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Recent experiments on several cuprate compounds have identified an enhanced thermal Hall
response in the pseudogap phase. Most strikingly, this enhancement persists even in the undoped
system, which challenges our understanding of the insulating parent compounds. To explain these
surprising observations, we study the quantum phase transition of a square-lattice antiferromagnet
from a confining Néel state to a state with coexisting Néel and semion topological order. The
transition is driven by an applied magnetic field and involves no change in the symmetry of the
state. The critical point is described by a strongly-coupled conformal field theory with an emergent
global SO(3) symmetry. The field theory has four different formulations in terms of SU(2) or U(1)
gauge theories, which are all related by dualities; we relate all four theories to the lattice degrees of
freedom. We show how proximity of the confining Néel state to the critical point can explain the
enhanced thermal Hall effect seen in experiment.

The thermal Hall effect has attracted much attention

in recent years as a powerful tool to gain information

about the nature of excitations in exotic materials as, for

instance, in the spin-liquid candidate system α-RuCl3
[1]. Grissonnanche et al. [2] measured the thermal Hall

effect in the normal state of four different copper-based

superconductors. A strong signal is found starting from

optimal doping, where the pseudogap phase ends, all the

way to the insulating parent compounds. These obser-

vations are quite surprising, as the insulator is expected

to be a conventional Néel state, and spin-wave theory

shows that this state has a much smaller thermal Hall

response in an applied magnetic field than that observed

[3]. There is no sign of a quantized thermal Hall response

though, so the insulator is not in a state with topological

order and protected edge excitations.

In this paper, we shall study the possibility that the or-

bital coupling of the applied magnetic field can drive the

conventional, confining, Néel insulator to a state which

has semion topological order [4] coexisting with Néel or-

der (see Fig. 1). We assume that the current experiments

are at a field where the ground state is a conventional

Néel state whose only low energy excitations are spin

waves, and we shall describe how the proximity to the

lower quantum phase boundary in Fig. 1 can enhance the

thermal Hall response of such a conventional state. The

applied field and the Néel order break spin-rotation, time-

reversal, and mirror-plane symmetries, and the states on

both sides of the transition have an identical pattern of

symmetries. So the quantum phase transition only in-

volves the onset of topological order. We shall obtain

the universal critical field theory describing the vicinity

of the lower phase boundary in Fig. 1 at low temperatures

(T ).

Remarkably, we find that the critical theory is one that

has been carefully studied [5] in the context of the recent

advances in dualities of non-Abelian conformal gauge the-

ories in 2+1 spacetime dimensions [6–8]. The theory of

interest has four different dual formulations in terms of

relativistic field theories, and we will relate all of them

to theories of the lattice antiferromagnet: the assumption

of universality at the quantum phase transition then pro-

vides a new route to obtaining the dualities.

We are interested in spin S = 1/2 antiferromagnets

with spin operators Si on the sites, i, of the square lattice,

and Hamiltonian H = H1 + HB . The first term has the

form

H1 =
∑
i<j

JijSi · Sj + . . . , (1)

which describes near-neighbor exchange interactions and

possible ring-exchange terms all of which preserve the

global SU(2) spin-rotation, time-reversal, and all square-

lattice symmetries. The second term, induced by the

applied magnetic field, is

HB = Jχ
∑
4

Si · (Sj × Sk)−
∑
i

BZ · Si . (2)

The Jχ term couples to the scalar spin chirality, and is

induced by the orbital coupling of the applied magnetic

field to the underlying electrons [9]. It preserves lattice

translations and rotations, but explicitly breaks time-

reversal and mirror-plane symmetries while preserving

their product. The value of Jχ itself is proportional to

the small magnetic flux penetrating the square lattice.

The second term in HB is the Zeeman term, and the

electron magnetic moment has been absorbed in the def-
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inition of BZ . We do not include spin-orbit interactions;

we note that with BZ 6= 0, spin-orbit interactions can

enhance the stability of chiral topological phases simi-

lar to those discussed here [10], and we do not expect

such interactions to modify the universal critical theories

presented below.

Numerical studies of H at BZ = 0 and Jχ 6= 0 on the

kagome [11–13] and triangular [14–17] lattices have found

convincing evidence, above very small values of Jχ (val-

ues as small as Jχ/J1 = 0.0014 in Fig. 19 of Ref. [16]) for

a ‘chiral spin liquid’: a gapped state with semion topolog-

ical order, but no antiferromagnetic order. More recently,

a study [18] of the Hubbard model on the triangular lat-

tice found evidence for the same chiral spin liquid even

at Jχ = 0. On the square lattice, Nielsen et al. [19]

