arXiv:1912.06108v1 [cond-mat.str-el] 12 Dec 2019

Phases of SU(2) gauge theory
with multiple adjoint Higgs fields in 2+1 dimensions

Harley D. Scammell,! Kartik Patekar,? Mathias S. Scheurer,! and Subir Sachdev!

! Department of Physics, Harvard University, Cambridge, MA 02138, USA
2Department of Physics, Indian Institute of Technology, Powai, Mumbai-400076, India
(Dated: December 13, 2019)

Abstract

A recent work (arXiv:1811.04930) proposed a SU(2) gauge theory for optimal doping criticality in the
cuprate superconductors. The theory contains INj, Higgs fields transforming under the adjoint representa-
tion of SU(2), with Nj = 1 for the electron-doped cuprates, and N}, = 4 for the hole-doped cuprates. We
investigate the strong-coupling dynamics of this gauge theory, while ignoring the coupling to fermionic
excitations. We integrate out the SU(2) gauge field in a strong-coupling expansion, and obtain a lattice
action for the Higgs fields alone. We study such a lattice action, with O(Nj) global symmetry, in an
analytic large Np expansion and by Monte Carlo simulations for N, = 4 and find consistent results.
We find a confining phase with O(Nj) symmetry preserved (this describes the Fermi liquid phase in the
cuprates), and Higgs phases (describing the pseudogap phase of the cuprates) with different patterns of
the broken global O(Ny) symmetry. One of the Higgs phases is topologically trivial, implying the absence
of any excitations with residual gauge charges. The other Higgs phase has Zs topological order, with
‘vison’ excitations carrying a Zo gauge charge. We find consistent regimes of stability for the topological

Higgs phase in both our numerical and analytical analyses.



I. INTRODUCTION

A previous study of a 2+1 dimensional cuprate gauge theory, developed in Ref. 1, fractionalised
the spin density wave (SDW) order parameter by going to a rotated reference frame in spin-space
and obtained a theory with of Higgs fields with multiple (V) flavors which are charged under an
emergent local SU(2) gauge field. The Higgs fields also transform under the lattice space group
and time reversal; consequently these symmetries can be broken in the Higgs phase. It was found
that the symmetry breaking transitions associated with these Higgs fields lead to a variety of
order parameters — constructed as gauge-invariant bilinear or trilinear combinations — which are
consistent with the symmetry breaking patterns observed in experiments on cuprates near optimal
doping. Further, upon considering electronic degrees of freedom coupled to the Higgs fields, a

rather natural description of the pseudogap phase emerged [1].

In this paper, we wish to consider the strong-coupling dynamics of the SU(2) gauge theory in
more detail. Apart from the Higgs phase where the Higgs fields are condensed, there can also
be a confining phase where there are no excitations associated with the Higgs fields, and the
electronic degrees of freedom resume normal Fermi liquid behaviour. Hence, in this description,

the pseudogap is associated with the Higgs phase, and Fermi liquid with the confined phase.

Moreover, the pseudogap/Higgs phase can have a topological structure beyond that associated
with broken global symmetries. This structure is associated with any gauge group left unbroken by
the Higgs condensate [2], and is also tied to the pattern of broken global symmetry. It was found
that, depending upon parameters, the Higgs condensate could break the SU(2) gauge symmetry
down to U(1) or Zs. The U(1) gauge field confines in 2+1 dimensions, and so the U(1) case
is ultimately topologically trivial. However, the Z, case leads to Zy topological order [3, 4],
with deconfined excitations carrying Zs, electric and magnetic gauge charges. Specifically, the Z,
magnetic charges are carried by vortex configurations (‘visons’) in the Higgs fields, while the Z,

electric charges are carried by gapped spinons excitations.

We note that an earlier study [5] of a 2+1 dimensional SU(2) lattice gauge theory with a single
(Ny, = 1) adjoint Higgs field also considered the case where the Higgs phase breaks the SU(2) down
to U(1) [6]. In this case, the confining and Higgs phases were found to be continuously connected,
and the theory has only one phase and no phase transition. However, in our case the topologically
trivial Higgs phase does break global symmetries for N, > 1, and so even the trivial Higgs and
confining phases remain separated by a phase transition.

