Error-correcting Codes
for Noisy Duplication Channels

Yuanyuan Tang and Farzad Farnoud (Hassanzadeh)
Electrical & Computer Engineering, University of Virginia, {yt5tz, farzad}@virginia.edu

Abstract—Because of its high data density and
longevity, DNA is emerging as a promising candidate
for satisfying increasing data storage needs. Compared
to conventional storage media, however, data stored in
DNA is subject to wider range of errors resulting from
various processes involved in the data storage pipeline.
In this paper, we consider correcting duplication errors
for both exact and noisy tandem duplications of a given
length k. Specifically, we design codes that can correct any
number of exact duplication and one noisy duplication
errors, where in the noisy duplication case the copy is at
Hamming distance 1 from the original. Our constructions
rely upon recovering the duplication root of the stored
codeword. We characterize the ways in which duplication
errors manifest in the root of affected sequences and
design efficient codes for correcting these error patterns.
We show that the proposed construction is asymptotically
optimal.

I. INTRODUCTION

The rapidly increasing amount of data and the need
for long-term data storage have led to new challenges.
In recent years, advances in DNA sequencing, syn-
thesis, and editing technologies [13], [11] have made
deoxyribonucleic acid (DNA) a promising alternative
to conventional storage media. Compared to traditional
media, DNA has several advantages, including high
data density, longevity, and ease of copying informa-
tion. For example, it may be possible to recover a
DNA sequence after 10, 000 years and a single human
cell contains an amount of DNA that can ideally hold
6.4 Gb of information [13]. However, DNA storage
technologies also encounter many challenges. One
obvious challenge is that a diverse set of errors are
possible, including substitution, duplication, insertion,
and deletion. This paper focuses on error-correcting
codes for noisy duplication channels. In such case, in
addition to exact duplication, noisy duplication, where
an approximate copy is inserted into the sequence, may
occur.

In duplication channels, (tandem) duplication errors
generate copies of substrings of the sequence and insert

This work was supported in part by NSF grants under grant
nos. 1816409 and 1755773.

each copy after the original substring [3]. This type of
channel was first studied in the context of recovering
from timing errors in communication systems that led
to individual symbols being repeated [2]. The copying
mechanism of DNA, however, allows multiple symbols
being repeated, for example, via slipped-strand mis-
pairings, where the slippage of the molecule copying
DNA causes a substring to be repeated [3]. Proper-
ties of duplication in DNA have been studied from
various vantage points, including the theory of formal
languages and the entropy of DNA sequences (see,
e.g., [7] and references therein). Codes for correcting
duplication errors in the context of data storage in
the DNA of living organisms, such as bacteria [9],
were studied by [3], where optimal constructions for
correcting exact duplications of constant length were
presented. This and related problems were then further
studied by a number of works including [4], [14],
[5], [6], [1], [11]. Most related to this paper is [11],
which studies error correction in duplication and sub-
stitution channels, when substitutions are independent
from duplications and when they only occur in copies
generated by duplications. The latter model, i.e., the
noisy duplication model, which is motivated by the
abundance of inexact copies in tandem repeat stretches
in genomes [8], is the model studied in this work.

In the noisy duplication channel, two types of errors
are possible: i) exact duplications, which insert an ex-
act copy of a substring in tandem, such as ACGTC —
ACGTCGTC,; and ii) noisy duplications, which insert
approximate copies, e.g., ACGTC — ACGTCTTC. In
both cases, the length of the duplication refers to the
length of the duplicated substring (3 in our preceding
examples). In this paper, we limit our attention to exact
and noisy tandem duplications of length k, referred
to as k-TDs and k-NDs, respectively. Furthermore,
we only consider noisy duplications where the copy
and the original substring differ in one position. In
other words, each noisy duplication can be viewed as
an exact duplication followed by a substitution in the
inserted copy.