studied the antiferromagnet with first (J1) and second

(J2) neighbor exchange and a nonzero Jχ, and found ev-

idence for the chiral spin liquid at quite small values of

Jχ, but in relatively small system sizes. These strong ef-

fects of a small Jχ can be understood by the proximity

to a critical spin liquid at which an infinitesimal Jχ is

a relevant perturbation. The phase diagram we propose

for the square lattice J1-J2-Jχ antiferromagnet is sum-

marized in Fig. 1, and the critical spin liquid is realized

by the deconfined critical point at Jχ = 0 between the

Néel and valence bond solid (VBS) states. Recent anal-

yses [20] have shown that a relevant Jχ at this critical

point does indeed lead to semion topological order. At

such a critical point there is a discontinuous jump in the

thermal Hall conductivity at low T from κxy/T = 0 at

Jχ = 0 to |κxy/T | = (π/6)(k2
B/~) [21] at infinitesimal Jχ,

and we will use proximity to this discontinuity to obtain

the enhanced thermal Hall response in the Néel state. We

will show that turning on Jχ at values of J2/J1 smaller

than at the deconfined critical point (e.g. along the red

arrow in Fig. 1) leads to a state with coexisting Néel and

semion topological order across a novel quantum critical

phase boundary whose universal theory is obtained be-

low. We refer to the Methods for further discussion of

Fig. 1.

Our analysis starts from a model [20] of the square-

lattice Néel state as the confining phase of a SU(2) gauge

theory of fluctuations about a ‘π-flux’ mean-field state

[22]. In this formulation, the spins are represented by

fermionic spinons fiα, (α =↑, ↓) via Si = (1/2)f†iασαβfiβ ,

where σ are the Pauli matrices. This spinon represen-

tation induces a SU(2) gauge symmetry [23], and a full

treatment requires careful consideration of the associated

SU(2) gauge field. However, much can be learnt from a

mean-field theory in which we ignore the SU(2) gauge

fluctuations: we will analyze such a mean-field theory

now, and turn to the gauge fluctuations later.

J2/J1
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Chiral spin liquid (CSL)
with

semion topological order
<latexit sha1_base64="WPfAOeQx8IQ0QpdxAcUvqDZbBzo="></latexit>

FIG. 1. Proposed schematic phase diagram of H1 +HB

at BZ = 0 (see Fig. 3a for a phase diagram with nonzero BZ).
By varying the first, J1, and second, J2, nearest neighbor ex-
change interactions and the orbital coupling Jχ in Eq. (2), the
antiferromagnet on the square lattice shows phases with com-
binations of Néel, valence bond solid (VBS), and chiral spin
liquid topological order (CSL). The phase boundaries are pre-
sumed to meet at a SO(5)-symmetric (near) critical point at
which Jχ is a relevant perturbation, and the phase bound-
aries all scale as Jχ ∼ |J2 − J2c|λχ/λ2 ; we expect λχ/λ2 > 1.
In this work, we imagine starting from the Néel state at zero
magnetic field, Jχ = 0, close to the boundary of VBS order
such that a small value of field-induced Jχ can already drive
the system close to the phase boundary with Néel + CSL
(indicated by the red arrow). We note that the existence of
a SO(5) critical point is not a precondition for a continuous
Néel to Néel + CSL transition.

MEAN-FIELD THEORY

After inserting the spinon representation of Si in H,

and a mean-field factorization respecting lattice and

gauge symmetries, we obtain the quadratic spinon Hamil-

tonian [20, 24–26]

Hf =−
∑
i<j

(
tijf

†
iαfjα + t∗ijf

†
jαfiα

)
(3)

− 1

2

∑
i

(BZ + ηiN) · f†iασαβfiβ .

The pattern of the tij is shown in Fig. 2a.

The first-neighbor hopping, t1, arises from the factor-

ization of the exchange couplings in H1. The second-

neighbor hopping, ±it2, arises from the scalar spin chi-

rality term Jχ, and has the same symmetry as the orbital

coupling of the underlying electrons to the magnetic field

orthogonal to the plane of the square lattice. We have

assumed a nonzero Néel order, and this leads to the N

term after factorization of H1; η = ±1 has opposite signs

on the two checkerboard sublattices of the square lattice.

The Zeeman term minimizes the energy of the square-
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FIG. 2. Ansatz and spectrum of spinon Hamiltonian. a, The nearest (t1, black) and second-nearest neighbor (t2, red)
hopping matrix elements for the spinon mean-field Hamiltonian in Eq. (3) on the square lattice formed by the Cu atoms
(indicated in brown). The applied magnetic field induces a nonzero hopping it2 and there is a uniform π/2 flux through each
elementary triangle. In (b-e), we plot the evolution of the band structure of the Hamiltonian in Eq. (3) along the line ky = 0,

with N = 0.5ẑ, t1 = 1, t2 = 0.10, upon changing the Zeeman field, which is taken to be |BZ | = (b) 0, (c) 0.4, (d) B
(c)
Z ≈ 0.6245,

and (e) 0.8. The Chern numbers (indicated in the respective color) of the two lowest bands switch from {−1,−1} to {−1, 1}
as |BZ | is increased across the phase boundary.

lattice antiferromagnet when the Néel order is orthogo-

nal to the magnetic field and so, we take BZ ·N = 0;

the BZ term is not essential to the topological and field-

theoretic considerations below, but can be important in

understanding the experimental role of the applied field,

as we will see below.

Many key results follow from a consideration of the

topology of the spinon band structure implied by Hf .

