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We study a possible deconfined quantum phase transition in a realistic model of a two-dimensional
Shastry-Sutherland quantum magnet, using both numerical and field theoretic techniques. Using
the infinite density matrix renormalization group (iDMRG) method, we verify the existence of
an intermediate plaquette valence bond solid (pVBS) order, with two fold degeneracy, between
the dimer and Néel ordered phases. We argue that the quantum phase transition between the
Néel and pVBS orders may be described by a deconfined quantum critical point (DQCP) with an
emergent O(4) symmetry. By analyzing the correlation length spectrum obtained from iDMRG, we
provide evidence for the DQCP and emergent O(4) symmetry in the lattice model. Such a phase
transition has been reported in the recent pressure tuned experiments in the Shastry-Sutherland
lattice material SrCu2(BO3)2 [1]. The non-symmorphic lattice structure of the Shastry-Sutherland
compound leads to extinction points in the scattering, where we predict sharp signatures of a DQCP
in both the phonon and magnon spectra associated with the spinon continuum. The effect of weak
interlayer couplings present in the three dimensional material is also discussed. Our results should

help guide the experimental study of DQCP in quantum magnets.
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FIG. 1: (a) The Shastry-Sutherland lattice of copper sites
(small circles) in SrCuz(BO3s)2, on which the spins reside.
The spins are coupled across nearest neighbor bonds (Ji, in
blue) and dimer bonds (J2, in red). Each unit cell contains
four sites, as shaded in yellow. The glide reflection G, Gy
and the diagonal reflection 0.y, 0.5 symmetries are indicated
on the lattice. (b) Diffraction peaks from copper sites. The
darker dot indicates a higher intensity. The extinction points
are marked out by red circles. The first Brillouin zone is
shaded in yellow, corresponding to the unit cell in (a). Spe-
cial momentum points I', X, Y, M are defined as labeled. (c)
The phase diagram of the spin model Eq. (1). The Néel anti-
ferromagnetic and dimer valence bond solid (dVBS) phases
are separated by the intermediate plaquette valence bond
solid (pVBS) phase upon tuning the J; /J> ratio. The critical
points are determined in Tab.I based on our iDMRG result.
The transition between pVBS and Néel phases is likely to be
a DQCP (or weakly first-order proximate to a DQCP).

Fig.1(a). The ratio J;/J2 between the coupling con-
stants is tunable by pressure in experiments within cer-
tain range. In the large J; (or large J3) limit, the model
reduces to the square lattice Heisenberg model (or the
decoupled dimerized model), which stabilizes the Néel
phase (or the dimer valence bond solid (dVBS) phase).
Between these two limits, numerical [14, 17-20] and the-
oretical [21] analysis of the model have revealed an in-
termediate plaquette valence bond solid (pVBS) phase,
as illustrated in Fig. 1(c). Remarkably, the experiment
in Ref.1 seems to confirm this phase diagram. Since the
pVBS and Néel phases separately break two distinct sym-
metries, the lattice and the spin rotation symmetry, a
direct second-order transition between them would nec-
essarily go beyond the Landau-Ginzburg paradigm and
point to the possibility of the DQCP. Although the na-
ture of the pVBS-Néel transition remains unresolved by
experiments, there are promising signs for the exciting
opportunity that SrCus(BOg3)s might provide the first
experimental platform to realize DQCP.

Recent studies on different models with the same sym-
metry class showed that the transition between pVBS

and Néel phases could be first-order[22, 23]. However,
despite being first-order, the transition is accompanied
with an extended region of quantum-critical-like scaling
and an emergent O(4) symmetry, implying that the tran-
sition could be close to a DQCP (possibly as an avoided
criticality). Thus the DQCP is still the best theory to ac-
count for these anomalous features in the critical region,
even though it may eventually break down at longest
scales. Note that the .J-) model or loop model stud-
ied in Monte Carlo simulations[22, 23] are designed dif-
ferently from the original Shastry-Sutherland model to
avoid the sign problem. Given that the first- or second-
order nature of the transition can be tuned by model
parameters [24-27] and is therefore a model-dependent
property, the fate of the pVBS-Néel transition in the
Shastry-Sutherland model remains to be fully resolved
yet.

The goal of this work is to investigate the pVBS-
Néel transition in the Shastry-Sutherland model Eq. (1)
in more detail using both field theory and the density
matrix renormalization group (DMRG) approach, and
to identify the unique signatures of DQCP that can be
probed by inelastic neutron scattering (INS) or resonant
inelastic X-ray scattering (RIXS) experiments. We use
the infinite DMRG technique to overcome the sign prob-
lem. Our numerical simulation indicates (i) that the tran-
sition between pVBS and Néel phases appears continuous
up to the largest available system size (infinite cylinder
with the circumference of 10 lattice sites), although we
can not rule out the possibility of a weakly first-order
transition due to our limited system size. (ii) We also
observe the asymptotic degeneracy between spin-triplet
and spin-singlet excitations over a large length scale,
demonstrating an approximate emergent O(4) symmetry
which rotates among the Néel and pVBS order parame-
ters. Our theoretical analysis further suggests that (iii)
in the Shastry-Sutherland lattice, in contrast to previ-
ous realizations of DQCP, a dangerously irrelevant oper-
ator is absent which has consequences for numerics and
that (iv) critical spinon continua appear at the extinction
points of lattice diffraction peaks (c.f. Fig. 1(b)) in both
the magnon and phonon channels at low-temperature
around the DQCP. The universal critical behaviors of
these continua are examined as well, which could guide
the experimental study of the candidate DQCP in the
SrCus(BOj3)2 material.

The rest of the paper is organized as follows. In
Sec. II, we perform an infinite DMRG simulation on the
Shastry-Sutherland spin model and discuss the nature
of the phase transition between Néel and VBS phases
based on a correlation length spectra. In Sec. III, we
analyze symmetry quantum numbers of a monopole op-
erator whose proliferation induces the transition to the
VBS phase. By investigating the transformation prop-
erty of the monopole, we show that the single-monopole
term is suppressed while the double-monopole term can
appear in the action describing the Néel order in the
Shastry-Sutherland lattice. We compare the differences



among various microscopic models — easy-plane, rectan-
gular, and Shastry-Sutherland — whose possible emer-
gent symmetry is all O(4). One distinct feature of the
Shastry-Sutherland lattice is the presence of the relevant
anisotropy operator that breaks the four-fold lattice rota-
tion symmetry, which stabilizes the VBS order and gives
rise to a fast-growing spectral gap in the spin-0 chan-
nel as the system enters the VBS phase. In Sec. V, we
propose the spectral signatures of DQCP in the Shastry-
Sutherland model, including the SO(4) conserved current
fluctuation in the magnon spectrum and the VBS fluc-
tuation in the phonon spectrum. Both of these features
appear at the extinction point of the Shastry-Sutherland
lattice, which is detectable at low energy without over-
whelmed by the elastic scattering signals. We conclude
our discussion in Sec. VII.

II. NUMERICAL STUDY

In this section, we study the model in Eq. (1) using the
infinite density matrix renormalization group (iDMRG)
method [28, 29]. We wrap the 2D system onto a cylin-
der which is infinite along z-direction but compact along
y-direction, with a finite circumference L. In the simu-
lation, spin-1/2s are mapped into the hard-core bosons
with density (n) = 1/2 per site; an antiferromagnetic spin
interaction would then be translated into hopping and
density-density interaction terms for bosons. As the bo-
son number is conserved in the simulation, we have an ex-
plicit U(1), symmetry which allows us to extract correla-
tion functions for an operator with a specific U(1), quan-
tum number. During the simulation, we fixed the value
of J, = 1 and tuned the value of .J; across the phase tran-
sition between the pVBS and Néel order phases. Since
the unit cell of Shastry-Sutherland lattice contains 2 x 2
square unit cells, the iIDMRG unit cell becomes 2 x (2m)
slice of the infinite cylinder, where the circumference of
the cylinder L = 2m.

In the iDMRG simulation, we have two limiting factors
to describe the exact two-dimensional state: the circum-
ference length L and the bond dimension x. Due to lim-
ited computational capacity, it is difficult to conclusively
identify whether the phase transition is continuous or
weakly first order in the DMRG simulation. Still, we can
extract useful information of the ground state by simulat-
ing the model with increasing values of L and x. For the
discussionon bond dimension scaling, see Appendix. D.
In the DMRG simulation, we measured (i) energy, (ii)
plaquette order parameter, and (iii) correlation length
spectra.

A. Detection of the pVBS Phase

Although the matrix product state description of the
state is exact in the infinite bond dimension limit, for
a finite bond dimension, the cylindrical geometry of the
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FIG. 2: Visualization of bond strengths (S; - S;) within the
iDMRG unit cell. Z-direction is along the cylinder, and ¢-
direction is around the circumference. The width of the bond
represents the value of Sp - S2. The line color is black (red) if
S1 - Sz is negative (positive). One can notice that the singlet
is formed at a plaquette.

iDMRG simulation provides some bias to the preferred
entanglement structure for the ground state. As a result,
in the pVBS phase, one of two symmetry broken phases
would be automatically chosen and the order parameter
would not vanish in the iDMRG simulation. To char-
acterize the pVBS phase, we define the plaquette order
parameter as follows (See Eq. (5) and Eq. (6) in Sec. III
for a more rigors definition),

(M) ~ Y (=)"(Si - Sita) -

%

(=)%(Si- Sivg) (2)

In the pVBS phase, the dimer strengths (S; - S;) on
each bond (ij) can be visualized in Fig. 2, which clearly
demonstrates the pattern of the pVBS ordering around
empty (square) plaquettes. Indeed, we measured that
Im(M) # 0 and Re(M) = 0 in the paramagnetic regime
as expected for the pVBS phase. (See Fig. 4)

Although the plaquette order parameter Im{M) is a
useful indicator, it is not precise because (i) the system
size does not reach the thermodynamic limit and (ii) the
geometry of the iDMRG simulation provides some bias
toward a specific entanglement structure for the ground
state. Albeit small, it has a non-vanishing value in the
Néel phase, see Fig.4. Thus, we use a discontinuity in
the second derivative of the energy 9?E/d.J? to locate
the pVBS-Néel transition point. Up to L = 10, the first
order derivative of energy is continuous across the phase
transition, implying that the transition is either a weakly
first order or second order transition. On the other hand,
from the energy plot in Fig. 3, the dVBS-pVBS transition
point can be easily extracted because the dVBS state is
an exact ground state of Eq. 1 with energy per site Fgjte =
—0.375J5. As we can see, the first order derivative of the
energy is discontinuous here, signaling a clear first-order
phase transition between the two spin singlet dVBS and
pVBS phases. For L < 6, we do not observe the pVBS
phase. Transition points for different system sizes are
summarized in Tab. I.



| L=6| L=8|L=10|L=12

(J1/J2)er | 0.682 | 0.677 | 0.675 | 0.675
(J1/J2)ex | 0.693 | 0.728 | 0.762 | 0.77
TABLE I: (J1/J2)c1 ((J1/J2)c2) is the transition point be-

tween the dVBS and pVBS (pVBS and Néel) phases. Transi-
tion points are extracted from the peak of the energy deriva-
tive at x = 4000. At L = 12, the DMRG simulation do not
converge for different initial states at xy = 4000, resulting in
different transition points. Thus, the critical point is deter-
mined as the midpoint between two transition points obtained
from the VBS-like and Néel-like initial states.
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FIG. 3: At L =10, x = 4000. (a) Energy (F) per site. The
horizontal dotted line represents the exact ground state en-
ergy of dimer VBS state, Este = —0.375. (b) 0E/0J1 per
site near the transition between plaquette VBS and Néel or-
der. The continuous first order derivative is a characteristic
of the continuous phase transition. Black dashed lines denote
phase boundaries among dimer VBS, plaquette VBS, and Néel
order.