We will design codes that correct (infinitely) many

k-TD and a single k-ND errors, as a step towards
codes that can correct t; k-TDs and to k-NDs, for
given t; and to. The proposed codes will rely on
finding the duplication root of the stored codeword.
The duplication root of a sequence x is the sequence
obtained from x by removing all repeats of length
k. While k-TDs do not alter the duplication root, k-
NDs do. Thus, we will first analyze the effect of noisy
duplications on the root of the sequence. We show that
the root may change in a variety of ways, leading to
several error patterns. We then design efficient error-
correcting codes that correct these errors via a number
of transforms that simplify the different error patterns.
It was shown in [3] that the rate of the optimal code
capable of correcting many k-TDs is
(q—1)log, e

1—
qk+2

+o(1), ey
as the length n of the code grows, where ¢ is the size
of the alphabet. The question then arises as to whether
it is possible to correct an additional noisy duplication
without a rate penalty. It is worth noting that the best
known code for correcting an additional unrestricted
substitution, i.e., a substitution that can occur anywhere
rather than in a copy generated by duplication, has rate
that is bounded from below by [11]

1- %logqﬁﬁ—o(l). (2)
which indicates a rate penalty. In contrast, we show
that the proposed codes have the same asymptotic rate
as (1), and are thus asymptotically optimal.

This paper is organized as follows. The notation and
preliminaries are given in Section II. In Section III,
we analyze the error patterns that manifest as the
result of passing through the noisy duplication channel.
Finally, the code construction and the corresponding
code size are presented in Section IV. Note that proofs
of theorems are not presented because of the limited
space.

II. NOTATION AND PRELIMINARIES

Throughout the paper, X, represents a finite alphabet
of size ¢, assumed without loss of generality to be
{0,1,...,q — 1}. We use Eq+ to denote the nonzero
elements of ¥, and X7 to denote all strings of finite
length over X,. In particular, X7 includes the empty
string A. Furthermore, X7 represents the strings of
length n over ¥,. The set {1,...,n} is represented
by [n].

We use bold symbols, such as x and y;, to denote
strings over X,. The entries of strings are shown

with normal symbols, e.g., * = zjx2---x, and
Yi = Yj1Yj2- " Yjm. where Tiy Yji € Eq. The indices
of elements of words over Z; start from 1, unless
otherwise stated. For two words x,y € X, their
concatenation is denoted as xy, and =™ represents the
concatenation of m copies of x. Given a word x € E;,
the length of « is represented as |x|. In addition, for a
word z € X7, the Hamming weight wt(z) denotes the
number of non-zero symbols in x. If a word & € X}
can be expressed as * = uvw with u,v,w € X},
then v is a substring of x.

Given a word & € X7, an (exact) tandem duplication
of length k£ (k-TD) generates a copy of a substring v
of x of length k and inserts the copy immediately after
v. More specifically, a k-TD can be expressed as [3]

T () uvvw
ik\L) =
* x if || < i+ k

if x =wovw, |u| =1, |v| =k

3)
For example, given the alphabet X3 = {0, 1,2} and
k = 3, a k-TD may result in

x = 1201210 — &’ = T} 3(x) = 1201201210, (4)

where the underlined substring 201 is the copy. We
refer to «’ as a k-TD descendant of x.

Given a word = € Eg n > k, the k-discrete-
derivative transform [3] is defined as ¢(x) =

(¢p(x), d(x)), where

(@) =21 Tk, Q(T) = Thop1 ++* Ty — T1 -~ Ty

)
where the subtraction is performed entry-wise modulo
q. Continuing the example given in (4),

x = 1201210 — =’ = 1201201210,

6
d(x) = 120,0012 — ¢(z’) = 120, 0000012. ©

As seen in the example, after the k-TD in =, ¢(x')
can be obtained by inserting 0¥ into ¢(a), immediately
after the ¢-th entry.

Copies generated by tandem duplications may not
be always perfect. That is, the copy may not always
be exact. Such a duplication is referred to as a noisy
duplication. In this paper, we limit our attention to
noisy duplications in which the copy is at Hamming
distance 1 from the original. Continuing example (4),
one symbol in the copy 201 may change,

' = 1201201210 — =" = 1201101210,
o(x") = 120,0000012 — ¢(z") = 120,0200112.

