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Abstract

A recent work (arXiv:1811.04930) proposed a SU(2) gauge theory for optimal doping criticality in the

cuprate superconductors. The theory contains Nh Higgs fields transforming under the adjoint representa-

tion of SU(2), with Nh = 1 for the electron-doped cuprates, and Nh = 4 for the hole-doped cuprates. We

investigate the strong-coupling dynamics of this gauge theory, while ignoring the coupling to fermionic

excitations. We integrate out the SU(2) gauge field in a strong-coupling expansion, and obtain a lattice

action for the Higgs fields alone. We study such a lattice action, with O(Nh) global symmetry, in an

analytic large Nh expansion and by Monte Carlo simulations for Nh = 4 and find consistent results.

We find a confining phase with O(Nh) symmetry preserved (this describes the Fermi liquid phase in the

cuprates), and Higgs phases (describing the pseudogap phase of the cuprates) with different patterns of

the broken global O(Nh) symmetry. One of the Higgs phases is topologically trivial, implying the absence

of any excitations with residual gauge charges. The other Higgs phase has Z2 topological order, with

‘vison’ excitations carrying a Z2 gauge charge. We find consistent regimes of stability for the topological

Higgs phase in both our numerical and analytical analyses.
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I. INTRODUCTION

A previous study of a 2+1 dimensional cuprate gauge theory, developed in Ref. 1, fractionalised

the spin density wave (SDW) order parameter by going to a rotated reference frame in spin-space

and obtained a theory with of Higgs fields with multiple (Nh) flavors which are charged under an

emergent local SU(2) gauge field. The Higgs fields also transform under the lattice space group

and time reversal; consequently these symmetries can be broken in the Higgs phase. It was found

that the symmetry breaking transitions associated with these Higgs fields lead to a variety of

order parameters – constructed as gauge-invariant bilinear or trilinear combinations – which are

consistent with the symmetry breaking patterns observed in experiments on cuprates near optimal

doping. Further, upon considering electronic degrees of freedom coupled to the Higgs fields, a

rather natural description of the pseudogap phase emerged [1].

In this paper, we wish to consider the strong-coupling dynamics of the SU(2) gauge theory in

more detail. Apart from the Higgs phase where the Higgs fields are condensed, there can also

be a confining phase where there are no excitations associated with the Higgs fields, and the

electronic degrees of freedom resume normal Fermi liquid behaviour. Hence, in this description,

the pseudogap is associated with the Higgs phase, and Fermi liquid with the confined phase.

Moreover, the pseudogap/Higgs phase can have a topological structure beyond that associated

with broken global symmetries. This structure is associated with any gauge group left unbroken by

the Higgs condensate [2], and is also tied to the pattern of broken global symmetry. It was found

that, depending upon parameters, the Higgs condensate could break the SU(2) gauge symmetry

down to U(1) or Z2. The U(1) gauge field confines in 2+1 dimensions, and so the U(1) case

is ultimately topologically trivial. However, the Z2 case leads to Z2 topological order [3, 4],

with deconfined excitations carrying Z2 electric and magnetic gauge charges. Specifically, the Z2

magnetic charges are carried by vortex configurations (‘visons’) in the Higgs fields, while the Z2

electric charges are carried by gapped spinons excitations.

We note that an earlier study [5] of a 2+1 dimensional SU(2) lattice gauge theory with a single

(Nh = 1) adjoint Higgs field also considered the case where the Higgs phase breaks the SU(2) down

to U(1) [6]. In this case, the confining and Higgs phases were found to be continuously connected,

and the theory has only one phase and no phase transition. However, in our case the topologically

trivial Higgs phase does break global symmetries for Nh > 1, and so even the trivial Higgs and

confining phases remain separated by a phase transition.

The objective of the present work is to study the strong-coupling dynamics of the 2+1 dimen-

sional SU(2) gauge theory with Nh > 1 adjoint Higgs fields. For simplicity, we will generalize the

space group symmetries of the model of Ref. 1 to O(Nh). We will also neglect the coupling to

Fermi surface excitations here, but address this issue in forthcoming work. We will begin with a

2



lattice discretization of the action of Ref. [1], and integrate out the SU(2) gauge field to obtain the

following lattice action for the Higgs fields alone

S0 = − J

2Nh

∑
〈ij〉

Ha`(i)Ham(i)Hb`(j)Hbm(j) +
u1

2Nh

∑
i

Ha`(i)Ham(i)Hb`(i)Hbm(i) . (1)

Here i labels the sites of a cubic lattice, and Ha`(i) is the real Higgs field, with a = 1, 2, 3 the SU(2)

adjoint gauge index, and ` = 1 . . . Nh the flavor index. Note that S0 is invariant under local SU(2)

gauge transformations, but only under global O(Nh) flavor rotations. We also find it convenient

to impose a fixed length constraint on every lattice site, i,∑
a`

H2
a`(i) = Nh . (2)

The action S0 comprises a gauge invariant hopping term J that is quartic in Higgs fields, as well

as a quartic potential u1 inherited from the original model.