B. Correlation Length Spectra, Monopole
Fluctuations, and Emergent O(4) Symmetry

Here, we present a signature of the DQCP in the cor-
relation length spectrum data obtained from the iDMRG
simulation. A continuous phase transition is character-
ized by the divergence of a correlation length, and an
equal-time correlation function exhibits the power-law
decaying behavior (O(r)0(0)) x r~22¢ where Ao is
a scaling dimension of an operator 0. In particular, if
there exists an emergent symmetry, operators unified un-
der the emergent symmetry should share the same scal-
ing dimension Ay [30]. For example, at the conven-
tional DQCP with the emergent SO(5) symmetry, the
Néel n = (ng,ny,n.) and VBS v = (vg,v,) order pa-
rameter should have the same power-law behavior:

(n(r) - n(0)) ~ (v(r) - v(0)) ~ 1/r*", 3)

where n = 2A» — 1 is the anomalous exponent defined
relative to the engineering exponent in (2+1)D which is
1. However, in the iDMRG simulation, the finite cir-
cumference L of the cylinder and finite bond dimension
x introduce a cutoff length scale [31], which prevents us
from observing the power-law behavior in the correlation
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FIG. 4: The inverse of the largest correlation length for spin
singlet and triplet operators as a function of Ji/J2 at L = 10
and x = 4000. Here, the dashed line represents the transition
point extracted from the second order energy derivative. The
small plot at the top right shows the plaquette order parame-
ter (Im M) across the transition. Deep in the VBS phase, the
correlation length of a spin-triplet operator is larger than that
of a spin-singlet operator as expected by a mean-field theory.
As we approach the critical point, we can observe that the cor-
relation length of the spin-singlet sector becomes larger than
that of the spin-triplet sector. This behavior agrees with what
is expected from the scenario in Fig. 8.

function. Therefore, at long distances along the cylinder,
the DMRG correlation function of an operator O will al-
ways decay exponentially with certain finite correlation
length £» in the simulation. Nevertheless, instead of try-
ing to compare the scaling dimension Ay, we can deter-
mine the emergent symmetry by comparing the correla-
tion lengths £» between Néel (spin-1) and VBS (spin-0)
excitations. In Zauner et al. [32], it has been found that
the correlation length spectrum is inversely proportional
to the energy of the excitations that mediate this cor-
relation behavior. Thus, the correlation length spectra
give access to the individual dynamics of different types
of excitations.

Using the DMRG transfer matrix technique, one can
readily obtain the correlation lengths ¢ along the cylin-
der. Moreover, since our DMRG simulation has an ex-
plicit U(1), symmetry, extracted correlation lengths are
labeled by S, quantum numbers. Since the microscopic
model has full SO(3) symmetry, there will be an ex-
act degeneracy among correlation lengths with different
quantum numbers. For example, a three-fold degener-
acy among S, = 0,+1 would imply that this correlation
length corresponds to the excitation carrying the quan-
tum number S = 1 of the SO(3) symmetry. In this way,
we can identify the SO(3) spin quantum number of each
operator appeared in the correlation length spectrum.

In Fig.4, we plot the inverse of the largest correla-
tion lengths for spin-singlet and triplet operators. The
spin-singlet operator corresponds to the pVBS order pa-
rameter (or the monopole operator M) at low-energy.



The monopole operator is gapped in both the Néel and
pVBS phases and only become gapless at the critical
point. Therefore, the divergence of the spin-singlet cor-
relation length can signal the onset of DQCP in the ther-
modynamic limit. Indeed, we identified that the peak
of the singlet correlation length exactly coincides with
the critical point extracted from the singularity of the
energy derivative (Fig. 3). Furthermore, the correlation
length £g—¢ at the critical point increases as the bond di-
mension y increases. Although here we present only the
correlation length spectrum at L = 10 and x = 4000, we
also performed numerical simulations for different system
sizes and obtained the result that the critical point sum-
marized in Tab. I coincides with the peak of the spin sin-
glet correlation length. Therefore, we can infer that the
transition is induced by the proliferation of monopoles,
consistent with DQCP physics.

Moreover, to contrast our simulation result in the
Shastry-Sutherland lattice with the conventional O(3)
Wilson-Fisher transition between an explicitly dimer-
ized VBS and Néel order phases [33], we performed the
iDMRG simulation for a 2D J;-.J{ model with the antifer-
romagnetic Heisenberg coupling J; on nearest neighbor
bonds together with the coupling J; on a fixed set of
dimer covering bonds (See Appendix. B), and hence a
unique VBS pattern is pinned by Ji. Indeed, for this
model, one can observe that the correlation length of
the spin-triplet sector is always larger than the correla-
tion length of the spin-singlet sector across the phase
transition. This agrees with the picture discussed in
Ref. [34, 35], where the transition is triggered by the con-
densation of spin-triplet excitations (triplon) from the
VBS phase. Within the mean-field theory framework,
it was shown that the energy of the spin-triplet excita-
tion Ftriplon is smaller than the energy of the spin-singlet
excitation Eginglon throughout the whole transition. Un-
der the further assumption that the singlon and triplon
have the similar characteristic velocity v [32], one ex-
pect the aforementioned ordering of correlation lengths
& ~ (v/E). Thus, the inversion of the magnitude of cor-
relation lengths for spin singlet and triplet operators at
the transition signifies the unconventional feature of the
DQCP in the Shastry-Sutherland lattice. For a detailed
analysis regarding DQCP physics, see Sec. IV.

Finally, we remark that the spin-singlet correlation
length £s—¢ and the spin-tiplet correlation length £g—;
approaches each other at the (finite size) critical point as
we increase the system size. At L = 6 and x = 4000, the
ratio £s—1/Es—o|_,, = 0.33, but at L = 10 and x = 4000,
55:1/55:0|Cm = 0.95. From this trend, we expect to
have £5-1/£s—0 = 1 in the thermodynamic limit, which
indicates that the spin-singlet and spin-triplet excitations
will become degenerate at the critical point, forming the
four-component vector representation of a larger O(4)
symmetry group. Put differently, we can observe that
the crossing point of £5—¢ = £s—1 in Fig. 4 approaches to
the critical point as we increase the system size, consis-
tent with the emergent O(4) symmetry relating Néel and

VBS order parameters.

III. SYMMETRY ANALYSIS

The field theory of DQCP, the so called “non-compact”
CP! theory, has the following form [5, 36]

Lopr = (0 —ia)z]” + 5(V xa)” + ..., (4)

where a two-component complex spinon z = (z1,29)7
is coupled to U(1) gauge field a. On top of this crit-
ical theory, one can have additional terms depending
on symmetry of the system. The Shastry-Sutherland
lattice has a pdg space group symmetry, as shown in
Fig. 1(a). The lattice respects two glide reflection G, Gy
and two diagonal reflection 0.y, 02y symmetries as illus-
trated in Fig. 1(a). The glide reflections and the (spinful)
time-reversal 7 symmetries can combine into composite
symmetries 7G,, TGy, dubbed as the time-reversal glide
symmetries. Note that glide-reflection symmetry is also
broken in the Néel phase, while the time-reversal glide is
not. Therefore, relative to the Néel phase, it is proper
to think about the pVBS phases as to break the time-
reversal glide symmetries.

To define the symmetry transformations more con-
veniently, we consider an ideal version of the Shastry-
Sutherland lattice on a regular square lattice without
distortion, as shown in Fig.5. This does not change
the symmetry group but allows us to label every site
by the Cartesian coordinate (z,y) conveniently (where
x,y € Z). The length of the nearest Cu-Cu bond is set
to 1, such that the unit cell is of the size 2 x 2 (and
hence the lattice constant is 2 here). With this, we can
define the glide reflections G, : (z,y) — (z + 1,—y)
and Gy : (x,y) = (—z,y + 1), the diagonal reflections
Opy : (2,y) = (y,2) and 045 : (z,y) = (—y+1,—z+ 1),
as well as the translations T, : (z,y) — (v + 2,y) and
Ty : (z,y) = (z,y + 2). Together, they generate the pdg
space group. The p4g space group also contains a 90°
rotation symmetry Cy : (z,y) — (—y + 2,2 — 1) with
respect to the center of the plaquette without a diagonal
bond.

On each site i = (z,y), we define the spin operator
S, = (SF,S7,57), whose symmetry transformations are
listed in Tab. II (assuming the spin rotation is not locked
to the spatial rotation in lack of the spin-orbit coupling).
The time-reversal symmetry 7 is also included, which
can flip all spin components. The Néel order parameter
n = (ng,ny,n.) and VBS order parameters v = (vg, vy)
are defined as

n~ (—)"ts;,
vp ~ ()" (% = Si - Siva), (5)
vy ~ (2)Y(3 = S+ Sitg),

where each prefactor translates into the momentum
(m,7), (m,0) and (0, 7) respectively in k-space, as marked
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FIG. 5: The ideal Shastry-Sutherland lattice, deformed from
Fig. 1(a). Each site i can be labeled by a Cartesian coordinate
(z,y). The x and y coordinates are calibrated on the top and
right respectively. The displacement vectors & = (1,0) and
g = (0,1) are defined to connect nearest neighbor sites. Jp
and J> couplings are assigned to the nearest neighbor (in blue)
and dimer (in red) bonds.
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TABLE II: Symmetry transformation of momentum (kz, ky),
Néel order m, monopole operator M, spin operator S; and
fermionic spinon f; (in the sense of PSG).

out in Fig. 1(b), and the displacement vectors are defined
to be & = (1,0) and § = (0,1). The VBS order parame-
ters vy, vy can be combined to form the following operator
given a certain gauge choice (Appendix.A)

Aﬂ:§5%+%mm%—%» (6)
known as the monopole operator in the literature [5, 37],
which corresponds to a hegehog-monopole of the Néel or-
der parameter n in the spacetime. The monopole event
changes the skyrmion number of the n field configuration
by +1, and it is equivalent to inserting 27-flux of U(1)
gauge field a in the CP! theory Eq. (4). The symmetry
properties of i and Mt follows from those of the spin
operator S; and is summarized in Tab.II. For a detailed
derivation, see Appendix A. Apart from these discrete
symmetries, there is also an SO(3) spin rotation symme-
try, under which n transforms as a SO(3) vector.
The expectation value of the monopole operator (M)
defined in Eq. (6) serves as a unified order parameter for
various types of VBS orders. Depending on the phase

A2 > 0: square pVBS

A2 < 0: diamond pVBS

FIG. 6: Two types of plaquette valence bond solid (pVBS)
phases. Thick purple links encircle the plaquette on which
the spin singlet is formed. A diamond plaquette contains the
diagonal bond, while a square plaquette does not. Each type
of the pVBS order induces a corresponding lattice distortion.
The undistorted lattice is shown as the background for con-
trast. Depending on the sign of A2, either diamond plaquette
or square plaquette pVBS is favored.

angle of (M), the columnar VBS (¢cVBS) is described by
(M) ~ Fe*i7/4 and the plaquette VBS (pVBS) is de-
scribed by (M) ~ +1 (diamond plaquette) or (M) ~ =+i
(square plaquette) as illustrated in Fig.6. On the other
hand, (M) # 0 could also be interpreted as the con-
densation of monopoles. So the DQCP, as a transition
from the Néel phase into the VBS phase, can be thought
as driven by the VBS ordering or equivalently by the
monopole condensation (starting from the Néel phase),
which can be tuned by a monopole chemical potential r
in the Lagrangian as rMTM. The transition happens
as r changes sign. The condensation of monopole estab-
lishes the VBS order on the one hand and simultaneously
destroys the Néel order on the other hand, due to a non-
trivial topological term among the Néel and VBS order
parameters, which was analyzed in details in Ref. 5, 6.
This scenario provides a plausible description of a direct
continuous transition between the Néel and VBS phases.

However, apart from the apparent tuning parameter
term rMTM, we must also include other symmetry-
allowed (multi-)monopole terms in the Lagrangian, which
could crucially influence the properties of the DQCP. On
the Shastry-Sutherland lattice, to the leading order, they
take the form of

Lag =M M+ XReM? +--.. (7)

Here we adopt the short-hand notations Re O = (O +
O /2 and Im O = (O — O1)/(2i) for generic operator O.
Given the symmetry properties in Tab. I, one can see
that the single monopole term, no matter Re M or Im M,
is forbidden by the glide reflection symmetry G, or G,.
Furthermore, the imaginary part of the double-monopole
term Im M? is forbidden by the diagonal reflection sym-
metry oy Or 0g5. Note that these symmetries exist in
the critical theory as the spontaneous symmetry break-
ing has not yet occurred and the microscopic model has
the symmetries.