The objective of the present work is to study the strong-coupling dynamics of the 2+1 dimen-
sional SU(2) gauge theory with N, > 1 adjoint Higgs fields. For simplicity, we will generalize the
space group symmetries of the model of Ref. 1 to O(Ny,). We will also neglect the coupling to

Fermi surface excitations here, but address this issue in forthcoming work. We will begin with a



lattice discretization of the action of Ref. [1], and integrate out the SU(2) gauge field to obtain the

following lattice action for the Higgs fields alone
J . . .
So == Hag(i)Hop (i) Hye(§) Hym (7) 2Nh Z H oo (4) Ham (7) Hye (7) Hym (7) - (1)

Here i labels the sites of a cubic lattice, and H,,(7) is the real Higgs field, with a = 1,2, 3 the SU(2)
adjoint gauge index, and ¢ = 1... N, the flavor index. Note that Sy is invariant under local SU(2)
gauge transformations, but only under global O(N}) flavor rotations. We also find it convenient

to impose a fixed length constraint on every lattice site, ¢,
> HZ(E) = Ny . (2)
al

The action Sy comprises a gauge invariant hopping term J that is quartic in Higgs fields, as well
as a quartic potential u; inherited from the original model.
We now define a gauge-invariant order parameter which is a second-rank traceless tensor in the

global O(N},) symmetry

Qum(i) = Hog(i) Ho (i) — f@—"}jﬂanumm(z) 3

This order parameter will diagnose the broken symmetries across the phase diagram. The Zo
topological order is more subtle to extract directly: we provide evidence for it in the context of
the large N}, expansion of Sy, and the pattern of symmetry breaking in the Monte Carlo study.
We will study the effective lattice action Sy using both a large N, saddle point analysis and
numerical Monte Carlo (MC) simulations. We will establish that the competition between the two
terms in Sy in Eq. (1) allows for the 3 phases discussed above:
(i) Confining: The Higgs field is fully ‘disordered” and the global O(N}) symmetry is preserved.
This corresponds to the overdoped Fermi liquid in the cuprates.
(7i) Trivial Higgs: The Higgs condensate breaks the SU(2) gauge symmetry down to U(1),
which ultimately confines. The O(N},) symmetry is broken down to O(N, — 1). This is a possible
pseudogap phase for the cuprates, and is separated from the confining phase above by a phase
transition because of the broken symmetry.
(iii) Topological Higgs: The Higgs condensate breaks the SU(2) gauge symmetry down to
Zs, and there is Z, topological order. For N, > 3, the global O(V,) symmetry is broken to
O(3)xO(Ny, — 3). This is also a possible pseudogap phase.
The reader will notice that for the special case of N, = 4 of interest to us, the patterns of
symmetry breaking in the trivial and topological Higgs phases are the same: O(4) is broken down

to O(3) in both cases. Nevertheless, as we shall show, it is possible to distinguish these cases by
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more carefully studying the manner in which O(4) breaks down to O(3). Also, for the cases of
N, = 2,3, the topological Higgs phase has no symmetry breaking; nevertheless the topological
Higgs phase remains distinct from the confining phase because of its Z, topological order.

The outline of the paper is as follows: Section II details the strong-gauge coupling expansion
employed to obtain the lattice action for the Higgs field alone Sy (1). In section I we rewrite
the effective action Sy using Hubbard-Stratonavich decoupling fields, and subsequently solve the
saddle point equations in the limit of N, — oo. In this large N, we produce the phase diagram
of the model, which hosts the confined phase, as well as the trivial and topological Higgs phases.
In section IV we turn to a numerical monte Carlo analysis of the effective action Sy (1), with the
physically relevant N, = 4. We employ two observables to diagnose the various phases. Finally,

we discuss our results in section V.

II. STRONG-COUPLING EXPANSION

We sketch the details of the strong coupling expansion, which also allows us to review the model
studied originally [1]. We consider a theory of real Higgs fields H,s, where a = 1,2, 3 is the SU(2)
adjoint gauge index, while £ = 1... N, is the flavor index. We will arrive at a theory for this Higgs

field which is a discrete time analog of the Schwinger boson theory of antiferromagnets.

