Architectural Security Weaknesses 1n Industrial
Control Systems (ICS)

An Empirical Study based on Disclosed Software Vulnerabilities

Danielle Gonzalez, Fawaz Alhenaki, Mehdi Mirakhorli
Rochester Institute of Technology
Rochester, NY USA
{dng2551,faa5019,mxmvse} @rit.edu

Abstract—Industrial control systems (ICS) are systems used
in critical infrastructures for supervisory control, data acqui-
sition, and industrial automation. ICS systems have complex,
component-based architectures with many different hardware,
software, and human factors interacting in real time. Despite the
importance of security concerns in industrial control systems,
there has not been a comprehensive study that examined common
security architectural weaknesses in this domain. Therefore, this
paper presents the first in-depth analysis of 988 vulnerability
advisory reports for Industrial Control Systems developed by 277
vendors. We performed a detailed analysis of the vulnerability
reports to measure which components of ICS have been affected
the most by known vulnerabilities, which security tactics were
affected most often in ICS and what are the common architectural
security weaknesses in these systems.

Our key findings were: (1) Human-Machine Interfaces,
SCADA configurations, and PLCs were the most affected com-
ponents, (2) 62.86% of vulnerability disclosures in ICS had
an architectural root cause, (3) the most common architectural
weaknesses were “Improper Input Validation”, followed by ‘“Im-
proper Neutralization of Input During Web Page Generation”
and “Improper Authentication”, and (4) most tactic-related
vulnerabilities were related to the tactics ‘“Validate Inputs”,
“Authenticate Actors” and “Authorize Actors”.

I. INTRODUCTION

Industrial control systems (ICS) are computers that con-
trol any automation system used in industrial environments
that include critical infrastructures. They allow operators to
monitor and control industrial processes and support the day-
to-day operations of manufacturing, oil and gas production,
chemical processing, electrical power grids, transportation,
pharmaceutical, and many other critical infrastructures [1].
Security is one of the key concerns in these systems and an
attack can potentially adversely impact the nation’s safety and
economy [2]. Therefore, it is important to design these systems
from ground-up to be secure. Further, since ICS often support
critical infrastructure, they cannot easily be taken down for
security updates or software patches [3]. Figure 1 shows a
typical architecture of ICS.

Programmable Logic Controllers (PLCs) and Remote Ter-
minal Units (RTUs) connect to sensors and actuators through
a Fieldbus to gather real-time information and provide op-
erational control of the equipment. These controllers also
communicate to a data acquisition server (SCADA) using

various industrial communications protocols [3].

ICS relies on Human-Machine Interfaces (HMI) to con-
figure the industrial plant, troubleshoot the operation and
equipment, run, stop, install and update programs, and recover
from failures. The day-to-day operational data is logged by the
Data Historian component for further analysis and diagnosis.
Each of these components has its own interfaces and can be
the target of attacks that impact industrial equipment and op-
erations. Ever since the Stuxnet attack on modern supervisory
control and data acquisition (SCADA) and PLC systems, there
have been many vulnerabilities discovered and reported for
these systems. Recent studies [3], [4] have shown that the
documented attacks to ICS infrastructures have exponentially
increased from a few incidents to hundreds per year.

While there have been various ad-hock studies of vulner-
abilities in these systems [5]-[12], or approaches on how to
make them more secure [3], [13]-[15], there has not been a
systematic work that examined common security architectural
weaknesses in ICS. Therefore, in this paper we report the
results on an in-depth empirical study that examined security
architectural weaknesses in ICS.

This study took several months in which we collected and
analyzed 988 security advisories that disclosed ICS vulnera-
bilities. These vulnerabilities were mined from the Industrial
Control Systems Cyber Emergency Response Team (ICS-
CERT) repositories. We used these reports to answer the
following research questions:

e RQ1: Which ICS Components Are Most Vulnerable? We
found that HMI, SCADA and PLC were among the most
vulnerable components in ICS.

o RQ2: What Percentages of ICS Vulnerabilities had an
Architectural Root Cause? We found that 62.86% of the
disclosed vulnerabilities had an architectural root cause.
This was mainly because the ICS products were designed
without security in mind and with an assumption that they
will be used within a protected network.

e RQ3: What are the Most Common Architectural Weak-
nesses in ICS? We found that “Improper Input Validation”
(26.29%) is the most common architectural vulnerability
type across ICS products. This weakness can be exploited
to perform a denial of service attack on control software
and devices.

Control Center

Fig. 1.

o RQ4: Which Architectural Tactic Implementations are
Most Often Compromised in ICS? We found the top 3
architectural security tactics compromised in ICS are Val-
idate Inputs, Authenticate Actors, and Authorize Actors.

The contribution of our work is two-fold:

o An empirically grounded mapping of known vulnerabil-
ities in ICS products to their impacted components and
compromised security architectural tactics. This mapping
allows us to highlight security design issues in ICS.

o An investigation on common architectural weaknesses in
ICS systems, and their root causes.

This paper presents the first empirical study that includes the
analysis of a large number of security advisories vulnerability
reports with the aim of bringing attention to the architectural
issues in ICS products.

The rest of this paper is organized as follows. Background
information on Industrial Control Systems and their related
architectural decisions is presented in Section II. In Section III
we describe how the ICS advisory report data was mined,
analyzed, and evaluated. We present our quantitative findings
in Section IV, and in Section VI we interpret these findings
and provide recommendations. Threats to the validity of our
findings are acknowledged in Section VII and related work is
described in Section VIII. We conclude in Section IX.

II. BACKGROUND ON SOFTWARE VULNERABILITIES

Vulnerabilities are security-related software defects that
compromise a system’s security requirements. ICS products
rely on software programs to function and can become vul-
nerable as a result of such defects with a variety of conse-
quences, such as leakage of data and the modification of data
by unauthorized users. Software vulnerabilities are publicly
disclosed and tracked in databases. Often each ICS vendor
maintains advisories to report security issues within their ICS
products. The Industrial Control Systems Cyber Emergency
Response Team (ICS-CERT) compiles all these vulnerability
reports and release them as soon as they are discovered.
Vulnerability reports by ICS-CERT provide details about the
vulnerability and are assigned an Industrial Control Systems
Advisory (ICSA) identifier. The following excerpt from an
ICS-CERT advisory report shows a vulnerability in one of
the products developed by Rockwell Co. The overview section

Field Site 1
Human Machine Interface (HMI) l_ B ESE
e R == i
Engineering) | Mod =
" joaem
Workstations Switched Telephone, PLC
Leased Line or Power Line . ..
Based Communication Field Site 2
. S
Radlc mlcrowave E _—
—< or cellular >—
Wan Card RTU
E satellte Q r Field Site 3
Communication - — 'E
Data Historian supervisory Control & Data Routers ‘
Acquisition (SCADA) Server NG _/ Modem IED

The figure describes the standard architecture of ICS, although implementations may vary.

describes the vulnerability and impacted components of an ICS
products. The vulnerability characterization (or root cause)
indicates the cause of security issues. It refers to an entry from
a list of known common software issues documented in the
Common Weakness Enumeration (CWE) catalog '

Advisory (ICSA-16-336-06)

OVERVIEW: Alexey Osipov and Ilya Karpov of Positive Technologies have
identified vulnerabilities in Rockwell Automations Allen-Bradley MicroLogix
1100 and 1400 programmable logic controller (PLC) systems. Rockwell
Automation has produced new firmware versions to mitigate some of the
vulnerabilities.