The higher-order monopole terms (M*, M, ...) are ex-
pected to be less relevant and are therefore not included
in Eq. (7) explicitly. Therefore the double-monopole term
Ao Re M? is the most relevant monopole perturbation
allowed on the Shastry-Sutherland lattice. Depending
on its sign, the system will favor a square plaquette
(or diamond plaquette) VBS order in the VBS phase,
describe by the order parameter Im M (or Re M), if
A2 > 0 (or A2 < 0), as demonstrated in Fig.6. The
square and diamond pVBS orders have distinct symme-
try properties. Under the reflection symmetries o, and
Ozg, IN M — —Im M while Re M stays invariant (see
Tab.II), so the square pVBS spontaneously breaks the
reflection symmetries while the diamond pVBS does not.
Additionally, square-plaquette-centered Cy rotation sym-
metry is spontaneously broken in the diamond pVBS,
while it is not in the square pVBS. Therefore the two
different pVBS orders will lead to different lattice dis-
tortions that are symmetry-wise distinguishable in the
experiments in the X-ray/neutron diffraction or NMR
[1, 38, 39).

Previous studies [20, 40] as well as our iDMRG data
show that the pVBS phase has a square plaquette order.
Thus Ay > 0 should be relevant to our discussion of the
pVBS-Néel transition in the Shastry-Sutherland model
Eq.(1). A2 > 0 can be also argued based on the mi-
croscopic Hamiltonian in Eq. (1). In the analysis of the
pVBS phases, there are two types of singlet plaquette
configurations: s-wave and d-wave types [14] represented
by the following singlet pairing configurations in a pla-
quette:

vaver | o[ [) - amaver | X} o

For simplicity, consider a single plaquette with four spin-
1/2s on the corners. For both square and diamond
plaquettes, there is a AFM coupling J; along plaque-
tte sides; for the diamond plaquette, there is an addi-
tional AFM Jy coupling across one diagonal. Then, the
s-wave and d-wave singlet configuration has the energy
—2J1 4+ 1/4J5 and —3/4J5 respectively for the diamond
plaquette. As the pVBS phase exists at a parameter
regime Jy/Jz ~ 0.7, an estimation of the singlet con-
figuration energy as listed in Tab. III indicates that the
s-wave pairing in the square plaquette has the lowest
energy. In the iDMRG simulation, the wavefunction in-
deed exhibits the s-wave pairing symmetry in the pVBS
phase. A recent exact-diagonalization study [41] on the
small cluster of spins (Vs = 40) also reported that the
phase next to the Néel order phase hosts a spin-spin cor-
relation which contradicts to the d-wave singlet in a di-
amond plaquette. Therefore it is natural to have A\s > 0
in the phenomenological field theory.

At the first glance, it seems that the double-monopole
term Ag in Eq. (7) is relevant and may destroy the DQCP.
However, it is realized in Ref. 42 that r» and A\s actually
recombine into a new tuning parameter 7 and a new rel-

TABLE III: Singlet configuration energy around different
plaquette with different pairing symmetry, estimated from
J1/J2 ~ 0.7 for the pVBS phase.

‘ s-wave ‘ d-wave
square —2J1 ~—=1.4J> 0
diamond|—2J; + 0.25J5 ~ —1.15J5 —0.75J5

(square)

{ImM) + 0

VBS
SO(5)

(ReM) # 0

(diamond)

FIG. 7: Phase diagram of the appearance of O(4) DQCP on
perturbing the SO(5) theory. Arrows indicate the RG flow
direction.

evant perturbation Xo. In the case of Ay > 0, the La-
grangian L in Eq. (7) can be written as

L =FImM)? + Ag(Re M)? + -+, (9)

with 7 = r — Ay and 5\2 = r 4+ Ag. The parameter 7 still
drives a transition at 7 = 0 (or equivalently r = Ag),
as shown in Fig.7 with a modified emergent symme-
try. At the transition point, the relevant perturbation
A2 = 2Xy > 0 simply gaps out the diamond plaquette
pVBS fluctuation Re M from the low-energy sector, leav-
ing the square plaquette pVBS fluctuation Im M quan-
tum critical. It is further argued that the pVBS fluctu-
ation Im M will become degenerate with the Néel fluc-
tuation n at the critical point[42], because the pertur-
bations n*, n?(Im M)?, (Im M)%, .- that can break the
symmetry that rotates Néel and pVBS are all rank-four
operators, which are expected to be irrelevant at the crit-
ical point. Therefore the Néel and VBS order parameters
can combine into a O(4) vector (n,Im M), manifesting
an emergent O(4) symmetry. The remaining topological
O(4) O-term still ensures that the development of the
pVBS order Im M will simultaneously destroy the Néel
order n, establishing a direct pVBS-Néel transition with
emergent O(4) symmetry.

IV. DANGEROUSLY IRRELEVANT SCALING
AND ITS ABSENCE

In this section, we discuss a peculiarity of the DQCP
in the Shastry-Sutherland lattice compared to the other



Global Symmetry ‘ L m ‘Emergent Symmetry

Square (pdm) AiRe M* |SO(3) x Za — SO(5)

Easy-plane Square AReM* | U(1) x Zsa — O(4)
Rectangular (pmm) M Im M? | SO(3) x Zz — O(4)
Shastry-Surtherland (pdg)| A2 Re M? | SO(3) x Z2 — O(4)

TABLE IV: Symmetry-allowed most-relevant monopole
terms (apart from rMTM) and the corresponding DQCP
emergent symmetries on different lattices

DQCP scenarios that have been extensively discussed. |5,
6, 27, 36, 42—45] In the presence of the X2 term in Eq. (9),
the U(1l) symmetry of the monopole operator (which
acts as M — €M) is explicitly broken down to Zs
(at the lattice level). This Zs symmetry can be iden-
tified as the glide reflection symmetry (G, or G,) on the
Shastry-Sutherland lattice, which can be further broken
spontaneously in the pVBS phase by its order param-
eter (ImM). At the DQCP, this Zy symmetry will be
restored and combined with the SO(3) spin rotation sym-
metry to form the larger emergent O(4) symmetry, de-
noted as SO(3) xZy — O(4). Although the Zs symmetry
is restored at the DQCP, it is never further enlarged to
the U(1) symmetry of monopole conservation, because
the explicit symmetry breaking term \s is relevant. The
presence of the relevant coupling As leads to an important
difference between the DQCP on the Shastry-Sutherland
lattice with the more conventional DQCP on the square
lattice.

To expose the differences and connections, let us briefly
mention the other two lattices: the square lattice and the
rectangular lattice. Due to the different lattice symme-
tries, the allowed leading monopole terms will be differ-
ent, as summarized in Tab.IV. They will lead to differ-
ent VBS orders and different properties of the DQCP.
For example, on a rectangular lattice, the other double-
monopole term A, Im M? is allowed but Ay Re M? is for-
bidden, which favors the horizontal/vertical ¢VBS or-
der depending on A5 > 0 (or A, < 0). The DQCP on
the rectangular lattice has a similar emergent O(4) sym-
metry, which was carefully analyzed in Ref.42. How-
ever, on a square lattice, the four-fold rotational sym-
metry forbids all the double-monopole terms, leaving
the quadruple-monopole term As; Re M* most relevant,
which favors ¢VBS (or pVBS) if Ay > 0 (or Ay < 0).
In the absence of the double-monopole term, the DQCP
on the square lattice has an even larger emergent sym-
metry SO(3) x Zs — SO(5). In the easy-plane model,
the lattice symmetry would be that of the square lattice,
but the spin-rotation symmetry is reduced from SO(3)
to U(1). Here, the symmetry enhancement would be
U(1) x Zyg — O(4) [25, 44].

Although the DQCP on the square lattice with the
easy-plane deformation has the same O(4) emergent sym-
metry as the DQCP on the rectangular or Shastry-
Sutherland lattice, there is a crucial difference between

(a) RG Flow of A\, M* (b) Finite L, x

—1
VBS Ao
A

S=1 Skyrmion

k Magnon

r S=0
>
Néel DQCP U(1) SL VBS Néel r
(CP! theory)

FIG. 8: (a) Renormalization group (RG) flow of the quadru-

pled monopole term Az M?* in the square lattice DQCP sce-
nario, which is dangerously irrelevant. For a small deviation
of the tuning parameter J,/J2 towards the VBS phase, A4
initially decreases under RG flow until the RG scale reaches
the spin-spin correlation length. Only after that, A4 begins
to increase to reach the VBS fixed point. This has noticeable
consequences for observables in a finite size numerical simula-
tion. (b) Schematic plot for the inverse correlation length £ -1
of spin singlet and triplet operators as a function of tuning
parameter for the square lattice DQCP scenario with either
0(4) or SO(5) emergent symmetries. Note that &' is re-
lated to the energy (mass gap) of the associated excitation
[32]. Here, the skyrmion corresponds to the Higgsed ‘photon’
excitation in the CP' theory. In the VBS phase, this photon
excitation manifests as a spin singlet VBS order parameter
fluctuation, i.e. the VBS domain wall thickness. Similarly,
the magnon becomes a ‘triplon’ in the VBS phase. The plot
assumes the simulation of the DQCP at the finite circumfer-
ence L and bond dimension y, which prevents £ to diverge at
the DQCP.

them. On the square lattice, the U(1) — Z4 symmetry
breaking term Ay Re M* is dangerously irrelevant, which
enhances Z4 to U(1) at the DQCP. As we move away
from the DQCP toward the VBS phase, the system will
exhibit two different length scales: the spin correlation
length &gpin and the VBS domain wall width &ygs [5, 47].
The system is critical at the length scale below &gpin,
meaning that the spin correlation decays in a power-law.
Beyond this length scale, however, the system is still not
fully in the VBS phase. Because the Re M* operator is
irrelevant at the critical point, its coupling coefficient A4
has decreased under the renormalization group (RG) flow
initially, as in Fig. 8(a). However, once RG flow goes be-
yond the length scale of {spin, A4 starts to increase with
the RG flow until it becomes strong enough to break the
U(1) symmetry down to Z, at the length scale &ypg [48].

A careful analysis [5] showed that &ypg ~ fgﬁ; 1/ % where

A > 3 (irrelevant) is the scaling dimension of Re M* [86].
Thus, {vps grows more rapidly than i as we approach
the critical point.

However, on the Shastry-Sutherland lattice, there is no
symmetry enhancement from Zy to U(1) at the DQCP
because U(1) — Zy symmetry breaking term Ao(Re M)?
is relevant. As a result, there is no dangerously irrele-
vant RG flow around the DQCP. As soon as we move
away from the critical point, Zy anisotropy is there to
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FIG. 9: The correlation length spectrum for (Left) Ji-J2

model in the spin-1/2 square lattice (x = 2000) and (Right)
the Shastry-Sutherland model (x = 4000). The correlation
length spectrum coincides with the excitation level crossing
spectrum in Fig.2 of [46] (After switching Jo/J1 to Ji/J2).
For the value of Ji/J> smaller than the range shown in the
figure, we would get the collinear striped AFM order (dVBS)
for the square (Shastry-Sutherland) lattice. The level-crossing
behaviors for both models are similar in the Néel ordered side.

break the emergent O(4) symmetry down to the micro-
scopic SO(3) x Zs symmetry. Thus, there does not exist
a separation of length scales nor scenario expected in
Fig.8. The singlet gap (the gap of pVBS fluctuation)
should open up immediately as we tune 7 away from the
critical point in the thermodynamic limit.

What is the consequence of all these observations? In
the study of finite size systems, the RG flow should stop
at a certain point beyond the system size. This means
that the dangerously irrelevant scaling can significantly
affect the correlation behavior or excitation spectrum in
small system sizes, as illustrated in Fig.8(b). Due to
the dangerously irrelevant scaling, near the DQCP to-
wards the VBS side, the correlation length of the VBS
order parameter fluctuation (S = 0) should be larger
than the correlation length of the Néel order parameter
fluctuation (S = 1). However, in the thermodynamic
limit, such a behavior is not guaranteed as the eventual
fate under the RG flow is often difficult to understand.

For example, in the mean-field treatment of the VBS
phase, it has been argued that the spin-triplet excitation
(triplon) has a lower energy than the singlet excitation
(singlon) [35]. On the other hand, in the finite size sys-
tems, the dangerously irrelevant scaling enforces the re-
gion with £s—¢ > £s—1 in Fig.8(b) to appear regardless
of the eventual RG behavior in the VBS phase. More-
over, since we consider a quasi two-dimensional system
in the iDMRG simulation, the finite circumference size
can also affect the behavior in Fig.8. In principle, the
Mermin-Wagner theorem prevents the spontaneous sym-
metry breaking of a continuous symmetry in dimensions
D > 2 [49]. In other words, in a quasi two-dimensional
system, the strong fluctuation of the continuous order
parameter (e.g. SO(3) spin-rotation) would gap out the
system and reduce the correlation length for the associ-
ated Goldstone bosons (e.g. magnons). As the disorder-
ing effect would be stronger for the physical SO(3) spin-
rotation symmetry than for the emergent U(1) symmetry
enhanced from Z4, we would again expect the parameter
region of £g—g > £s=1 to appear near the DQCP.

