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Recent experiments on several cuprate compounds have identified an enhanced thermal Hall
response in the pseudogap phase. Most strikingly, this enhancement persists even in the undoped
system, which challenges our understanding of the insulating parent compounds. To explain these
surprising observations, we study the quantum phase transition of a square-lattice antiferromagnet
from a confining Néel state to a state with coexisting Néel and semion topological order. The
transition is driven by an applied magnetic field and involves no change in the symmetry of the
state. The critical point is described by a strongly-coupled conformal field theory with an emergent
global SO(3) symmetry. The field theory has four different formulations in terms of SU(2) or U(1)
gauge theories, which are all related by dualities; we relate all four theories to the lattice degrees of
freedom. We show how proximity of the confining Néel state to the critical point can explain the

enhanced thermal Hall effect seen in experiment.

The thermal Hall effect has attracted much attention
in recent years as a powerful tool to gain information
about the nature of excitations in exotic materials as, for
instance, in the spin-liquid candidate system «-RuCls
[1]. Grissonnanche et al. [2] measured the thermal Hall
effect in the normal state of four different copper-based
superconductors. A strong signal is found starting from
optimal doping, where the pseudogap phase ends, all the
way to the insulating parent compounds. These obser-
vations are quite surprising, as the insulator is expected
to be a conventional Néel state, and spin-wave theory
shows that this state has a much smaller thermal Hall
response in an applied magnetic field than that observed
[3]. There is no sign of a quantized thermal Hall response
though, so the insulator is not in a state with topological
order and protected edge excitations.

In this paper, we shall study the possibility that the or-
bital coupling of the applied magnetic field can drive the
conventional, confining, Néel insulator to a state which
has semion topological order [4] coexisting with Néel or-
der (see Fig. 1). We assume that the current experiments
are at a field where the ground state is a conventional
Néel state whose only low energy excitations are spin
waves, and we shall describe how the proximity to the
lower quantum phase boundary in Fig. 1 can enhance the
thermal Hall response of such a conventional state. The
applied field and the Néel order break spin-rotation, time-
reversal, and mirror-plane symmetries, and the states on
both sides of the transition have an identical pattern of
symmetries. So the quantum phase transition only in-
volves the onset of topological order. We shall obtain
the universal critical field theory describing the vicinity
of the lower phase boundary in Fig. 1 at low temperatures
(7).

Remarkably, we find that the critical theory is one that
has been carefully studied [5] in the context of the recent
advances in dualities of non-Abelian conformal gauge the-
ories in 2+1 spacetime dimensions [6-8]. The theory of
interest has four different dual formulations in terms of
relativistic field theories, and we will relate all of them
to theories of the lattice antiferromagnet: the assumption
of universality at the quantum phase transition then pro-
vides a new route to obtaining the dualities.

We are interested in spin S = 1/2 antiferromagnets
with spin operators S; on the sites, 7, of the square lattice,
and Hamiltonian H = Hy + Hpg. The first term has the
form

Hy=> JijSi-Sj+..., (1)

i<j

which describes near-neighbor exchange interactions and
possible ring-exchange terms all of which preserve the
global SU (2) spin-rotation, time-reversal, and all square-
lattice symmetries. The second term, induced by the
applied magnetic field, is

HB:JXzSi'(SjXSk)_ZBZ'Si- (2)
AN i

The J,, term couples to the scalar spin chirality, and is
induced by the orbital coupling of the applied magnetic
field to the underlying electrons [9]. It preserves lattice
translations and rotations, but explicitly breaks time-
reversal and mirror-plane symmetries while preserving
their product. The value of J itself is proportional to
the small magnetic flux penetrating the square lattice.
The second term in Hp is the Zeeman term, and the
electron magnetic moment has been absorbed in the def-
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Fig. 1.