We now define a gauge-invariant order parameter which is a second-rank traceless tensor in the

global O(Nh) symmetry

Q`m(i) = Ha`(i)Ham(i)− δ`m
Nh

Han(i)Han(i) (3)

This order parameter will diagnose the broken symmetries across the phase diagram. The Z2

topological order is more subtle to extract directly: we provide evidence for it in the context of

the large Nh expansion of S0, and the pattern of symmetry breaking in the Monte Carlo study.

We will study the effective lattice action S0 using both a large Nh saddle point analysis and

numerical Monte Carlo (MC) simulations. We will establish that the competition between the two

terms in S0 in Eq. (1) allows for the 3 phases discussed above:

(i) Confining: The Higgs field is fully ‘disordered’ and the global O(Nh) symmetry is preserved.

This corresponds to the overdoped Fermi liquid in the cuprates.

(ii) Trivial Higgs: The Higgs condensate breaks the SU(2) gauge symmetry down to U(1),

which ultimately confines. The O(Nh) symmetry is broken down to O(Nh − 1). This is a possible

pseudogap phase for the cuprates, and is separated from the confining phase above by a phase

transition because of the broken symmetry.

(iii) Topological Higgs: The Higgs condensate breaks the SU(2) gauge symmetry down to

Z2, and there is Z2 topological order. For Nh > 3, the global O(Nh) symmetry is broken to

O(3)×O(Nh − 3). This is also a possible pseudogap phase.

The reader will notice that for the special case of Nh = 4 of interest to us, the patterns of

symmetry breaking in the trivial and topological Higgs phases are the same: O(4) is broken down

to O(3) in both cases. Nevertheless, as we shall show, it is possible to distinguish these cases by
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more carefully studying the manner in which O(4) breaks down to O(3). Also, for the cases of

Nh = 2, 3, the topological Higgs phase has no symmetry breaking; nevertheless the topological

Higgs phase remains distinct from the confining phase because of its Z2 topological order.

The outline of the paper is as follows: Section II details the strong-gauge coupling expansion

employed to obtain the lattice action for the Higgs field alone S0 (1). In section III we rewrite

the effective action S0 using Hubbard-Stratonavich decoupling fields, and subsequently solve the

saddle point equations in the limit of Nh → ∞. In this large Nh we produce the phase diagram

of the model, which hosts the confined phase, as well as the trivial and topological Higgs phases.

In section IV we turn to a numerical monte Carlo analysis of the effective action S0 (1), with the

physically relevant Nh = 4. We employ two observables to diagnose the various phases. Finally,

we discuss our results in section V.

II. STRONG-COUPLING EXPANSION

We sketch the details of the strong coupling expansion, which also allows us to review the model

studied originally [1]. We consider a theory of real Higgs fields Ha`, where a = 1, 2, 3 is the SU(2)

adjoint gauge index, while ` = 1 . . . Nh is the flavor index. We will arrive at a theory for this Higgs

field which is a discrete time analog of the Schwinger boson theory of antiferromagnets.

A. Lattice Model

The strong-gauge coupling expansion demands that we work on the lattice. The lattice form of

the Euclidean Action/Lagrangian is (see e.g. [7])

S = a3
∑
i

{
(3κ+ s) Tr

[
Ĥm(i)Ĥm(i)

]
− κ

∑
µ

Tr
[
Ĥm(i)Ûµ(i)Ĥm(i+ aêµ)Û †µ(i)

]
+ u0 (Ham(i)Ham(i))2

+ u1

(
Hal(i)Ham(i)Hbl(i)Hbm(i)− 1

Nh

(Ham(i)Ham(i))2

)
+ β

∑
µ>ν

[
1− 1

2
Tr Ĝµν(i)

]}
(4)

where κ = 4/a2, β = 4/(ga2)2 and a is the lattice spacing; summation is over the elementary

unit cell, whereby êµ = {êx, êy, êτ}; trace is over gauge indices, and summation over flavours m is

implied. The Higgs field, gauge field link, and Yang-Mills plaquette operators are given by

Ĥm(i) = Ham(i)τ a (5)

Ûµ(i) = eiaAaµ(i)τa (6)

Ĝµν(i) = Ûµ(i)Ûν(i+ aêµ)Û †µ(i+ aêµ + aêν)Û
†
ν(i+ aêν) (7)
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where τa are Pauli matrices, with normalization Tr
[
τaτ b

]
= δab/2. The gauge link and plaquette

operators follow the usual lattice-gauge transformation laws [7]. From Eq. (7) we see that the

Yang-Mills term Ĝµν(i) is just the parallel transport around the elementary unit cell.