By contrast, in the Shastry-Sutherland model, the rel-
evant Zs perturbation can always gap out the monopole
fluctuation away from the critical point. To confirm this,
we performed the iIDMRG simulation on the spin-1/2 J;-
Jo model at the same circumference size L = 10 and com-
pared the correlation length spectra between two models.
In Fig. 9(a), we observe that £g—o, the correlation length
of a § = 0 local excitation, is always larger than £g—;
in the entire VBS phase on the square lattice. However,
In Fig. 9(b), £s—o is larger than {g—; only at the transi-
tion point and immediately becomes smaller than £g—1 as
we tune the system away from the critical point towards
the VBS phase. This is one of the non-trivial prediction
from the presence of relevant anisotropy operator at a
finite-system size simulation. In the Néel ordered phase,
these two models exhibit very similar correlation length
spectra. For more details, see Appendix. B.

Our numerical result for the square J;-Jo model aligns
with the recent work [46] on the finite-DMRG simulation
which calculated first several excited states with differ-
ent spin quantum numbers. If we replace the excitation
energy in Ref. [46] with {71, we obtain the same crossing
behavior. This can be justified by the fact that when a lo-
cal excitation has a mass gap m, the correlation function
mediated by the local excitation decays as ~ e~™", thus
m o &1, Therefore, our theoretical scenario explains
why a local [87] spin-singlet excitation in the Ref. [46]
has lower energy than a spin-triplet excitation around
the critical point. It also elucidates the reason why the
previous DMRG results of the J;-.J5 model on the square
lattice [14, 50-54] were unable to identify the nature of
the VBS phase without applying a pinning field. Because
all previous numerics were also performed in the similar
system size, they were in the regime where the VBS or-
der parameter fluctuations were severe, disallowing one
to confirm whether it is a plaquette or columnar VBS.
Therefore, we conclude that the absence or presence of



an irrelevant operator is essential to understand physical
observables in any finite size system.

In summary, we note that previously the two promis-
ing scenarios to realize DQCP with spin 1/2 was either
the SO(3) symmetric or easy plane deformations, both
with four-fold degenerate VBS orders. Here, however,
we have the two-fold degenerate VBS order. Neverthe-
less, as discussed in Ref. [42], the two-fold monopole with
SO(3) symmetry is equivalent to the easy plane deforma-
tion, if an enlarged SO(5) symmetry is assumed in the
absence of these perturbations. Furthermore, we remark
that the scaling behavior of dangerously irrelevant opera-
tor enables us to understand multiple observations made
in previous numerical simulations which is absent in the
Shastry-Sutherland model here.

V. SPECTRAL SIGNATURES OF DQCP

A hallmark of the DQCP is the emergence of decon-
fined spinons at the critical point, which entails distinct
features in both the magnon and phonon excitation spec-
tra that can be probed in INS or RIXS experiments. To
better appreciate the predicted spectral features at low-
temperature around the pVBS-Néel transition, we need
to first understand the background elastic scattering sig-
nal of SrCus(BO3)s in its high-temperature paramag-
netic phase without any symmetry breaking. We will
focus on the scattering of neutrons or photons off of the
copper sites. As shown in Fig. 1(a), there are four copper
sites in each unit cell, coordinated at r4 = (146,14+9)/2,
rp = (1 - 5,3 + 5)/2, re = (3 + 5,1 - 5)/2, rp =
(3—6,3—0)/2 respectively, with the distortion parameter
given by 6 = 0.544 according to Ref. 16. In the high-
temperature paramagnetic phase, an elastic scattering
experiment will reveal lattice diffraction peaks at a set of
momenta Q = 7(H,K) (H, K € Z, note that the lattice
constant is 2 in our convention) with the amplitude given
by S(Q) = [dPrp(r)e®T ~ 3 _, pope @, where
p(r) can represent either the electron density from Cu
orbitals (which scatters X-ray photons) or the density of
Cu nuclear (which scatters neutrons). The corresponding
intensity [S(Q)|* is plotted in Fig. 1(b). Notably, there
are extinction points in the diffraction pattern, protected
by the glide reflection symmetry. Note that the system
at the DQCP has the glide-reflection symmetries G, and
G, although both the Néel and pVBS phases do not. [88]
The glide reflections G, and G, act as lattice translations
by a half lattice constant followed by the reflections about
the translation directions, as illustrated in Fig. 1(a). The
fact that the density distribution p(r) at equilibrium re-
spects all lattice symmetries (including G, and G,)) im-
plies that p(x,y) = p(z + 1,—y) = p(—z,y + 1). They
impose the following constraints on the scattering ampli-
tude

S(Qz> Qy) = einS(Qm _Qy> = eiQyS(_qu Qy)7 (10)
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which implies the extinction of diffraction peaks at Q €
m(2Z+1,0) or w(0,2Z+1), as marked out in Fig. 1(b). In
general, p(r) can describe the spatial pattern of any scat-
terers that interact with the probing particle (e.g. X-ray
or neutrons). Eq.(10) holds under the assumption that
the scatterer field p(r) is even (symmetric) under glide
reflection symmetry. This constraint can be generalized
to other type of scatterers including magnetic fluctua-
tions at finite frequency. For example, the destruction
of the scattering amplitude at these extinction points
could extend to finite-frequency inelastic scattering, as
long as no scatterer at that energy scale breaks the glide
reflection symmetry. However, as we lower the temper-
ature and approach the pVBS-Néel transition, certain
glide-reflection-breaking excitations (meaning that the
scatterer is odd under the glide reflection) may emerge
at low energy as part of the quantum critical fluctua-
tion. Indeed, we will show that the emergent SO(4) con-
served current fluctuation and the pVBS order fluctua-
tion are examples of glide-reflection-breaking scatterers,
which will become critical at the DQCP and “light up”
the extinction points. They will provide unique signa-
tures of the DQCP that are also relatively easy to resolve
in experiments, as there are no background scattering sig-
nals at the extinction points.

FIG. 10: (a) The m-flux model of fermionic spinons. The
spinon hopping on the thick red bond gets a minus sign, such
that each plaquette has a m-flux. Additional spinon inter-
action terms are applied to blue shaded diamonds. (b) The
arrangement of the site indices [ijkl] around each shaded di-
amond.

The proposed spectral signatures at the pVBS-Néel
transition is most convenient to analyze using a fermionic
spinon theory for the DQCP, which has been shown to
be equivalent (dual) to the conventional CP? theory[55—
58]. In the fermionic spinon theory, the spin operator
S; = % f;ra fi is fractionalized into fermionic spinons
fi = (fir, fiy)7, which are then placed in the w-flux
state[59-62] described by the following mean-field Hamil-
tonian

Hyp =~ ti(f1f; +hec.)
(i)
g Y (e e = ff) + -

[ijkl]

(11)

where (ij) runs over all the nearest neighbor bonds and
[ijkl] runs over all the shaded diamond plaquette de-



picted in Fig.10(a). The spinon hopping amplitude
t;; takes t;; = —t on the bonds highlighted in red in
Fig. 10(a) and t;; = t on the rest of the bonds, such that
the spinon sees m-flux threading through each plaquette.
The phenomenological parameter t ~ J; sets the energy
scale of the spinon, which is expected to be of the same
order as the spin interaction strength J;. The m-flux
state model Eq. (11) was originally proposed as an exam-
ple of algebraic spin liquids[59-62] (including the DQCP
as a special case). It is recently confirmed via quantum
Monte Carlo (QMC) simulations[56-58] that the m-flux
state actually provides a pretty good description of the
spin excitation spectrum at the DQCP.

The w-flux state mean-field ansatz determines a pro-
jective symmetry group (PSG)[63] that describes how the
spinon should transform under the space group symme-
try, as concluded in the last column of Tab. IT. It is found
that the spinon hopping along the dimer bonds are for-
bidden by the o0,,0.y symmetry, which is not broken
at the DQCP. Therefore the effect of J, can only en-
ter the Hamiltonian as a four-fermion interaction to the
leading order, given by the g term in Eq.(11). The g
term describes the spinon interaction around each dia-
mond plaquette [ijkl] where the site indices i, j, k, [ are
arranged according to Fig. 10(b). It turns out that the in-
teraction g is directly related to the A Re M? term given
that the monopole operator M ~ (v, +v,) +i(v, — )
can be written in terms of VBS order parameters v, vy,
which are further related to fermionic spinons via v, ~
(—)””fi:_ifi + h.c. and v, ~ (—)Z+yf3+@fi + h.c., such
that the interaction can be written as gv,vy ~ gRe M2,
Therefore g > 0 would correspond to Ay > 0, which fa-
vors the square plaquette VBS order Im M.

Let us ignore the interaction g for a moment. By
diagonalizing the spinon hopping Hamiltonian, we find
the spinon dispersion € = +2t4/cos? k; + cos? k,;, which
gives rise to 4 Dirac fermions (or equivalently 8 Majorana
fermions) at momentum (7/2,7/2). Note that the distor-
tion parameter & does not affect the spinon band struc-
ture. Naively, the spinon mean-field theory has an emer-
gent SO(8) symmetry rotating among the 8 low-energy
Majorana fermions. However, a SU(2) gauge structure
must be introduced with the fractionalization, which re-
duces the emergent symmetry to SO(5). The interac-
tion term g plays an important role to further break the
SO(5) symmetry explicitly to O(4), matching the emer-
gent symmetry observed in the DMRG simulation.

Based on the fermionic spinon mean-field ground state,
the spin excitation spectrum S(w, q) has been calculated
in Ref. 56-58 and is reproduced in Fig. 11(a) for illustra-
tion, where the high symmetry points I'; X, M are defined
in Fig. 1(b). The lower edge of the spinon continuum is
given by wmin(q) = ming |€xtq — €x|, which reads

Wmin(q) = 264/ sin? ¢, + sin? 9y, (12)

as shown in Fig. 11(a). This provides us a way to esti-
mate the mean-field parameter ¢ from the experimentally
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measured spin excitation spectrum, by fitting this lower
edge. This is a rather robust result as its shape is unaf-
fected by the distortion parameter 9.

Remarkably, a gapless continuum will appear on top of
the extinction point X (as well as Y by o4, symmetry)
as seen in Fig. 11(a). As previously analyzed in Eq. (10),
the spin excitation at the X point must be odd under
the glide reflection symmetry G,. This symmetry con-
straint enforces that the gapless continuum should cor-
respond to the emergent SO(4) conserved current fluctu-
ation J, = nd, Im M — Im MJd,n which involves both
the Néel n and pVBS Im M order parameters and has
been thoroughly studied in Ref. 57, 60, 64. Since n, 0,
and Im M are all odd under the glide reflection G, (that
preserves the extinction point X)), the current operator
Jy is also odd under G,. Therefore Eq. (10) does not
hold anymore, such that the fluctuation of J, can ap-
pear at the extinction point X as a spinon continuum in
the magnon channel (as J,, carries spin-1). On the other
hand, fluctuations like n Im M is not allowed to appear
at the X point in the spin excitation spectrum because
the bound state n Im M is even under glide reflection (cf.
Eq. (10)). The J, continuum will only become gapless if
both the Néel and pVBS fluctuations are gapless, which
only happens at the DQCP. Protected by the emergent
O(4), the conserved current operator must have a scaling
dimension exactly pinned at 2, which indicates that the
magnon spectral weight at the extinction point X must
increase with the frequency linearly (at below the energy
scale of Jy)

Smagnon(w, g = X) o< w. (13)

as shown in Fig.11(b). We propose this as a hallmark
feature of the spin fluctuation at the pVBS-Néel tran-
sition in SrCup(BO3)s. Confirmation of this linear fre-
quency growth of the spectral weight will provide direct
evidence for the emergent O(4) symmetry at the DQCP.
Apart from the features in the spin excitation
(magnon) spectrum, the DQCP also introduces new fea-
tures to the phonon spectrum, due to the pVBS-phonon
coupling. The pVBS order has a linear coupling to the
lattice displacement as its representation under the lat-
tice symmetry group matches with that of strain fields