AFFECTED PRODUCTS:

1763-L16AWA, Series A and B, Version 14.000 and prior versions;
1763-L16BBB, Series A and B, Version 14.000 and prior versions; [...]
IMPACT:

Successful exploitation of these vulnerabilities may allow a remote attacker to
gain unauthorized access to affected devices, as well as impact the availability of
affected devices.

VULNERABILITY CHARACTERIZATION:

CLEARTEXT TRANSMISSION OF SENSITIVE INFORMATION (CWE-319
User credentials are sent to the web server in clear text, which may allow an
attacker to discover the credentials if they are able to observe traffic between the
web browser and the server.

EXPLOITABILITY

These vulnerabilities could be exploited remotely.

[...]

A paper published by Santos et al. [16] revised the CWE
catalog to differentiate the software weaknesses rooted in
design versus those that are due coding issues such as buffer
overflow. They presented the concept of Common Archi-
tectural Weakness Enumeration (CAWE), a catalog which
enumerates common types of vulnerabilities rooted in the
architecture of a software and provides mitigation techniques
to address them. The CAWE catalog organizes the architectural
flaws according to known security tactics.

These weaknesses are are either due to an incorrect adoption
of security tactics or violation of the tactic’s key principle in
the design or source code [17]-[19]. An example is “Exposure
of Data Element to Wrong Session” 2 which occurs when a
product does not sufficiently enforce boundaries between the
states of different sessions, causing data to be provided to
or used by the wrong session. Through this paper we rely
on this catalog to reason about common architectural and

Uhttps://cwe.mitre.org
Zhttps://cwe.mitre.org/data/definitions/488.html

tactical issues in ICS systems. The CAWE catalog was adopted
by MITRE Co and is used as the “Architectural Concept”
view 3 on their CWE catalog !. This catalog can be used
as a reference guide by developers/designers to reason about
potential weaknesses in the design or implementation of their
architecture [17], [20], [21]. Using the information from the
ICS-CERT, the CWE/CAWE catalogs, and links between these
sources of information, it is possible to study the root causes
of tactical vulnerabilities in ICS.

III. METHODOLOGY AND STUDY DESIGN

To answer our research questions from Section I, we con-
ducted an in-depth empirical study of ICS-related vulnera-
bilities based on guidelines for industrially-based multiple-
case studies [22]. The unit of analysis in our study was a
vulnerability advisory report for an ICS product.

A. Case Selection

We selected to study ICS products with publicly disclosed
vulnerabilities. The U.S. National Cybersecurity and Commu-
nications Integration Center’s (NCCIC) Industrial Control Sys-
tems unit collaborates with Cyber Emergency Response Teams
(CERT)s to provide a central repository for vulnerability and
exploit reporting specifically for Industrial Control Systems*.

B. Data Collection

We automatically mined, processed, and analyzed text data
from ICS-related vulnerability reports to extract information
about affected components and root causes. This was achieved
using a 5-step process combining automated data collection
and processing with manual verification:

1) Mine ICS-related vulnerability advisory reports from the

ICS-CERT reporting website (Section III-C).

2) Develop an automated detection system to extract im-
pacted components from the text data in the advisory
reports (Section III-D).

3) Manually verify the precision and accuracy of the auto-
mated detection (Section III-D).

4) Automatically extract the tactic-related weaknesses
tagged for each advisory, and use this data to determine
affected tactics (Section III-E).

5) Leverage the data from previous steps to determine com-
ponents, tactics, and weaknesses with high frequency in
ICS (Section III-F).

These steps are detailed in the following subsections. Each
step relied on a broad range of data elements, so to help the
reader understand how we utilized these data elements and
artifacts, we present an information model in Figure 2. This
information model shows each data element used in our study
and the relationships between data elements and to various
artifacts. The data elements on the top part are extracted
from the reports through web-mining and natural language
processing techniques, and then mapped to the data elements
in the bottom part (CAWE).

3http://cwe.mitre.org/data/definitions/1008.html
“https://ics-cert.us-cert.gov/advisories

i Security Advisories Report
ICS-CERT | ¢ provides » Security Advisories Report
1 x| Vulnerability Characterization « tagged as »
* | - description
- root cause
NVD T
«tagged as »l..* «affects »| 1..*
| PR , 0..%
1
CVE Components CWE
« provides »
-cveid - Name - cwe id
- description - Acronyms - summary
1.% - cwe id
K A « Characterizes » | /
[ittt M; d
; Reasoning via MITRE's Common] « Vapped»
1 __ Architectural Weaknesses Catalog___:
A
i i CAWE
Security Tactic)))
« is associated with » ey
- name < - summary
- description 0..1 0..* | - root cause
Fig. 2. Data Extraction Information Model

C. Vulnerability Report Mining

ICE related vulnerabilities are reported online. To conduct
our empirical study we created a web-scraper to extract all
text from each ICS-CERT report’s web page and store it in
a database. 988 advisory reports listed on the ICS-CERT
advisory page were mined. The dates of these reports range
from March 10th, 2010 to September 24th, 2018 (the last date
reports were mined).

D. Identification of Vulnerable ICS Components

Answering RQ1 required the identification of vulnerable
ICS components in the advisory reports. We used an automated
text analysis approach to analyze these reports and detect ICS
components.

e Step 1: First, we developed a reference architecture for
ICS products. To do so, we conducted an extensive manual
search for common ICS components along with alternative
terms or abbreviations for each component by reviewing online
resources describing ICS systems, curating a list of compo-
nents and terms. This included the review of architectural
documents of ICS products that were accessible online, re-
search papers [23], industrial products, and existing standards
for ICS applications [2], [3], [7], [24]-[29]. We identified 17
components in this way. To avoid bias, each author of this
paper reviewed the sources independently, and only terms with
full agreement were kept.

e Step 2: We used the component-term data to create a com-
ponent dictionary, with the proper name of each component
as a key, and the list of alternative terms for each component
as the values. Table Il is a sample of the component/term dic-
tionary. Furthermore, this list was cross-validated and revised
by an engineer in a local ICS corporation. Table I provides
descriptions of both “core” ICS components and ‘“variation”
components (found in some products).