As seen in the example, a noisy duplication of length
k (k-ND) can be regarded as an exact k-TD followed

by a substitution. Given a word x € EZ, the tandem
duplication results in @’ = T; () and the following
substitution results in " = T; (x) + ae;, where (i +
k+1) <j<(i+2k),a€ E;, and e; represents a unit
vector with 1 in the j-th entry and O elsewhere. Note
that the first k elements are not affected by exact or
noisy duplications and ¢(x) = ¢(x’) = ¢(x”). Hence,

we focus on changes in ¢(-). The substitution changes
at most two symbols of ¢(z’) and can be expressed as

o(@") = o(@') + ae;, (7
where €; = ej_ —e; if (k+1) <j < (|]2'| —k) and
€ =e;_p if (|Jz'| —k+1) < j < |x'|. We refer to
x” as a k-ND descendant of x.

Since noisy duplications may occur at any position,
the word & can generate many descendants through
noisy duplication errors. Let Dz(p)(m) denote the de-
scendant cone of x obtained after ¢ duplications, p
of which are noisy, where ¢ > p. Furthermore, the
descendant cone with many exact k-TDs and at most
P noisy duplications, i.e., at most P substitution errors,
can be expressed as

p=P oo
D@ = Uo" @ ®
p=0 t=p
In this paper, we limit our attention to P = 1.

We define a mapping operation p : X3 — X7 by
removing all runs of 0% in z € 3. More specifically,
consider a string z as

m m me
z=0"%w 0™ - w0
where t = wt(z), wi,...,w; € ¥f, and
mo, ..., M1 are non-negative integers. The mapping

w(z) is defined as

/J/(z) _ Om,o mod kw10m1 mod k | ’LUtOmH'l mod k-
Also, RLL(m) denotes the set of strings of length m
containing no 0*. In other words, RLL(m) = {z €
£u(z) = 2.

According to [3], given a word € X7, after many
(even infinite) k-TD errors, the string (¢(x), 1u(d(x)))
stays the same. To make use of this property, define
the duplication root drt(x) as the string obtained from
x after all copies of length k are removed. Note that
we then have

$(drt(@)) = (¢(z), u(d(x))). ©

If drt(z) = «, we call the word @ irreducible. The set
of all irreducible words of length n can be written as
Irr(n) = {x € ¥}|drt(x) = =}. In other words, an
irreducible word x € ¥ satisfies ¢(x) € RLL(n—k).

For a word z € X7, we define its indicator I'(z) :
¥ = Y5 as I'(z) =Ty (2)---T'z(z), where

1, if z , .
Fi(z):{7 if z 70 i=1,..

oz
0, otherwise. /1l

(10)

Based on (7), the substitution in a noisy duplication
alters two symbols in ¢(x’) at distance k. For the pur-
pose of error correction, it will be helpful to rearrange
the symbols into k& strings such that the two symbols
affected by the substitution appear next to each other
in one of the strings. More precisely, for j € [k], we
define a splitting operation that extracts entries whose
position is equal to j modulo k. That is, for u € ¥y
and j € [k], define u; = (p;); = Spi(u, j) such that

. n—j
Hji = Hjp(i-1)k, 1 <1< [kz—‘ + 1.

For u € Z;‘, we then define the interleaving operation
IL : %} — X} as the concatenation of Spy(u,j),j €
k],

Example 1. Given an alphabet ¥3 = {0,1,2}, k=3,

and u' = ¢(x') = 221200012, after splitting u/, we
obtain

Based on (7), after one substitution error, we may

obtain v = ¢(x”) = 221201011. We then find

u} =Sp,(u”,2) = 201,
uly =Sp,(u”, 1) = 220,
uly =Sp,(u”,3) = 111,
IL(u") =ufujul = 220201111.
We observe that the error is restricted to uy and that

the two symbols changed by the substitution error are
adjacent in IL(u"), while they are not so in u’.