B. Strong-Coupling Expansion

Due to strong coupling g →∞, the kinetic Yang-Mills action is neglected and then each gauge

link, Uµ(i), is an independent random SU(2) matrix. We choose to parameterise each such link

by the three Euler angles θ̄ = {θ, ψ, φ},

U(θ̄) = cos θ σ̂0 + i sin θ sinψ cosφ σ̂1 + i sin θ cosψ σ̂2 + i sin θ sinψ sinφ σ̂3 . (8)

At strong-coupling we may treat the random Higgs-hopping term Tr
(
Ĥm(i)Ûµ(i)Ĥm(i+ µ̂)Û †µ(i)

)
as a perturbation, even though this is not formally an expansion in 1/g2. Expanding the partition

function in this hopping term generates terms such as,∫
[DU ]Tr

(
σaU(θ̄)σbU

†(θ̄)
)
≡ 〈Tr

(
σaU(θ̄)σbU

†(θ̄)
)
〉
U

= 0. (9)

The expectation value must vanish since it transforms nontrivially under SU(2) transformations;

the integration over [DU ] evaluates to zero. To consider higher-order terms, it is convenient to

first define the adjoint matrix

Uab(θ̄) ≡
1

4
Tr
(
σaU(θ̄)σbU

†(θ̄)
)
, (10)

with normalization Tr (σaσa) = 6. The non-vanishing terms in the expansion of the Higgs hopping

will need to be invariant in the adjoint indices. We find that for example (with no contraction over

a, b indices),

〈Uab(θ̄)〉U = 0 (11)

〈Uab(θ̄)Uab(θ̄)〉U =
1

12
(12)

〈Uab(θ̄1)Uab(θ̄2)〉U = 0. (13)

Here θ̄1 6= θ̄2 signifies different gauge links. The nonzero expectation value above implies that

the lowest order expansion does not require a 1/g2 gauge-plaquette expansion to compensate, see

Figure 1 for a diagrammatic representation. We call this term the double Higgs link D̂. The

contribution to the action is then the gauge field averaged

〈D̂〉U ∼ κ2
∑
〈ij〉

Hal(i)Ham(i)Hbl(j)Hbm(j), (14)
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Hal(i)

Ham(i) Hbm(j)

Hbl(j)

Hdn(l)

Hal(i)

Hah(i) Hbm(j)

Hbl(j)

Hcn(k)

Hcm(k)Hdh(l)

1/g2

1/g2

Hal(i) =

=Uab(θ̄)

=
(θ̄1,θ̄2,θ̄3θ̄4)

D̂

P̂

=

=

Hal(i)Ham(i) =

FIG. 1: Diagrammatic representation of the strong-gauge coupling expansion. Operators D̂, P̂

correspond to the double Higgs and Higgs plaquette. We see that D̂ does not require any gauge

plaquette terms � at leading order, while the P̂ requires two gauge plaquettes at leading order.

Definitions are shown on the right hand side.

which is manifestly gauge-invariant. Higher order terms are derived in the Appendix, e.g. the

Higgs-plaquette term P̂ of Figure 1. We neglect such a term in the present analysis, since we

will find that the double Higgs link, D̂, is already sufficient to generate the expected topological

properties of the underlying gauge theory.

Imposing the constraint in Eq. (2), and re-exponentiating the double Higgs link term (14), we

arrive at the effective action S0 in Eq. (1) on the three-dimensional cubic lattice.

III. LARGE Nh LIMIT

We set up the large Nh expansion by writing the partition function as

Z =

∫ ∏
〈ij〉

dAab(i, j)
∏
i

dBab(i)
∏
i

dλ(i)
∏
i

dHa`(i) e
−S

S =
∑
〈ij〉

[
Nh [Aab(i, j)]

2

2J
− Aab(i, j)Ha`(i)Hb`(j)

]

+
∑
i

[
Nh [Bab(i)]

2

8u1

+ i
Bab(i)

2
Ha`(i)Hb`(i) + i

λ(i)

2
(Ha`(i)Ha`(i)−Nh)

]
(15)

For the fluctuations to be stable, the signs and factors of i have been chosen assuming u1 > 0.

But the formalism works for both signs of u1, and we just have to rotate the contour for B in the
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FIG. 2: Phase Diagram. Coloured regions correspond to the phases found in the saddle point

approximation (Nh →∞). Black empty circles correspond to the topological-to-trivial phase

transition as found in MC simulations of the parent model at Nh = 4, and with system size L3;

L = 12.

fluctuations for u1 < 0. We are interested in the case of J > 0.

A. Saddle-Point Phase Diagram

We begin by providing the results of the saddle point analysis – the details of which are left for

subsections III B and III C. Comparing the free energies of the disordered, topological and trivial

phases obtained in the saddle point analysis we arrive at the phase diagram shown in Figure 2.

Noteworthily, we find that all phase boundaries are of first order. Also shown in Figure 2 is the

topological-to-trivial phase transition as determined by MC simulations of the parent action S0

(1), for which we take the physical number of Higgs flavours Nh = 4. Details of the identification

of the phase transition from MC simulations are provided Section IV.