TABLE 1
LisT OF ICS COMPONENTS USED IN THE STUDY
Component Specification
. . Reliable software designed for configuration, maintenance
Engineering X . L
. and diagnostics of the control system applications and
workstation

equipment.

Data Historian
(HIST)

A system for logging all data in an ICS environment, this
data might be uses for analysis later.

Human-machine

(OLE) for Process|
Control (OPC)

@ User interface that allows engineers and operators to
5 |Interface (HMI) |interact with the controller.
§_ Intellicent A smart industrial device capable of acquiring data,
£ Electr(g)nic Device communicating with other devices, and automating
S industrial processes.
£ |Programmable | A solid-state control system often used in assembly lines,
£ |Logic Controllers |or robotic devices, or activities that require high reliability
E (PLC) control, ease of programming and process fault diagnosis.
o RTU (Remote Used to communicate with remote field equipment. PLCs
Terminal Unit) with radio communication capabilities are also used in
place of RTUs.
Supervisory A system performing control functions used to control
control software |dispersed assets using centralized data acquisition and
supervisory control.
SCADA) p y 1
Common Provides a set of services & messages for control, security,
Industrial synchronization, configuration, information that can be
Protocol (CIP) integrated into networks.
Device Type A driver-like software that provides an interface for device
Mana ery P configurations, maintenance, diagnostics &
s troubleshooting.
Distributed SACAD variant, microprocessor based units distributed
C(;ntrol Systems functionally & geographically over the plant, situated near
(DCS) Y area where control or data gathering functions being
performed.
Distributed a widely used protocol in electricity and/or water and
Network Protocol |waste water treatment plants with three layers (data link,
5 (DNP3) application, and transport layer).
s A digital, serial, multi-drop, two-way data bus between
'E Fieldbus field equipment,. sensors, transducers, actuators, control
> room devices.
Modbus The de facto ICS communications protocol that uses serial
) communications with PLCs.
et Linki
ggg:; dilr]:g ing & A set of open standards developed to promote

interoperability between disparate field devices,
automation/control, and business systems.

PAC

a "mashup" between a PC and a PLC in that it typically
offers the benefits of both in a single package.

Process Control
System (PCS)

SCADA variant, typically rack-mounted, processes sensor
input, executes control algorithms, and computes actuator
outputs.

Real time OS

Operating System

e Step 3: Next, we wrote a keyword detector script that used
the component-term dictionary to automatically find terms in
the text of each report. When a term was detected, it was
logged with supporting information: the report ID, component
name, and what section of the report it was found in (such
as ‘Background’, ‘Characterization’, etc.) which was used to
verify the accuracy of this approach (Section III-D). Our
keyword detector was designed to identify the ‘standalone’
terms (those with white space on either side) as well as
terms with non-character borders (those concatenated with as
parentheses, numbers, or hyphens and etc.) We found that 768
of the 988 reports mentioned the 17 components.

o Step 4: The accuracy of our component detection technique
was then manually verified. We checked for false positives
by randomly selecting 50 reports that were marked as con-
taining 1 or more components from our dataset and manually
reviewing their text to confirm the match was correct. We also
checked these 50 reports for any new components not found in
our discovery step. We found no false positives or un-identified

components.

TABLE 11
SAMPLE OF COMPONENT-TERM DICTIONARY USED TO IDENTIFY
COMPONENTS IN ICS ADVISORY REPORTS

ICS Component
Programmable Logic

Terms in Dictionary

Programmable Logic Controllers, PLC, control loop, logic

Controllers controller

Distributed Control Distributed Control Systems, DCS, digital processor control
Systems system, process manager

Fieldbus Fieldbus, Field Device

Supervisory Control Supervisory control software, SCADA, supervisory control
Software and data acquisition

Human-machine Interface, HMI, Human Machine Interface,
Web Interface, operator

Remote Terminal Units, RTUs, RTU, Remote Terminal Unit
data historian, Operational Historian, HIST, process data
archive, historian

Human-machine Interface

Remote Terminal Unit

Data Historian

E. Identifying ICS Vulnerability Reports with Architectural
Root Cause

To answer research questions RQ2, RQ3, and RQ4, we
needed to classify each ICS vulnerability as architectural
and non-architectural. We used the CAWE catalog as a gold
standard to classify vulnerabilities reported by ICS advisories
(see Figure 2 for connection between vulnerability reports,
CWESs, CAWE:s and tactics).

« Since vulnerabilities (CVEs) reported by NVD typically
contain a CWE Tag describing the type of software
vulnerability, we could use these tags to automatically
classify CVEs as tactical or non-tactical.

o In some cases the advisories reports did not have a CWE
tag specified . Thus, we used the CVE tag in the report
and queried NVD database to find the CWE associated
to the vulnerability. The combination of ICS-CERT and
NVD databases help us to identify the missing CWE tags.

The steps described above were automated and the results
have been vetted in a peer-evaluation process by the authors
of the paper to ensure the mappings are 100% accurate.

To answer RQ2, RQ3 and RQ4, we used the mapping of
223 CAWEs to 12 tactics. We detected CAWEs related to 10
of the 12 tactics. Frequency data is reported in Section IV.

F. Data Analysis

RQ1 (Most Vulnerable ICS Components): To answer this
question, we identified the most frequently reported compo-
nents across 988 ICS-CERT Vulnerability Advisory Reports.
RQ2 (% of ICS Vulnerabilities with an Architectural
Root Cause): This question was answered by calculating the
percentage of ICSA reports that were tagged to a CWE ID
mapped to the CAWE catalog of architectural weaknesses.
RQ3 (common architectural vulnerabilities in ICS): We
identified the most frequently occurring CAWEs.

RQ4 (most compromised security tactics): we identified the
underlying security tactic impacted by the most frequently
occurring CAWEs.

5129 reports did not have a CWE tag

—l

Device Type
Manager 14

Fieldbus 18
Common

Industrial
Protocol (CIP) 13

DNP3
(Distributed
Network
Protocol) 39

Distributed
Control Real
Modbus 31 Systems 16 PAC6 tim

OPC (OLE for Process
Control) 57

Process Control
System (PCS) 42

Fig. 3. Heat Map of Component Frequency in Advisories

IV. RESULTS

In this section we present the results of the experiments
described in Section III, organized by the research question
they aimed to answer. We provide a combination of quanti-
tative frequency data and qualitative studies that aim to look
deeper into the most frequently found weaknesses, tactics and
components.