Our analysis starts from a model [20] of the square-
lattice Néel state as the confining phase of a SU(2) gauge
theory of fluctuations about a ‘m-flux’ mean-field state
[22]. In this formulation, the spins are represented by
fermionic spinons fiq, (o =1, 1) via S; = (1/2)f] ousfis,
where o are the Pauli matrices. This spinon represen-
tation induces a SU(2) gauge symmetry [23], and a full
treatment requires careful consideration of the associated
SU(2) gauge field. However, much can be learnt from a
mean-field theory in which we ignore the SU(2) gauge
fluctuations: we will analyze such a mean-field theory
now, and turn to the gauge fluctuations later.
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FIG. 1. Proposed schematic phase diagram of H, + Hp
at Bz = 0 (see Fig. 3a for a phase diagram with nonzero Bz).
By varying the first, Ji, and second, J2, nearest neighbor ex-
change interactions and the orbital coupling J, in Eq. (2), the
antiferromagnet on the square lattice shows phases with com-
binations of Néel, valence bond solid (VBS), and chiral spin
liquid topological order (CSL). The phase boundaries are pre-
sumed to meet at a SO(5)-symmetric (near) critical point at
which Jy is a relevant perturbation, and the phase bound-
aries all scale as Jy ~ |J2 — Jac|**/22; we expect Ay /A2 > 1.
In this work, we imagine starting from the Néel state at zero
magnetic field, J,, = 0, close to the boundary of VBS order
such that a small value of field-induced Jy can already drive
the system close to the phase boundary with Néel + CSL
(indicated by the red arrow). We note that the existence of
a SO(5) critical point is not a precondition for a continuous
Néel to Néel + CSL transition.

MEAN-FIELD THEORY

After inserting the spinon representation of S; in H,
and a mean-field factorization respecting lattice and
gauge symmetries, we obtain the quadratic spinon Hamil-
tonian [20, 24-26]

Hy == 3" (tyfiudia + il lufia) (3)

i<j

1
- §Z(BZ +1n; N) : zTaa-a,Bfiﬁ'
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The pattern of the ¢;; is shown in Fig. 2a.

The first-neighbor hopping, t;, arises from the factor-
ization of the exchange couplings in H;. The second-
neighbor hopping, +its, arises from the scalar spin chi-
rality term J,, and has the same symmetry as the orbital
coupling of the underlying electrons to the magnetic field
orthogonal to the plane of the square lattice. We have
assumed a nonzero Néel order, and this leads to the IN
term after factorization of Hy; n = +1 has opposite signs
on the two checkerboard sublattices of the square lattice.
The Zeeman term minimizes the energy of the square-
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FIG. 2. Ansatz and spectrum of spinon Hamiltonian. a, The nearest (¢1, black) and second-nearest neighbor (t2, red)
hopping matrix elements for the spinon mean-field Hamiltonian in Eq. (3) on the square lattice formed by the Cu atoms
(indicated in brown). The applied magnetic field induces a nonzero hopping its and there is a uniform /2 flux through each
elementary triangle. In (b-e), we plot the evolution of the band structure of the Hamiltonian in Eq. (3) along the line k, = 0,
with N = 0.52, t1 = 1, t2 = 0.10, upon changing the Zeeman field, which is taken to be |Bz| = (b) 0, (c) 0.4, (d) B(ZC) ~ 0.6245,
and (e) 0.8. The Chern numbers (indicated in the respective color) of the two lowest bands switch from {—1, -1} to {—1,1}

as |Bz| is increased across the phase boundary.

lattice antiferromagnet when the Néel order is orthogo-
nal to the magnetic field and so, we take Bz - N = 0;
the Bz term is not essential to the topological and field-
theoretic considerations below, but can be important in
understanding the experimental role of the applied field,
as we will see below.

Many key results follow from a consideration of the
topology of the spinon band structure implied by Hj.
Our choice of t;; in Fig. 2a and 7; leads to a unit cell
with two sites. Combined with the spin label «, we ob-
tain a total of four spinon bands, which are half-filled.
The key discriminant is the net Chern number of the oc-
cupied bands. When this is zero, there will be no Chern-
Simons term in the theory for gauge fluctuations, lead-
ing to confinement and a conventional Néel state. On the
other hand, when the net Chern number is 2, we obtain a
Chern-Simons term and a state with semion topological
order (as argued in Ref. [20]), coexisting with the Néel
order here, because IN # 0; this state has gapped exci-
tations with semionic statistics, along with the conven-
tional spin-wave modes of the Néel state. In this manner,
we obtain the mean-field phase diagram shown in Fig. 3a.

The evolution of the band structure across the phase
boundary in Fig. 3a is shown in Fig. 2b-e. Note the ap-
pearance of two massless Dirac fermions at the critical
point. Away from the critical point, these fermions ac-
quire a common Dirac mass, which has opposite signs in
the two phases.