We now outline how the saddle point solutions were obtained, further details are provided in

Appendix B.
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B. Confining Phase

In the confining phase, the Higgs field is fully disordered and maintains the O(Nh) global

symmetry. This places no restrictions on the other decoupling fields appearing in action S (15),

instead we will assume a gauge-invariant saddle point of S (15). In the limit Nh → ∞ limit, the

saddle point fields are then,

Hal(i) = 0 (16a)

Aab(i, j) = δabA0 (16b)

iBab(i) = δabB0 (16c)

iλ(i) = λ (16d)

It follows that the propagator of the Higgs field is diagonal in flavor and color indices and is given

by

G(k) =
1

A0(6− 2 cos(kx)− 2 cos(ky)− 2 cos(kτ )) +m2
(17)

where the mass gap relates to the saddle point fields via

m2 = λ+B0 − 6A0. (18)

In the large Nh limit, the free energy density, F , obtained by integrating over the Higgs fields

Hal(i) is

F

Nh

= 3

[
3A2

0

2J
− B2

0

8u1

]
− λ

2
− 3

2

∫ π

−π

d3k

8π3
ln
[
G(k)

]
, (19)

which relates to the partition function via Z = e−FV , where V is the Euclidean volume. Minimising

the free energy, the saddle point equations determining A0, B0, and m2 are obtained

3

∫ π

−π

d3k

8π3
G(k) = 1, (20a)

J

∫ π

−π

d3k

8π3
cos(kx)G(k) = A0, (20b)

B0 =
2

3
u1. (20c)

There are two classes of solutions to these saddle point equations in disordered phase: those

with A0 = 0, and those with A0 6= 0. In the first case, the saddle point admits a particularly

simple solution,

A0 = 0; λ̄ = 3− B0 = 3− 2u1

3
. (21)
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From which it follows that the free energy is independent of J ,

F

Nh

=
u1

6
− 3

2
(1− ln 3). (22)

Details presented in the appendix show that the A0 6= 0 solutions always posses a higher free

energy in the (J, u1) phase diagram, and hence would only appear as metastable states.

C. Higgs phases

In the ordered phases, we proceed as in Ref. [8]. Moreover, we follow Ref. [1], and note that –

by the singular value decomposition theorem – any Higgs field can be written in the form

Hal = O1;abWbmO2;ml (23)

where O1 and O2 are orthogonal matrices in color and flavor spaces respectively, and W is a

rectangular matrix with only p ≡ min(3, Nh) non-zero elements along its diagonal, which are all

non-negative. Owing to this decomposition, we write the Higgs field using the following ansatz,

Ha`(i) =
√
NhH0aδa` +H1a`(i) (24)

where H0a is a possible non-zero, site-independent saddle-point value, and we integrate over the

additional fluctuations, H1al(i), around the saddle point. We allow the other saddle-point variables

to depend upon the color indices by writing,

Aab(i, j) = δabA0a

iBab(i) = δabB0a

iλ(i) = λ . (25)

In the large Nh limit, the free energy density, F , obtained by integrating over the H1al(i) is

F

Nh

=
∑
a

[
3A2

0a

2J
− 3A0aH

2
0a −

B2
0a

8u1

+
B0a

2
H2

0a

]
+
λ

2

(∑
a

H2
0a − 1

)

−1

2

∑
a

∫ π

−π

d3k

8π3
ln
[
Ga(k)

]
(26)

where the Greens function obtains a color index, and is given by,

Ga(k) =
1

λ+B0a − 2A0a (cos(kx) + cos(ky) + cos(kτ ))
. (27)

We now study the saddle point equations of (26) with respect to H0a, A0a, B0a, and λ. (Note: we

cannot just globally minimize F because of the i’s in (15).) The saddle point of the action with

respect to the H0a gives us the three equations

λH0a = (−B0a + 6A0a)H0a , for all a, with no sum over a. (28a)
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We do not cancel out the H0a in (28a) because H0a could vanish for some a. The saddle point

with respect to λ is ∑
a

[
H2

0a +

∫ π

−π

d3k

8π3
Ga(k)

]
= 1 . (28b)

Finally, the saddle point equations with respect to A0a and B0 are

J

∫ π

−π

d3k

8π3
cos(kx)Ga(k) = A0a − JH2

0a (28c)

B0a = 2u1

[
H2

0a +

∫ π

−π

d3k

8π3
Ga(k)

]
(28d)

Note that Eq. (28) reduces to (20) when H0a = 0.

We now have to solve the 10 equations (28a,28b,28d) for the 10 variables H0a, A0a, B0a, and λ

as a function of J and u1. There will be two types of solutions: one in which only one of the H0a is

non-zero, and the other in which all H0a are equal to each other – this corresponds to the topological

phase, as deduced by the global and gauge symmetry breaking patterns, which is discussed in [1],

yet we outline the argument here for continuity of presentation: The gauge symmetry is SU(2),

condensing one Higgs flavour reduces this to a remnant U(1) which corresponds to rotations about

the axis set by the condensed field, while all Goldstone modes are Higgsed (i.e. gapped). It is

well established that the gapped U(1) gauge theory is ultimately in a confining phase, yet the

confinement length scale depends on the details of the system. This is the trivial Higgs phase, and

is achieved in the saddle point by just one Hal 6= 0. We mention that Berry phase interference

effects could act to deconfine the U(1) gauge theory [9]; we do not consider such effects in this work.