A. RQI: Which ICS Components are Most Vulnerable?

Our analysis detected 17 ICS components in 544 ICS
advisory reports (55.06% of the entire corpus). The number
of components mentioned in individual reports ranged from
1 to 6, but the majority of reports (331) mentioned only 1.
Figure 3 is a heat map showing the most common components
in these ICS advisory reports. The size of each block in the
heatmap represents the frequency of a component, measured in
number of reports it was detected in (Section III-D). The three
most common components were Human-Machine Interfaces
(HMIs), Supervisory Control And Data Acquisition (SCADA)
Software, and Programmable Logic Controllers (PLCs). The
remaining components were significantly less vulnerable. For
instance, the fourth component impacted by vulnerabilities is
OPC (reported 57 times) which is a software protocol based on
Microsoft’s Distributed Component Object Model (DCOM),
used by manufacturers for interoperability of industrial pro-
cesses in real time.

RQ1 Key Finding:
o Human-Machine Interfaces (HMlIs), Supervisory
Control And Data Acquisition (SCADA) Software,

and Programmable Logic Controllers (PLCs) are the
most vulnerable ICS components.

B. RQ2: What Percentages of ICS Vulnerabilities had an
Architectural Root Cause?

From the 859 reports found to have CWE IDs tagged in
them, 62.86% (540) were tagged with 1 or more architectural
weakness (CAWE). The majority of these reports (378) only
tagged 1 architectural CWE, but the remaining 162 reports
tagged between 2 and 12 CWEs. This implies the importance
of secure-by-design concepts in ICS systems.

RQ2 Key Finding:
e 62.86% of ICS vulnerability disclosures had an ar-
chitectural root cause, while 37.14% of the vulnera-
bilities were due to coding defects.

C. RQ3: What are the Most Common Architectural Weak-
nesses in ICS?

Table III shows the top 20 architectural CWEs affecting
ICS based on our analysis as described in Section III-E. These
results show that CWE 20: Improper Input Validation is the
architectural weakness affecting ICS most often, found in 142
reports. This is 26.29% of the 540 reports with architectural
CWEs. This CWE was marked as a tactical weakness by [21]
as it clearly affects the Validate Inputs security tactic.

RQ3 Key Findings:

o The most common architectural weakness affecting
ICS is CWE 20: Improper Input Validation (26.29%
of 540 reports with CAWESs). The other architectural
weaknesses in the top-5 were CWE 79: Cross-site
Scripting, CWE 352: Cross-Site Request Forgery,
CWE 89: SQL Injection, and CWE 287: Improper
Authentication.

D. RQ4: Which Architectural Tactic Implementations are
Compromised Most Often in ICS?

To answer the previous question, we calculated the fre-
quency of architectural CWEs, which were weaknesses affect-
ing implementations of 12 architectural tactics. Each tactic is
mapped to 1 or more CWE, so to measure frequency for each
tactic we looked at reports which tagged its mapped CWEs and
counted the unique number of times the tactic was tagged. This
means, if a single report tagged more than one CWE mapped
to the same tactic, the tactic was counted only once. As
mentioned in the results for RQ3, there were 540 ICS advisory
reports containing architectural CWEs. The number of factics
associated with each report based on tagged CWEs ranged
from 1 to 5, but the majority (422) are associated with only
1. We found that CWEs mapped to 10 of the 12 tactics were
found in the dataset. The top 3 architectural security tactics
associated with ICS advisory reports are Validate Inputs,

TABLE III
TopP 20 ARCHITECTURAL WEAKNESSES (CAWES) IN ICS

Tactic CWE #Freq.
Validate Inputs CWE-20 Improper Input Validation 142
Validate Inputs CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’) 75
Authenticate Actors CWE-287 Improper Authentication 70
Authorize Actors CWE-284 Improper Access Control 63
Validate Inputs CWE-352 Cross-Site Request Forgery (CSRF) 45
Authenticate Actors CWE-798 Use of Hard-coded Credentials 44
Validate Inputs CWE-89 Improper Neutralization of Special Elements used in an SQL Command ("SQL Injection’) 37
Authenticate Actors CWE-259 Use of Hard-coded Password 20
Encrypt Data CWE-522 Insufficiently Protected Credentials 18
Validate Inputs CWE-94 Improper Control of Generation of Code (’Code Injection’) 17
Authenticate Actors CWE-306 Missing Authentication for Critical Function 16
Authorize Actors CWE-434 Unrestricted Upload of File with Dangerous Type 14
Authorize Actors CWE-269 Improper Privilege Management 13
Encrypt Data CWE-326 Inadequate Encryption Strength 13
Encrypt Data CWE-312 Cleartext Storage of Sensitive Information 12
Validate Inputs CWE-78 Improper Neutralization of Special Elements used in an OS Command ("OS Command Injection’) 12
Authorize Actors CWE-285 Improper Authorization 11
Encrypt Data CWE-319 Cleartext Transmission of Sensitive Information 10
Encrypt Data CWE-311 Missing Encryption of Sensitive Data 10
Encrypt Data CWE-256 Unprotected Storage of Credentials 10

TABLE IV
10 COMPROMISED ARCHITECTURAL TACTICS

Tactic # of Reports
Validate Inputs 351
Authenticate Actors 174
Authorize Actors 133
Encrypt Data 114
Limit Access 18
Identify Actors 13
Manage User Sessions 11
Cross Cutting 8
Verify Message Integrity 4
Audit 2

Encrypt Data, and Authenticate Actors. Frequency data for
these 10 tactics is reported in Table IV.

RQ4 Key Finding:
o The top 3 architectural security tactics compromised
in ICS are Validate Inputs, Authenticate Actors, and
Authorize Actors.

E. Detailed Discussion of the ICS Common Weaknesses

Here we discuss the top 10 architectural weaknesses and
examples of such vulnerabilities in ICS components.

1) CWE 20: Improper Input Validation: This weakness
occurs when an ICS component either does not or incorrectly
implements the Validate Inputs tactic. Our analysis indicates
that this weakness can be present in every ICS component
and the consequences often results a denial-of-service at-
tack. For instance, ICSA-14-079-01 reports two vulnerabilities
impacting Siemens SIMATIC S7-1200 Programmable Logic
Controllers (PLCs). The crafted packets sent on 2 specific ports
could initiate a special “defect mode” on the PLC device. The
subsystem receiving the packets fails to validate, thus causing
a vulnerability that can be exploited remotely and causes
denial-of-service. These vulnerabilities were viable since the
devices were accessible through the internet, however, they
were mitigated by Siemens in new versions of these PLCs.