Next, we computed the thermal Hall conductivity xgy
across the phase boundary in Fig. 3a: the results are

shown in Fig. 3b. Denoting the Berry curvature for each
band n =1,...,4 by Q,x, the thermal Hall conductivity
is given by [27]

Ky = —% /dsszoxy(s)f’(e) (4)

where oy (e) = — [ __ %k Qui /(47?) is h/e? times
the Hall conductivity, and f(¢) is the Fermi function.
The corresponding Chern number is

1
Cp=— [ d&®k Qx € Z. 5
27r/ k € ( )
AsT — 0,
Fay 77Tk123

- = > G (6)

n € filled bands

Consequently, kg, /T — (7/3)(k%/h) as T — 0 in the
phase with topological order; quantum gauge fluctua-
tions, to be discussed below, will change the prefactor
(m/3) to the exact quantized value (7/6) in this phase.
In the other phase, kg, /T varies nonmonotonically as T
is lowered, and eventually vanishes as T" — 0 because the
occupied bands have opposite Chern numbers. Note the
bifurcation in the 7" dependence at the phase boundary.
Exactly on the phase boundary, the present mean-field
theory yields kg, /T — (7/6)(k%/h) as T — 0: this value
is expected to have universal corrections from gauge fluc-
tuations by some nonrational renormalization factor [28].

We plot the field dependence of xy, withing the Néel
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FIG. 3. Phase diagram and thermal Hall conductivity of spinon mean-field theory. a, The two different phases
of the fermionic spinon mean-field Hamiltonian Hy in Eq. (3) are shown as a function of the second-nearest-neighbor spinon
hopping ity [see Fig. 2a] and the Zeeman field |Bz|. Here, we take the Néel order N = 0.5Z and measure all energies in units
of the nearest-neighbor spinon hopping ¢;. As discussed in the main text, its is induced by the orbital coupling of the magnetic
field. Both ¢y and |Bz| are linear functions of the applied magnetic field, and the dashed purple lines show three possible
trajectories for which we plot the field dependence of k4, in (c—€) for different temperatures 7. b, Temperature dependence of
the mean-field kqy as t2 is tuned across the phase boundary; the corresponding discrete values of |Bz| and t2 are indicated by
green dots in (a). The quantized value of the ordinate in the topological phase is 7/3, and the bifurcation point as T — 0 is
at m/6. Both values are corrected by gauge fluctuations (the exact quantized value in the topological phase is 7/6).

phase in Figs. 3c-e, along the dashed lines in Fig. 3a.
Note that k., is a nearly linear function of the field,
with a slope which is enhanced as we approach the phase
boundary to the state with semion topological order.

GAUGE THEORIES AND DUALITIES

We now discuss universal properties of the quantum
phase transition in Fig. 3(a), and the lower phase bound-
ary in Fig. 1. This critical theory has four different dual
formulations, summarized in Fig. 4. The first of these,
labeled SU(2)_1/2 in Fig. 4, is obtained by reinstating
gauge fluctuations to the free fermion mean-field theory
described above. The resulting field theory turns out to
have an emergent global SO(3) symmetry, which must
then also be a property of the other dual formulations.
We now discuss these field theories, and their connec-
tions to the lattice antiferromagnet, in turn. We refer
the reader to recent reviews [29-32] for subtle aspects
of gauge and gravitational anomalies which we will not

enter into here.

e SU(2)_1/2 with a fermion doublet

Near the phase boundary in Fig. 3a, we can focus on
the effective theory of the nearly massless Dirac fermions.
These form a single doublet, %, under the SU(2) gauge
symmetry and so, a low energy theory will have a SU(2)
gauge field, A,, coupled minimally to ). However, we
cannot entirely neglect the single filled fermionic band
far from the Fermi level, see Fig. 2b-e. This band
has a nonzero Chern number, and integrating out these
fermions yields a Chern-Simons term for A, at level
—1/2. In this manner, we obtain the low-energy 2+1
dimensional Lagrangian

Ly = i (8 — iAW+ m e — %CS[AH] o

Here, v* are the Dirac matrices, m is the mass term
which changes sign across the phase transition, and
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FIG. 4. Four dual field theories for the antiferromag-
net flow to the same fixed point. Distinct approaches to
the lattice antiferromagnet (violet) lead to 4 different contin-
uum field theories (blue) for the transition from the Néel to
the Néel+CSL state (Fig. 1). Universality then implies that
these describe the same renormalization group fixed point
(red) with an emergent global SO(3) symmetry. Adapted
from Ref. [5].

the last term represents the SU(2) Chern-Simons term.
When m is nonzero we can safely integrate the fermions
out. For one sign of m, the net Chern-Simons term
vanishes, and we obtain a ‘trivial’ confining phase with
Kgy = 0. For the other sign of m, we obtain a Chern-
Simons term at level 1, and the SU(2); theory describes
a chiral spin liquid with /T = (7/6)(k%/h) [21].