Our choice of tij in Fig. 2a and ηi leads to a unit cell

with two sites. Combined with the spin label α, we ob-

tain a total of four spinon bands, which are half-filled.

The key discriminant is the net Chern number of the oc-

cupied bands. When this is zero, there will be no Chern-

Simons term in the theory for gauge fluctuations, lead-

ing to confinement and a conventional Néel state. On the

other hand, when the net Chern number is 2, we obtain a

Chern-Simons term and a state with semion topological

order (as argued in Ref. [20]), coexisting with the Néel

order here, because N 6= 0; this state has gapped exci-

tations with semionic statistics, along with the conven-

tional spin-wave modes of the Néel state. In this manner,

we obtain the mean-field phase diagram shown in Fig. 3a.

The evolution of the band structure across the phase

boundary in Fig. 3a is shown in Fig. 2b-e. Note the ap-

pearance of two massless Dirac fermions at the critical

point. Away from the critical point, these fermions ac-

quire a common Dirac mass, which has opposite signs in

the two phases.

Next, we computed the thermal Hall conductivity κxy
across the phase boundary in Fig. 3a: the results are

shown in Fig. 3b. Denoting the Berry curvature for each

band n = 1, . . . , 4 by Ωnk, the thermal Hall conductivity

is given by [27]

κxy = −k
2
B

~T

∫
dε ε2σxy(ε)f ′(ε) (4)

where σxy(ε) = −
∫
εnk<ε

d2k Ωnk /(4π
2) is ~/e2 times

the Hall conductivity, and f(ε) is the Fermi function.

The corresponding Chern number is

Cn =
1

2π

∫
d2k Ωnk ∈ Z. (5)

As T → 0,

κxy
T

= −πk
2
B

6~
∑

n∈ filled bands

Cn. (6)

Consequently, κxy/T → (π/3)(k2
B/~) as T → 0 in the

phase with topological order; quantum gauge fluctua-

tions, to be discussed below, will change the prefactor

(π/3) to the exact quantized value (π/6) in this phase.

In the other phase, κxy/T varies nonmonotonically as T

is lowered, and eventually vanishes as T → 0 because the

occupied bands have opposite Chern numbers. Note the

bifurcation in the T dependence at the phase boundary.

Exactly on the phase boundary, the present mean-field

theory yields κxy/T → (π/6)(k2
B/~) as T → 0: this value

is expected to have universal corrections from gauge fluc-

tuations by some nonrational renormalization factor [28].

We plot the field dependence of κxy withing the Néel
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FIG. 3. Phase diagram and thermal Hall conductivity of spinon mean-field theory. a, The two different phases
of the fermionic spinon mean-field Hamiltonian Hf in Eq. (3) are shown as a function of the second-nearest-neighbor spinon
hopping it2 [see Fig. 2a] and the Zeeman field |BZ |. Here, we take the Néel order N = 0.5ẑ and measure all energies in units
of the nearest-neighbor spinon hopping t1. As discussed in the main text, it2 is induced by the orbital coupling of the magnetic
field. Both t2 and |BZ | are linear functions of the applied magnetic field, and the dashed purple lines show three possible
trajectories for which we plot the field dependence of κxy in (c–e) for different temperatures T . b, Temperature dependence of
the mean-field κxy as t2 is tuned across the phase boundary; the corresponding discrete values of |BZ | and t2 are indicated by
green dots in (a). The quantized value of the ordinate in the topological phase is π/3, and the bifurcation point as T → 0 is
at π/6. Both values are corrected by gauge fluctuations (the exact quantized value in the topological phase is π/6).

phase in Figs. 3c-e, along the dashed lines in Fig. 3a.

Note that κxy is a nearly linear function of the field,

with a slope which is enhanced as we approach the phase

boundary to the state with semion topological order.

GAUGE THEORIES AND DUALITIES

We now discuss universal properties of the quantum

phase transition in Fig. 3(a), and the lower phase bound-

ary in Fig. 1. This critical theory has four different dual

formulations, summarized in Fig. 4. The first of these,

labeled SU(2)−1/2 in Fig. 4, is obtained by reinstating

gauge fluctuations to the free fermion mean-field theory

described above. The resulting field theory turns out to

have an emergent global SO(3) symmetry, which must

then also be a property of the other dual formulations.

We now discuss these field theories, and their connec-

tions to the lattice antiferromagnet, in turn. We refer

the reader to recent reviews [29–32] for subtle aspects

of gauge and gravitational anomalies which we will not

enter into here.

• SU(2)−1/2 with a fermion doublet

Near the phase boundary in Fig. 3a, we can focus on

the effective theory of the nearly massless Dirac fermions.