A. Lattice Model

The strong-gauge coupling expansion demands that we work on the lattice. The lattice form of

the Euclidean Action/Lagrangian is (see e.g. [7])

~

—a Z{ (3% + ) T [H (i )F[m(i)] I [Hm(i)ﬁu(i)ﬁm(i +aéM)Ug(i)] g (Hom () Ham (i))?

ot (Ht) H O Hia ) i ) = - (o DB 0 ) + 53 1510 6]} @

u>v

where k = 4/a*, 8 = 4/(ga?)? and a is the lattice spacing; summation is over the elementary
unit cell, whereby e, = {é,, é,, é;}; trace is over gauge indices, and summation over flavours m is

implied. The Higgs field, gauge field link, and Yang-Mills plaquette operators are given by

Hy (i) = Hyp (i)7° (5)
U, (i) = eladen(d” (6)
G (i) = Uu(0)U, (i + aé,)Ul(i + aé, + aé,)Uj(i + aé,) (7)



where 7% are Pauli matrices, with normalization Tr [TaTb} = §%/2. The gauge link and plaquette
operators follow the usual lattice-gauge transformation laws [7]. From Eq. (7) we see that the

Yang-Mills term G (1) is just the parallel transport around the elementary unit cell.

B. Strong-Coupling Expansion

Due to strong coupling g — oo, the kinetic Yang-Mills action is neglected and then each gauge
link, U,(7), is an independent random SU(2) matrix. We choose to parameterise each such link
by the three Euler angles 6 = {6,, ¢},

U(0) = cos 0 64+ isinfsini cos ¢ 61 + isinb cost) 65 + isinfsinsin ¢ 63 . (8)
At strong-coupling we may treat the random Higgs-hopping term Tr (f[m(z)f]u(z)ﬁm(z + [L)U);(Z))
as a perturbation, even though this is not formally an expansion in 1/¢g?. Expanding the partition

function in this hopping term generates terms such as,
/ DUTTY (0,U (@)U (B)) = (Tx (0,U(B)o U (B))),, = 0. ()

The expectation value must vanish since it transforms nontrivially under SU(2) transformations;
the integration over [DU] evaluates to zero. To consider higher-order terms, it is convenient to

first define the adjoint matrix

Unp(0) = ~Tr (0,U(0)a,UT(0)) (10)

A~ =

with normalization Tr (6,0,) = 6. The non-vanishing terms in the expansion of the Higgs hopping
will need to be invariant in the adjoint indices. We find that for example (with no contraction over

a, b indices),

Un( @)y =0 (1)
Unn OUen(0)) = (12)
(Ua(01)Ua(02)); = 0. (13)

Here 0, # 0, signifies different gauge links. The nonzero expectation value above implies that
the lowest order expansion does not require a 1/¢? gauge-plaquette expansion to compensate, see
Figure 1 for a diagrammatic representation. We call this term the double Higgs link D. The

contribution to the action is then the gauge field averaged

<ﬁ>U ~ /{2ZHal(i)Ham(i)Hbl(j)Hbm(j)> (14)
(ig)
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FIG. 1: Diagrammatic representation of the strong-gauge coupling expansion. Operators D, P

correspond to the double Higgs and Higgs plaquette. We see that D does not require any gauge
plaquette terms [ at leading order, while the P requires two gauge plaquettes at leading order.

Definitions are shown on the right hand side.

which is manifestly gauge-invariant. Higher order terms are derived in the Appendix, e.g. the
Higgs-plaquette term P of Figure 1. We neglect such a term in the present analysis, since we
will find that the double Higgs link, D, is already sufficient to generate the expected topological
properties of the underlying gauge theory.

Imposing the constraint in Eq. (2), and re-exponentiating the double Higgs link term (14), we

arrive at the effective action Sy in Eq. (1) on the three-dimensional cubic lattice.

III. LARGE N; LIMIT

We set up the large N, expansion by writing the partition function as
7= / TT @i, ) T] @B TT a2 ) [T i) e
(i5) i i i

S = Z w — Aap (1, ) Hae(7) Hye(5)
(ig)

2J
Y Ny [1895?(@1 422D b5 ) 2 () ) - ) (15)

For the fluctuations to be stable, the signs and factors of ¢ have been chosen assuming u; > 0.

But the formalism works for both signs of u;, and we just have to rotate the contour for B in the
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FIG. 2: Phase Diagram. Coloured regions correspond to the phases found in the saddle point
approximation (N, — oo). Black empty circles correspond to the topological-to-trivial phase
transition as found in MC simulations of the parent model at N}, = 4, and with system size L3;
L=12.

fluctuations for u; < 0. We are interested in the case of J > 0.