The emergent global SO(3) symmetry of £; is most
easily seen by writing v in terms of Majorana fermions,
and then the fermion kinetic term has a global O(4) sym-
metry. One SU(2) subgroup of O(4) is the SU(2) gauge
symmetry, while the other leads to the global SO(3) sym-
metry. There is no global SO(3) symmetry in the lattice
Hamiltonian Hy, so this symmetry is special to the vicin-
ity of the critical point. Further discussion, including an
interpretation of this global symmetry in terms of the
microscopic spins, can be found in the Supplementary
Information.

e U(1), with a charged scalar

The second dual theory has a complex scalar, ¢, cou-
pled to a U(1), gauge field, a,:

EMVA

£2 = (0, = i)l = ol — u(l6*)? +

a,0yay .

However, the SO(3) global symmetry is not manifest in
this formulation, and its description requires considera-
tion of monopole operators [5-8]. The coupling s tunes
across the phase transition at s = s., while the quartic

nonlinearity u is assumed to flow to a fixed-point value,
analogous to that in the Wilson-Fisher theory without
the Chern-Simons term. For s < s., the ¢ field forms a
Higgs condensate, and this quenches a,, and all topolog-
ical effects: we thus obtain the conventional Néel state.
This maps to the positive-mass phase of the SU(2)_%
fermion theory discussed above. For s > s., we obtain
the state with semion topological order: the gapped ¢
quasiparticles have mutual semion statistics which is in-
duced by the Chern-Simons term. Below the quasiparti-
cle gap, this phase is described by U(1)2 and so, maps to
the negative-mass phase of the SU(2)_ 1 fermion theory.
We can connect the field theory £, to the lattice antifer-
romagnet by viewing the latter as a theory of hard-core
bosons S = S, + iSy; then, assuming the bosons form
a v = 1/2 fractional quantum Hall state, as in the chiral
spin liquid [4], we identify ¢ as the quasiparticle (vortex)
operator in the Chern-Simons-Landau-Ginzburg theory
[33, 34].

e U(1)_3/» with a charged fermion

The third dual theory of Ref. [5] is a theory that had
been discussed in Ref. [35]: it has a single Dirac fermion
coupled to a U(1)_3/2 gauge field. The SO(3) symme-
try is not manifest. Such a field theory can be related
to a fractionalization of the hard-core boson S, into two
fermions ~ fifo [35]. In the state with topological or-
der, which is a v = 1/2 fractional quantum Hall state of
the bosons (as above), both fermions fill bands with unit
Chern number, as in composite fermion theory [36]; the
phase transition maps to a change of the Chern number
of one band to zero [34, 35, 37].

e SU(2); with a scalar doublet

The fourth dual theory [5-8] has a complex scalar dou-
blet transforming as the fundamental of a SU(2); gauge
field. This can be connected to the SU(2) gauge theory
obtained by transforming to a rotating reference frame
in spin space [26, 38, 39], in which we write the electrons
as ¢, = R,z Here ¢ is a fermion (the ‘chargon’),
and R4 is a SU(2) matrix (RTR = 1), which can be
expressed in terms of the aforementioned complex scalar
doublet; in the renormalized continuum theory, the unit-
length constraint on the scalar doublet can be replaced
by a quartic self-interaction. The SU(2) gauge symmetry
corresponds to right multiplication of R (and left multi-
plication of ), while the SO(3) global symmetry cor-
responds to left multiplication of R. We assume that
the band structure of the ¢ fermions is such that both



species are in a filled band with unit Chern number;
then, integrating out these gapped fermions yields the
Chern-Simons terms for the SU(2); gauge field. Now,
the needed transition is obtained by the Higgs transition
of the scalar: the topological phase has R gapped, while
the trivial phase has R condensed. We also need specta-
tor SU(2) gauge-neutral electrons in filled Chern bands
to match the thermal and electrical Hall conductivities
of the two phases.

DISCUSSION

For thermal Hall measurements in the cuprates, our
main mean-field results are in Fig. 3. Note the large rise
in the thermal Hall response in the conventional Néel
state proximate to the phase boundary, before it even-
tually vanishes at low enough T: this rise is our pro-
posed explanation for the observations of Grissonnanche
et al. [2]. The field and temperature dependences of kg,
in Fig. 3 match well with observations. It is possible that
stronger fields will drive the cuprates across the quan-
tum phase transition into a state with semion topologi-
cal order, but the stronger field also enhances the Zeeman
term, and Fig. 3a shows that this term is detrimental to
such a transition.