These form a single doublet, ψ, under the SU(2) gauge

symmetry and so, a low energy theory will have a SU(2)

gauge field, Aµ, coupled minimally to ψ. However, we

cannot entirely neglect the single filled fermionic band

far from the Fermi level, see Fig. 2b-e. This band

has a nonzero Chern number, and integrating out these

fermions yields a Chern-Simons term for Aµ at level

−1/2. In this manner, we obtain the low-energy 2+1

dimensional Lagrangian

L1 = iψγµ(∂µ − iAµ)ψ +mψψ − 1

2
CS[Aµ] . (7)

Here, γµ are the Dirac matrices, m is the mass term

which changes sign across the phase transition, and
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with a fermion
doublet

Fixed point with
emergent global          

Rotating ref-
erence frame 
in pseudospin 

Rotating ref-
erence frame

 in spin 

with a scalar
doublet

with a
scalar

Composite
bosons

Composite
fermions

with a 
fermion

IR

UV

FIG. 4. Four dual field theories for the antiferromag-
net flow to the same fixed point. Distinct approaches to
the lattice antiferromagnet (violet) lead to 4 different contin-
uum field theories (blue) for the transition from the Néel to
the Néel+CSL state (Fig. 1). Universality then implies that
these describe the same renormalization group fixed point
(red) with an emergent global SO(3) symmetry. Adapted
from Ref. [5].

the last term represents the SU(2) Chern-Simons term.

When m is nonzero we can safely integrate the fermions

out. For one sign of m, the net Chern-Simons term

vanishes, and we obtain a ‘trivial’ confining phase with

κxy = 0. For the other sign of m, we obtain a Chern-

Simons term at level 1, and the SU(2)1 theory describes

a chiral spin liquid with κxy/T = (π/6)(k2
B/~) [21].

The emergent global SO(3) symmetry of L1 is most

easily seen by writing ψ in terms of Majorana fermions,

and then the fermion kinetic term has a global O(4) sym-

metry. One SU(2) subgroup of O(4) is the SU(2) gauge

symmetry, while the other leads to the global SO(3) sym-

metry. There is no global SO(3) symmetry in the lattice

Hamiltonian Hf , so this symmetry is special to the vicin-

ity of the critical point. Further discussion, including an

interpretation of this global symmetry in terms of the

microscopic spins, can be found in the Supplementary

Information.

• U(1)2 with a charged scalar

The second dual theory has a complex scalar, φ, cou-

pled to a U(1)2 gauge field, aµ:

L2 = |(∂µ − iaµ)φ|2 − s|φ|2 − u(|φ|2)2 +
εµνλ

2π
aµ∂νaλ .

However, the SO(3) global symmetry is not manifest in

this formulation, and its description requires considera-

tion of monopole operators [5–8]. The coupling s tunes

across the phase transition at s = sc, while the quartic

nonlinearity u is assumed to flow to a fixed-point value,

analogous to that in the Wilson-Fisher theory without

the Chern-Simons term. For s < sc, the φ field forms a

Higgs condensate, and this quenches aµ and all topolog-

ical effects: we thus obtain the conventional Néel state.

This maps to the positive-mass phase of the SU(2)− 1
2

fermion theory discussed above. For s > sc, we obtain

the state with semion topological order: the gapped φ

quasiparticles have mutual semion statistics which is in-

duced by the Chern-Simons term. Below the quasiparti-

cle gap, this phase is described by U(1)2 and so, maps to

the negative-mass phase of the SU(2)− 1
2

fermion theory.

We can connect the field theory L2 to the lattice antifer-

romagnet by viewing the latter as a theory of hard-core

bosons S+ = Sx + iSy; then, assuming the bosons form

a ν = 1/2 fractional quantum Hall state, as in the chiral

spin liquid [4], we identify φ as the quasiparticle (vortex)

operator in the Chern-Simons-Landau-Ginzburg theory

[33, 34].

• U(1)−3/2 with a charged fermion

The third dual theory of Ref. [5] is a theory that had

been discussed in Ref. [35]: it has a single Dirac fermion

coupled to a U(1)−3/2 gauge field. The SO(3) symme-

try is not manifest. Such a field theory can be related

to a fractionalization of the hard-core boson S+ into two

fermions ∼ f1f2 [35]. In the state with topological or-

der, which is a ν = 1/2 fractional quantum Hall state of

the bosons (as above), both fermions fill bands with unit

Chern number, as in composite fermion theory [36]; the

phase transition maps to a change of the Chern number

of one band to zero [34, 35, 37].

• SU(2)1 with a scalar doublet

The fourth dual theory [5–8] has a complex scalar dou-

blet transforming as the fundamental of a SU(2)1 gauge

field. This can be connected to the SU(2) gauge theory

obtained by transforming to a rotating reference frame

in spin space [26, 38, 39], in which we write the electrons

as cα = Rαβψβ . Here ψβ is a fermion (the ‘chargon’),

and Rαβ is a SU(2) matrix (R†R = 1), which can be

expressed in terms of the aforementioned complex scalar

doublet; in the renormalized continuum theory, the unit-

length constraint on the scalar doublet can be replaced

by a quartic self-interaction. The SU(2) gauge symmetry

corresponds to right multiplication of R (and left multi-

plication of ψ), while the SO(3) global symmetry cor-

responds to left multiplication of R. We assume that

the band structure of the ψβ fermions is such that both



6

species are in a filled band with unit Chern number;

then, integrating out these gapped fermions yields the

Chern-Simons terms for the SU(2)1 gauge field. Now,

the needed transition is obtained by the Higgs transition

of the scalar: the topological phase has R gapped, while

the trivial phase has R condensed. We also need specta-

tor SU(2) gauge-neutral electrons in filled Chern bands

to match the thermal and electrical Hall conductivities

of the two phases.