A. Saddle-Point Phase Diagram

We begin by providing the results of the saddle point analysis — the details of which are left for
subsections [I1 B and [II C. Comparing the free energies of the disordered, topological and trivial
phases obtained in the saddle point analysis we arrive at the phase diagram shown in Figure 2.
Noteworthily, we find that all phase boundaries are of first order. Also shown in Figure 2 is the
topological-to-trivial phase transition as determined by MC simulations of the parent action Sy
(1), for which we take the physical number of Higgs flavours NNV, = 4. Details of the identification
of the phase transition from MC simulations are provided Section V.

We now outline how the saddle point solutions were obtained, further details are provided in

Appendix B.



B. Confining Phase

In the confining phase, the Higgs field is fully disordered and maintains the O(N},) global
symmetry. This places no restrictions on the other decoupling fields appearing in action S (15),
instead we will assume a gauge-invariant saddle point of S (15). In the limit Nj, — oo limit, the

saddle point fields are then,

Hy(i) =0 (16a)
Auw(i, ) = 0apAo (16b)
iBay(1) = 645 Bo (16¢)
iA(i) = A (16d)

It follows that the propagator of the Higgs field is diagonal in flavor and color indices and is given

by
1

k) = 1
G(k) Ap(6 — 2 cos(ky) — 2 cos(ky) — 2 cos(k;)) +m? (17)
where the mass gap relates to the saddle point fields via
m? = X+ By — 6A4,. (18)

In the large N, limit, the free energy density, F', obtained by integrating over the Higgs fields

Hal(i)is
F 342 B2l X 3 [T dk
m—?’{ﬁ‘g—ul —a‘éfﬂﬁln[(;(k)} (19)
F

which relates to the partition function via Z = e~ ¥V, where V is the Euclidean volume. Minimising

the free energy, the saddle point equations determining Ay, By, and m? are obtained

T A3k
J / Tk sk G k) = A (20b)
. Q73 x 05
2
BO = gul. (20C)

There are two classes of solutions to these saddle point equations in disordered phase: those
with Ag = 0, and those with Ay # 0. In the first case, the saddle point admits a particularly

simple solution,

_ 2
Ay = 0; )\:3—30:3—%. (21)



From which it follows that the free energy is independent of J,

F U 3
— (1 =1 22

Details presented in the appendix show that the Ay # 0 solutions always posses a higher free

energy in the (J,u;) phase diagram, and hence would only appear as metastable states.

C. Higgs phases

In the ordered phases, we proceed as in Ref. [8]. Moreover, we follow Ref. [1], and note that —

by the singular value decomposition theorem — any Higgs field can be written in the form
Hal - Ol;abWmeQ;ml (23)

where O; and Oy are orthogonal matrices in color and flavor spaces respectively, and W is a
rectangular matrix with only p = min(3, NV;,) non-zero elements along its diagonal, which are all

non-negative. Owing to this decomposition, we write the Higgs field using the following ansatz,

Ha[@) = \/FhHOa(SaZ + Hlaé(i) (24)

where Hy, is a possible non-zero, site-independent saddle-point value, and we integrate over the
additional fluctuations, Hy4 (i), around the saddle point. We allow the other saddle-point variables

to depend upon the color indices by writing,
0Lb<Z j) - 5abAOa
ZBab( ) - 5abBOa
iNi) = X. (25)

In the large N, limit, the free energy density, F', obtained by integrating over the Hyy (i) is

F 3A2 B2 B,
I _a_3AaH2_ Oa aHg H2
N, Z{ 2] 007500 Qo + Oa Z Oa

) e

where the Greens function obtains a color index, and is given by,

1

Ga(k) = = : (27)
A+ By, — 240, (cos(ky) + cos(ky) + cos(k;))

We now study the saddle point equations of (26) with respect to Hy,, Aga, Boa, and X. (Note: we
cannot just globally minimize F' because of the i’s in (15).) The saddle point of the action with

respect to the Hy, gives us the three equations

AHy, = (—Bog + 6A0q)Ho, , for all a, with no sum over a. (28a)
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We do not cancel out the Hy, in (28a) because Hy, could vanish for some a. The saddle point
with respect to \ is

> {Hga +/7; %Ga(k)} =1. (28b)

a —

Finally, the saddle point equations with respect to Ay, and By are

T 3k 5
J —— cos(k;)Go(k) = Aoa — JH;, (28c¢)

. 8m3
B()a = 2U1 |:H§a +/

T A3k

3
- 8T

Ga(k)} (28d)