We also discussed gauge-field fluctuation corrections to
the results in Fig. 3. We noted that in the topological
phase such corrections renormalize the thermal Hall con-
ductivity from (7/3)k%T/h to (7/6)k3T/h as T — 0.
Computation of the analogous corrections at higher T°
and across the phase boundary in Fig. 3 is more chal-
lenging. The critical theory of the phase boundary was
shown to be a central actor in recent studies of dualities
of strongly interacting conformal field theories in 2+1
dimensions [5-8]. The theory of interest has four differ-
ent formulations which we summarize in Fig. 4; we also
provided lattice interpretations of all four field theories
in terms of the degrees of freedom of the square-lattice
antiferromagnet. An expansion in the inverse number
of matter flavors (analogous to Ref. [28]) is a promis-
ing route to computing the universal nonzero tempera-
ture thermal Hall effect in these gauge theories near the
quantum critical point in Fig. 3a.

Finally, let us comment on the role of fluctuations of
the Néel order parameter. Spin waves make only a small
contribution to the thermal Hall effect [3]. In two spa-
tial dimensions, thermal fluctuations of the Néel order
restore spin rotation symmetry at all nonzero T [40], but
these classical fluctuations are not expected to signifi-
cantly modify the quantum criticality of the topological
quantum phase transition in Fig. 3a, which involves no
change in symmetry.

METHODS

Deconfined criticality and phase diagram. The
square-lattice antiferromagnet with first (J;) and second
(J2) neighbor exchange interactions has been the focus
of many numerical studies in the past decades. There
appears to be general agreement that increasing Js/Jq
destroys the Néel state and leads to a state with valence
bond solid (VBS) order [41, 42]. There is also significant
evidence that the transition region between these states
is described by a deconfined critical field theory [43] over
a large intermediate length scale [41]. Furthermore, there
is strong support for a global SO(5) symmetry between
the Néel and VBS orders [44] over this scaling region, as
is expected for the deconfined critical theory [20, 45, 46].
The ultimate fate of the phase transition at the longest
distances remains unsettled, but it is plausible that it is
described by a complex fixed point, very close to the real
physical axis [20, 47, 48].

It is useful to now consider the phase diagram of the
J1-Jo-J, antiferromagnet on the square lattice by start-
ing from a theory in which the SO(5) symmetry is ini-
tially explicit. This is just the fermionic spinon repre-
sentation used in Eq. (3). In the absence of Néel order
(N = 0) and an applied field (Bz = 0), the continuum
limit of Eq. (3) yields two flavors of two-component Dirac
fermions, which are then coupled to a SU(2) gauge field;
so instead of Eq. (7) we now have [20]

LSO(()) = i@a’}ﬂu(au - ZAM)/lz[}a + mxaawa (8)

where a = 1,2 is the flavor index.

The SO(5) symmetry is apparent after we express
Lso(s) in terms of Majorana fermions. The fermion mass
my o Jy is also SO(5) invariant, and is a perturbation
on the putative SO(5)-invariant Néel-VBS critical point
at m, = 0. It is plausible that m, is a relevant pertur-
bation on such a critical point (with scaling dimension
Ay > 0), and then an infinitesimal J, will be sufficient
to drive the critical antiferromagnet into the chiral spin
liquid phase. Should the Néel-VBS transition be weakly
first-order, then a very small value of J, will be sufficient.
Tuning away from the critical point by changing the value
of Jo/J; yields a second relevant perturbation to the crit-
ical point (with scaling dimension As > 0) which explic-
itly breaks SO(5) symmetry, but is allowed by the sym-
metries of the underlying antiferromagnet. We obtain
the phase diagram proposed in Fig. 1 upon considering
the interplay of these perturbations; all phase boundaries
scale as Jy ~ |Jo — Joo|}¥/?2 for a SO(5) critical point at
Jy =0, Jo = Jy, so for Ay, > A9, we obtain the onset of
semion topological order at small values of J,, even away
from the SO(5) point. In the limit of a large number of



fermion flavors, Ay = 1 and Ay = —1, and A, > Ag is
thus plausible. This phase diagram is compatible with
the small system size studies of Ref. [19]. We empha-
size that the existence of a SO(5) critical point is not
a requirement for the existence of a continuous Néel to
Néel+CSL transition with SO(3) symmetry described in
the main part of the paper.