DISCUSSION

For thermal Hall measurements in the cuprates, our

main mean-field results are in Fig. 3. Note the large rise

in the thermal Hall response in the conventional Néel

state proximate to the phase boundary, before it even-

tually vanishes at low enough T : this rise is our pro-

posed explanation for the observations of Grissonnanche

et al. [2]. The field and temperature dependences of κxy
in Fig. 3 match well with observations. It is possible that

stronger fields will drive the cuprates across the quan-

tum phase transition into a state with semion topologi-

cal order, but the stronger field also enhances the Zeeman

term, and Fig. 3a shows that this term is detrimental to

such a transition.

We also discussed gauge-field fluctuation corrections to

the results in Fig. 3. We noted that in the topological

phase such corrections renormalize the thermal Hall con-

ductivity from (π/3)k2
BT/~ to (π/6)k2

BT/~ as T → 0.

Computation of the analogous corrections at higher T

and across the phase boundary in Fig. 3 is more chal-

lenging. The critical theory of the phase boundary was

shown to be a central actor in recent studies of dualities

of strongly interacting conformal field theories in 2+1

dimensions [5–8]. The theory of interest has four differ-

ent formulations which we summarize in Fig. 4; we also

provided lattice interpretations of all four field theories

in terms of the degrees of freedom of the square-lattice

antiferromagnet. An expansion in the inverse number

of matter flavors (analogous to Ref. [28]) is a promis-

ing route to computing the universal nonzero tempera-

ture thermal Hall effect in these gauge theories near the

quantum critical point in Fig. 3a.

Finally, let us comment on the role of fluctuations of

the Néel order parameter. Spin waves make only a small

contribution to the thermal Hall effect [3]. In two spa-

tial dimensions, thermal fluctuations of the Néel order

restore spin rotation symmetry at all nonzero T [40], but

these classical fluctuations are not expected to signifi-

cantly modify the quantum criticality of the topological

quantum phase transition in Fig. 3a, which involves no

change in symmetry.

METHODS

Deconfined criticality and phase diagram. The

square-lattice antiferromagnet with first (J1) and second

(J2) neighbor exchange interactions has been the focus

of many numerical studies in the past decades. There

appears to be general agreement that increasing J2/J1

destroys the Néel state and leads to a state with valence

bond solid (VBS) order [41, 42]. There is also significant

evidence that the transition region between these states

is described by a deconfined critical field theory [43] over

a large intermediate length scale [41]. Furthermore, there

is strong support for a global SO(5) symmetry between

the Néel and VBS orders [44] over this scaling region, as

is expected for the deconfined critical theory [20, 45, 46].

The ultimate fate of the phase transition at the longest

distances remains unsettled, but it is plausible that it is

described by a complex fixed point, very close to the real

physical axis [20, 47, 48].

It is useful to now consider the phase diagram of the

J1-J2-Jχ antiferromagnet on the square lattice by start-

ing from a theory in which the SO(5) symmetry is ini-

tially explicit. This is just the fermionic spinon repre-

sentation used in Eq. (3). In the absence of Néel order

(N = 0) and an applied field (BZ = 0), the continuum

limit of Eq. (3) yields two flavors of two-component Dirac

fermions, which are then coupled to a SU(2) gauge field;

so instead of Eq. (7) we now have [20]

LSO(5) = iψaγ
µ(∂µ − iAµ)ψa +mχψaψa (8)

where a = 1, 2 is the flavor index.

The SO(5) symmetry is apparent after we express

LSO(5) in terms of Majorana fermions. The fermion mass

mχ ∝ Jχ is also SO(5) invariant, and is a perturbation

on the putative SO(5)-invariant Néel-VBS critical point

at mχ = 0. It is plausible that mχ is a relevant pertur-

bation on such a critical point (with scaling dimension

λχ > 0), and then an infinitesimal Jχ will be sufficient

to drive the critical antiferromagnet into the chiral spin

liquid phase. Should the Néel–VBS transition be weakly

first-order, then a very small value of Jχ will be sufficient.

Tuning away from the critical point by changing the value

of J2/J1 yields a second relevant perturbation to the crit-

ical point (with scaling dimension λ2 > 0) which explic-

itly breaks SO(5) symmetry, but is allowed by the sym-

metries of the underlying antiferromagnet. We obtain

the phase diagram proposed in Fig. 1 upon considering

the interplay of these perturbations; all phase boundaries

scale as Jχ ∼ |J2−J2c|λχ/λ2 for a SO(5) critical point at

Jχ = 0, J2 = J2c, so for λχ > λ2, we obtain the onset of

semion topological order at small values of Jχ even away

from the SO(5) point. In the limit of a large number of
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fermion flavors, λχ = 1 and λ2 = −1, and λχ > λ2 is

thus plausible. This phase diagram is compatible with

the small system size studies of Ref. [19]. We empha-

size that the existence of a SO(5) critical point is not

a requirement for the existence of a continuous Néel to

Néel+CSL transition with SO(3) symmetry described in

the main part of the paper.