2) CWE 79: Improper Neutralization of Input During Web
Page Generation (’Cross-site Scripting’): This weakness oc-
curs in an ICS component that has a web accessible Ul, but

does not or incorrectly “neutralize” input provided by one
user (commonly a web request) that is subsequently used to
generate web pages which are served to additional users. With
this flaw, attackers can inject client-side scripts into web pages
viewed by other users. This weakness is related to the Validate
Inputs tactic, however, it is limited to ICS components with
web-accessible Uls. In contrast, with the previous weakness
(CWE-20), attackers could implement a denial-of-service at-
tack using a crafted input that did not necessarily involved web
applications. ICSA-15-342-01 describes a cross-site scripting
vulnerability affecting XZERES 442SR Wind Turbines. The
web-based operating system of the turbine generator did not
properly neutralize incoming web request content. This could
be exploited remotely, and could cause the entire system to
lose power.

3) CWE 287: Improper Authentication: A common design
weakness discovered in ICS is that a component fails fo or
incorrectly verifies the identity claims of an actor interacting
with it. For instance, ICSA-17-264-04 reports that iniNet
Solutions GmbH’s SCADA Webserver assumed the SCADA
is used in a protected network and did not implement “Authen-
ticate Actor” tactic at all. However, the system was connected
to the Internet. In another case, ICSA-16-308-01 describes
vulnerabilities in multiple versions and models of Moxa’s
OnCell Security software, which are cellular IP gateways that
connect devices to cell networks. Access to a specific URL
is not restricted, and any user may download log files when
the URL is accessed. This can be exploited and used for an
authentication bypass, where the malicious actor accesses the
URL without prior authentication.

4) CWE 284: Improper Access Control: This is a weakness
in Authorize Actors tactic that occurs when an ICS component
fails to or incorrectly restricts an unauthorized actor from
accessing resources or equipment. This weakness can result
in privilege escalation, disclosure of confidential or sensitive
data, or execution of malicious code. ICSA-13-100-01 dis-
cusses a case that MiCOM S1 Studio Software, which is

used to configure parameters of electronic protective relays,
fails to limit access to executables, meaning users without
administrative privileges can replace the executables with
malicious code or perform unauthorized modification of the
relay parameters. The malicious actor could also exploit this
to allow other users to escalate their own privileges. Exploiting
this vulnerability requires physical access to the device and it
can’t be exploited remotely. The company provides mitigation
strategies for users, but it has not been patched or fixed by
adding appropriate security tactics.

5) CWE 352: Cross-Site Request Forgery (CSRF): 1CS
components may not verify that an expected and/or valid
request to a web server was sent inftentionally by the client
(a.k.a. “forged” request). A malicious entity could take ad-
vantage of this weakness to force or trick a client into
sending an unintentional request to an ICS component or
equipment, which appears to be valid to the SCADA server
or process controllers. [CSA-15-239-02 describes a cross-site
request forgery (CSRF) vulnerability in the integrated web
server of Siemens SIMATIC S7-1200 CPUs, which are used in
Programmable Logic Controllers (PLCs). A user with an active
session on these web servers could be tricked into sending a
malicious request, which would be accepted by the CPU server
without verifying intent. This can be exploited remotely, and
would allow the malicious entity to perform actions to the
PLC using the tricked user’s permissions.

6) CWE 798: Use of Hard-coded Credentials: This occurs
when ICS components stored any type of credential used for
authentication, external communication, or encryption of data
in readable formats (e.g. plain text) in discoverable locations.
This weakness compromises an Authenticate Actors tactic in
ICS, and enables malicious actors to implement authentication
bypass exploits and make ICS components or equipment per-
form actions that require authentication or elevated privilege.

This weakness was found across all ICS components. For
instance, ICSA-15-309-01 discloses a hard-coded SSH key
in Advantech’s EKI-122X Modbus gateways, which inte-
grate Modbus/RTU and Modbus/ASCII devices to TCP/IP
networked devices. The firmware of these gateways contains
unmodifiable, hard-coded SSH keys. Since the keys cannot be
changed but are discoverable, they could be remotely exploited
to intercept communication by a malicious external actor.

7) CWE 89: Improper Neutralization of Special Elements
used in an SQL Command (’SQL Injection’): This is another
weakness in ICS that affects implementations of the Validate
Inputs tactic. It describes an ICS component’s incorrect or
failure to “neutralize” user-provided inputs which are inserted
as parameters to SQL queries, which can be exploited in SQL
Injection attacks. In such cases the un-handled input is exe-
cuted as part of the query itself instead of as a parameter. This
can lead to the database unintentionally returning sensitive
data or modification of the existing data. This weakness was
mostly associated with components such as Human-machine
Interface (HMI), Supervisory control software (SCADA) and
Process Control System (PCS). ICSA-14-135-01 discusses a
SQL injection vulnerability in several versions of the web-

based CSWorks framework that is used to build process
control software. The framework fails to sanitize or validate
(“neutralize”) user provided inputs which are intended to be
used to read and write paths.

8) CWE 259: Use of Hard-coded Password: Hard-coded
passwords are passwords stored in plain text or easily decrypt-
able formats that are located somewhere discoverable by mali-
cious actors, who can exploit them to bypass authentication or
authorization checks. This weakness affects implementations
of the Authenticate Actors tacic in ICS products.

For instance, ICSA-12-243-01 report describes a privilege
escalation vulnerability in multiple versions of two varieties
of GarrettCom Magnum MNS-6K Management Software,
which is used for device management on managed Ether-
net switches. An undocumented but discoverable hard-coded
password could allow a malicious actor with access to a pre-
existing account on a device to elevate their account privileges
to admin levels. With these elevated privileges, a denial-
of-service attack could be rendered or sensitive equipment
settings could be changed.

9) CWE 522: Insufficiently Protected Credentials: This
weakness occurred when the ICS components used an insecure
method for transmission (e.g. insecure network) or storage
(e.g. plain-text) of credentials. This insecurity can be exploited
for malicious interception or discovery. This weakness affects
implementations of the Encrypt Data tactic. ICSA-16-336-05B
discusses unprotected credentials which could be exploited in
multiple versions of 3GE Proficy Human Machine Interface
(HMI), Supervisory Control and Data Aquisition (SCADA),
and Data Historian products. In these products, if a malicious
actor has access to an authenticated session, they may be able
to retrieve user passwords not belonging to the authenticated
account they are using. However, it cannot be exploited
remotely.