DATA AVAILABILITY

The data that support the plots within this paper and
other findings of this study are available from the corre-
sponding author upon reasonable request.
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SUPPLEMENTARY INFORMATION FOR
ENHANCED THERMAL HALL EFFECT IN THE SQUARE-LATTICE NEEL STATE

Rhine Samajdar, Mathias S. Scheurer, Shubhayu Chatterjee, Haoyu Guo, Cenke Xu, and Subir Sachdev

1. SO(3) symmetry on the lattice

We investigate the emergent global SO(3) symmetry at the critical point by explicitly constructing an order param-
eter that transforms as a vector under this SO(3) symmetry in terms of the low-energy fermionic degrees of freedom,
starting with the lattice-scale Hamiltonian Hy in Eq. (3). For simplicity and to obtain a transparent physical picture
of this vector order parameter, we first set Bz = 0 in Hy, and later discuss the generalization to Bz # 0.

The hopping part of Hy (obtained by setting N = 0 = By) describes a chiral spin liquid, and is symmetric under
square-lattice translations T; (with ¢ = x,y), C4 rotations about a site, time-reversal accompanied by reflections © R;,
and global SU(2) spin-rotations [26]. Turning on a nonzero Néel order parameter N = NZ (N # 0) breaks time-

reversal, spin-rotation and translation symmetries explicitly, and results in a reduced set of symmetries generated
by:

TIJ'_y : S("m"y) - S(ix+1,iy+1)
Cs:83,0,) = S(=iyin)
OR, : S, 4,) — (=5%,5%.5%) i, 4,
Ug(ZA', 9) N S(lzﬂy) N eiJSG/QS(iw7iy) 677;0-30/2

Yo = Us(fﬁﬂr)Tz : S(iz,iy) — eialﬂ/QS(iz+1,iy)€_wlﬁ/2 (1)
In Eq. (1), Us(Z,0) is the remaining U(1) spin-rotation symmetry about the z-axis, and ¥, denotes a spin-rotation
about an axis perpendicular to the Néel vector [chosen here to be Uy (%, ) = io! w.l.o.g.], accompanied by unit lattice
translation 7). Note that T, = Tyiy(E5) "2, OR, = U(2,7)C3(OR,) ! and £, = £, T, are not independent
symmetry generators. Further, note that Hy is invariant under any lattice symmetry operation S only up to an
additional gauge transformation f;, — e*¢s[5()] [s(i),0; in other words, the lattice symmetries act projectively and the
combination of S and e??s leaves H ¢ invariant. For the set of symmetries in Eq. (1), the required gauge-transformations
are ¢r,,, = 0= ¢or,, while ¢c, = 7(iy —iy)(ic — iy +1)/2 and ¢z, = 7i,.

Now, we turn to diagonalizing Hy in Eq. (3) with Bz = 0 and finding the relevant low-energy fermionic modes.
Defining a two-site unit cell along the Z-direction with sublattices A (even parity of i, + i,) and B (odd parity of
iz +iy), the Hamiltonian from Eq. (3) is given in momentum space by (setting the lattice spacing a = 1):

T
H = Zf]ihkfk; k= (kaT Jept fray kaJ,) )
K

hy, = (ﬁkéN) hk(ON)> ’ (2)

- —% — 4ty sink, cosk, —2t1(cosky + isinky)
2ty (cosky —isink,) &+ 4tysink, cosk, )

The critical point, with Dirac cones at £Q, appears at N = £8¢>. In our gauge choice, it holds Q = (7 /2,0). For
concreteness let us focus on the critical point at NV = —8t2. Then, the low-energy bands at valley @ are entirely in the
spin-up sector; the remaining (spin-down) bands can be integrated out without renormalizing the low-energy bands.
A similar picture holds for the valley —Q), where the low-energy bands are tied to the spin-down sector, as shown by
the linearized Hamiltonian near —@Q. Therefore, the effective low-energy Hamiltonian is given by:

Ho =200 Y 6 (0.7 +0,7) Y @)
q<A



where A is some UV momentum cutoff, the matrices 7% act in sublattice space, and

(fQ“*’A’T) for a = (Q1),
wq,a =

fQ+q,B-,T (4)
—iT? fQJrq’A’J’) for a = (—Q, ).
f-Q+a,B.4

For our analysis, it is useful to revert to real space and define Nambu spinors C4(7) and Cpg(r) that vary slowly on
the lattice scale by projecting the lattice fermions f;, onto the low-energy bands:

fiTAJ, ~ fiA(r) eiQ-ri — r eiQ-ri
( fiAT> - ( a0} ar <y, ®)

f;rm ~ ifiB(r) iQri — ;0 iQ-r;
<fiB¢> ~ (if+B(r) e =1 B(T)e .

