ¢~ for n < 0.
Next consider the case where Ad(¥;) has infinite order. The group

Z={g9€ Zag(N)NZg(7): Ad(g) and Ad(P) commute}

contains a non-trivial power of the semi-simple, infinite order, element ¥ (since Ad ®"'7(y) = 7(7)
when conjugation by ¢ is trivial on Ix). Some power W7, with m > 0, is then contained in a
non-trivial torus of Z, and we let \” be any co-character of (this torus of) Z whose image contains
U7 certainly in any torus every element is in the image of some co-character. We consider the
adjoint action of ®; := ®N’(¢) and claim that for a generic choice of ¢, the point ®; will be an
unobstructed point of the fiber of X, — Y, over V.

As the fiber is a Zg(N) N Zg(7)-torsor, ®; lies in the desired fiber. Since Ad® and Ad \'(t)

commute, they have common eigenvectors. Let v be an eigenvector of Ad ® in one of the g\;*".

e In the case that Ad \’(t)v # v for some ¢, it is a non-empty open condition for Ad ®;(v) #
-1
q .
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o If Ad)'(t)v = v for all ¢, then as Uy is in the image of N we see that
v=Ad U, (v) = Ad PN (¢ (v) = ¢V? Ad B (v).
In particular, Ad ®(v) # ¢ 'v as n/2 < 0, and hence Ad ®;(v) # ¢~ v for all ¢.

Combining these conditions for each eigenvector in some gL, for a generic choice of ¢ we see Ad ®;
does not have eigenvalue ¢~ on any of the g%w'. In that case ®; is an unobstructed point of the
Xn,r, completing the case that N # 0. O

4. ANALYSIS OF LOoCAL GALOIS DEFORMATION RINGS

As before, let £ and p be distinct primes. Let K be an f-adic field. In this section we will apply
the local monodromy theorem, so we fix a compatible collection of p-power roots of unity in K,
yielding as usual a surjection t, : It — Z,(1) from the tame inertia group of K. Let E be a finite
extension of Q, with ring of integers O and residue field k of size ¢ = /. Let Cp, denote the
category of complete local noetherian Og-algebras with residue field k. Let G be a smooth group
scheme over O such that G is reductive. Fix a continuous homomorphism p : Gal(K/K) — G(k).
Consider the morphism DﬁD — D5 of (categories cofibered in) groupoids over Cop,, where D%'(R)
is the category (set) of lifts of p to G(R), and D5(R) is the category whose objects are lifts of p,

and where a morphism between lifts p and p’ is an element g € é(R) such that gpg~' = p/. We
are interested in the generic fiber Rﬁm[%] of the universal lifting ring R% (representing DﬁD); when
the corresponding deformation functor for p is also representable, we obtain analogous results for
Rp[}o]. We will analyze Rﬁm[%] by means of G-Weil-Deligne representations.

Let A° be a complete local noetherian Og-algebra that has no p-torsion, with generic fiber
A= AO[%], and with a continuous homomorphism p: I'x — G(A°). We can associate a G-
Weil-Deligne representation D4 to p using the following construction (compare [EH14, Proposition
4.1.6)).

For each finite dimensional E-linear representation M of G, we obtain a representation of I'x on
M go. Let m be the maximal ideal of A°. Let e be the m-adic valuation of p, and fix an integer j
such that j > pfl. Since p is continuous and M 4o / mJ M 40 is discrete in the m-adic topology, there
is a compact open normal subgroup H)y; C I that acts trivially on M. /m? Ma.. Doing so for a
faithful representation, we may find a common H that works for every choice of M and pick an
element a € H. Note the kernel of the reduction map Aut(Mgo /i) — Aut(M 4o /i) is a p-group
for i > j, so the action of H factors through the chosen t, : I, — Z,(1).

Now consider the natural representation pps : ' — Aut(M4) over A. The denominators in the
power series for log exist in A (since p is inverted), and the power series for log(par(g)) for g € H
converges in the m-adic topology on End(My4) since pys(g) = Id (mod m’). Furthermore, we see
that exp(log(par(g))) exists and equals pps(g) for g € H since the power series for the exponential
converges. (The m-adic valuation of log(pas(g)) is greater than 5o7 and the valuation of n!is at
most ~7.)