Alternatively, condensing multiple Higgs flavours, with some orthogonal components, breaks the

SU(2) gauge down to Z2 (since the Higgs fields themselves are in the adjoint representation). This

remnant Z2 gauge theory is naturally deconfined, supporting Z2 topological order. Condensing

multiple Higgs flavours is achieved by the saddle point with all H0a 6= 0 and equal to each other.

The true ground state configuration will be the saddle point solution for which the free energy

(26) is minimised. We will now compute the saddle point equations and free energy for both cases.

D. Topological Higgs Solutions

The topological solution can be obtained analytically. In this phase three classes of solutions

arise, here we will present just the dominant one, the other two are left for the appendix. For this

solution we have H01 = H02 = H03 ≡ H. By inspection of the saddle point equations, the solution
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has A01 = A02 = A03 ≡ A and B01 = B02 = B03 ≡ B. The solutions are (with σ = ±)

Aσ =
J

6
+ σ

1

6

√
J2 − 6J (29)

B =
2

3
u1 (30)

λ̄σ = 6Aσ − B (31)

H2 =
Aσ
J
− γ2

Aσ
(H is independent of the σ index) (32)

where the constant γ2 (and for later use γ1) are defined as

γ1 =

∫ π

−π

d3k

(2π)3

1

6− 2
∑

µ cos kµ
, γ2 =

∫ π

−π

d3k

(2π)3

cos kx
6− 2

∑
µ cos kµ

, γ1 − γ2 =
1

6
. (33)

The free energy in this phase can be written solely in terms of A and B, we find

F

Nh

=
9A2

2J
− 3B2

8u1

− 1

2
(6A− B) +

3

2

∫ π

−π

d3k

(2π)3
ln

(
A(6− 2

∑
µ

cos kµ)

)
. (34)

This is straightforward to evaluate using the relations above (29) and (30). Using notation Aσ

with σ = ±, we get the expression,

1

Nh

F (u1, J) =
1

24

(
−6J − 6σ

(√
(J − 6)J + 3σ

)
− 36 ln

(
6√

(J − 6)Jσ + J

)
+ 4u1

)
+ c (35)

c ≡ −3

2

∫ π

−π

d3k

(2π)3
ln

(
(6− 2

∑
µ

cos kµ)

)
= −2.51008. (36)

The σ = +1 root minimises this free energy. We see the simple result that F (u1, J) is linear in

u1 (for the topological solution), moreover the coefficient 1/6 is the same as the disordered phase,

hence the critical point separating these two phases is independent of u1 – although the direct

transition between disordered and topological phases is masked by the trivial phase, as shown

next.

E. Trivial Higgs Solution

The trivial solution is more difficult. In this phase we set H01 ≡ H and H02 = H03 = 0. Once

again there are multiple classes of solutions, and we present just the dominant – leaving the other

for the appendix. By inspection, we can set A01 ≡ A1 and A02 = A03 ≡ A2 and B01 ≡ B1 and

B02 = B03 ≡ B2. We can massage the saddle point expressions analytically to express all fields in
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terms of just A1,

B1 = −λ̄+ 6A1 (37)

B2 = u1 +
1

2
(λ̄− 6A1) (38)

H2 =
A1

J
− γ2

A1

(39)

λ̄ = 6A1 −
2u1

J
A1 −

u1

3A1

. (40)

Finally, we have reduced the saddle point equations to a self-consistent equation in the single field

variable A1, which reads

A2(A1) = J

∫ π

−π

d3k

(2π)3

cos kx
W (A1)− 2A2(A1)

∑
µ cos kµ

. (41)

We notice one simple analytic solution: A2 = 0. Setting A2 = 0, we get from Eq. (28d) a single

polynomial equation in a single variable A1

1 = H(A1)2 +
γ1

A1

+
2

λ̄(A1) + B2(A1)
(42)

which gives four roots: denoted A
(i)
1 , i = 1, 2, 3, 4. The roots can be obtained analytically, although

the expressions are lengthy.

IV. MONTE CARLO RESULTS

We perform MC simulations of the parent action S0 (1), with the physical value of Nh = 4.

Details of the MC updates schemes are provided in Appendix C. Here we consider two diagnostics

of the phases and transitions:

(i) The first diagnostic is the eigenvalues ωi > 0, with i = 1, 2, 3 from the singular value decom-

position of the Higgs field H0a (23). The saddle point analysis predicts that the trivial phase will

posses inequivalent eigenvalues, whereby ω1 > 0 and ω2 = ω3 = 0. Meanwhile the topological

phase will have three degenerate non-zero eigenvalues, ω1 = ω2 = ω3 > 0.