In Eq. (5) and henceforth, we will denote each two-site unit cell by 4, which is also the location of the basis site A
(hence n; = 1). We perform a further redefinition of the low-energy field operator in order to make contact with
subsection 2 on the continuum approach (which follows the conventions of Ref. [20]).

U, o(r) = (ei%Tlei%Tg) (V)ap Csp , with VA = in® and VB =p° (6)

as

where s = A or B denotes sublattice, a or b (= %) indexes the Nambu/valley space, and all repeated indices are
summed over. Upon re-expressing the degrees of freedom in terms of ¥, ,(r), the low-energy Lagrangian takes the
following form [to which gauge fluctuations A, can be readily introduced, see Eq. (7) of the main text]:

Lo = i/d2r Uaa(r) (V") s Ou¥s,a(T), (7)

where we have re-scaled spacetime to set the Dirac velocity vy = 2t; = 1, defined ¥ = ¥i4? and the Dirac Gamma
matrices are given by (Y°,~%,4Y) = (72,i73,i71!).

One crucial point to note is that the antiunitary time-reversal symmetry © (which flips both spin and valley)
re-emerges in the low-energy action Leg in Eq. (7), although it is broken explicitly in the lattice Hamiltonian Hy in
Eq. (3) as

O: frs— tfrs, with ©% = —1. (8)
Intuitively, this happens because time-reversal simultaneously flips spin and valley; Leg is invariant under such a

transformation. The effect of t5 (that describes a local orbital magnetic field) and the Néel order parameter IN (that
acts as a local Zeeman field) thus counteract each other in the low-energy effective field theory.

In order to make the emergent SO(3) symmetry manifest in the low-energy action, it is useful to construct the
following matrix of low-energy spinors, in analogy with Ref. 20:

r) = 1/Ja,+¢(7’) - L,_¢("°) where _ ¢l,—¢
Xa(r) <1/’a,¢(7“) w;ﬁ(r)) h \Ifa_< (9)

The low-energy gauge-fluctuations act on X, (r) via right multiplications, as follows:

SU(2)g : Xa(r) = Xo(r) Ul (r) (10)



Observable | Tpyy T-pyy Ci %, X, OR, OR, Us(2,0) ]
ok -0! -o' -0?* O!' -0!' -0!' —-0O' cosfO! +sinb O? Ot
0? -0? —-0? o' -0 0? 0% 0% —sinfO0'+cosf0O?> 02
0?3 0?3 0?3 o} -0 -0 0 03 0?3 -03

TABLE I. Transformation of the components of the gauge-invariant fermion-bilinear SO(3) vector under the symmetries of Hy
(for Bz = 0) and the emergent time-reversal symmetry ©.

The effective action in Eq. (7), including gauge fluctuations A,,, can be recast in terms of X,(r) (repeated indices a
and p are summed over):

i

ch‘f 9

/dzr Tr[Xa(r)fy“D;?Xa(r)], where D;‘Xoé =0,Xo +iX,A, and X, = X[7° (11)

The action in Eq. (11) is clearly invariant under an emergent global SU(2) symmetry U that acts on X, by left
multiplication:

SU(2)sym : Xa(r) = UXa(r) (12)

Therefore, the manifestly gauge-invariant order parameter that is constructed entirely out of the low-energy degrees
of freedom, and transforms as a vector under the emergent global SO(3) is given by

O%(r) = ZTr (X1 (r)o " Xa(r)], (13)

where 0 are the Pauli matrices in the mixed spin-valley space labeled by a = {1,2,3}. The symmetry transformations
of O can be worked out by considering their (projective) action on the real space lattice-scale spinors in Eq. (5), and
subsequently deducing their action on 1, () and hence on O%(r). The results are presented in Table I.

Next, we construct a representation of O% in terms of the microscopic spin operators S;. The rotation of O? into O*
under either a Cy4 rotation or a spin-rotation U (2, —7/2) indicates that these must be spin-orbit coupled. Indeed, one
can check that the following representatives satisfy all the symmetry constraints in Table I (the indices 1,2 represent
directions in spin-space, while z,y represent directions in real-space, and N, is the number of lattice sites).

1 [ %
0! =+ D (F1)=(Si X Sivg)a + (1) (Si x Sivah

0? = Ni Z(_l)iy(si X Siya)2 — (1) (S x Sizgh
0* = Nis Z(Si)?) (14)

Thus, O! and O? can be interpreted as bond-direction dependent spin-projections of a vector-spin chirality operator
S; x S;, which is even under time-reversal ©; related operators were discussed in Ref. [49]. The final component 0?3
is unchanged under the action of Us(%,8), but is odd under unit lattice translations accompanied by spin-flip and
also under time-reversal; therefore, it can be interpreted as an Ising ferromagnetic order parameter. The operators in
Eq. (14) are illustrated graphically in Fig. 5.