EVBS-phonon ~ VUgplg + Vy Uy, (14)

where u, (or u,) is the lattice displacement in the = (or
y) direction with a momentum (7, 0) (or (0,7)). It is cru-
cial that u, and u, here are not acoustic phonon modes
around momentum (0,0) in a continuum theory, other-
wise they can only enter the field theory in the form
of derivatives O;u;. The coupling is allowed by lattice
symmetry and is evident from the pVBS induced lattice
distortion as demonstrated in Fig.6(a). This leads to
a hybridization between phonon and pVBS fluctuations.
As the pVBS fluctuation becomes critical (gapless) at
the DQCP, the quantum critical fluctuation will also ap-
pear in the phonon spectrum due to the hybridization
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FIG. 11: (a) Spin excitation spectrum (dynamical structural
factor) Smagnon(w,q) at the DQCP. Darker color indicates
higher intensity. The dashed line trace out the lower-edge
of the continuum which is described by Eq.(12). (b) The
frequency dependence of the spectral intensity at the extinc-
tion point X. At the low-frequency limit, the spectral inten-
sity grows with frequency linearly, which manifests the con-
served current associated to the emergent O(4) symmetry. (c)
Schematic illustration of the phonon spectrum Sphonon(w, q).
The bare phonon dispersion is inferred from Ref. [65]. The
VBS-phonon coupling leads to a continuum in the phonon
spectrum. (d) The frequency dependence of the phonon spec-
tral intensity at the extinction point X. The intensity falls
off in a power-law with frequency, whose exponent should be
the same as that of the spin fluctuation at M point.

effect, as illustrated in Fig. 11(c) (see Appendix C for de-
tailed analysis). As the pVBS order carries the momen-
tum (7,0) and (0,7), the phonon continuum will also
get softened at these momenta, which happen to be the
extinction points X and Y of the lattice diffraction pat-
tern. Note that the pVBS fluctuation is odd under glide
reflection, therefore new phonon continuum is allowed to
emerge at the extinction points with the spectral weight
diverging at low-frequency following a power-law,

Sphonon (W, g = X) w2z (15)

The anomalous dimension 7 should match that of the
pVBS order parameter at the DQCP, which, by the emer-
gent O(4) symmetry, is also the same 7 of the Néel order
parameter. Based on the QMC simulations in Ref. 25, 66,
7 has been estimated to be n = 0.13 ~ 0.3. Observa-
tion of such critical phonon fluctuations at the extinc-
tion points with a power-law divergent spectral weight
as shown in Fig. 11(d) will be another direct evidence of
DQCP.

In conclusion, extinction points are protected by the
glide reflection symmetry, but both the conserved cur-
rent and the pVBS order parameter breaks the glide re-
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flection. Their critical fluctuations are therefore allowed
to appear at the extinction point. This is rather a nice
property that there will be no background signals form
lattice diffraction, which makes these spectral signatures
of DQCP more easier to resolve in experiments. Our
analysis indicates that the conserved current fluctuation
(which carries spin-1) should appear in the magnon spec-
trum and the pVBS fluctuation (which carries spin-0)
should appear in the phonon spectrum. Observation of
these critical fluctuations in the scattering experiment
will be strong evidence for the potential realization of

DQCP in STCUQ (BO3)2 .

VI. EFFECTS OF INTERLAYER COUPLING

So far, we have discussed the DQCP physics assuming
that the system is two-dimensional. However, the ma-
terial realization of Eq. (1), SrCuz(BOs3)2, has a three-
dimensional structure which is a stack of the Shastry-
Sutherland lattices with a relative shift given by the lat-
tice vector (1,1) between neighboring layers. Each layer
is separated by the layer of oxygen, but due to the super-
exchange term mediated by the oxygen, there is a small
interlayer anti-ferromagnetic interaction Js ~ 0.1.Jy [67]
between the spin-1/2s located at the crossed dimers in
Fig.12. Since the stacking structure preserves G, , and
Ogy,zy Symmetries, previous monopole analysis still holds
for each two-dimensional layer. Here, we would like to
better understand the effect of the three-dimensional in-
terlayer coupling to the DQCP physics.

To analyze, we first consider coupling layers of spin
systems at the conventional DQCP point with the emer-
gent SO(5) symmetry (other than the O(4) case in the
previous discussion). Here, each layer is described by the
following nonlinear sigma (NLSM) model in Euclidean
spacetime [61, 68]:

1
Shhor = /dgx?g(au‘b(l))z +2rilwzw([@]  (16)

where @) = (n,,n,,n,,Im M,Re M) is the order pa-
rameter of the I-th layer and Twzw[®®] is a Wess-
Zumino-Witten (WZW) term at level £ = 1. With the
interlayer coupling, the total action is given by the fol-
lowing general form [69]

l a I+1
S=Y Shhor = Y [ dagalel ™, an
l l

where the interlayer coupling coefficients g*® can be ar-
ranged into a matrix g. Given that the scaling dimen-
sion of ® is estimated to be around Ag ~ 0.6 in the
literature[70-79], the interlayer coupling is expected to
be relevant (as 2Ag < 3), locking the order parame-
ters across different layers. Then, the coefficient matrix
g becomes important since the sign of its determinant
det g crucially affects how the topological (WZW) term



FIG. 12: (a) Three-dimensional interlayer AFM coupling J3
among spins located at the cross between upper and lower di-
agonal bonds, mediated by the interpenetrating oxygen atom.
The other interlayer couplings are negligible. Preferred stack-
ing of (b) the Néel ordered phase with n¥ = nt+D (red
and blue dots for opposite spins), (¢) and the diamond pVBS
phase with Re M = Re MUFY), (d) square pVBS phase
with Im M® = — Im ME+D (thick purple bonds mark sin-
glet plaquettes). For (c) and (d) cases, energetically favorable
stacking can be deduced by the interlayer dimer resonance.

from each layer will be added up (cf.[69]). More pre-
cisely, if the sign of det g is positive (negative), the WZW
terms are added up in a uniform (staggered) manner.
The reason is that we can always redefine ®®) in alter-
nate layers to make g positive definite, but the price to
pay will be that the WZW term will change sign alter-
natively if the original det g is negative. Note that the
procedure requires the topological term to be invariant
under the change of origin (translation symmetric), i.e.
Ty : T'wzw|®] — I'wzw[®]. Otherwise, the addition or
subtraction of topological terms across layers would not
be well-defined due to the arbitrariness of the choice of
origin across the layers for the locked order parameter.
For example, consider coupling the two-dimensional
square lattice J-Q models [80] into a 3D cubic lattice
with AFM spin-spin interaction along vertical bonds.
Each layer putatively realizes the DQCP physics with
® = (n,v,,vy) describing Néel and cVBS order param-
eters. Under the AFM interlayer coupling, the coupling
matrix ¢ has the sign structure of ¢** = (—, —, —, +, +).
This is because the vertical AFM coupling prefers n(h) =
—n(+Y) while the vertical plaquette ring exchange [89)]
favors v;(vl,)y = vﬂ;l). In this case, detg < 0, so the
WZW terms in neighboring layers tend to cancel each
other. However the cancellation will not be exact, as the
® field still admits (smooth) fluctuation over layers, this
results in a residual topological term, namely a topolog-
ical ©-term. Staggering a WZW-term at level k& would
give a O-term at © = wk. Now the problem of the cou-
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pled DQCPs boils down to understand the fate of the
SO(5) NLSM with © = 7 in (34+1)D. There are some
hints from the fermionic parton analysis. One can con-
sider fractionalizing the ® vector to the bilinear from of
a fermionic parton field v following ®, ~ viy°T'%), such
that the ¢ fermion is in the SO(5) spinor representation
(or the Sp(2) fundamental representation). The emergent
gauge structure will be SU(2), which points to the SU(2)
quantum chromodynamics (QCD) model in (3+1)D with
Sp(2) flavor symmetry,

L= (D, +m+ BTN, (18)

Integrating out the fermion and gauge fluctuation is ex-
pected to reproduce the SO(5) NLSM with © = =(1 +
sgnm), such that ® = = is realized at m = 0. How-
ever, the number of Dirac fermion flavors (Ny = 2) is not
enough to avoid a chiral symmetry breaking in 3D. There-
fore, under the interlayer coupling, it is likely that the
SO(5) DQCP flows to a discontinuous transition point
induced by the quantum fluctuation. Considering that
the O(4) DQCP from easy-plane anisotropy or rectangu-
lar deformation is descended from the SO(5) DQCP [42],
breaking SO(5) down to O(4) makes the situation worse.

In a similar way, one can analyze the three-dimensional
stacking of the Shastry-Sutherland lattice. If we allow
the possibility of the diamond pVBS phases, the order
parameter is written as ® = (n,Re M,Im M) where
ReM (Im M) represents the square (diamond) pVBS
order parameter. Note that now each layer is shifted
by (1,1) vector (see Fig.5) relative to the layer below,
and the interlayer AFM coupling is given by Fig. 12(a)
instead of the direct vertical coupling. In Fig. 12(b), we
show two identical layers of Néel ordered pattern rela-
tively shifted by (1,1). If we focus on the four spins
surrounding the diagonal bond crossing, we found that
the two spins from the upper layer and the two spins
from the lower layer are aligned oppositely, which is fa-
vored by the AFM interlayer spin exchange Js. So the
interlayer coupling prefers to lock the Néel order param-
eter in the same direction across the layer as n() =
n(+) . In Fig.12(c), we show two identical diamond
pVBS patterns displaced from each other. This config-
uration can gain the effective interlayer ring exchange
energy induced by the J3 coupling, which resonates the
nearby dimers across the layer. Thus we conclude that
Re M® = Re MU*+1) is more favorable. In Fig.12(d),
we show two opposite square pVBS patterns displaced
from each other. This configuration also gains interlayer
ring exchange energy by resonating the dimers lying on
top of each other. But this would require the square
pVBS order parameter to be opposite between neigh-
boring layers as Im M® = —Im M1 In conclusion,
the interlayer coupling prefers (n(), Re M® Im M®) =
(nD) Re MUY —Tm MU+D), Here, instead of using
(vg, vy), we use (Re M, Im M) to parameterize the VBS
order parameter, which is a basis change with a positive
determinant. In this basis, the interlayer coupling matrix
g takes the sign structure of ¢** = (+,+,4+,+,—). As a



result, we again have det g < 0, which implies that SO(5)
DQCP would flow to the first order transition point in
3D. Since our O(4) scenario is considered to be a per-
turbed SO(5) DQCP (see Fig. 7), it is likely that the O(4)
DQCP would also flow to the first order transition point.

If det g happens to be positive, the leading order ef-
fect is that the WZW terms would add up together, as
the interlayer coupling g tends to lock the order parame-
ters ®() across the layers. Admittedly, the locking effect
will become weaker at longer distance (along the per-
pendicular direction of layers), but we can still analyze
the problem by first grouping the neighboring layers to
a renormalized layer and then considering the residual
coupling between renormalized layers. Across neighbor-
ing layers, the order parameters are expected to bind to-
gether, such that the renormalized model can be viewed
as a NLSM with WZW term at large level k. The intu-
ition from (04+1)D O(3) WZW term is that the large level
limit corresponds to the large spin limit, where the quan-
tum fluctuation of the order parameter is suppressed.
Coupling spin-1/2 into a spin chain ferromagnetically in
Sz.y,--channels results in the ferromagnetic ground state
with giant spin and classical spin wave excitations. In
this limit, the low-energy physics can be captured within
Landau-Ginzberg (LG) theory. Further adding different
easy-axis anisotropies to the ferromagnetic spin chain
will drive first-order transitions between different Ising
ordered phases according to the LG theory. We con-
jecture that in higher dimension, similar effect will ren-
der each renormalized layer into a classical magnet which
should be described within Landau-Ginzberg paradigm,
such that the DQCP is not available. So in the presence
of interlayer coupling, the Néel and VBS phases will likely
be separated by a first order transition or intermediate
coexisting phases. Thus, our analysis shows that in both
detg > 0 and detg < 0 cases, the interlayer coupling
would ultimately destabilize the DQCP, and drive it, for
example, to a first order transition. However, our analy-
sis also indicates that the det g < 0 case, corresponding
to the real material, will have stronger quantum fluctu-
ations, potentially leading to a weaker first order tran-
sition or a smaller region of coexisting order parameters
than the det g > 0 case.

One additional remark is that while the interlayer Néel
order coupling enters directly from the Js term, the in-
terlayer VBS coupling arises from the higher-order per-
turbation (resonance) of the Js term. As a result, the
critical point would be shifted to expand the Néel order
phase. This is consistent with the phase diagram studied
in [40], where the interlayer coupling drives a system into
the AFM order and shrink down the VBS region.