(ii) The second diagnostic is the scalar observable

Φ =
1

V

∑
l,m

(∑
i

Qlm(i)

)2

(43)

where Qlm(i) is the gauge invariant order parmeter (3). According to the saddle point analysis,

Φ shows markedly different behaviour as a function of (u1, J) for the topological and trivially
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FIG. 3: System averaged onsite eigenvalues 〈ωi〉 of the Higgs field Hal(i) = O1;abWbm(i)O2;ml

obtained via SVD. (a), (b), (c), and (d) correspond to u1 = {10, 40, 60, 100}. System size L = 12.

ordered configurations. Moreover from (23), we see that Q`m is related by global O(4) rotations

to a diagonal matrix

Q`m = O2,`′`O2,m′m


3
4
ω2

1 − 1
4
ω2

2 − 1
4
ω2

3 0 0 0

0 3
4
ω2

2 − 1
4
ω2

3 − 1
4
ω2

1 0 0

0 0 3
4
ω2

3 − 1
4
ω2

1 − 1
4
ω2

2 0

0 0 0 −1
4
ω2

1 − 1
4
ω2

2 − 1
4
ω2

3


`′m′

(44)

Note that the diagonal elements equal ω2
1(3/4,−1/4,−1/4,−1/4) in the trivial Higgs phase, and

equal ω2
1(1/4, 1/4, 1/4,−3/4) in the topological Higgs phase. These configurations of Q`m are not

equivalent to each other, and cannot rotated to each other by a O(4) transformation.

To obtain the first observable in the MC simulations, after the ground state is reached, we

perform the SVD (23) at each site and average over the system, giving the averaged eigenvalues

13



〈ωi〉. In Figure 3 we plot the averaged eigenvalues 〈ωi〉, and their evolution with J for various u1.

These are obtained from MC simulations on lattices of size L3 with L = 12. The phase transition

between topological and trivial order is identified with the large discontinuity in the eigenvalues

as they transition from nearly degenerate, to non-degenerate. The corresponding phase boundary

estimate has already been plotted in Figure 2, from which we see qualitatively the same trend in

transitioning from the disordered or topological into the trivial phase, i.e. a linear dependence of

u1,c ∝ Jc. This agreement indicates that 1/Nh corrections do not destabilize the topological phase.

An additional feature is apparent from the eigenvalues for u1 > 10 and J < Jc, see e.g. J ∼ 20

in Figure 3(d). This is perhaps a sign of the small window (in J) of trivial phase wedged between

the disordered and topological phases – as predicted by the saddle point analysis and shown in

Figure 2.

In Figure 4 we plot the scalar Φ and its evolution with J for various u1. The data is for collected

from simulations with L = 12. Φ is also calculated from the saddle point equations by taking the

Higgs field configuration of the trivial or topological phases and computing at arbitrary (u1, J).

Comparing the MC data with analytic results, we see quantitative agreement for Φ deep within

each of the topological and trivial Higgs phases, i.e. away from the transition. As already observed

from the eigenavlue analysis, the phase numerical Nh = 4 and analytical Nh →∞ phase boundaries

do not match. Hence we cannot compare the two approaches in this vicinity. Reassuringly, the

phase boundaries, as identified via 〈ωi〉 and Φ, are indeed consistent.

We conclude this section by stating that both observables give the same estimate for the

topological-to-trivial phase boundary. And that the combined results of (i) and (ii) paint a con-

vincing picture of the underlying phases and transitions.
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FIG. 4: Observable Φ as a function of J at fixed u1 = {10, 40, 60, 100} for (a), (b), (c), (d),

respectively. Dashed and solid black lines correspond to Φ calculated from the saddle point

solutions, assuming either the trivial or topological phase respectively. Yellow points are MC

data taken on system size L = 12.

V. DISCUSSION

We study phases of SU(2) gauge theory with multiple adjoint Higgs fields in 2 + 1 dimensions.

Such a gauge theory has been motivated physically as a theory for optimal doping criticality in the

cuprate superconductors [1], whereby the confining phase corresponds to the Fermi liquid, while

the Higgs phases (both topological and trivial) are the candidates for pseudogap phase.

The primary motivation of the present work was to determine whether the phases of interest

physically – the confining (Fermi liquid), trivial and topological Higgs (pseudogaps) – are stable and

survive at strong gauge field coupling. To investigate, we employ two complementary approaches;

an analytic saddle point analysis, which relies on a large number of Higgs flavours (Nh →∞), and a
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numerical Monte Carlo analysis at the physically relevant Nh = 4 Higgs flavours. We demonstrate

that all three phases are stable and occupy a non-zero volume in the phase diagram. The results

lend support to the SU(2) gauge theory with multiple adjoint Higgs fields as a candidate low energy

description of the optimally doped cuprates. Moreover, the agreement between the Nh → ∞
saddle point analysis and that of the numerical Nh = 4, suggests that O(1/Nh) corrections do not

destabilize the phase diagram. This finding also serves as a consistency check for future large Nh

analytic studies of this model.