DATA AVAILABILITY

The data that support the plots within this paper and

other findings of this study are available from the corre-

sponding author upon reasonable request.
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SUPPLEMENTARY INFORMATION FOR

ENHANCED THERMAL HALL EFFECT IN THE SQUARE-LATTICE NÉEL STATE

Rhine Samajdar, Mathias S. Scheurer, Shubhayu Chatterjee, Haoyu Guo, Cenke Xu, and Subir Sachdev

1. SO(3) symmetry on the lattice

We investigate the emergent global SO(3) symmetry at the critical point by explicitly constructing an order param-

eter that transforms as a vector under this SO(3) symmetry in terms of the low-energy fermionic degrees of freedom,

starting with the lattice-scale Hamiltonian Hf in Eq. (3). For simplicity and to obtain a transparent physical picture

of this vector order parameter, we first set BZ = 0 in Hf , and later discuss the generalization to BZ 6= 0.

The hopping part of Hf (obtained by setting N = 0 = BZ) describes a chiral spin liquid, and is symmetric under

square-lattice translations Ti (with i = x, y), C4 rotations about a site, time-reversal accompanied by reflections ΘRi,

and global SU(2) spin-rotations [26]. Turning on a nonzero Néel order parameter N = Nẑ (N 6= 0) breaks time-

reversal, spin-rotation and translation symmetries explicitly, and results in a reduced set of symmetries generated

by:

Tx+y : S(ix,iy) → S(ix+1,iy+1)

C4 : S(ix,iy) → S(−iy,ix)

ΘRx : S(ix,iy) → (−S1, S2, S3)(−ix,iy)

Us(ẑ, θ) : S(ix,iy) → eiσ
3θ/2S(ix,iy) e

−iσ3θ/2

Σx ≡ Us(x̂, π)Tx : S(ix,iy) → eiσ
1π/2S(ix+1,iy)e

−iσ1π/2 (1)

In Eq. (1), Us(ẑ, θ) is the remaining U(1) spin-rotation symmetry about the z-axis, and Σx denotes a spin-rotation

about an axis perpendicular to the Néel vector [chosen here to be Us(x̂, π) = iσ1 w.l.o.g.], accompanied by unit lattice

translation Tx. Note that T−x+y = Tx+y(Σx)−2, ΘRy = Us(ẑ, π)C2
4 (ΘRx)−1 and Σy = ΣxT−x+y are not independent

symmetry generators. Further, note that Hf is invariant under any lattice symmetry operation S only up to an

additional gauge transformation fiσ → eiφS [S(i)]fS(i),σ; in other words, the lattice symmetries act projectively and the

combination of S and eiφS leaves Hf invariant. For the set of symmetries in Eq. (1), the required gauge-transformations

are φTx+y = 0 = φΘRx , while φC4 = π(ix − iy)(ix − iy + 1)/2 and φΣx = π iy.

Now, we turn to diagonalizing Hf in Eq. (3) with BZ = 0 and finding the relevant low-energy fermionic modes.

Defining a two-site unit cell along the x̂-direction with sublattices A (even parity of ix + iy) and B (odd parity of

ix + iy), the Hamiltonian from Eq. (3) is given in momentum space by (setting the lattice spacing a = 1):

H =
∑
k

f†khkfk; fk =
(
fkA↑ fkB↑ fkA↓ fkB↓

)T
,

hk =

(
h̃k(N) 0

0 h̃k(−N)

)
, (2)

h̃k(N) =

(
−N2 − 4t2 sin kx cos ky −2t1(cos kx + i sin ky)

−2t1(cos kx − i sin ky) N
2 + 4t2 sin kx cos ky

)
.

The critical point, with Dirac cones at ±Q, appears at N = ±8t2. In our gauge choice, it holds Q = (π/2, 0). For

concreteness let us focus on the critical point at N = −8t2. Then, the low-energy bands at valley Q are entirely in the

spin-up sector; the remaining (spin-down) bands can be integrated out without renormalizing the low-energy bands.

A similar picture holds for the valley −Q, where the low-energy bands are tied to the spin-down sector, as shown by

the linearized Hamiltonian near −Q. Therefore, the effective low-energy Hamiltonian is given by:

Heff = 2t1
∑
q≤Λ

ψ†q,a
(
qxτ

1 + qyτ
2
)
ψq,a (3)



2

where Λ is some UV momentum cutoff, the matrices τα act in sublattice space, and

ψq,a =



(
fQ+q,A,↑

fQ+q,B,↑

)
for a = (Q, ↑),

−iτ2

(
f−Q+q,A,↓

f−Q+q,B,↓

)
for a = (−Q, ↓).

(4)

For our analysis, it is useful to revert to real space and define Nambu spinors CA(r) and CB(r) that vary slowly on

the lattice scale by projecting the lattice fermions fiσ onto the low-energy bands:(
f†iA↓
fiA↑

)
≈

(
f†−A(r)

f+A(r)

)
eiQ·ri ≡ CA(r)eiQ·ri , (5)(

f†iB↓
fiB↑

)
≈

(
if†−B(r)

if+B(r)

)
eiQ·ri ≡ i CB(r)eiQ·ri .