Given aword z € Eg, we define the cumulative-sum
operation CS : ¥f — X7, as r = CS(z), where

ri=» zmodgq, i=1,...n. an
t=1

We further define the odd subsequence Od(z) and
the even subsequence Ev(z) of a word z € ¥} as
two sequences containing symbols in the odd and

even positions, respectively. More precisely, Od(z) =
Spy(z,1) and Ev(z) = Spy(z,2).

Our results will rely on codes that can correct a sin-
gle insertion or deletion. We thus recall the Varshamov-
Tenengolts codes [10], [12], which are binary codes
capable of correcting a single insertion or deletion
(indel).

Construction 1. Given integers m > 1 and 0 <
a < (m — 1), the binary Varshamov-Tenengolts (VT)
code [10] Cyr(a,m) is given as
|=]
Cyr(a,m) ={z € 3| Zizi =amodm}. (12)
i=1
Compared to the binary indel-correcting code, cor-
recting indels in non-binary sequences is more chal-
lenging. We will use Tenengolts’ g-ary single-indel-
correcting code [12], which relies on the mapping
¢ : Xy — X3, where the i-th position of ((2) is

1a if zi 2 Ri—1,
Ci(z) =] 1=2,3,...,]z|
0, if z; < z;1.
(13)
with (1(z) = 1.
Construction 2. Based on Tenengolts’ q-ary

code [12], given integers m > 1,0 < a < (¢—1) and
0 < B < (m—1), we construct the code Crq(c, 3,m)
over Z; as

||

sz = a mod g,

Jj=1

CTq(aaﬂym) = {Z € EZ

=] (14)
Z(z —1)G(z) = B mod m}

=1
III. NOISY DUPLICATION CHANNELS

To enable designing error-correcting codes, in this
section, we study the relation between the input and
output sequences in noisy duplication channels. As
before, we consider channels with many (possibly
infinite) exact duplications and at most one noisy
duplication in which one of the copied symbols is
altered.

If acode C' € ¥y corrects many £-TD and one k-ND
errors, then for any two distinct codewords ¢, ¢y € C,
we have

DSV (ey) N DSV (ey) = @. (15)
This can be shown to be equivalent to
drt(c drt(cy),
(c2) # drt(cr) 16)

drt(D; SV (e4)) N drt(DF S (e,)) = 2.

Since k-TDs do not alter the root of the sequence,
drt(eg) # drt(e1) ensures that k-TD errors can be
corrected. Noisy tandem duplications however alter the
roots. In fact, they may produce sequences with roots
whose lengths are different from the roots of the stored
sequences. Since the codewords have distinct roots, it
suffices to recover the root of the retrieved word to
correct any errors. We will restrict our constructions
to codes whose codewords are irreducible, and thus
are their own roots. While this is not necessary, it will
simplify the code construction, as we will show, and
does not incur a large penalty in terms of the size of
the code.

For noisy duplication channels, given a codeword
x € Y, the generation of descendants z” €
DZ(SU(QZ) includes three different cases: only £-TDs;
k-TDs followed by one k-ND; and k-TDs, followed
by a k-ND, followed by more k-TDs. Since the root is
not affected by the k-TDs, to study drt(DZ(Sl)(m)),
we only need to consider the second case, i.e., we
focus on descendants x” immediately after the noisy
duplication.

Given an irreducible string = € Ef; with n > 2k,

our goal is to characterize drt(DZ(Sl)(:c)). Based on
(5), we have

¢(@) = (@), d(2)) = (y,2),

where y = ¢(x) € ¥ and z = ¢(z) € £2*. Since
x is an irreducible string, the string z contains no runs
of 0%, ie. z = u(z).

After many k-TDs and one k-ND, we have a de-
scendant x”’ € DZ,(Sl)(w). Since the substitution only
occurs in the copy, the first k£ symbols always stay the
same. Thus x” satisfies

o(@") = (d(2"), d(a")) = (d(@), d(@")) = (y,2").
(18)
Based on (9), it suffices to study the problem in
the transform domain, i.e., we want to obtain all
possible (y, u(z")) derived from (y, pu(2z)). Our code
constructions in the next section will also rely on
certain sequences derived from 1(z). The next theorem
characterizes how these sequences can be altered by k-
TDs and one k-ND.

a7)

Theorem 1. Let x € X} and let x" € DSV (z) be
a descendent of x (produced by passing through the
noisy duplication channel). Furthermore, let

z = ¢(x),
M = Spk(H7])7

u=p(z),
sj = T(p;)-

" similarly, based on x". The

We define 2", p", pj, s
differences between sequences defined based on x and

x” are given in Table I and Table II.