Aside from the original physical motivation, the present work has established that the minimal

model (1), which is obtained from just the first order expansion in the strong gauge coupling

expansion (14), is sufficient to generate a stable Z2 topologically ordered phase. We expect that

such generic minimal models will also be applicable in the context of spin-liquids.
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Appendix A: Strong-Coupling Expansion: Higgs and gauge plaquettes

We denote gauge plaquettes

�(θ̄1,θ̄2,θ̄3,θ̄4) ≡ Tr
(
U(θ̄1)U(θ̄2)U(θ̄3)U(θ̄4)

)
, (A1)

and we find that only even powers integrate to non-zero

〈�(θ̄1,θ̄2,θ̄3,θ̄4)〉U = 0 (A2)

〈�2
(θ̄1,θ̄2,θ̄3,θ̄4)〉U = 1. (A3)

Let’s consider Higgs-hopping terms decorating an elementary plaquette, and expand in Gauge

plaquettes. The lowest-order terms that are trivial in adjoint indices are

〈Uab(θ̄1)Ubc(θ̄2)Ucd(θ̄3)Uda(θ̄4)〉U = 0 (A4)

〈Uab(θ̄1)Ubc(θ̄2)Ucd(θ̄3)Uda(θ̄4) �(θ̄1,θ̄2,θ̄3,θ̄4)〉U = 0 (A5)

〈Uab(θ̄1)Ubc(θ̄2)Ucd(θ̄3)Uda(θ̄4) �2
(θ̄1,θ̄2,θ̄3,θ̄4)〉U =

1

16
(A6)

〈Uab(θ̄1)Uab(θ̄1) �2
(θ̄1,θ̄2,θ̄3,θ̄4)〉U = 〈Uab(θ̄1)Uab(θ̄1)〉U 〈�2

(θ̄1,θ̄2,θ̄3,θ̄4)〉U =
3

4
. (A7)

The final expectation value should will not contribute to the expansion since it will be cancelled

by the disconnected vacuum. The contribution to the action is then

〈P̂ 〉U =
1

16

κ4

4!

2

2

β2

22

∑
〈ijkl〉∈�

Hah(i)Hal(i)Hbl(j)Hbm(j)Hcm(k)Hcn(k)Hdn(l)Hdh(l) , (A8)

where P̂ is shown diagrammatically in Figure 1. Factors: 1/16 from average; κ4/4! from fourth

order expansion of Higgs-Gauge links; 2 from two directions around a single plaquette; 1/2 from

second order expansion of the Gauge-plaquette; (β2/2)2 due to definition of Gauge-plaquette cou-

pling constant. We caution the reader that the prefactor obtained in (A8) assumes a particular

(clockwise) orientation of 〈ijkl〉 ∈ � on the plaquettes.
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Appendix B: Saddle Point Solutions

1. Disordered

a. Class II

We also search for A0 6= 0 solutions. We make use of the rearrangement

(λ̄+B0)
1

3
− 6

J
A2

0 =

∫ π

−π

d3k

(2π)3
(λ̄+B0 − 6A0 cos kx)G(k) = 1 (B1)

⇒ λ̄+B0 = 3

(
1 +

6

J
A2

0

)
(B2)

Substituting into (20a) and (20b),

1 =

∫ π

−π

d3k

(2π)3

3

3
(
1 + 6

J
A2

0

)
− 6A0 + A0(6− 2

∑
µ cos kµ)

(B3)

A0 = J

∫ π

−π

d3k

(2π)3

cos kx

3
(
1 + 6

J
A2

0

)
− 6A0 + A0(6− 2

∑
µ cos kµ)

. (B4)

We now manipulate

A0 =

∫ π

−π

d3k

(2π)3

3

β + (6− 2
∑

µ cos kµ)
(B5)

A2
0 = J

∫ π

−π

d3k

(2π)3

cos kx
β + (6− 2

∑
µ cos kµ)

(B6)

β ≡ 1

A0

[
3

(
1 +

6

J
A2

0

)
− 6A0

]
(B7)

And solve numerically for β, using(∫ π

−π

d3k

(2π)3

3

β + (6− 2
∑

µ cos kµ)

)2

= J

∫ π

−π

d3k

(2π)3

cos kx
β + (6− 2

∑
µ cos kµ)

. (B8)

Finally, having obtained β as a function of J , we invert the definition to find A0(β, J), i.e.

A±0 (β, J) =
1

36

(
(β + 6)J ±

√
(β + 6)2J2 − 216J

)
. (B9)

We find that the A+
0 solution is inconsistent with the saddle point equations, and so we only keep

A−0 . For this solution, J ∈ (6.67, 9), β ∈ (0,∞) and therefore 0 ≤ A−0 < 1. This solution is also

independent of u1.

Inspecting the free energy for class I and II,

fI =
u1

6
− 3

2
(1− ln 3) (B10)

fII =
u1

6
− 9A2

0

2J
− 3

2

(
1−

∫ π

−π

d3k

(2π)3
ln

(
3

(
1 +

6

J
A2

0

)
− 6A0 + A0(6− 2

∑
µ

cos kµ)

))
, (B11)
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we see (via numerical evaluation) that the difference is positive for all A−0 (J)

fII − fI =

− 9A−0 (J)2

2J
+

3

2

∫ π

−π

d3k

(2π)3
ln

(
3

(
1 +

6

J
A−0 (J)2

)
− 6A−0 (J) + A−0 (J)(6− 2

∑
µ

cos kµ)

)
− 3

2
ln 3 > 0.

