
Software Stack for an Analog Mesh Computer: The Case of a
Nanophotonic PDE Accelerator

Engin Kayraklioglu
Cray, Inc.

engin@gwu.edu

Jeff Anderson
Department of Electrical and

Computer Engineering
The George Washington University

jeffa@gwu.edu

Hamid Reza Imani
Department of Electrical and

Computer Engineering
The George Washington University

hamidreza@gwu.edu

Volker Sorger
Department of Electrical and

Computer Engineering
The George Washington University

sorger@gwu.edu

Tarek El-Ghazawi
Department of Electrical and

Computer Engineering
The George Washington University

tarek@gwu.edu

ABSTRACT
The slowing of Moore’s Law is forcing the computer industry to
embrace domain-specific hardware, which must be coupled with
general-purpose traditional systems. This architecture is most use-
ful when large compute power is needed. Among the most compute-
intensive applications is the simulation of physical sciences. Tomax-
imize productivity in this domain, a variety accelerators have been
proposed; however, the analog mesh computer has consistently
been proven to require the shortest time-to-solution when targeted
toward the Poisson equation. Recent advances in material science
have increased the flexibility of the analog mesh computer, position-
ing it well for future heterogeneous computing systems. However,
for the analog mesh computer to gain widespread acceptance, a
software stack is required to enable seamless integration with a
classical computer. Here, we introduce a software stack designed for
the class of analog mesh computers that efficiently generates mesh
mappings of a physical problem by enabling users to describe their
problem in terms of boundary conditions and mesh parameters. Ex-
periments on a specific implementation of analog mesh computer,
the nanophotonic partial differential equation accelerator, show
that this stack enables problem-to-mesh scalability expected by the
scientific community.

CCS CONCEPTS
•Hardware→Emerging tools andmethodologies; • Software
and its engineering → Abstraction, modeling and modular-
ity; Application specific development environments.

KEYWORDS
analog mesh computer, emerging technology runtimes, software
stack, programming stack, hardware/software abstractions

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CF ’20, May 11–13, 2020, Catania, Italy
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7956-4/20/05.
https://doi.org/10.1145/3387902.3394030

ACM Reference Format:
Engin Kayraklioglu, JeffAnderson, Hamid Reza Imani, Volker Sorger, and Tarek
El-Ghazawi. 2020. Software Stack for an Analog Mesh Computer: The Case
of a Nanophotonic PDE Accelerator. In 17th ACM International Conference
on Computing Frontiers (CF ’20), May 11–13, 2020, Catania, Italy. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3387902.3394030

1 INTRODUCTION
Partial Differential Equations (PDEs) are a core mathematical tool
in scientific computing and engineering, and are used to model
physical phenomena such as fluid dynamics, electricity, and heat
flow. Due to the lack of closed-form solutions for such problems,
approximate solutions have been adopted by the scientific com-
munity [3]. One class of such approximations, numerical methods,
maps the physical problem to a computational grid and iteratively
solves for each grid point [8].

As such, the time-to-solution for numerical methods is depen-
dent on both the grid resolution, measured as the x × y dimension
of the grid, and the time to compute each grid point. Classical ac-
celeration techniques, such as parallelism and and high-frequency
operation, have been successfully used to reduce time-to-solution
[10]. However, the slowing of Moore’s Law has put an upper bound
on the speedup that can be reasonably expected by classical tech-
niques, resulting in the development of specialized accelerators
which can be integrated into large, heterogeneous computer sys-
tems [6].

Due to the importance of PDEs to the scientific community
[4], there have been many systems developed for their acceleration
[5, 10, 12]. Shown in Figure 1, each system takes a different approach
to accelerate PDE solutions. However, domain specialists require
a common interface to enable code reuse and decrease expertise
required to use the system. This is a common problem among
heterogeneous systems, leading to the introduction of software
stacks. Software stacks were developed to abstract away the details
of a computing system, allowing users to effectively program a
system without knowledge of its underlying mechanization.

Here, we propose a software stack for an analog mesh computer
which abstracts the mesh technology from the user. It is our belief
that support of a software stack will enable code reuse between

241



CF ’20, May 11–13, 2020, Catania, Italy Engin Kayraklioglu, Jeff Anderson, Hamid Reza Imani, Volker Sorger, and Tarek El-Ghazawi

Figure 1: Numerical solutions solve for computational grid
points iteratively, while analog mesh computers use a mesh
of attenuating elements to solve for grid points in one shot,
minimizing time-to-solution.

various analog mesh computers, leading to their mainstream accep-
tance in heterogeneous computing systems.