10) CWE 94: Improper Control of Generation of Code
(’Code Injection’): This weakness occurs when the ICS com-
ponents fails to or incorrectly “neutralize” user-provided input
to remove code syntax. This can result in this code being
executed when the input is used to generate a code segment in
the software. This weakness affects the Validate Inputs tactic.

ICSA-14-198-01 discusses a code injection vulnerability
affecting some versions of Cogent Real-Time Systems, Inc’s
DataHub, a middleware used to interface with various control
systems. If a malicious actor has access to and creates a
‘Gamma’ script on the local file system, the can craft a
specially formatted user name and password to perform a code
injection attack via an ASP page to execute that script file.

V. COMPARING CAWES IN ICS PRODUCTS AND
ENTERPRISE WEB APPLICATIONS

We also compared the architectural weaknesses (CAWEs)
we found to strongly affect ICS components with CAWESs
previously identified as high-risk to commercial/enterprise web
applications. The goal of this analysis was to determine if
ICS components are most affected by unique weaknesses or if
there was a similar pattern of common risks given that many

ICS products have web-based interfaces (such as HMIs and
SCADA software). To do so, we compared our ranking (by
frequency) of vulnerable architectural weaknesses in ICS to
architectural weaknesses mapped to the 2017 OWASP Top
10 Web Application Security Risks ©, as shown in Table V.
The OWASP Top list is a report curated by the Open Web
Application Security Project (OWASP) that enumerates which
risks were most prevalent or impactful to web applications
each year. We chose this list because it is widely-used when
discussing web security and is based on empirical data and
input from security experts.

TABLE V
COMPARISON WITH OWASP Top 10

OWASP Top 10 ICS Architectural Weaknesses

o Rank#7: CWE-89 SQL Injection

e Rank#10: CWE-94 Code Injection

* Rank#16: CWE-78 OS C d Injection

e Rank#3: CWE-287 Improper Authentication

¢ Rank#9: CWE-522 Insufficiently Protected
Credentials

e Rank#11: CWE-306 Missing Authentication of
Critical Function

o Rank#20: CWE-256 Unprotected Storage of
Credentials

e Rank#6: CWE-798 Use of Hard-coded
Credentials

* Rank#8: CWE-259 Use of Hard-coded Password

o Rank#15: CWE-312 Cleartext Storage of
Sensitive Info.

e Rank#18: CWE-319 Cleartext Transmission
of Sensitive Info.

o Rank#19: CWE-311 Missing Encryption of
Sensitive Data

Al-Injection

A2-Broken Authentication

A3-Sensitive Data Exposure

A4-XML External Entities (XXE) N/A
¢ Rank#4: CWE-284 Improper Access Control

e Rank#13: CWE-269 Improper Privilege

A5-Broken Access Control

Management
* Rank#17: CWE-285 Improper Authorization
A6-Security Misconfiguration N/A
A7-Cross-Site Scripting (XSS) e Rank#2: CWE-79 Cross-site Scripting
A8-Insecure Deserialization N/A
A9-Using Vulnerable Components N/A
A10-Insufficient Logging N/A

To create Table V, we first cross-referenced the MITRE
CWE view that provides a mapping of CWEs to the 2017
Top 10 OWASP risks 7 with our top-20 architectural CWEs
affecting ICS products (Table IIT). Each weakness on the right
is marked with its ranking (by frequency) in our ICS dataset.
Bolded weaknesses were included in the MITRE CWE-
OWASP Map, and the non-bold weaknesses were added by us.
To accurately map additional CAWEs to the OWASP risks, we
carefully reviewed the OWASP Risk descriptions and the CWE
description for each of the CAWEs from our top-20 which
were not already included in the MITRE CWE-OWASP Map.
Based on this, 4 of our top-20 most common CAWEs in ICS
could not be appropriately mapped to an OWASP risk. This
included our #1 most-frequent CAWE (CWE-20: Improper
Input Validation). This weakness, although related to the
Validate Inputs security tactic, is different than Al-Injection
risk. Based on the description provided by OWASP, this risk

Shttps://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project
https://cwe.mitre.org/data/slices/1026.html

focused on injection attacks such as code or SQL injections
which are common in web-application. We randomly sampled
70 ICS vulnerability reports that tagged CWE-20 and found
that this weakness in ICS devices targets availability of the
devices and if exploited will result in denial-of-service attacks.
The other CAWESs we were unable to map to OWASP Risks for
similar reasons are (#5) CWE-352: Cross Site Request Forgery,
(#12) CWE-434: Unrestricted Upload of File with Dangerous
Type, (#14) CWE-326: Inadequate Encryption Strength.

The remaining 16 weaknesses were mapped to OWASP top
10 risks. Analysis of ICS vulnerability reports indicate the
there are many web-based components in an ICS (e.g HMI)
and these components are vulnerable to OWASP top 10 risk.
Furhtermore, some of these components are critical to the
operation of an ICS. If attackers can gain access of the HMI,
they can often control the entire system.

Research Summary:

e Many modern HMIs are now web-based and there
are cloud-based SCADA systems, therefore common
web vulnerabilities affect these components of ICS.

e The most common architectural weaknesses in ICS
are different than for web applications. ICS are most
vulnerable to CWE-20 Improper Input Validation that
can result in denial of service attack, crashing ICS
process and equipment.

e ICS components are not secured-by-design. Many
vendors have indicated that their products are de-
signed to be used in a protected environment and
therefore do not have mitigation techniques (e.g.
authentication and input validation tactics) required
to work in an untrusted environment.

o Industrial control systems rely on many vendors for
PLC, RTU, IED and other controllers and equipment.
This increases their attack surface and makes enforc-
ing Input Validation tactic difficult.

VI. IMPLICATIONS FOR PRACTITIONERS

In this section, we provide a set of recommendations for
ICS developers based on our findings in Section IV:
Generalizability and applicability of findings: As argued
by Wieringa, describing the context and characteristics of
the studied cases as in Table I allows us to “generalize”
our findings by analogy (i.e., our findings may apply to
systems that are similar to the cases of this study or have
similar components) [30]. We also discuss generalizability in
Section VII when we acknowledge validity threats.