We set Ny = t“%) log(par(a)) and define rpy : Wi — Aut(My) by

ru(9"o) = pu(¢" o) exp(—tp(o) Nas)
where ¢ is Frobenius and o € Ix. Note that exp(—t,(c)N) exists since it can be rewritten as
exp(log(par(a=t(?)))) and a~*(?) € H. We see that 7y is trivial on H. Furthermore, for g =
¢"o € Wi we compute that

Ad(rac(9) Vs = o5 lox(oarlgg ™)) = 15 lox(on (670 167")
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since exp(Njs) commutes with Nys. Now pas(cac™) = par(a) as pys factors through the abelian
Z,(1). Furthermore, conjugation by ¢ is multiplication by ¢! on Z,(1). This shows that

Ad(ra(9))Na = 1|9l Nas-

A similar calculation shows that ;s is a homomorphism.

The data of rp; and Ny for every finite dimensional E-linear representation M of G gives us
a homomorphism r : Wx — G(A) that is trivial on H and an N € (LieG)(A) by a Tannakian
argument as in [Bell6, Appendix A]. In particular, [Bell6, A.2.4] discusses how to deal with N,
while Section A.2.6 discusses how to deal with the representation of a group. Furthermore, we have
that

Adr(g)N = [lg||N,

as we have checked it on each representation M. In other words, we have a G-Weil-Deligne repre-
sentation over A (with the G-bundle canonically trivialized).

Remark 13. Suppose G = GL,, E’ is a finite extension of the field E, and z is an E’-valued
point of A. Specializing D4 at x gives the Weil-Deligne representation associated to p, using the
standard construction.

For the remainder of this section, fix a finite extension L/K and an homomorphism 7: Iy /5 —

G(E) that arises as the restriction to I of a G-Weil-Deligne representation. We call a G(FE)-
conjugacy class of such 7 an inertial type. For any artin local F-algebra B, with residue field
some finite extension E’ of F, we say a continuous homomorphism p: I'xy — G(B) is type 7 if the
associated G-Weil-Deligne representation (r, N) has inertial restriction with reduction

Ik = G(B) = G(E')

being G(E)-conjugate to 7. This condition is equivalent to 7: I,/ — G(B) being G(B Qg E)-
conjugate to 7: this follows from standard deformation theory and the fact that H*(I}, /Kk>ad(p)) =0
fori =1,2. (We extend the definition of type to the case where B is any finite F-algebra by imposing
the above condition on each local factor of this artin ring.)

For any complete local noetherian Og-algebra A°, with generic fiber A = AO[%], and equipped
with a continuous homomorphism p: 'y — G(A°), there is a quotient A — A7, equal to a union of

irreducible components of Spec A, such that for any finite F-algebra B, an E-algebra map A i> B
factors through A™ if and only if fop has inertial type 7 (see the proof of [Ball2, Proposition 3.0.12]).
In particular, we can form the quotient (R%[%DT. We remark here that with a slight addition to the
argument of [Ball2, Proposition 3.0.12], we could equally well carry out the preceding discussion
(and subsequent analysis) with inertial types defined to be G°(E)-conjugacy classes rather than
G(E)-conjugacy classes; we omit the details, but note that this would yield a slightly more refined
result.

Our main result is the following:

Theorem 14. Spec(RﬁD[%])T admits a regular, dense open subscheme, and it is equidimensional of
dimension dim(G).

Proof. Let A = (R%[%])T, and let A° be the scheme-theoretic closure of A in R%'. The universal lift
of p induces a continuous homomorphism I'x — G(A®), and so (note that A° is p-torsion free) we
obtain a G-Weil-Deligne representation over A by the construction preceding Remark 13. Denote
it by Da € WDg,(A). For any closed point = of Spec A, write m, for the maximal ideal at z,
A, for the completion of A at m,, E, for the residue field, p, for the associated homomorphism
'k — G(E,), and D, for the associated object of W Dg 1, (E;). The argument of [Kis08, Proposition
3.3.1] implies that the associated morphism (of groupoids over E-algebras)

Spec A, — W D¢
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is formally smooth; the hypothesis of [Kis08, Proposition 3.3.1] is just the assertion that DpD — D5
is formally smooth, which is clear since G is smooth. Then the argument of [KisO8, Proposition
3.1.6] shows that if U, denotes the complement of the support of H2(Dy4,) in Spec A,, then U,
is formally smooth and open dense in Spec A,: here is where we crucially invoke our main result,
Theorem 7.