In Eq. (5) and henceforth, we will denote each two-site unit cell by i, which is also the location of the basis site A

(hence ηi = 1). We perform a further redefinition of the low-energy field operator in order to make contact with

subsection 2 on the continuum approach (which follows the conventions of Ref. [20]).

Ψα,a(r) =
(
ei
π
4 τ

1

ei
π
4 τ

3
)
αs

(V s)ab Cs,b , with V A = iη3 and V B = η0 (6)

where s = A or B denotes sublattice, a or b (= ±) indexes the Nambu/valley space, and all repeated indices are

summed over. Upon re-expressing the degrees of freedom in terms of Ψα,a(r), the low-energy Lagrangian takes the

following form [to which gauge fluctuations Aµ can be readily introduced, see Eq. (7) of the main text]:

Leff = i

∫
d2r Ψ̄α,a(r) (γµ)αβ ∂µΨβ,a(r), (7)

where we have re-scaled spacetime to set the Dirac velocity vF = 2t1 = 1, defined Ψ̄ ≡ Ψ†γ0 and the Dirac Gamma

matrices are given by (γ0, γx, γy) = (τ2, iτ3, iτ1).

One crucial point to note is that the antiunitary time-reversal symmetry Θ (which flips both spin and valley)

re-emerges in the low-energy action Leff in Eq. (7), although it is broken explicitly in the lattice Hamiltonian Hf in

Eq. (3) as

Θ : f±,s → ±f∓,s, with Θ2 = −1. (8)

Intuitively, this happens because time-reversal simultaneously flips spin and valley; Leff is invariant under such a

transformation. The effect of t2 (that describes a local orbital magnetic field) and the Néel order parameter N (that

acts as a local Zeeman field) thus counteract each other in the low-energy effective field theory.

In order to make the emergent SO(3) symmetry manifest in the low-energy action, it is useful to construct the

following matrix of low-energy spinors, in analogy with Ref. 20:

Xα(r) =

(
ψα,+↑(r) −ψ†α,−↓(r)

ψα,−↓(r) ψ†α,+↑(r)

)
where Ψα ≡

(
ψ†α,−↓
ψα,+↑

)
(9)

The low-energy gauge-fluctuations act on Xα(r) via right multiplications, as follows:

SU(2)g : Xα(r)→ Xα(r)U †g (r) (10)
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Observable Tx+y T−x+y C4 Σx Σy ΘRx ΘRy Us(ẑ, θ) Θ

O1 −O1 −O1 −O2 O1 −O1 −O1 −O1 cos θ O1 + sin θ O2 O1

O2 −O2 −O2 O1 −O2 O2 O2 O2 − sin θ O1 + cos θ O2 O2

O3 O3 O3 O3 −O3 −O3 O3 O3 O3 −O3

TABLE I. Transformation of the components of the gauge-invariant fermion-bilinear SO(3) vector under the symmetries of Hf

(for BZ = 0) and the emergent time-reversal symmetry Θ.

The effective action in Eq. (7), including gauge fluctuations Aµ, can be recast in terms of Xα(r) (repeated indices α

and µ are summed over):

Leff =
i

2

∫
d2rTr[X̄α(r)γµDA

µXα(r)], where DA
µXα = ∂µXα + iXαAµ and X̄α = X†αγ

0 (11)

The action in Eq. (11) is clearly invariant under an emergent global SU(2) symmetry U that acts on Xα by left

multiplication:

SU(2)sym : Xα(r)→ UXα(r) (12)

Therefore, the manifestly gauge-invariant order parameter that is constructed entirely out of the low-energy degrees

of freedom, and transforms as a vector under the emergent global SO(3) is given by

Oa(r) ≡
∑
α

Tr
[
X†α(r)σaXα(r)

]
, (13)

where σa are the Pauli matrices in the mixed spin-valley space labeled by a = {1, 2, 3}. The symmetry transformations

of Oa can be worked out by considering their (projective) action on the real space lattice-scale spinors in Eq. (5), and

subsequently deducing their action on ψα,a(r) and hence on Oa(r). The results are presented in Table I.

Next, we construct a representation of Oa in terms of the microscopic spin operators Si. The rotation of O2 into O1

under either a C4 rotation or a spin-rotation Us(ẑ,−π/2) indicates that these must be spin-orbit coupled. Indeed, one

can check that the following representatives satisfy all the symmetry constraints in Table I (the indices 1, 2 represent

directions in spin-space, while x, y represent directions in real-space, and Ns is the number of lattice sites).

O1 =
1

Ns

∑
i

(−1)ix(Si × Si+ŷ)2 + (−1)iy (Si × Si+x̂)1

O2 =
1

Ns

∑
i

(−1)iy (Si × Si+x̂)2 − (−1)ix(Si × Si+ŷ)1

O3 =
1

Ns

∑
i

(Si)3 (14)

Thus, O1 and O2 can be interpreted as bond-direction dependent spin-projections of a vector-spin chirality operator

Si × Sj , which is even under time-reversal Θ; related operators were discussed in Ref. [49]. The final component O3

is unchanged under the action of Us(ẑ, θ), but is odd under unit lattice translations accompanied by spin-flip and

also under time-reversal; therefore, it can be interpreted as an Ising ferromagnetic order parameter. The operators in

Eq. (14) are illustrated graphically in Fig. 5.