Based on the findings from the case study, as well as
the mitigation techniques reported by ICS-CERT in each
case, we follow an inductive approach [30] and infer several
recommendations:

e Isolate control system devices and/or systems from
untrusted networks To increase security of ICS, advisories
recommended minimizing network exposure for all control
system devices and/or systems, and ensure that they are not

accessible from the Internet or not connected to the business
network. This can be also accomplished by putting remote
devices behind firewalls, and isolating them from the business
network. Other recommendations include: when remote access
is required, secure methods must be used, and all the unused
ports must be closed.

o Sanitize the user’s inputs to ICS components and devices
To mitigate CWE-20: Improper Input Validation, all the inputs
to ICS endpoints ® must be sanitized. For any security checks
that are performed on the client side, ensure that these checks
are duplicated on the server side.

e Encrypt Sensitive Data Insufficiently protected credentials
can enable attackers to gain access to the system. Furthermore,
if the communicated data is not encrypted, the system is
vulnerable to the Authentication Bypass by Capture-replay.
An attacker can sniff the wireless transmissions between the
SCADA, remote controller and the equipment and then bypass
authentication by replaying it to the remote controller or
equipment.

e Secure ICS endpoints Many equipment can be accessible
through their designated port. If attackers have access to the
ports they can implement various forms of attacks. Access
to the endpoints outside the SCADA/HMI functions must
be limited. Otherwise, users’ access to the endpoints (e.g.
ports) must be authenticated, and the users activity must be
authorized. In case of HMI and Engineers Workstation, access
to each URL must be authenticated to prevent authentication
bypass weaknesses.

e Follow tactic-centric approach to ICS security By know-
ing the type of tactical vulnerability that can impact the
security architecture of ICS, we can plan targeted testing and
assurance strategies to mitigate security risks in these systems.
e Usage of unpatched Devices Since ICS components are
often deployed in an industrial field in operation, patching
vulnerabilities is an ongoing challenge. A common recom-
mendation for usage of unpatched devices is to ensure the
affected ICS components is running in a protected network
environment.

VII. THREATS TO VALIDITY

In this section we discuss threats present in our methodology
and findings that could compromise 3 types of validity [31].

Construct Validity is a measure of how well the design
of experiments reflects the research questions they aim to
answer. In our study, we used vulnerability advisory reports
released by the Industrial Control Systems Cyber Emergency
Response Team (ICS-CERT) to measure the frequency, in
number of reports, of common ICS components, architectural
weaknesses, and security tactics in order to draw conclusions
on the most vulnerable components and the architectural
weaknesses that caused these vulnerabilities. Therefore, we
rely on the accuracy of these reports to draw our conclusions
and it is possible some relevant weaknesses or components
were not found in these reports.

8endpoint: is the application’s interface (e.g. URL or port) where the
services can be accessed by a client application or user

Internal Validity is the measure of how bias is minimized
in the study. In order to identify components of ICS systems
in these reports, we reviewed online literature about the ICS
domain to manually compile a dictionary of components
and their alternative names/phrasings. We acknowledge that
there is a possibility of a selection bias, and components
or phrasings could have been missed. To mitigate this, all
authors of this paper reviewed the material independently, and
only components/terms with full agreement were added to the
dictionary.

External Validity is the measure of how generalizable the
findings of a study are to the study’s overall domain. In
this work we aimed to draw conclusions about architectural
vulnerabilities in the ICS domain. To do so, we used the
vulnerability advisory reports published by ICS-CERT. Our
dataset was comprised of 988 reports disclosed by 277 vendors
of ICS products. While we acknowledge that this does not
represent all products or vendors in this domain, we believe
the dataset is large enough and covers a wide enough timeline
(2010-2018) to be generalizable.

VIII. RELATED WORK

Existing research in software architecture for security has
mainly focused on secure design concepts, the analysis and
evaluation of the existing security architecture [32], [33] as
well as identifying potential vulnerabilities from the architec-
ture [34], [35] . While these works discuss focus on overlap
of security and architecture, they do not in particular study the
architectural weaknesses in ICS. On the other hand, there have
been research efforts that have looked into security aspects
of ICS. Empirical studies in this domain has been limited to
examining ad-hock security incidents relating to SCADA and
critical infrastructure [9]-[12]. Other researchers have devel-
oped techniques for mitigating security design issues [3], [13],
[14], such as embedding security into industrial IoT systems
from early on using model driven approaches and tools [15]. In
addition, past research has performed case studies of incidents
rooting from a specific security issue, such as the impact of
Stuxnet Worm on ICS [5]. There has been other research work
focused on maliciously exploiting a particular ICS component
without resorting to vulnerabilities or bugs [6]. Unlike previous
research efforts, our work performs a comprehensive review
of all US-CERT reported incidents, to investigate common
security architectural weaknesses in ICS.

IX. CONCLUSION

This paper has presented a first-of-its-kind empirical study
towards understanding architectural vulnerabilities in indus-
trial control systems. We have examined 988 vulnerability
advisory reports released by the Industrial Control System
Cyber Emergency Response Team (ICS-CERT) regarding ICS
products from 277 vendors. Our approach used a manually
compiled dictionary of ICS components, CWE data from
MITRE, and a mapping of CWEs to architectural tactics [17]
to determine what the most-frequently compromised ICS com-
ponents were and the architectural weaknesses which made

them vulnerable. Our key findings were: (1) Human-Machine
Interfaces, SCADA configurations, and PLCs were the most
vulnerable components, (2) 62.86% of vulnerability disclo-
sures in ICS had an architectural root cause, (3) most tactic-
related vulnerabilities were related to the tactics “Validate
Inputs”, “Authenticate Actors” and “Authorize Actors”, and
(4) the most common CAWESs were related to “Improper Input
Validation”, followed by “Improper Neutralization of Input
During Web Page Generation” and “Improper Authentication”.

ACKNOWLEDGMENTS

This work was partially funded by the US National Sci-
ence Foundation under grant numbers CNS-1823246, CNS-
1816845 and IIP-0968959 under funding from the S2ERC
I/UCRC program and US Department of Homeland Security.

[1]

[3

=

[4

=

[6]

[7]

[8

[t

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

S. Gold, “The scada challenge: securing critical infrastructure,” Network
Security, vol. 2009, no. 8, pp. 18 — 20, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1353485809700789

D. of Homeland Security, “Department of homeland security (u.s.).
critical infrastructure and control systems security curriculum,” March
2018.

K. Stouffer, J. Falco, and K. Scarfone, “Guide to industrial control
systems (ics) security,” NIST special publication, vol. 800, no. 82, pp.
16-16, 2011.

W. Yang and Q. Zhao, “Cyber security issues of critical components
for industrial control system,” in Proceedings of 2014 IEEE Chinese
Guidance, Navigation and Control Conference, Aug 2014.

S. Karnouskos, “Stuxnet worm impact on industrial cyber-physical
system security,” in IECON 2011-37th Annual Conference on IEEE
Industrial Electronics Society. 1EEE, 2011, pp. 4490-4494.

S. A. Milinkovi¢ and L. R. Lazié, “Industrial plc security issues,” in
Telecommunications Forum (TELFOR), 2012 20th. IEEE, 2012, pp.
1536-1539.