VII. PREDICTIONS FOR EXPERIMENT

Before discussing experimental consequences of the
DQCP, we will make a few remarks on the nature of the
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plaquette VBS phase. In the Sec. I, we discussed two
different possibilities for the pVBS phases (see Fig.6):
the square and diamond pVBS. While the square pVBS
breaks the reflection symmetries 0., and 0.y, the dia-
mond pVBS breaks the empty-plaquette-centered Cy ro-
tation symmetry, see Fig.5. As a result, when the sys-
tem is at the pVBS phase, magnetic excitations initially
degenerate under the pdg symmetry would split differ-
ently depending on whether the plaquette is formed at
a square or diamond. While our iDMRG simulation of
the Shastry-Sutherland model points to the square pVBS
phase, in the recent experiments on SrCus(BOs)s using
INS[1] and NMRJ[38, 39], the magnetic excitations in the
pVBS phase seems to break the Cj rotation symmetry,
indicating the diamond pVBS phase. This discrepancy
implies that the effective spin model for the real material
could deviate from the Shastry-Sutherland model studied
here. For example, three-dimensional interlayer coupling
may induce some effective further-neighbor couplings be-
yond Shastry-Sutherland model. Therefore the type of
pVBS phase to be stabilized at low energy is model de-
pendent. Nevertheless, this does not affect to the DQCP
scenario and the emergent O(4) symmetry because it only
corresponds to a different sign of Ay in Eq. (7).

As discussed earlier, the DQCP naturally realizes a
quantum spin liquid, a long sought after state of quan-
tum magnets. Furthermore it realizes a particularly ex-
otic variety - a critical spin liquid - with algebraically
decaying correlations arising from the gapless emergent
degrees of freedom. Moreover, an experimental realiza-
tion of the DQCP would be a crucial manifestation of the
many-body Berry phase effect that intertwines different
order parameters. A dramatic experimental consequence
of the DQCP is the emergent symmetry and resultant
spectroscopic signatures expected from INS or RIXS. In
particular, the model for SrCus(BO3)s studied here ex-
hibits the O(4) emergent symmetry with two promising
spectroscopic signatures at X-point in the Brillouin zone,
summarized as the following:

e Magnon (S = 1) Channel: This gives the informa-
tion about the critical fluctuation of the emergent O(4)
conserved current. As a result, the spectral intensity
increases linearly with the frequency, S ~ w. If the
emergent symmetry did not exist, there should not ex-
ist low energy spectral weight at this momentum. The
deviation from the linear relation would give us a mea-
sure of how accurate the emergent symmetry is.

e Phonon (S = 0) Channel: This gives the information
about the pVBS order parameter fluctuation. For a
given anomalous dimension 7nypg of the pVBS order
parameter, the spectral intensity diverges with the fre-

quency, S ~ m The DQCP scenario implies that

the VBS order parameter is fractionalized, resulting in

a NoNn-zero nvps-

Moreover, the emergent symmetry implies that nyps is
equal to the anomalous dimension of the Néel order pa-
rameter fluctuation, nng. However, the Néel order pa-



rameter fluctuation is located at the M-point, which has
a pronounced Bragg peak in addition. In principle, the
Bragg peak corresponds to spin-0 channel and it must be
possible to extract nn¢el and compare the nnge With 7yvps
to tell whether the emergent O(4) symmetry exits. In the
earlier work [67], it is estimated from the low-T magnetic
susceptibility and heat capacity data that J; ~ 4.7 meV,
Jo = 7.3 meV, and J3 = 0.7 meV. Moreover, the Debye
frequency of the acoustic phonon branch has been mea-
sured to be wp ~ 10 meV in Ref. [65]. Therefore, for
experiments to confirm the theoretical predictions, it is
required to have the energy resolution smaller than the
milli-electron volt.

According to the present numerical simulation, the
phase transition between the pVBS and Néel order can
be a second-order or weakly-first order transition. The
result does not contradict recent numerical work with a
similar phase diagram where a first-order transition be-
havior was observed, because these models [22, 23] are
different from the microscopic Hamiltonian in Eq. (1),
which is more likely to capture the couplings in the
real material. Since the nature of the phase transition
may be tunable, it is possible that the experiments on
SrCuz(BOs3)2 may realize the transition that is either a
second order or a weakly first order with large correlation
length.

Would all these predictions become meaningless if the
transition is actually a weakly first order? In fact, even if
the two-dimensional system hosts the DQCP, we argued
in the previous section that the interlayer coupling might
drive the system into a first-order transition point in
three-dimension. Indeed, at the weakly first-order tran-
sition point, the system would have a finite excitation
gap, and experimental spectroscopic data at zero tem-
perature would deviate from Fig. 11 due to the absence
of a gapless critical fluctuation. However, if we exam-
ine the system within the length scale smaller than the
(large) correlation length &, the system would still exhibit
the DQCP physics. In other words, if we only examine
the system above the energy scale set by the correlation
length w > wgap ~ 1/£, we would observe the predicted
spectral intensity trends in Fig. 11. It is our hope that
future experiments will be able to use these results to
clarify the physics behind the interesting properties of
SI‘CUQ(BOg)Q.

VIII. CONCLUSIONS

We studied a two dimensional S = 1/2 model which
captures key features of the Shastry-Sutherland mate-
rial SrCuz(BO3)2. We obtained the phase diagram us-
ing numerical iDMRG simulations and observed a po-
tentially continuous transition between a plaquette VBS
state with two-fold degeneracy and a Néel ordered phase.
The transition, studied using both numerical and field
theoretical techniques, is proposed to be a deconfined
quantum critical point, and we discussed its special fea-
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tures including the lack of a dangerously irrelevant scal-
ing and an emergent O(4) symmetry. Concrete predic-
tions are made for future experiments in SrCus(BO3)2,
where a pressure tuned transition between Néel order and
a putative plaquette VBS state has already been reported
[1]. The predicted experimental signatures include the
form of spectral intensity of spin singlet and spin triplet
excitations at extinction points, which should be accessi-
ble in future resonant X-ray and neutron scattering ex-
periments. These can provide a smoking gun signature of
the deconfined criticality and emergent O(4) symmetry.
Complications arising from the coupling between layers
in the third dimension of the bulk material are briefly dis-
cussed, although further work in this direction is needed.
We hope this study will trigger future experimental inves-
tigation of this quantum critical point in an interesting
material, and more generally provide a road map for the
experimental study of deconfined quantum criticality.
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Appendix A: Monopole Transformation

In this section, we calculate how the monopole op-
erator transforms under the symmetry of the Shastry-
Sutherland lattice. To do this, we think of the Shastry-
Sutherland lattice as the lattice being deformed from the
square lattice with spin-1/2 per site. Starting from the
2 + 1D antiferromagnetic ordered phase (Néel) of the
square lattice, one can derive the action in terms of local
Néel order parameter n(r,) in a path integral formalism,

S = i/d7’d21" a—n 2+02(V n)2
2 or "

where n ~ €.8 is a Néel order parameter, and €, =
(—1)™=*"v is a factor required for an alternating spin di-
rection. In addition to the continuum action of a clas-
sical O(3) nonlinear o-model, there exists a Berry phase
contribution due to the quantum nature of spin dynam-
ics, which manifestly has the lattice origin. [81, 82] Let
w(n,) be a solid angle swept by a local Néel vector lo-
cated at r throughout the imaginary time evolution from
0 to B, with respect to the reference direction ny (See

+Sp (A1)
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FIG. 13: (a) The monopole operator inserted in the Eu-
clidean spacetime. White arrows represent spin directions.
The imaginary time trajectory of each spin is represented by a
colored line. White arrows in the black trajectory shows how
the direction of the spin changes along the imaginary time
when the monopole is inserted. (b) The solid angle w(n,)
swept through the imaginary time with respect to the refer-
ence vector no. (c) The dual lattice where a monopole op-
erator resides on. Here, plaquette centers correspond to the
spin sites. The lattice spin acts as an alternating flux pat-
tern (—1)"=*"v4xS for monopoles. The hopping amplitude
along each black arrow gives a phase factor of /™ = ¢ in our
S =1/2 case.

Fig.13(b)). Then, Sp = iS )", nrw(n,) where S is the
spin of an each site and 7, = (—1)"»*"v is an alternating
phase factor coming from the antiferromagnetic nature
of the magnetic order.

For any spatial slice, one can define the Skyrmion num-
ber Q(1) = .= [n - (8,7 x dyn)| , which is a topolog-

-
ical invariant. Then, a monopole creation operator is

defined as a topological defect at the spacetime point
which changes Q(7) by +1 across it. By the further
duality mapping, this monopole in the NLoM will be
mapped into the monopole of the CP! theory. As the
center of the monopole cannot have a finite spin direc-
tion, the monopole is located at a dual lattice. When we
have a monopole event in the spacetime, it must give a
branch-cut structure on the image of w(r) because w(r)
must change by 47 around the monopole location in the
space. More intuitively, when monopole residing on the
dual lattice encircles a single site, the imaginary time
trajectories of all spins except the one encircled by the
monopole would oscillate just back and forth, while the
trajectory for the encircled one would entirely wind its w
by 47 upon the completion of encircling as in Fig. 13(b).
Thus, one can view this problem as a monopole hopping
around the dual 2D lattice in which each site in the orig-
inal lattice gives a 4wSm, flux through the plaquettes of
the dual lattice. (Monopole is a charged object under this

Symmetries Transformations
T M —iM n— —n
T, MH—=iM n— —n
Rff;z M= iMT nen
Rf’rl/af M M ne——n
Ox M =M nen
oy M —iM ne—n
T Mo M n— —n
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TABLE V: Transformation of the monopole operator M and
Néel vector n in the field theory of nonlinear sigma model in
the Néel order phase.

Gpag Gpam Action
T, T2 MM neon
T, T; M MY nen
Ozy Ry/204 MM nen
0oy | TuTyRy 20y MM nen
gx T.00 M M ne—n
gy Tyoy M MY ns —n
R, RPD M= -M ne-n
T T Mo M n— —n

TABLE VI: The table shows the correspondence between
the symmetries of the Shastry-Sutherland lattice (p4g) and
square lattice (p4m). Bold symbols are for symmetries of the
Shastry-Sutherland lattice.

“fux” emanated from a spin-S.) The associated phase
factor is independent of the exact imaginary time loca-
tion of the monopole event. Thus for S = 1/2 case, one
can fix the system into a certain gauge and view this as
if £7/2 Aharonov-Bohm phase factor gets accumulated
for each hopping process for monopoles.

The monopole transformation rule is summarized in
Tab. V. R;l;‘; is a site (spin) centered rotation. Note that
it is important to fix the convention for the rotation cen-
ter because translation symmetry is projective. Here,
we choose a rotation to be defined with respect to the
black spin in Fig. 13(a). Ril/a; is a plaquette centered
rotation, which is defined with respect to the center of
four spins in Fig. 13(a). Under the unit translations T} ,,
time reversal 7, and plaquette centered rotation Rfrl/a;,
the Néel order changes its sign. It means that the flux
pattern is reversed under such transformations, thus we
need to transform a monopole into an anti-monopole to
compensate for the change. For reflections o, 4, although
n does not flip, the definition of the Skyrmion number
tells that we need to change the sign for the number of
monopoles. Thus, a monopole transforms into an anti-
monopole again. After figuring out whether a monopole
transforms into a monopole or anti-monopole, we need to



multiply it by an additional phase factor o to account
for the Berry phase effect.

Assume the topological term Sp is absent momentar-
ily, which is how CP* theory in Eq. (4) is derived. This is
a usual practice because unlike the first term inside the
parenthesis in Fig. A1, the second term, S, cannot be
straightforwardly extended to the continuum field the-
ory description. Under the absence of Sp, the monopole
insertion operator M just makes a global adjustment
of the Néel order configuration to increase the Skyrmion
number by one, without any additional phase factor.

However, we know from the existence of Sg in the
lattice description that the Berry phase effect is impor-
tant. In order to take into account the Berry phase effect,
we need to examine how the monopole transforms under
each symmetry action. Under the active transformation
where the coordinate system remains the same, we have

g: MI — oy g[MT]g(T), g[MT] =M'or M, (A2)

where the action of g on MT is determined by the pre-
vious argument on whether the monopole transforms
into the monopole or anti-monopole upon the symmetry
transformation.