Note that the length of p can change by —k, O,
k, or 2k. This means that the noisy duplication may
manifest as deletions, insertions, or substitutions in
p. Furthermore, the complex error patterns in p are
simplified when we consider p;,j € [k]. The errors
marked by (x) occur for at most one value of j. These
correspond to positions affected by the substitution.
(Rows marked by ($) relate to our error-correction
strategy and are discussed in the next section.)

Now that we have determined all changes from
(y,n) to (y, ") resulting from passing through the
noisy duplication channel, we consider the code design
to correct many exact k-TDs and at most one noisy
duplication in the next section.

IV. ERROR-CORRECTING CODES
FOR NOISY DUPLICATION CHANNELS

Recall from Section III that we are interested in
constructing a code C' C Irr(n) N X} that can correct
many exact k-TDs and at most one noisy duplication.
Based on (16), for any code that corrects k-TDs, two
distinct codewords must have distinct roots. Thus, for
a stored codeword x and the retrieved word z”, if we
can recover the duplication root drt(x) of x from x”,
we can recover the codeword x. But we have made
a further simplifying assumption that C' C Irr(n) and
thus & = drt(x).

As shown in Theorem 1, duplication errors manifest
in various ways in drt(z”) and its counterpart in
the p-transform domain 1(p(x”)). Hence, for error
correction, we utilize several sequences derived from
x, including p; and s;, j € [k], as defined in
Theorem 1. Furthermore, we define » = CS(IL(u))
and r” = CS(IL(p”)). We note that = (similarly
r") can be directly found by rearranging the elements
Tg41 " Tn.

The relationship between these mappings is illus-
trated in Figure 1. In the figure, solid edges represent
invertible mappings. Since z is irreducible, the stored
codeword can be recovered if any of p, (1;) e,
IL(p) or r are recovered (note that z---xj are
not affected by errors). We use these mappings to
simplify and correct different error patterns described
by Theorem 1 in an efficient manner.

The motivation behind defining p;, j € [k], is to
convert insertions and deletions of blocks of length
k into simpler errors involving one or two symbols.

Some of the errors, marked by ($) in Tables I and II,
involve Os, which appear in the same positions in s;
and p;. Correcting these errors in s; is more efficient
since it will rely on binary codes rather than g¢-ary
codes. We will first correct these errors in s; and then
correct the corresponding p;. Finally, the cumulative-
sum mapping CS turns errors marked by (x), e.g.,
A — aa into a single g-ary insertion or substitution.
Importantly, in each case there is only one such error.
So if other errors are corrected, we can concatenate
1, j € [k], and then correct the single occurrence of
this error.

We will construct an error-correcting code that will
allow us to recover p from p”. As discussed, for cer-
tain errors occurring in p;, specifically those marked
by ($) in Tables I and II, we may do so by correcting
errors in s;, via Construction 3 below.

The indicator vectors (si,...,Sk) are subject to
several error patterns: insertion of 11; insertion of two
0s with distance at most 2; indel of 1 or 0; swaps of
two adjacent elements; and substitution of one or two
Os with one or two 1s. The following code can correct
a single occurrence of one of these errors, as shown in
the next theorem. A slightly modified version of this
code is used for the noisy duplication channel.

Construction 3. Given integers 0 < a < 2(n + 1),
0<b<4 and 0 < ¢ < 2n, we construct the code
C(a,b,c) as

C(a,b,c) = {u € 3%|u € Cyr(a,2n+ 3), 19)
Z u; = bmod 5, (20)
i=1

n Jj=t
Zi uj | =cmod (2n+1)},

2D
where n = |ul.

Theorem 2. The code C(, 4,) can correct all error
patterns shown in the s; column of Tables I and II.