Note that Eq. (28) reduces to (20) when Hy, = 0.
We now have to solve the 10 equations (28a,28b,28d) for the 10 variables Hy,, Aga, Boa, and A

as a function of J and w;. There will be two types of solutions: one in which only one of the Hy, is
non-zero, and the other in which all Hy, are equal to each other — this corresponds to the topological
phase, as deduced by the global and gauge symmetry breaking patterns, which is discussed in [1],
yet we outline the argument here for continuity of presentation: The gauge symmetry is SU(2),
condensing one Higgs flavour reduces this to a remnant U(1) which corresponds to rotations about
the axis set by the condensed field, while all Goldstone modes are Higgsed (i.e. gapped). It is
well established that the gapped U(1) gauge theory is ultimately in a confining phase, yet the
confinement length scale depends on the details of the system. This is the trivial Higgs phase, and
is achieved in the saddle point by just one H, # 0. We mention that Berry phase interference
effects could act to deconfine the U(1) gauge theory [9]; we do not consider such effects in this work.
Alternatively, condensing multiple Higgs flavours, with some orthogonal components, breaks the
SU(2) gauge down to Zs (since the Higgs fields themselves are in the adjoint representation). This
remnant Zy gauge theory is naturally deconfined, supporting Zs topological order. Condensing

multiple Higgs flavours is achieved by the saddle point with all Hy, # 0 and equal to each other.

The true ground state configuration will be the saddle point solution for which the free energy

(26) is minimised. We will now compute the saddle point equations and free energy for both cases.

D. Topological Higgs Solutions

The topological solution can be obtained analytically. In this phase three classes of solutions
arise, here we will present just the dominant one, the other two are left for the appendix. For this

solution we have Hy = Hyps = Hyz3 = H. By inspection of the saddle point equations, the solution
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has Ag; = Age = Aogs = A and By = Bya = By = B. The solutions are (with o = =)

1
A, = % t oV =6] (29)
2
B=u (30)
Ao = 6A, — B (31)
2 Ao‘ 2 .. .
H* = NN (H is independent of the o index) (32)

where the constant 7, (and for later use «;) are defined as

_/7r B 1 _/w B cos k, 1 (33
e w(27T)36—QZHCOSkM’ "2 = w(277)36—2zucosku’ 71 72—6.

The free energy in this phase can be written solely in terms of A and B, we find

F o 94* 3B° 1 3 (7 &k
L A Y Y In | A(6—2 k) 34
% 57w 204D+ [ g n( 0722 “)> ()

This is straightforward to evaluate using the relations above (29) and (30). Using notation A,

with 0 = 4, we get the expression,

1 1 6
N Pl ) = o (—6J—6o (x/(J—G)J+3a> —36In (M(H J) +4u1> +c (35)

c= —g /: (;iw];g In ((6 - 2%:008 k:u)> — —2.51008. (36)

The o = +1 root minimises this free energy. We see the simple result that F'(uq,J) is linear in
uy (for the topological solution), moreover the coefficient 1/6 is the same as the disordered phase,
hence the critical point separating these two phases is independent of u; — although the direct
transition between disordered and topological phases is masked by the trivial phase, as shown

next.

E. Trivial Higgs Solution

The trivial solution is more difficult. In this phase we set Hyy = H and Hy; = Hpz = 0. Once
again there are multiple classes of solutions, and we present just the dominant — leaving the other
for the appendix. By inspection, we can set Ay = A; and Ay = Aps = Ay and By, = B; and

Bgs = Bz = B;. We can massage the saddle point expressions analytically to express all fields in
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terms of just Aq,

By = A+ 64, (37)
1 -
Bgzu1+§()\—6A1) (38)
Ay V2
H* =" — = 39
7 (39)
- 2U1 Uy
A=06A4; — —A — —. 4
S Y (40)

Finally, we have reduced the saddle point equations to a self-consistent equation in the single field

variable A;, which reads

T 4k cos k,,
p (271')3 W(Al) - 2A2<A1) Z# COS ]f“.

Ay(Ay) = J/ (41)

We notice one simple analytic solution: Ay = 0. Setting A = 0, we get from Eq. (28d) a single

polynomial equation in a single variable A;

2
SE (42)

1=H(A)* + A MNAY) + By(A)

which gives four roots: denoted Agi), 1 =1,2,3,4. The roots can be obtained analytically, although

the expressions are lengthy.

IV. MONTE CARLO RESULTS

We perform MC simulations of the parent action Sy (1), with the physical value of N, = 4.