To determine a4, we need to fix a gauge first. Fixing a
gauge is important because a monopole is always created
in a pair with an anti-monopole. Thus, the monopole
event always has a reference point (anti-monopole) con-
nected by the branch-cut. The Berry phase factor is in-
dependent of the way we draw the branch-cut because
going around a single spin-lattice site gives a 27 phase.
Let’s fix the reference gauge such that the monopole cre-
ated at (0,0) gives a Berry phase 3. Then, for a generic
coordinate r, inserting a monopole would give the Berry
phase factor n(r)8 where n(r) = 1,i,—1, or —i depend-
ing on whether the coordinates (r;,7,) are (even, even),
(odd, even), (odd, odd), (even, odd) [81]. This is shown
explicitly in Fig. 13(c) as moving the monopole along the
arrow gives an additional phase factor i. Inserting an
anti-monopole at r gives a phase factor n*(r)8* since it
would give an exactly opposite contribution to the Berry
phase term by having w — —w. Now, by fixing 8 = 1,
the insertion of the monopole and anti-monopole at each
dual lattice site simply gives a phase n(r) and n*(r).

To illustrate the further procedure, let us consider two
examples, Rf:}% and T}. Under Rfj}%, a monopole remains
monopole, but its location changes as r Rjr‘}gr By cal-
culating the relative phase factor between the monopole
created at r and Rfri;gr, we obtain its transformation rule

in the continuum description:

n(RSite T‘)ﬂ

— 2T i = MieiMb (A3)
n(r)s

In the case of T, a monopole transforms into an anti-

monopole under the symmetry action. At the same time,

its location changes as r — r + &. Following the similar
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procedure, we obtain the following rule:

nt(r+&)p* _ oy g
5 — M M. (A4)

Following the similar analysis, we can obtain «g for all
symmetry transformations summarized in Tab. V. In the
case of time-reversal symmetry, we do not need an ex-
tra phase factor because time-reversal already complex-
conjugates the phase factor of a monopole operator,
which matches with the phase factor given by the anti-
monopole at the same site. Moreover, any monopole con-
densation amplitude would be time-reversal symmetric
because 7 : (M) = (M) = (M).

So far, we assumed 3 = 1. However, a different choice
of f can be made, which would affect to the transfor-
mation rule for the symmetries that filps monopole to
anti-monopole. In fact, we can show that this is related
to the identification rule between monopole M and the
VBS order parameters v, and v,. For 8 = 1, we get
the relation Eq. (6); for example, T, : M' — —iM im-
plies that the T,-invariant monopole condensation corre-
sponds to the condition that Re M + Im M = 0. How-
ever, if B = B = /4, we would get T, : M = —M,
implying that the T,-invariant condition is Re M = 0.
In such a case, we can deduce that Mt ~ v, + 10y.

Once we fix the gauge choice and determine how the
monopole transforms under the square lattice symmetries
(p4m), how the monopole transforms under the Shastry-
Sutherland lattice symmetries (p4g) can be deduced eas-
ily. This is because the Shastry-Sutherland lattice sym-
metries can be expressed in terms of the square lattice
symmetries if we take the Shastry-Sutherland lattice in
Fig.5 is deformed from the smaller square lattice. The
result is summarized in Tab. VI.

Appendix B: Comparison with a DMRG simulation
result of the Ji-J> model in the square lattice

In this section, we present our analysis on the square
lattice with spin-1/2. Using the iDMRG simulation, we
studied these models on an infinite cylinder with a cir-
cumference size up to L = 10 lattice sites. Here, we
focused on the correlation length spectra. The simula-
tion is explicitly U(1), symmetric, and we can plot the
correlation spectra for each U(1), quantum number, S,.
Since following models are SO(3) symmetric in the mi-
croscopic Hamiltonian, there must exist some degeneracy
between different S, sectors, which can be interpreted as
the spectrum for a higher spin.

First, let us consider the case where the square lattice
symmetry is broken. The following model realizes the
phase transition between Néel order and dimerized phase:

H=J > S-S+J > S-S (Bl
(i,5)Eblue (i,j)€red

where red and blue bonds are shown in Fig. 14(a). Here,
the dimerized phase does not break any symmetry be-



cause the square lattice symmetry is already broken in
the model. Therefore, the transition should be described
by the Landau-Ginzburg theory. Indeed, it is known from
the quantum Monte Carlo simulation [33] that the sys-
tem realizes O(3) Wilson-Fisher critical point at J;/J] =
0.523. In the iDMRG simulation, we also observed that
the Néel order parameter develops at Ji/J] ~ 0.52. At
the transition, a single monopole event is not suppressed
because different configurations for single monopole event
cannot exactly cancel each other due to the absence of
symmetries. As a result, the gauge fluctuation (VBS or-
der parameter fluctuation) becomes confining, and the
CP! theory is no longer valid. Instead, the critical the-
ory is described by the classical NLsM with O(3) Néel
vector. The correlation spectra in Fig. 14(c) shows that
the spin-triplet correlation length is the largest across the
phase transition while the spin-singlet correlation length
is much smaller than that. This behavior is consistent
with the critical theory described by the classical NLsM.

Next, we study the J;—J, Heisenberg model with a
square lattice symmetry. The model is defined by the
following Hamiltonian:

H=J7Y 8-8+J Y S-S; (B2
(4,3) ((6.5))

where S; is a spin-1/2 operator, J; is the nearest-
neighbor AFM coupling, and Jy is the next nearest-
neighbor AFM coupling, see Fig. 14(b). When Jy = 0
(J1 = 0), the model is known to realize Néel ordered
(conventional AFM stripe) phase. For the intermediate
value of Jy/J3, the system is frustrated and known to
realize the disordered phase.

In accordance with the recent IPEPS study [83], we
obtained the Néel, columnar VBS (cVBS), and conven-
tional stripe phases as we increase Jy/J1. However, in
order to obtain the VBS order, we had to apply some
bias (pinning field). Under the absence of the bias, the
system looks totally symmetric, implying the existence of
the symmetric superposition of symmetry broken states,
namely a Cat state. The Cat state can be preferred over
the symmetry broken phase if the circumference size is
comparable to the length scale associated with the fluc-
tuations, which is the size of the monopole in this case.

Before getting into the discussion of the correlation
length spectra, we want to elaborate on some simulation
details. In our iDMRG simulation, the iDMRG unit cell
consists of two columns of lattices along the circumfer-
ence, as otherwise translational symmetry broken phases
(AFM order or VBS order) cannot develop. The price to
pay is that k£, = 0 and k, = 7 momenta become indistin-
guishable. (In our simulation, k, cannot be measured)
However, at the critical point where the explicit symme-
try breaking order has not developed yet, we can use a
single column to distinguish k£, = 0 and k, = 7 mo-
menta. Indeed, in the iDMRG simulation of the single-
column unit cell, we observe that the largest correlation
length for S = 1 spectra carries momentum k, = 7 in
the single-column simulation, which is consistent with the

18

=

O O O

) O O

O O O

O O O

=
XA><A><°
w ><><’
><><><’
\J \J \)

(o}
(o}
(o}
(o}
Q
C

C

O

Square Lattice (J;-J]) (d) Square Lattice (Ji-J2)
—..— spin-0
—@— spin-1 1.21
—@— spin-2

0.91

1
1
! ur
1 ~

06
1 )
1 1
1 1
: 0.3{ VBS |
Dimerized ! i
0.45 0.50 0.55 1.8 20 22 24 26 28
Ji/ N Ji/ 2

FIG. 14: (a) Square lattice Ji-J] model with a dimer coupling
Ji. Ji explicitly breaks the square lattice symmetry. (b)
Square lattice Ji-J2 model. (c,d) Correlation length spectra
for the model in (a,b)

momentum (7, 7) of the gapless magnon in Néel order.
For S = 0 case, we obtain that the lowest one carries
k. = 0 while the second lowest one carries k, = w, which
runs almost parallel to the lowest one. They correspond
to the Z4 VBS order parameter fluctuations (spin-singlet)
at (0,7) and (m,0), but the degeneracy is lifted due to
the iDMRG geometry which breaks the Cy-rotation lat-
tice symmetry.

Surprisingly, in this model, we obtained the correlation
length spectra that exactly agrees with the level crossing
behavior of the excitation spectrum in the finite DMRG
algorithm (Fig.2 in Ref. 46). Our result is consistent with
Ref. 32, which discussed the agreement between correla-
tion length spectrum and local excitation spectrum in
the DMRG simulation. Moreover, we want to comment
on the argument in Ref. 46. In this previous work, it was
argued that the small region where £g—1 > g—g > €g—2
corresponds to the gapless spin liquid phase [46]. How-
ever, this reasoning is inconsistent with the iDMRG sim-
ulation result of the Shastry-Sutherland lattice because
this region is clearly a symmetry broken phase with a
non-zero Néel order parameter from the numerics. Thus,
we can conjecture that such a region would shrink into a
critical ‘point’ rather than remain as an extended phase
of Dirac spin liquid both in the J;-J5 square lattice model
and Shastry-Sutherland model. Indeed, if we perform a
single-column iDMRG simulation for the Ji-J> model,
the simulation does not converge well for the J; /Jy > 2.0,
which means that the hypothesized gapless spin liquid
phase is, in fact, more like the AFM phase where the
double-column iDMRG unit cell is required.



Finally, we remark on the evidence that supports our
discussion in Sec. I'V. In the previous finite DMRG works
on this model [50], the plaquette VBS appeared in-
stead of the columnar VBS. In fact, it was found in
Ref. [83] that these two states have almost the same
energy (AE/E < 0.1%). This again implies that the
dangerously irrelevant operator M?*, which is responsi-
ble for the VBS ordering, has not flowed large enough to
condense monopole to a certain direction. This can be
supported by Fig. 9(a), where the correlation length for
the spin-singlet operator is smaller than the correlation
length of the spin-triplet operator throughout the whole
intermediate regime between the Néel and conventional
AFM stripe order.

Appendix C: VBS-Phonon Coupling and Phonon
Spectrum

The square pVBS order breaks the glide reflection sym-
metries G, Gy and the diagonal reflection symmetries
Ozy,0zg- Due to the lattice symmetry breaking, the
pVBS order should induce lattice distortion as shown in
Fig. 6. Therefore the pVBS fluctuation must couple to
the lattice vibration mode, i.e. the phonon mode. Here
we would like to determine the specific form of the pVBS-
phonon coupling.

We will focus on the copper lattice in the following dis-
cussion. Although the lattice also contains other atoms
and the phonon spectrum can be complicated, we choose
to work on the symmetry level to demonstrate the uni-
versal consequences of pVBS fluctuation on the phonon
spectrum without diving into the details. For this pur-
pose, we first specifies the coordinate of copper sites in
the each unit cell. As shown in Fig. 15(a), there are four
copper sites in each unit cell. At equilibrium, they locate
at

ra=(14+061+9)/2,
=(1-46,34+9)/2
ri=(1-6340)/2, )
re=3+4+4,1-9)/2,
rp=(3-9,3-19)/2,

where 0 < § < 1 parameterize the deformation of the
Shastry-Sutherland lattice from the square lattice. Ac-
cording to Ref. 16, the lattice constant is 8.995A, the
shortest Cu-Cu bond is 2.905Aand the second shortest
Cu-Cu bond is 5.132A. This implies that, in unit of the
lattice constant, we have

1B — 1496 - 2.905/&7
2 8.995A (C2)
— V1446 5.132A
AB = ~ .
2 8.995A

The optimal solution is § ~ 0.544. Using this deforma-
tion parameter, we can write down equilibrium positions
of copper atoms through out the lattice.
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FIG. 15: (a) A, B,C, D label four copper sites in each unit
cell (marked out in dashed lines). ki, k2 are the stiffnesses of
the two types of bonds (nearest neighbor and dimer). X,Y
label the two types of plaquettes. (b) Schematic illustration
of the phonon spectrum. A continuum will emergent at X
point due to the VBS-phonon coupling.