Since (si,...,sk) are weight indicators of
(1, .., k), the Os in (s1,...,8k) and (p1, ...,)
coincide. However, if a 1 is deleted from a run of 1s
in s;, we will not be able to identify which symbol
is deleted from p;. This means that after recovering
s; from s}’ we can recover p; only in certain cases,
specifically, those marked by ($) in Table I and
Table II. Interestingly, the errors not corrected by
recovering s;,j € [k] are marked by (x), indicating
that they occur only for a single value of j. Hence, to

Table I

THE CHANGES IN ft; AND 85, j € [k] AS A RESULT OF EXACT AND NOISY DUPLICATIONS, WHEN THE POSITION OF THE SUBSTITUTION
IN @’/ SATISFIES k < p < (|&''| — k). HERE a,b,c € 3¢, d € X2, @ = —a, AND a,b # 0. FURTHERMORE, A — u AND u — A
REPRESENT INSERTION AND DELETION OF THE STRING u, RESPECTIVELY. ROWS MARKED BY (*) INDICATE THAT THIS TYPE OF

ERROR OCCURS FOR AT MOST ONE VALUE OF j € [k]. ROWS MARKED BY ($), RELATED TO ERROR-CORRECTION CODE, ARE

DISCUSSED IN THE NEXT SECTION

W =lul [p—w” [1= ny [55— 87
+2k insert 07~ Ta0F=7 and [A — aa (x) | A—>11
0t=1(0 — a)0F—t A — 00 () | A—00
c — 0c0 ($) | d —0d0
tk insert 07~ Ta0F=7 and sub- | ¢ > alc—a),c#a (¥) | 0 — 11,1 — 11
stitute b; — (b; — a) a— a0 (A —0) ($) | 1=10(A—0)
A—0 ($) | A—0
substitute 0 — a and insert | 0 — aa () | 0—=11
0t=1(0 — a)0F—t A—0 (%) | A—=o0
0 insert 07~ Ta0F=7 and | b0 — 0b (8) | 10—o01
delete 0t~ 1a0F~* with a at | stay same stay same
the same position
substitute 0 — a and b; — | Oc — a(c — a) (*,%) | 00 — 11,01 — 11,01 — 10
(b; — a) with distance k stay same stay same
—k substitute 0 — a and delete | 0 — A ($) | 0= A
Otflaokft
Table IT

THE CHANGES IN ptj AND 8, j € [k] AS A RESULT OF EXACT AND NOISY DUPLICATION, WHEN THE POSITION OF THE SUBSTITUTION
IN @’/ SATISFIES (|&’/| — k) < p < |z’’|. HERE THE NOTATION IS THE SAME AS THAT OF TABLE I

W T=Tul [p= [B —] | 85—~ 8]

+k insert 07— Ta0F—7 A—a () | A=1
A—0 ($) | A—0

0 substitute 0 — a 0—a (%,%) | 0—>1
stay same stay same

Figure 1. The various mapping used in the paper. “Concat.” stands for concatenation. Solid edges indicate invertible mappings, where we
have assumed z1 - - - 3 is known, since these symbols are not affected by the channel. The mapping is generally non-invertible, but in
our constructions, since we assume @ is irreducible, if we recover p = p(x), we can recover .

correct these errors, we apply the code constraints to
the concatenation of p;,j € [k], rather than to each
p; separately.

Construction 4. Define C\,q C Yg as

Cna ={z € Irr(n) N 37| = p(o(x)), (22)
;= Spy(p,), 85 = T(py), (23)
sj € Cyr(ay,2|sj| +3), (24)
sl t=i
Si (Yo sic) = cjmod (2]s;| + 1),
i= =1
1 t)
ko |s;l
Z Z sj; = bmod 5, (26)
j=114=1
I A
Od(IL(lI’)) € CTq(ah b17 [71)7 (27)
_ —k
Ev(IL(n)) € Cry(az ba, [*5—1), (28)
CS(IL(p)) € Cry(as,bs,n —k)}, (29)

where j,a;,c;,b,a;,b; are integers satisfying j € [k],
0§aj §2(|8]|+1), Ong §2|Sj, 0§b§4,

0 < ay,a,a3 < ¢ 0<by,by < |["5%], and 0 < b3 <
n—k.