2 BACKGROUND AND RELATED WORK
A PDE is a mathematical equation that consists of variables and
their partial derivatives. PDEs are widely used for describing a wide
variety of physical phenomena such as sound, heat, fluid dynam-
ics, and quantum mechanics. While this makes them invaluable in
physical science simulations, PDEs require much work and time to
solve. Due to the non-existence of closed form solutions, approxi-
mations such as numerical methods have been developed for PDE
computation [3].

Numerical methods are the most common approach for solv-
ing PDEs and are widely used in engineering. They discretize the
problem into small sections and then solve for each section. The
three most widely used numerical methods to solve PDEs are the
finite element method (FEM), finite volume methods (FVM) and
finite difference methods (FDM) [8]. These techniques discretize
the problem into a computational grid and solve for each grid point
iteratively. For these techniques, grid point spacing is inversely pro-
portional to the accuracy of the solution. However, an increase in
the number of grid points results in an increased time-to-solution,
which can be unacceptable.

To obtain a PDE solution with both acceptable accuracy and time-
to-solution, a variety of accelerators have been proposed [9, 10, 12].
Digital accelerators based on graphics processor units (GPU) and
central processing units (CPU) [10, 12], obtain speedups from clock-
frequency scaling and enhanced parallelism. However, limitations
with the parallel scalability of a computational grid require ac-
celerators with alternative architectures. Analog accelerators, in

particular, have shown the ability to minimize time-to-solution in
PDE computation.

Introduced in [9], the resistance network analogue was devel-
oped to solve the Poisson equation, which characterizes heat trans-
fer and oscillatory flow. The resistance network analogue computes
a solution using a mesh of resistors. This architecture allows the
resistance network analogue to compute a solution in one-shot, as
opposed to iteratively, resulting in minimal time-to-solution. How-
ever, the proposed design is a static network and does not support
the programmability that is expected by the scientific community.
To overcome this defect, analog mesh computers with configurable
attenuating elements can be used. Equivalent to the resistance net-
work analogue, [1, 5] and [11] are examples of the analog mesh
computers that can be programmed by reconfiguring their atten-
uating elements. The transistor-based analog mesh computer in
[11] uses subthreshold CMOS devices as attenuators and [1, 5] uses
optical attenuators in place of resistors and diffusion currents, or
optical intensity, in place of electrical current.

Due to the varied nature of PDE accelerators, frameworks must
be developed to enable code reuse and eliminate the requirement
for domain expertise in a particular accelerator. Traditionally, soft-
ware frameworks have been used to abstract away the underlying
mechanization of a system, making it more accessible to users who
need only apply the system. For example, UG is a framework for
simulation of time-dependent, nonlinear PDEs suitable for execu-
tion on distributed systems [2]. Blaze is middleware for accelerator
deployments in datacenters, and uses a set of standardized system
calls to communicate with varied hardware [7].

PDEs are very important for scientists and engineers in vari-
ous domains, and analog mesh computers can eliminate several
problems in solving PDEs. Reconfigurable analog mesh computers
can be used and programmed as accelerators in heterogeneous sys-
tems. However, analog mesh computers lack a software framework,
hindering their adoption by the scientific computing community.
For such computers to be integrated into heterogeneous systems,
a framework with a standard interface must be developed. This
framework should comprise different layers of abstraction which
support various methods of problem description.

3 SOFTWARE STACK FOR AN ANALOG MESH
COMPUTER

Providing ease-of-use for domain specialists while using highly-
specialized hardware requires an end-to-end design for the software
stack, shown in Figure 2. In this sectionwe first describe themultiple
front-ends of our modular software stack, then discuss its multipass
implementation for translating high-level problem descriptions
into hardware configurations. Currently, hardware configurations
created by the software stack are limited to netlist descriptions that
can be exported to electrical and optical circuit simulators.

242



Software Stack for an Analog Mesh Computer: The Case of a Nanophotonic PDE Accelerator CF ’20, May 11–13, 2020, Catania, Italy

Figure 2: Modular software stack takes user input in the
form of problem size and boundary conditions, along with
mesh physical parameters, and generates an appropriate bit-
file which can be downloaded to the analog mesh computer.
User interaction is in the form of an API or Simulink GUI.

1 # create a problem description

2 prob = Problem(size=10,

3 sources =((0,0,1,1),),

4 sink =((9,9,1,1),))

5 # create a mesh model , load the problem

6 mesh = ROCModel(size =4)

7 mesh.load_problem(prob)

8
9 # run electrical solver

10 mesh.run_solver(kind='electrical ')

11
12 # plot the mesh data as a heatmap

13 plot_heatmap(mesh.final_grid)

Listing 1: An Example User Script

3.1 Front-end: Python and Simulink Interfaces
A high-level overview of the software stack is shown in Figure 2.
Implemented in Python, the software stack has a user-facing applica-
tion programming interface (API) for creating problem descriptions,
analog mesh hardware, running simulations, and analyzing results.
Listing 1 shows a short snippet that runs a 10x10 problem on a 4x4
analog mesh computer.