Now let U denote the complement of the support of H?(D4). As U, is the base change of U
to A, the density of U, in A, for all x implies that U is dense in A. Furthermore, for any closed
point = € U, we know that U, = A, is formally smooth, hence regular. Since A is noetherian, this
implies that the localization of A at any such x is regular, and hence that U is regular.

Now let x be any closed point of U C Spec A. We know the completion A, is a regular local ring,
and we will be done once we compute the E,-dimension of its tangent space Hompg, (m,/m2, E,).
By a standard deformation theory argument (see [Kis09, Proposition 2.3.5]), A, pro-represents the
functor of lifts of p, to artin local E, -algebras with residue field F,, and this tangent space is then
isomorphic to the space of continuous 1-cocycles Z1(I',ad(ps)), and therefore has dimension

dim A, = dimp, H'(T'k,ad(p,)) + dim(G) — dimg, (ad(p,) %).

Now note that from the construction of G-Weil-Deligne representations from Galois representa-
tions, we obviously have that H°(D,) = (ad(p.))'*. Moreover, H'(I'x,ad(p,)) classifies E,[e]-
deformations of p,, and (by Proposition 6), H'(D,) classifies equivalence classes of lifts of D, to
W D¢, 1(Ezle]). Since D, arises from the Galois representation p,, it is a bounded G-Weil-Deligne
representation (i.e., in any finite-dimensional representation of G, the eigenvalues of ® are p-adic
units). This implies that for any lift of D, to WDg 1(E;[e]), the usual formula associating a
Galois representation to a G-Weil-Deligne representation applies to yield a continuous lift of p,
to G(Ey[e]). Conversely, such a lift can by the usual argument of the monodromy theorem be
converted into a lift of D,. These two procedures are inverses, identifying equivalence classes of
E,[€]-deformations, and they therefore identify the E,-vector spaces H'(D,) and H'(TI'g,ad(pz)).
Now combining the local Euler-characteristic formula and the fact that the Euler characteristic of
the complex C*(D,) obviously vanishes, we see that

dim A, = dim(G) + dimg, (H*(D,)) = dim(G),
since H?(D,) =0 for x € U. O

Remark 15. We note as a consequence of the proof that for all x € U, the Galois cohomology
group H?(I',ad(ps)) in fact vanishes.

Remark 16. The results of [Kis08, Theorem 3.3.4], and later papers like [Geell, Theorem 2.1.6]
that adapt its arguments, state that U is formally smooth over Q,,, not just regular. This distinction
is irrelevant for the applications to computing the dimension of the generic fiber, as all that is used
is regularity, but regularity does not imply formal smoothness in this setting. For example, consider
A= Zp[[t]][%]. As Z,[[t]] is regular, so is its localization A. However, A is not formally smooth
over Q, in the discrete topology. We thank Bhargav Bhatt for suggesting the following argument.

Let B = Zp[t][]%]. The natural map B — A is regular: it is flat because Z,][[t]] is flat over Z,|[t],
and the fibers are points and hence geometrically regular. Then the Jacobi-Zariski exact sequence
for the maps Q, — B — A gives

00— AR®p QB/Qp —)QA/QP _>QA/B — 0.

Now A ®p p/q, is a free A-module with basis dt. The above sequence is split by the element of
Homa(Q4/q,, A ®B Qp/q,) = Derq, (A, A®p Qp/q,) given by sending f(t) € A to f'(t)dt. If A
were formally smooth over Q,, in the discrete topology, €2 4/q, would be projective over A. Together
with the splitting, this would imply that 24,5 embeds into a free A-module. Now 2 ,,q, is also
non-zero, as a localization is {1q_((1))/q,(t) Whose dimension over Q, (1) is the transcendence degree



G-VALUED GALOIS DEFORMATION RINGS WHEN /£ # p 11

of the non-algebraic extension Q,((t)) of Q,(t). But Q4,5 is also t-divisible since B/t — A/t is an
isomorphism, so it cannot embed into a free A-module. This contradiction shows that A cannot be
formally smooth over Q,, in the discrete topology.
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