Lastly, we comment on the addition of an external Zeeman field Bz perpendicular to the Néel order parameter
N, which gets rid of the residual U(1) spin-rotation symmetry generated by S# in Hy. In this case, the only leftover
symmetry generators at the lattice scale are T,,,, C4, OR, and X, (for By = B, ¥; = Us(Z,n)T; remains a
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FIG. 5. Pictorial representation of the components of the SO(3) vector O® defined in Eq. (14). For O' and O?, we plot the
corresponding spin-chirality vector S; x S; on each bond (ij). For O, we plot (S;)s on each lattice site 7;.

symmetry for each ¢ = z,y). In the corresponding low-energy action Leg, a global SO(3) and time-reversal ©
emerge as symmetries just as in the previous case. Hence, one can label the low-energy fermions by their valley
indices (v = +Q or —Q) and carry out an analogous construction of a gauge-invariant order parameter O%(r) that
transforms as a vector under this emergent SO(3) symmetry. O° (i = 1,2) break Ty, ¥; and Cy (where i = y for
i = x and vice-versa). While O? is invariant under all lattice symmetries that do not involve spin-flips, it breaks both
¥, (for i = z,y) and time-reversal ©, which is emergent at the critical point. We conclude that the results in Table I
are still valid for Bz # 0, modulo the columns U, (2, 6) and OR,. The lattice symmetry C4 and X, (or ¥,) symmetry
together can be embedded into group O(2) = SO(2) x Zs (the explicit symmetry of two of the four dual field theory
descriptions in the main text), which is a subgroup of SO(3). Eventually we expect that the symmetry in the infrared
limit is enlarged to SO(3).

2. SO(3) symmetry generators in the continuum

Another way to investigate the nature of the global SO(3) symmetry is to connect its generators to those of the
SO(5) symmetry of the m-flux state described in detail in Ref. [20]. The Néel and valence bond solid (VBS) order
parameters combine to form a fundamental 5-vector of this SO(5) symmetry. Note that in the considerations here,
we are not assuming the existence of a conformal field theory with SO(5) symmetry describing the Néel-VBS critical
point; the emergent SO(5) symmetry is already a property of the mean-field w-flux state, and that is sufficient for
our purposes.

The SO(5) symmetry is most explicit in the Majorana fermion basis, and the Majorana fermion y is introduced as
¥ = x; +ixe. We choose a basis such that the Dirac matrix 7° = o2; the spin chirality then becomes yx = x‘+°x.
Then, in addition to the Dirac index, the Majorana fermion still carries three extra indices; each represents a two-
component space, which in total hosts a SO(8) transformation that includes both the SU(2) gauge and the SO(5)
global symmetries. After choosing an appropriate basis [20], the generators of the SU(2) gauge group are

Gy = 0% Gy=020 Gy = 0%, (15)
the generators of the SU(2) spin group are

Sl — o120 G2 _ 5200 g3 _ ;320 (16)

)

Here, 0% = 0% ® 0® ® ¢, and ¢° = 1542. The Néel and valence bond solid (VBS) operators form an SO(5) vector

N, = XTax, (17)
Ty = 0922 Ty =12 Ty=0202 [, =008 [, — 5001



One may check that [G%,S%] = 0, and [G%,T?] = 0 for all a,b. The ten SO(5) generators can be obtained by the
commutators of the five Gamma matrices: 'y = %[Fa, Tp]. If we turn on a background Néel order parameter, say
(xXI'*x) # 0, the SO(5) symmetry is broken down to SO(4), which is generated by six out of the ten generators of
SO(5):

321 323

002
F14:O' , F15:70' , F45:O' y

F24 = 0'121, P25 = —01237 P12 = 0'200. (].8)

We can construct two sets of independent SU(2) generators out of the six generators:

1 1
Tar = §(F15 +T94), Tas = 5(*F14 +T25),
1
Thg = §(F12 +Tys5);
1 1
Tp1 = §(F15 —T'yy), Tpa = §(F14 +T95),
1
Tps = §(F12 —T's5). (19)

Now, let us turn on two fermion mass terms simultaneously: mqxI'sx + maxx. Then, the T4; (Tp;) are the needed
SO(3) generators that operate on the massless fermion subspace when m; = —ma (m1 = mg). We have not included
the influence of the Zeeman term here, which has a weak effect near the SO(5)-symmetric point.
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