For cases where the dimension of the problem does not equal the
dimension of the mesh, scaling is required. Up-scaling maps a small
problem to a large mesh by mapping the boundary conditions of the
problem to corresponding points on the mesh. Unmapped boundary
points are left unset and automatically solved for by the mesh fabric.
Down-scaling is required when a large problem is mapped to a small
mesh, and is accomplished by mapping the boundary points of the
problem to corresponding points on the mesh, thus removing any
extra points. While scaling is done automatically, users can adjust
scaling targets by manually setting the required mesh dimension

or providing an accuracy requirement and allowing the stack to
select an appropriate mesh dimension.

Our stack also has a Simulink interface for a graphical user
interface (GUI). This interface includes a Simulink model whose
implementation in Matlab calls the Python library using Matlab’s
interoperability support. Arguably, this interface is more limiting
than the Python interface, however, Simulink is a very common
tool in science and engineering workflows and this interface makes
using an analog mesh computer even simpler for those who do not
have the expertise or time budget to program in Python.

3.2 Back-end: Multipass Translation
The back-end translates a high-level problem description into a low-
level hardware description. To enable portability between different
hardware technologies, this translation happens in two passes and
uses an intermediate representation.

First, the problem description is translated into a mesh-like data
structure. Analogous to an abstract syntax tree commonly found
in compilers, this data structure represents nodes and links in the
analog mesh. With this representation, characteristics of links (e.g.
thermal conductance for a heat transfer problem) and nodes (e.g.
whether it is a boundary condition) are stored. For simulation pur-
poses, the stack also supports some hardware characteristics (e.g.
parasitic capacitance, leakage, component variability).

Second, this data structure is translated into a netlist that can be
used with different circuit simulators. Currently, we support two
netlist flavors: (1) an electrical circuit simulation using ngspice and
(2) an optical circuit simulation using Lumerical Interconnect.

Finally, an appropriate simulator module loads the generated
netlist in the simulator, executes the simulation, parses the output
generated by the simulator and populates the mesh data structure
with the collected data. The raw data is exposed to the user as a
2D numpy array, allowing the user to do custom data processing.
However, the stack also provides an analysis module that can help
with some basic operations as well as visualization via matplotlib.

4 EVALUATION METHODOLOGY
We created an evaluation methodology for the software stack com-
prising three test cases. Test cases were chosen as to represent the
spectrum of anticipated needs: 1) problem size < mesh size, 2) prob-
lem size = mesh size and 3) problem size > mesh size. We described
three steady-state heat transfer configurations, each with different
boundary conditions.

Each configuration was based on a 64 × 64 square surface with a
consistent resistance throughout. The first configuration consists
of a single source and single sink residing on opposite edges of the
surface. The second configuration consists of a single source on
one edge of the surface, and three sinks on the remaining edges.
The third configuration consists of a point source in the center of
the surface and sinks on each edge.

Each configuration was created with two options: 1) manual
dimension-setting of the abstract mesh by the user, and 2) auto-
matic dimension-setting of the abstract mesh with a user-provided
accuracy requirement. These options were chosen to exercise scal-
ing over multiple levels of abstraction. For this experiment, we
set the accuracy requirement to 70% and the manually set mesh

243



CF ’20, May 11–13, 2020, Catania, Italy Engin Kayraklioglu, Jeff Anderson, Hamid Reza Imani, Volker Sorger, and Tarek El-Ghazawi

Figure 3: Mesh computation results from 1 x source & 3 x sink configuration (two leftmost) and center-source & edge-sink
configuration (two rightmost). Among the configurations, the problem size = mesh size testcase (left) and problem size > mesh
size testcase (right) are shown. Note the difference in resolution due to inequalities between the problem andmesh dimensions.
The problem size < mesh size testcase (center) is illustrated by solving multiple configurations on a single mesh.

Table 1: Accuracy Results for Generated Meshes

Test Configuration User Settings Accuracy Mesh Size

1 x source, 1 x sink Mesh Size: 32 98.41% 32
Accuracy: 70% 91.66% 8

1 x source, 3 x sink Mesh Size: 32 95.78% 32
Accuracy: 70% 74.66% 8

center-source Mesh Size: 32 80.41% 32
Accuracy: 70% 70.10% 24

dimension to 32 × 32. All configurations were used to generate a
nanophotonic mesh-based accelerator, as described in [1].

5 RESULTS
Figure 3 shows heatmaps generated from various test cases. The
differing result accuracy from like configurations are due to inequal-
ities between mesh resolution and problem size. The center test case
in the figure illustrates simultaneous computations taking place
when the problem is smaller than the mesh. This is accomplished
by isolating sub-meshes by setting a high-attenuation region at
their boundaries.