Our strategy to figure out the pVBS-phonon coupling
is to first investigate the pattern of lattice distortion in-
duced by the pVBS order. Because the pVBS order does
not enlarge the four-copper unit cell, its induced lattice
distortion will also be identical among unit cells. There-
fore the distortion can be described by four displacement
vectors w4, up, Uc, wp, translating each sublattice sep-
arately as

ri—r,=ri+u; (i=AB,C,D). (C3)
The energy cost associated with the distortion can be
modeled by summing up the bond energies

k
Ehond[u;] 251 Z ((7'; - 7‘3‘)2 —(ri— Tj)2)2
ko v 2 (C4)
+5 > (=7 =i —r)?),
1j Edimer

where u; dependence is implicit in 7, = 7; + u;. The en-
ergy will increase whenever a bond is stretched or com-
pressed. The shape of the potential in Eq. (C4) captures
this physics when the distortion w; is small. The two
stiffness coefficients k1 and ko are expected to be differ-
ent in general. Of course, in the realistic material, Sr,
B, O atoms will all be involved and the bond energy
model will be more complicated. However the toy model
Eq. (C4) respects all the symmetry property and provides
the stiffness to the copper lattice, which can be used to
analyze the pVBS induced lattice distortion. Finally we
note that the energy model Eq. (C4) written with respect
to a single unit cell with periodic boundary condition (i.e.
on a torus geometry), so for those bond across the unit
cell, their bond length must be correctly treated by con-
sidering the periodic boundary condition.

Upon introducing the pVBS order, we will add an ad-
ditional term to the energy model,

E[ul] = Ebond [uz] + EVBS['U/i],
Bvpsfu] =ImM > (-»Y () - R,)?,  (C)

1€Ep



where p denotes the square plaquettes and ¢ € p denotes
the four corner sites around the plaquette p. R, coordi-
nates the plaquette center,

_ ) (1,0) peX,
Rp_{(o,n peYy. (C6)

The staggering factor (—)P is +1 for X-type plaquette
(yellow) and —1 for Y-type plaquette (green) as shown in
Fig. 15(a). Im M = v, — v, denotes the square pVBS or-
der parameter. The physical meaning of Fvygg is that the
pVBS order will contract one type of the square plaque-
tte and expand the other type, exerting forces on copper
atoms that points towards or away from the plaquette
center.

Given the full energy model in Eq. (C5), we can ex-
pand F[u;] to the quadratic order of u;. The linear term
will be proportional the pVBS order parameter Im M, as
Im M is the force that distort the lattice. The quadratic
term determines how the lattice responses to the distor-
tion force in the linear response regime. We found that
independent of the choice of § and ko, the response is
always given by

Im M
ups = 4]{31 (_13 1)a
up = ImM(_L_l)v

4k ()
o — Im./\/l(1 1)
c = 4k1 s 4)s

Im M

up = 4]61 (1,—1).

Under the Fourier transformation to the momentum
space

ul) = Y we™, (cs)

the solution in Eq. (C7) corresponds to

Ug(m,0) occ —=Im M,  u,(0,7) oc Im M. (C9)

This calculation indicates that the square pVBS order
will lead to a lattice distortion that corresponds to a the
simultaneous condensation of phonon modes u, at mo-
mentum (7,0) and u, at momentum (0, 7). Given that
Im M = vy, — v,, we conclude that there must be a lin-
ear coupling between lattice displacement and the VBS
order parameter in the form of

‘CVBS-phonon - H('Uwuz + Uyuy)a (Clo)

in order to produce the linear response in Eq. (C9). The
coupling in Eq. (C10) can be further justified by symme-
try arguments. Tab. VII shows the momentum quantum
number and the symmetry transformation of the VBS or-
der parameter v and finite-momentum phonon mode u.
One can see v and u have identical symmetry properties
and hence a linear coupling as in Eq. (C10) is allowed.
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Vg Vy Uy Uy
q |(m,0) (0,m) (,0) (0,7)
Go| —Va —VUy —Uy —Uy
Gyl| —ve —vy —Ur —Uy
Ozy| Uy Vg Uy — Up
Oeg| Uy Vg Uy Uy

TABLE VII: Momentum and symmetry transformations of
the VBS order parameter v and finite-momentum phonon
mode wu.

Given the VBS-phonon coupling, we can investigate
the effect of low-energy VBS fluctuation on the phonon
spectrum near the DQCP. We first write down the field
theory action describing both degrees of freedom,

Sl v] =5 (w7~ Q)u(—q) - ula)

q

—% > Gups(@)v(—q) - v(g) (C11)

+Y rqv(—q) - ulg),

where ¢ = (w, q) represents the energy-momentum vec-
tor. §1q describes the phonon dispersion relation. Gvgs
is the correlation function of the VBS critical fluctuation,
whose low-energy behavior is given by

1
(q— Q)32 —w?)'™"*

where 7 is the anomalous exponent of the O(4) vector
at the O(4) DQCP. Based on the previous numerical
measurements[25, 66], n is estimated to be n = 0.13 ~
0.3. Q@ = (m,0) or (0,7) denotes the momentum point
where the VBS fluctuation gets soften. The VBS-phonon
coupling kg is expected to be momentum dependent,
because the VBS order parameter only couples to the
high-energy phonon around X and Y points but not
the acoustic phonon around I'" point. By the acoustic
phonon around I' point, we mean the low energy part
of the phonon, i.e. the segment of the acoustic branch
around the gapless point, which usually appears in the
field theory description of phonons. Given these setup,
we can integrate out the VBS fluctuation and obtain the
dressed propagator of phonon,

Gvps(w,q) = (C12)

1

Q2 —w? - Kk2Gvps(w, q)’

D(w,q) = (C13)

Then the phonon spectral function can be obtained from
S(w,q) =2Im D(w +1i04, q). (C14)

The phonon dispersion )4 is unknown to us, as we did
not have the full model of the lattice vibration. For



demonstration purpose, we can use the following toy
model

02 = sin® (g, /2) + sin*(q/2), (C15)
which captures the gapless acoustic phonon at the I point
and gapped phonons at X and Y points (see Fig. 1(b)).
We also take the anomalous exponent n = 0.13 and use
kq = Koflq With kg = 0.05 so that

lim Kq = Ko,

C16
q—(0,7),(,0) ( )

lim kq =0.
q—(0,0)
With these, we show the phonon spectrum calculated
from Eq.(C14) in Fig.15(b). The prominent feature is
a V-shape continuum at the X point (as well as the
Y point) in the Brillouin zone. This continuum in the
phonon spectrum represents the critical fluctuation of the
VBS order parameter at the DQCP. Although the spec-
tral weight is expected to be weak, since the X point is
an extinction point, it is still feasible to collect spectral
signals of this continuum. In particular, the frequency
dependence of the spectral weight at the X point is pre-
dicted to follow

S(w,q=X) ocw 2t (C17)

which can be checked experimentally. It will be meaning-
ful to compare the measured n with large-scale quantum
Monte Carlo simulation result.

Appendix D: Detailed Numerical Data

In this appendix, we discuss the evolution of the
iDMRG simulations results as we increase the bond di-
mension y for system sizes L = 8 and L = 10. Since the
accuracy of the iDMRG simulation is determined by the
bond dimension, a reliable analysis requires one to exam-
ine the results as a function of the bond dimension. Here,
the iDMRG simulation results of the Shastry-Sutherland
lattice model in Eq.1) at L = 10 for a range of bond
dimensions are presented in Fig. 16. Although the the
truncation error €y, is very large (> 107%) at the low
bond dimensions, as we increase the bond dimensison
upto x = 4000, €un goes below 1075 and the iDMRG
results becomes sensible.

Fig. 16(b) shows the first derivative of energy, whose
change of the slope correspsonds to the transition be-
tween the pVBS and Néel ordererd phases. As the bond
dimension increases, the transition point shifts leftward,
implying that the parameter regime for the pVBS phase
shrinks. The behavior aligns with the intuition that the
gapped pVBS phase would be favored over the the gapless
Néel orderd phase for a low entanglement MPS state. Ac-
cordingly, the peak of the spin-singlet correlation length
which coincides with the phase transition point also shifts
leftward, presented in Fig. 16(d). At the same time, the
peak of the spin-singlet correlation length becomes larger
and more pronounced as the bond dimension increases,
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FIG. 16: The iDMRG simulation results with AJ; = 0.002

at L = 10, shown for a range of MPS bond dimension Y.
Bond dimension scalings of (a) energy per site E, (b) energy
derivative per site FE/dJ1°, (c) truncation error p, (d) cor-
relation length of spin-singlet operator {s—o, and (e) pVBS
order parameters. Note that the correlation length is plotted
instead of the inverse. In (f), we plot pVBS order parameters
as functions of truncation erros for a range of the tuning pa-
rameter Ji. Blue dotted line is a linear fitting for the three
data points at xy = 2000, 3000, 4000.

¢Data for xy = 500,1000 are not shown here as these data-points
behave irregularly, and cover the other data points.

signaling the continuous or weakly first order phase tran-
sition.

Although the peak location of the spin-singlet correla-
tion length changes with the bond dimension, a further
indication of the phases boundary can be obtained from
the order parameter plotted versus the truncation error
[84, 85]. In principle, the ground state is fully symmetric
and local order parameter cannot be non-zero. However,
in the iDMRG simulation, the numerical process favors
a minimally entangled state, giving rise to a non-zero lo-
cal order parameter in a spontaneous symmetry breaking
phase at finite bond dimensions. This can even happen
when the system is outside but close to the spontaneous
symmetry breaking phase, meaning that one needs to
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FIG. 17: The iDMRG simulation results with AJ; = 0.002
(0.001 for x = 4000) at L = 8, shown for a range of MPS bond
dimension x. Different observables are labeled as in Fig. 16.
Note that the pVBS order parameter vanishes at J; = 0.726,
which is smaller than the value for L = 10.

plot the order parameter as a function of the truncation
error in order to see whether a non-zero order parameter
is truly physical. In Fig. 16(f), we plotted the pVBS order
parameter defined in Eq. 5 as a function of the trunca-
tion error, and extrapolated them. We observe that the
extrapolated order parameter disappears at J; = 0.76,
which agrees well with the peak location J; = 0.762
of the spin-singlet correlation length at x = 4000 with
L =10. As mentioned earlier, this extrapolation method
would be benefited a lot if a wider range of bond di-
mensions is available. However, at x = 4000, each data
point already takes about 50 hours of simulations times
for 12 multi-threads with 80GB RAM, and both the time
and RAM scale roughly as x2. Therefore, a significantly
higher bond dimension is currently inaccessible at our
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capacity.

Finally, we remark the scaling of the result for different
system sizes. In Fig. 17, we plotted the iDMRG simula-
tion results at L = 8 for a range of MPS bond dimension
as in Fig. 16. Note that the truncation error is an order
of magnitude smaller than the results at L = 10. More-
over, the value of J; where the pVBS order parameter
disappears is much smaller for the smaller system size
L. However, this does not imply that the Néel ordered
phase develops for J; > 0.726, as we can see from the
correlation length plot in Fig. 18. In Fig. 18(a), while the
peak of the spin-singlet correlation length implies that
the peak corresponds to the phase transition point for the
pVBS phase, the spin-triplet correlation length remains
almost constant, which implies that the Néel order does
not develop, since the Néel order would give rise to the
increase of the spin-triplet correlation length originated
from the gapless magnon excitation. On the other hand,
at L = 10, we observe that the peak of the spin-singlet
correlation length is immediately followed by the rise of
the spin-triplet correlation length which signals the on-
set of the Néel ordered phase. L = 6 behavior is similar
to that of L = 8, and the signature of the Néel ordered
phase, such as the staggering magnetization or the rise of
the spin-triplet correlation lengh, is not observed near the
pVBS critical point. This is related to the discussion in
the main text. For a quasi one-dimensional system with a
finite-size circumference size, the spontaneous symmetry
breaking of the continuous group would be suppressed
due to the disordering effect. As a result, the disappear-
ance of the pVBS ordering is not immediately followed
by the Néel ordering for a finite circumference system.
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FIG. 18: Comparison between the L = 8 and L = 10 results
at x = 4000 for the spin-singlet and triplet correlation lengths.
For L = 8, the peak of the {50 is located at J1 = 0.727, while
for L = 10 the peak is located at J1 = 0.762. Unlike the result
at L = 10, the spin-triplet correlation length at L = 8 does
not grow much after the peak.
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(87]

scale L = &spin where the system behaves like XY model,
we already know that {vis ~ )\21/24 Thus, we can deduce
f(z) ~ 272 and derive that &vps ~ f(Afl)m

In the VBS phase, there are four degenerate ground
states, whose degeneracy is lifted by the finite system
size. These nearly degenerate excited states should be
distinguished from the other excitations that can truly

be ‘local’.
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[88] The Néel ordered phase has the time-reversal glide
TGy,y, while the pVBS phase has the time-reversal 7.
At the DQCP, we have both symmetries, thus the com-
position T o TG,y = G4,y should be there.

[89] The AFM spin-spin interaction along vertical bonds in-
duces the effective vertical plaquette ring exchange for
the low energy subspace.
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