Lastly, we comment on the addition of an external Zeeman field BZ perpendicular to the Néel order parameter

N , which gets rid of the residual U(1) spin-rotation symmetry generated by Sz in Hf . In this case, the only leftover

symmetry generators at the lattice scale are Tx+y, C4, ΘRy and Σx (for BZ = B x̂, Σi = Us(x̂, π)Ti remains a
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x

yO1

x

yO2

x

yO3

FIG. 5. Pictorial representation of the components of the SO(3) vector Oa defined in Eq. (14). For O1 and O2, we plot the
corresponding spin-chirality vector Si × Sj on each bond 〈ij〉. For O3, we plot (Si)3 on each lattice site ri.

symmetry for each i = x, y). In the corresponding low-energy action Leff, a global SO(3) and time-reversal Θ

emerge as symmetries just as in the previous case. Hence, one can label the low-energy fermions by their valley

indices (v = +Q or −Q) and carry out an analogous construction of a gauge-invariant order parameter Oa(r) that

transforms as a vector under this emergent SO(3) symmetry. Oi (i = 1, 2) break Tx+y, Σī and C4 (where ī = y for

i = x and vice-versa). While O3 is invariant under all lattice symmetries that do not involve spin-flips, it breaks both

Σi (for i = x, y) and time-reversal Θ, which is emergent at the critical point. We conclude that the results in Table I

are still valid for BZ 6= 0, modulo the columns Us(ẑ, θ) and ΘRx. The lattice symmetry C4 and Σx (or Σy) symmetry

together can be embedded into group O(2) = SO(2) o Z2 (the explicit symmetry of two of the four dual field theory

descriptions in the main text), which is a subgroup of SO(3). Eventually we expect that the symmetry in the infrared

limit is enlarged to SO(3).

2. SO(3) symmetry generators in the continuum

Another way to investigate the nature of the global SO(3) symmetry is to connect its generators to those of the

SO(5) symmetry of the π-flux state described in detail in Ref. [20]. The Néel and valence bond solid (VBS) order

parameters combine to form a fundamental 5-vector of this SO(5) symmetry. Note that in the considerations here,

we are not assuming the existence of a conformal field theory with SO(5) symmetry describing the Néel-VBS critical

point; the emergent SO(5) symmetry is already a property of the mean-field π-flux state, and that is sufficient for

our purposes.

The SO(5) symmetry is most explicit in the Majorana fermion basis, and the Majorana fermion χ is introduced as

ψ = χ1 + iχ2. We choose a basis such that the Dirac matrix γ0 = σ2; the spin chirality then becomes χ̄χ = χtγ0χ.

Then, in addition to the Dirac index, the Majorana fermion still carries three extra indices; each represents a two-

component space, which in total hosts a SO(8) transformation that includes both the SU(2) gauge and the SO(5)

global symmetries. After choosing an appropriate basis [20], the generators of the SU(2) gauge group are

G1 = σ230, G2 = σ210, G3 = σ020; (15)

the generators of the SU(2) spin group are

S1 = σ120, S2 = σ200, S3 = σ320. (16)

Here, σabc = σa ⊗ σb ⊗ σc, and σ0 = 12×2. The Néel and valence bond solid (VBS) operators form an SO(5) vector

Na = χ̄Γaχ , (17)

Γ1 = σ322, Γ2 = σ122, Γ3 = σ202, Γ4 = σ003, Γ5 = σ001 .
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One may check that [Ga, Sb] = 0, and [Ga,Γb] = 0 for all a, b. The ten SO(5) generators can be obtained by the

commutators of the five Gamma matrices: Γab = 1
2i [Γa,Γb]. If we turn on a background Néel order parameter, say

〈χ̄Γ3χ〉 6= 0, the SO(5) symmetry is broken down to SO(4), which is generated by six out of the ten generators of

SO(5):

Γ14 = σ321, Γ15 = −σ323, Γ45 = σ002,

Γ24 = σ121, Γ25 = −σ123, Γ12 = σ200. (18)

We can construct two sets of independent SU(2) generators out of the six generators:

TA1 =
1

2
(Γ15 + Γ24), TA2 =

1

2
(−Γ14 + Γ25),

TA3 =
1

2
(Γ12 + Γ45);

TB1 =
1

2
(Γ15 − Γ24), TB2 =

1

2
(Γ14 + Γ25),

TB3 =
1

2
(Γ12 − Γ45). (19)

Now, let us turn on two fermion mass terms simultaneously: m1χ̄Γ3χ + m2χ̄χ. Then, the TAi (TBi) are the needed

SO(3) generators that operate on the massless fermion subspace when m1 = −m2 (m1 = m2). We have not included

the influence of the Zeeman term here, which has a weak effect near the SO(5)-symmetric point.
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