Table 1 shows accuracy results for each test configuration. Mesh
size was either explicitly set by the user, or automatically gener-
ated by the stack to satisfy a minimum accuracy requirement. Note
that dissimilar configurations required different mesh sizes to meet
the accuracy requirement. We suspect that the stack could be aug-
mented with different optimization strategies to ensure the most
efficient mesh is selected for a given configuration.

6 CONCLUSION
Due to the importance of minimizing time-to-solution in physics
simulations, various PDE solvers have been proposed. One specific
class of PDE solver, the analog mesh computer, minimizes time-to-
solution by solving Poisson equations in a one-shot fashion. Recent
advances in material science have addressed the shortcomings in-
herent in traditional analog mesh computers, thus enabling their
integration into modern heterogeneous architectures [1]. However,
for these architectures to gain widespread acceptance, infrastruc-
ture must be developed to enable intuitive interaction between
domain experts in the physical sciences and mesh computers.

We have implemented a software stack which supports integra-
tion of classical and analog mesh computers. This stack enables
users to define a PDE in terms of computational mesh parameters
and boundary conditions, and generates an equivalent mesh repre-
sentation which is then mapped to available analog mesh hardware.
Our results show successful mappings for various configurations
of steady-state heat transfer. Future work will consider application
of this stack as an enabler for abstractions such as virtualization
and automated hardware synthesis flows.

ACKNOWLEDGMENTS
This work is funded by the NSF RAISE program as award number
1748294 under the NSF EPMD-ElectroPhotonic Mag Devices, CSR-
Computer Systems Research, Networking Technology and Systems.

REFERENCES
[1] Jeff Anderson, Engin Kayraklioglu, Shuai Sun, Joseph Crandall, Yousra Alkabani,

Vikram Narayana, Volker Sorger, and Tarek El-Ghazawi. 2020. ROC: A Reconfig-
urable Optical Computer for Simulating Physical Processes. ACM Transactions
on Parallel Computing 7 (2020). Issue 1.

[2] P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neu Rentz-Reichert, and C.
Wieners. 1997. UG – A flexible software toolbox for solving partial differential
equations. Computing and Visualization in Science 1 (1997). Issue 1.

[3] Johannes Hendrikus Maria Thije Boonkkamp, Robert M. M. Mattheij, and Sjo-
erd Willem Rienstra. 2005. Partial Differential Equations: Modeling, Analysis,
Computation. Society for Industrial and Applied Mathematics.

[4] Jack Dongarra. [n.d.]. Current Trends in High Performance Computing and Chal-
lenges for the Future. Retrieved February 7, 2017 from https://www.acm.org/
binaries/content/assets/education/lc-monthly-bulletins/january2017.html

[5] Tarek El-Ghazawi, Volker J. Sorger, Shuai Sun, Abdel-Hameed A. Badawy, and
Vikram K. Narayana. 2019. Reconfigurable optical computer. Patent No.
US10318680B2, Filed December 5th., 2017, Issued June. 8th., 2019.

[6] Adi Fuchs and David Wentzlaff. 2019. The Accelerator Wall: Limits of Chip
Specialization. In Proceedings of the 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA ’19). IEEE.

[7] Muhuan Huang, Di Wu, Cody Hao Yu, Zhenman Fang, Matteo Interlandi, Tyson
Condie, and Jason Cong. 2016. Programming and Runtime Support to Blaze
FPGA Accelerator Deployment at Datacenter Scale. In Proceedings of the Seventh
ACM Symposium on Cloud Computing (SOCC ’16). ACM.

[8] H.J. Lee and William Schiesser. 2003. Ordinary and Partial Differential Equation
Routines in C, C++, Fortran, Java, Maple and MATLAB. CRC Press, Boca Raton,
FL, USA.

[9] George Liebmann. 1950. Solution of Partial Differential Equations with a Resis-
tance Network Analogue. BRITISH JOURNAL OF APPLIED PHYSICS (1950).

[10] Luis Pinuel, I. Martin, and Francisco Tirado. 1998. A special-purpose parallel
computer for solving partial differential equations. In Proceedings of the Sixth
Euromicro Workshop on Parallel and Distributed Processing (PDP ’98). IEEE.

[11] J. Ramirez-Angulo and Mark R. DeYong. 2000. Digitally-configurable analog VLSI
chip and method for real-time solution of partial differential equations. Patent
No. US6141676, Filed July 22, 1998, Issued October 31, 2000.

[12] Y. Zhao. 2008. Lattice Boltzmann based PDE solver on the GPU. The Visual
Computer 24 (2008). Issue 5.

244