Details of the MC updates schemes are provided in Appendix C. Here we consider two diagnostics
of the phases and transitions:
(i) The first diagnostic is the eigenvalues w; > 0, with ¢ = 1,2,3 from the singular value decom-
position of the Higgs field Hy, (23). The saddle point analysis predicts that the trivial phase will
posses inequivalent eigenvalues, whereby w; > 0 and ws = w3 = 0. Meanwhile the topological
phase will have three degenerate non-zero eigenvalues, w; = wy = w3 > 0.

(ii) The second diagnostic is the scalar observable
) 2
®= %; (}i :@lm@')) (43)

where @, (7) is the gauge invariant order parmeter (3). According to the saddle point analysis,

® shows markedly different behaviour as a function of (uq,J) for the topological and trivially
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FIG. 3: System averaged onsite eigenvalues (w;) of the Higgs field Hy(7) = O1.0 Wi (1) O2.mi
obtained via SVD. (a), (b), (c), and (d) correspond to u; = {10, 40, 60, 100}. System size L = 12.

ordered configurations. Moreover from (23), we see that @, is related by global O(4) rotations

to a diagonal matrix

SwP— wi — Wi 0 0
3,2 1,2 1 9
ng - 02,€’€O2,m’m 0 ZWQ Bl Zw?) a ZWI 0
0 0 3w — 1wl — Wl 0
0 0 —%wf — }lwg — iwg
(44)

Note that the diagonal elements equal w?(3/4, —1/4,—1/4,—1/4) in the trivial Higgs phase, and
equal w?(1/4,1/4,1/4,—3/4) in the topological Higgs phase. These configurations of Q,, are not
equivalent to each other, and cannot rotated to each other by a O(4) transformation.

To obtain the first observable in the MC simulations, after the ground state is reached, we

perform the SVD (23) at each site and average over the system, giving the averaged eigenvalues
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(w;). In Figure 3 we plot the averaged eigenvalues (w;), and their evolution with J for various u;.
These are obtained from MC simulations on lattices of size L? with L = 12. The phase transition
between topological and trivial order is identified with the large discontinuity in the eigenvalues
as they transition from nearly degenerate, to non-degenerate. The corresponding phase boundary
estimate has already been plotted in Figure 2, from which we see qualitatively the same trend in
transitioning from the disordered or topological into the trivial phase, i.e. a linear dependence of
uy . x J.. This agreement indicates that 1/, corrections do not destabilize the topological phase.

An additional feature is apparent from the eigenvalues for u; > 10 and J < J., see e.g. J ~ 20
in Figure 3(d). This is perhaps a sign of the small window (in J) of trivial phase wedged between
the disordered and topological phases — as predicted by the saddle point analysis and shown in
Figure 2.

In Figure 4 we plot the scalar ® and its evolution with J for various u;. The data is for collected
from simulations with L = 12. ® is also calculated from the saddle point equations by taking the
Higgs field configuration of the trivial or topological phases and computing at arbitrary (uq,J).
Comparing the MC data with analytic results, we see quantitative agreement for ® deep within
each of the topological and trivial Higgs phases, i.e. away from the transition. As already observed
from the eigenavlue analysis, the phase numerical N; = 4 and analytical N, — oo phase boundaries
do not match. Hence we cannot compare the two approaches in this vicinity. Reassuringly, the
phase boundaries, as identified via (w;) and ®, are indeed consistent.

We conclude this section by stating that both observables give the same estimate for the
topological-to-trivial phase boundary. And that the combined results of (i) and (ii) paint a con-

vincing picture of the underlying phases and transitions.
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FIG. 4: Observable ® as a function of J at fixed u; = {10,40, 60, 100} for (a), (b), (¢), (d),
respectively. Dashed and solid black lines correspond to ® calculated from the saddle point
solutions, assuming either the trivial or topological phase respectively. Yellow points are MC

data taken on system size L = 12.

V. DISCUSSION

We study phases of SU(2) gauge theory with multiple adjoint Higgs fields in 2 + 1 dimensions.
Such a gauge theory has been motivated physically as a theory for optimal doping criticality in the
cuprate superconductors [1], whereby the confining phase corresponds to the Fermi liquid, while
the Higgs phases (both topological and trivial) are the candidates for pseudogap phase.