K. KOBARA, “Cyber physical security for industrial control systems
and iot,” IEICE Transactions on Information and Systems, vol. E99.D,
no. 4, pp. 787-795, 2016.

A. Shahzad, S. Musa, A. Aborujilah, and M. Irfan, “Industrial control
systems (icss) vulnerabilities analysis and scada security enhancement
using testbed encryption,” in Proceedings of the 8th International Con-

ference on Ubiquitous Information Management and Communication.

ACM, 2014, p. 7.
B. Miller and D. Rowe, “A survey scada of and critical infrastructure

incidents,” in Proceedings of the Ist Annual Conference on
Research in Information Technology, ser. RIIT ’12. New York,
NY, USA: ACM, 2012, pp. 51-56. [Online]. Available: http:

//doi.acm.org/10.1145/2380790.2380805

J. Stamp, J. Dillinger, W. Young, and J. DePoy, “Common vulnerabilities
in critical infrastructure control systems,” SAND2003-1772C. Sandia
National Laboratories, 2003.

R. Tsang, “Cyberthreats, vulnerabilities and attacks on scada networks,”
University of California, Berkeley, Working Paper, http://gspp. berkeley.
edu/iths/Tsang_SCADA% 20Attacks. pdf (as of Dec. 28, 2011), 2010.
R. J. Turk et al., Cyber incidents involving control systems. Citeseer,
2005.

E. D. Knapp and J. T. Langill, Industrial Network Security: Securing
critical infrastructure networks for smart grid, SCADA, and other
Industrial Control Systems. Syngress, 2014.

L. Obregon, “Secure architecture for industrial control systems,” SANS
Institute InfoSec Reading Room, 2015.

F. Ciccozzi, I. Crnkovic, D. D. Ruscio, 1. Malavolta, P. Pelliccione,
and R. Spalazzese, “Model-driven engineering for mission-critical iot
systems,” IEEE Software, vol. 34, no. 1, pp. 46-53, Jan 2017.

J. C. Santos, A. Peruma, M. Mirakhorli, M. Galster, J. V. Vidal, and
A. Sejfia, “Understanding software vulnerabilities related to architec-
tural security tactics: An empirical investigation of chromium, php
and thunderbird,” in 2017 IEEE International Conference on Software
Architecture (ICSA). 1EEE, 2017, pp. 69-78.

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[35]

J. C. S. Santos, K. Tarrit, and M. Mirakhorli, “A catalog of security
architecture weaknesses,” in 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW), April 2017, pp. 220-223.
M. Mirakhorli and J. Cleland-Huang, “Transforming trace information
in architectural documents into re-usable and effective traceability
links,” in Proceedings of the 6th International Workshop on SHAring
and Reusing Architectural Knowledge, ser. SHARK ’11. New
York, NY, USA: ACM, 2011, pp. 45-52. [Online]. Available:
http://doi.acm.org/10.1145/1988676.1988685

M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar, “A tactic-
centric approach for automating traceability of quality concerns,” in 2012
34th International Conference on Software Engineering (ICSE), June
2012, pp. 639-649.

C. Izurieta, D. Rice, K. Kimball, and T. Valentien, “A position study
to investigate technical debt associated with security weaknesses,” in
Proceedings of the 2018 International Conference on Technical Debt,
ser. TechDebt *18. New York, NY, USA: ACM, 2018, pp. 138-142.
J. C. Santos, K. Tarrit, A. Sejfia, M. Mirakhorli, and M. Galster,
“An empirical study of tactical vulnerabilities,” Journal of Systems
and Software, vol. 149, pp. 263 — 284, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121218302322

J. M. Verner, J. Sampson, V. Tosic, N. A. Bakar, and B. A. Kitchenham,
“Guidelines for industrially-based multiple case studies in software
engineering,” in Research Challenges in Information Science, 2009.
RCIS 2009. Third International Conference on. 1EEE, 2009, pp. 313—
324.

D. Sullivan, E. Luiijf, and E. J. M. Colbert, Components of Industrial
Control Systems. Cham: Springer International Publishing, 2016, pp.

15-28.

T. Agarwal, “Introduction to scada systems archi-
tecture, functionality and applications,” Last Accessed
Dec. 2018. [Online]. Available: http://www.efxkits.com/blog/

scada-systems-architecture-functionality-applications/

J. Foreman, M. Turner, and K. Perusich, “Educational modules in
industrial control systems for critical infrastructure cyber security,”
ASEE Annual Conference and Exposition, Conference Proceedings, vol.
122, 01 2015.

D. G. Peterson, “Digital bond, inc.: Quickdraw scada ids,” 2014.
[Online]. Available: http://www.digitalbond.com/tools/quickdraw/

J. Rubio-Hernan, J. Rodolfo-Mejias, and J. Garcia-Alfaro, “Security
of cyber-physical systems,” in Security of Industrial Control Systems
and Cyber-Physical Systems, N. Cuppens-Boulahia, C. Lambrinoudakis,
F. Cuppens, and S. Katsikas, Eds. Cham: Springer International
Publishing, 2017, pp. 3-18.

P. Van Vliet, M.-T. Kechadi, and N.-A. Le-Khac, “Forensics in indus-
trial control system: A case study,” in Security of Industrial Control
Systems and Cyber Physical Systems, A. Bécue, N. Cuppens-Boulahia,
F. Cuppens, S. Katsikas, and C. Lambrinoudakis, Eds. Cham: Springer
International Publishing, 2016, pp. 147-156.

E. Foo, M. Branagan, and T. Morris, “A proposed australian industrial
control system security curriculum,” in 2013 46th Hawaii International
Conference on System Sciences, Jan 2013, pp. 1754-1762.

R. Wieringa, Design Science Methodology for Information Systems and
Software Engineering. Springer, 2014.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

S. T. Halkidis, N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides,
“Architectural risk analysis of software systems based on security
patterns,” IEEE Transactions on Dependable and Secure Computing,
vol. 5, no. 3, pp. 129-142, 2008.

J. Ryoo, R. Kazman, and P. Anand, “Architectural analysis for security,”
IEEE Security & Privacy, no. 6, pp. 52-59, 2015.

B. J. Berger, K. Sohr, and R. Koschke, “Extracting and analyzing the
implemented security architecture of business applications,” in 17th
European Conference on Software Maintenance and Reengineering
(CSMR). 1EEE, March 2013, pp. 285-294.

S. Al-Azzani and R. Bahsoon, “Secarch: Architecture-level evaluation
and testing for security,” in 2012 Joint Working IEEE/IFIP Conference
on Software Architecture (WICSA) and European Conference on Soft-
ware Architecture (ECSA). 1EEE, 2012, pp. 51-60.