This holds for all u1 – hence only class I is found in the phase diagram spanned by (u1, J).

2. Topological

a. Class II

The second class of solution has H01 ≡ H1 and H02 = H03 ≡ H2, which gives A01 = A1 and

A02 = A03 = A2 and similarly B01 = B1 and B02 = B03 = B2. We reduce the saddle point

equations to expressions in λ̄ only,

A± =
1

4
(
3− u1

J

) (λ̄±√λ̄2 +
8

3u1

(
3− u1

J

))
(B12)

B± = 6A± − λ̄ (B13)

H2
± =

A±
J
− γ2

A±
. (B14)

Now there are two possibilities: A1 = A±, A2 = A∓. For each case, one finds λ̄ analytically by

solving

∑
a

Ba = 2u1 = 6(A± + 2A∓)− 3λ̄. (B15)

However, we find that one of A+ or A− is negative for any J , and hence the Greens function is

negative (since in this phase m2 = 0) and therefore the logarithm in free energy yields a complex

value. We can safely disregard this solution.

b. Class III

Another topological solution has H01 = H02 ≡ H, and H03 = 0. (One can also consider nonzero

such that H01 6= H02, but these don’t provide real solutions.) The saddle point equations can be
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recast in terms of λ̄

H2 =
A

J
− γ2

A
(B16)

B = 6A− λ̄ (B17)

B3 = 2u1 − 2B (B18)

A =

√
3
√

3J2λ2 + 24J2u1 − 8Ju2
1 + 3Jλ

2(18J − 6u1)
(B19)

A3 = 0. (B20)

Finally we need to solve the equation in a single variable λ̄

1 = H2 +
2γ1

A
+

1

λ̄+B3

. (B21)

This has multiple roots; we keep only the consistent root.

3. Disordered

a. Class II

There exist another set of solutions where B02 6= B03. They are arrived at by setting A02 =

A03 = 0 and the following manipulations

B1 = −λ̄+ 6A1 (B22)

B2,3 =
1

2
(λ̄±

√
λ̄2 + 8u1) (B23)

H2 =
A1

J
− γ2

A1

(B24)

1 = H2 +
γ1

A1

+
λ̄

2u1

(B25)

λ̄ = 2u1

(
1− A1

J
− 1

6A1

)
. (B26)

Finally, solving

1 = H2 +
γ1

A1

+
1

λ̄+B2

+
1

λ̄+B3

(B27)

for A1 provides four roots (as before). We do not present the results, but we find that these do

not correspond to a lower free energy than the previous solution where B02 = B03.
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Appendix C: MC Details

1. Re-writing the action

We have the effective action (re-produced here for convenience)

S0 = − J

2Nh

∑
〈ij〉

Hal(i)Ham(i)Hbl(j)Hbm(j) +
u1

2Nh

∑
i

Hal(i)Ham(i)Hbl(i)Hbm(i) (C1)

with fixed length constraint on each site (2). For implementation of a Wolff cluster type update,

we find that it is essential to rewrite the Higgs fields as a flavour vector

Ha =


Ha

1

Ha
2

Ha
3

Ha
4

 (C2)

such that the action is

S0 = − J

2Nh

∑
〈ij〉

[
Ha(i) · Hb(j)

]2
+

u1

2Nh

∑
i

[
Ha(i) · Hb(i)

]2
. (C3)

2. Ising Projection

To implement Wolf cluster updates we must generate an effective Ising model. This is achieved

through projecting the Higgs flavour vector (C2) onto a randomly oriented unit four vector r

Ha(i) = |Ha(i) · r| rεai σi + Ha(i)− (Ha(i) · r) r = αai σi + βai (C4)

where

εai =
sign (Ha(i) · r)
sign

(
H1(i) · r

) , σi = sign
(
H1(i) · r

)
. (C5)

σi will play the role of the Ising variable, while εai absorbs the the different signs of the projections

for the different gauge components ‘a’. Meanwhile, the new vectors appearing in Eq. (C4) satisfy

the following conditions (by design)

αai · βbj = 0 , ∀a, b, i, j . (C6)
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3. Ising Model

Substituting the Ising projection (C4) into the action (C1) and dropping all terms without the

Ising degree of freedom σi – since they will be constants w.r.t. the Wolff cluster updates – we

obtain

SIsing = −
∑
〈ij〉

Jijσiσj , Jij =
J

Nh

[∑
a,b

(
αai ·αbj

) (
βai · βbj

)]
. (C7)

For the Wolff cluster updates, the basic procedure is: 1. Randomly generate Higgs flavour vectors

Ha(i) for all a = 1, 2, 3 and at each site (i). 2. Randomly generate r (which is uniform across the

the lattice). 3. Calculate the corresponding Jij and the initial values of σi. 4. Perform standard

Wolff updates on the σi variables; i.e. cluster growth with probability P (i, j) = 1−e−2Jij . Perform

NMC such growth steps. 5. Recalculate Ha(i) and repeat steps 2–5. To maintain ergodicity, we

also employ standard local metropolis updates.
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