The primary motivation of the present work was to determine whether the phases of interest
physically — the confining (Fermi liquid), trivial and topological Higgs (pseudogaps) — are stable and
survive at strong gauge field coupling. To investigate, we employ two complementary approaches;

an analytic saddle point analysis, which relies on a large number of Higgs flavours (N, — o), and a
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numerical Monte Carlo analysis at the physically relevant NV, = 4 Higgs flavours. We demonstrate
that all three phases are stable and occupy a non-zero volume in the phase diagram. The results
lend support to the SU(2) gauge theory with multiple adjoint Higgs fields as a candidate low energy
description of the optimally doped cuprates. Moreover, the agreement between the N, — oo
saddle point analysis and that of the numerical N, = 4, suggests that O(1/N},) corrections do not
destabilize the phase diagram. This finding also serves as a consistency check for future large N},

analytic studies of this model.

Aside from the original physical motivation, the present work has established that the minimal
model (1), which is obtained from just the first order expansion in the strong gauge coupling
expansion (14), is sufficient to generate a stable Z, topologically ordered phase. We expect that

such generic minimal models will also be applicable in the context of spin-liquids.
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Appendix A: Strong-Coupling Expansion: Higgs and gauge plaquettes

We denote gauge plaquettes

O01,0,.85.8:) = Tr (U(01)U(02)U (03)U (64)) , (A1)

and we find that only even powers integrate to non-zero

<D(9_1,9_2,6’_3,9_4)>U =0 (A2)
<|:|?§1’é27§3’é4)>U = 1 (A3)

Let’s consider Higgs-hopping terms decorating an elementary plaquette, and expand in Gauge

plaquettes. The lowest-order terms that are trivial in adjoint indices are

<uab(él)ubc(§2)ucd(§3)uda(94)>U =0 (A4)
(Uab(01)Use(02)Uea(03)Uaa (01) D3, 5,,8,,60)) y = 0 (A5)

- ~ ~ ~ 1
(Uat(01)Use(02)Uea(03) o (02) Ty, 5, 8,500, = 16 (A6)

- - - - 3
(Uao(01)Uan(01) Tz, 4, 8,800 = Uat(0)Ub(01)) i (T, 8, 8,80 = T (A7)

The final expectation value should will not contribute to the expansion since it will be cancelled

by the disconnected vacuum. The contribution to the action is then

(P = 3 D) o) 8 (D D) (49

where P is shown diagrammatically in Figure 1. Factors: 1/16 from average; x*/4! from fourth
order expansion of Higgs-Gauge links; 2 from two directions around a single plaquette; 1/2 from
second order expansion of the Gauge-plaquette; (3%/2)? due to definition of Gauge-plaquette cou-
pling constant. We caution the reader that the prefactor obtained in (A8) assumes a particular

(clockwise) orientation of (ijkl) € O on the plaquettes.
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Appendix B: Saddle Point Solutions
1. Disordered
a. Class II

We also search for Ay # 0 solutions. We make use of the rearrangement

< 1 6 T Pk
(4 Bo)g — A3 = / (B — 6y cos . )G(R) = 1 (B1)
= 5\+Bo=3<1+§A3) (B2)
Substituting into (20a) and (20b),
™ Ak 3
1= B3
/_7r (2m)3 3 (1+ SAF) — 64 + Ag(6 — 23, cosky) (B3)
T A3k cos k
Ag=J ud . B4
0 /_7r (2m)3 3 (14 $43) —6Ay+ Ag(6 —23_, cosky) (B4)
We now manipulate
T Pk 3
m:/ (B5)
—r (2m)2 B+ (6 —-23, cosk,)
T APk cosk
Ap =T / i (B6)
0 o 2m)3B+(6—23, cosky)
_ 1 6 o
= {3 (1 + JAO> 6A0] (B7)

And solve numerically for £, using

B 3 ’ B cosk,
</ (2rP B+ (6 - 25, 008 m) AR e

Finally, having obtained f as a function of J, we invert the definition to find Ay(8, J), i.e.

1
AT (8, 7) = 35 ((5+6)Ji \/(ﬁ+6)2J2—216J>. (B9)
We find that the A solution is inconsistent with the saddle point equations, and so we only keep

Ay . For this solution, J € (6.67,9), 8 € (0,00) and therefore 0 < A; < 1. This solution is also

independent of u;.

Inspecting the free energy for class I and I1,

fr = % — 2(1 ~In3) (B10)

u 942 3 T &k 6

a Iz
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we see (via numerical evaluation) that the difference is positive for all A (J)

fII_fI:

N gAggj) +;/_: (;iﬂl;;s In (3 (1 + gAE(J)Z) — 64, (J)+ Ay (J)(6 — Q;COSK‘M)> - ;ln?) > 0.

This holds for all u; — hence only class I is found in the phase diagram spanned by (uq, J).

2. Topological
a. Class II
The second class of solution has Hyy = H; and Hyps = Hys = Hs, which gives Ay; = A; and

Age = Aps = Ay and similarly Byy = B; and Byps = Bgs = Bs. We reduce the saddle point

equations to expressions in A only,

Ai:ﬁ()\i\/)@Jrg%l(?)—%)) (B12)

J
By =6AL — ) (B13)
Ay Y2
H? == _ =, B14
+ J Ai ( )

Now there are two possibilities: A; = Ay, Ay = A;. For each case, one finds A analytically by

solving

> B =2u; = 6(As +245) — 3), (B15)

However, we find that one of A, or A_ is negative for any J, and hence the Greens function is
negative (since in this phase m? = 0) and therefore the logarithm in free energy yields a complex

value. We can safely disregard this solution.

b. Class IIT

Another topological solution has Hy = Hpe = H, and Hypz = 0. (One can also consider nonzero

such that Hy; # Hpe, but these don’t provide real solutions.) The saddle point equations can be
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recast in terms of A

A 7

H?2=2__12 B1
7T (B16)
B =6A- )\ (B17)

222 - 94.]2u, — 2
A V3y/3J202 + 24.J2u; — 8.Ju? + 3 (B19)
Az = 0. (B20)
Finally we need to solve the equation in a single variable X
2"}/1 1

1=H"+=-+ = : B21
* A * A+ B3 (B21)

This has multiple roots; we keep only the consistent root.

3. Disordered
a. Class II

There exist another set of solutions where By # Bps. They are arrived at by setting Ags =

Aps = 0 and the following manipulations

By = —A+64,; (B22)
Baa = 50 VR + 5u) (B23)
H? = % = 1—21 (B24)
1:H2+z—11+2%1 (B25)
A= 2uy (1—%—6—;). (B26)
Finally, solving
LI ! (B27)

Ay /\+BQ+5\+Bg

for A; provides four roots (as before). We do not present the results, but we find that these do

not correspond to a lower free energy than the previous solution where By, = Bys.
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Appendix C: MC Details
1. Re-writing the action

We have the effective action (re-produced here for convenience)

J ) . ;
So = A 3 H oy (1) Ham (1) Hot (5) Hom (5) 2Nh ZH‘” (2) Hi (1) Hyn (1) (C1)
ij

with fixed length constraint on each site (2). For implementation of a Wolff cluster type update,

we find that it is essential to rewrite the Higgs fields as a flavour vector

Hy
Hy
Hy
Hi

such that the action is

2. Ising Projection

To implement Wolf cluster updates we must generate an effective Ising model. This is achieved

through projecting the Higgs flavour vector (C2) onto a randomly oriented unit four vector r
H*(i) = [H*(2) - x| r€efo; + H*(i) — (H(9) - 1)r = oo + 87 (C4)
where

a __ sign (ﬂa(z) ) 2)
sign (H'(7) 1) ’

0 = sign (H'(4) 1) . (C5)

o; will play the role of the Ising variable, while € absorbs the the different signs of the projections
for the different gauge components ‘a’. Meanwhile, the new vectors appearing in Eq. (C4) satisfy

the following conditions (by design)

al-B=0, Vabij. (C6)
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3. Ising Model

Substituting the Ising projection (C4) into the action (C1) and dropping all terms without the
Ising degree of freedom o; — since they will be constants w.r.t. the Wolff cluster updates — we

obtain

Sising = — Y _ Jijoioj . Ty = Nih D (af-ah) (B8 (C7)

(i7) a,b
For the Wolff cluster updates, the basic procedure is: 1. Randomly generate Higgs flavour vectors
H(4) for all a = 1,2,3 and at each site (i). 2. Randomly generate r (which is uniform across the
the lattice). 3. Calculate the corresponding J;; and the initial values of o;. 4. Perform standard
Wolff updates on the o; variables; i.e. cluster growth with probability P(i,j) = 1 —e~2/i. Perform
Nyse such growth steps. 5. Recalculate H*(7) and repeat steps 2-5. To maintain ergodicity, we

also employ standard local metropolis updates.
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