In Construction 4, the constraints (24), (25), and
(26) play the same role as the code in Construction 3,
and the constraints (27), (28), and (29) can correct
the error patterns of {1, ..., pg} not marked by (%)
in Table I and Table II. The constraint (24) corrects
one insertion/deletion or two insertions of Os or 1s
in adjacent positions over 5. The constraint (25)
corrects one transposition of {0, 1} in two adjacent po-
sitions. The constraint (26) is a weight-indicating equa-
tion for {si,...,sk}. The constraints (27), (28), and
(29) can correct one insertion/deletion in Od(IL(u)),
Ev(IL(p)) and » = CS(IL()) over X, respectively.

Theorem 3. The error-correcting code C,,q proposed
in Construction 4 can correct infinitely many exact k-
TD and up to one k-ND errors. There exists one such
code with size

[Irr(n)]
5q*[MR 2 (4[512 — DF(n — k)

< |Codl < |Trx(n)].

(30)

For a code C C X, define its rate R,(C) as
%logq |C|. From (30),

1 (2k + 3) 2k
- log, [Trr(n)| — — log, n — o log, 2—

3 1

n n

1
log, 5 < Ry (Cha) < - log, | Irr(n)].

It can then be shown that if ¢ + k > 4, as n — oo,

1
R, (Cra) = - log, |Irr(n)| + o(1)
,(a=Dlge o D
qk+2 !

Since this is asymptotically the same as the rate of
the code correcting only k-TDs [3], the code proposed
here is asymptotically optimal. Furthermore, it outper-
forms the code proposed in [11] for correcting a single
unrestricted substitution in addition to correcting many
k-TDs.

REFERENCES

[11 Y. M. Chee, J. Chrisnata, H. M. Kiah, and T. T. Nguyen,
“Deciding the Confusability of Words under Tandem Repeats,”
arXiv:1707.03956 [math], Jul. 2017.

[2] L. Dolecek and V. Anantharam, “Repetition error correcting
sets: Explicit constructions and prefixing methods,” SIAM
Journal on Discrete Mathematics, vol. 23, no. 4, pp. 2120—
2146, 2010.

[3] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-
correcting codes for data storage in the DNA of living or-
ganisms,” IEEE Transactions on Information Theory, vol. 63,
no. 8, pp. 4996-5010, 2017.

[4] ——, “Noise and uncertainty in string-duplication systems,”
in 2017 IEEFE International Symposium on Information Theory
(ISIT). 1EEE, 2017, pp. 3120-3124.

[5] M. Kovacevic and V. Y. Tan, “Asymptotically optimal codes
correcting fixed-length duplication errors in DNA storage sys-
tems,” IEEE Communications Letters, vol. 22, no. 11, pp.
2194-2197, 2018.

[6] A. Lenz, A. Wachter-Zeh, and E. Yaakobi, “Duplication-
Correcting Codes,” arXiv:1712.09345 [cs, math], Dec. 2017.

[71 H. Lou, M. Schwartz, and F. Farnoud, “Evolution of N-gram
Frequencies under Duplication and Substitution Mutations,” in
IEEE Int. Symp. Information Theory (ISIT), Jun. 2018.

[8] D. Pumpernik, B. Oblak, and B. Borstnik, “Replication slip-
page versus point mutation rates in short tandem repeats of the
human genome,” Molecular Genetics and Genomics, vol. 279,
no. 1, pp. 53-61, 2008.

[9] S. L. Shipman, J. Nivala, J. D. Macklis, and G. M. Church,
“CRISPR-Cas encoding of a digital movie into the genomes
of a population of living bacteria,” Nature, vol. 547, no. 7663,
pp. 345-349, Jul. 2017.

[10] N.J. Sloane, “On single-deletion-correcting codes,” Codes and
designs, vol. 10, pp. 273-291, 2000.

[11] Y. Tang, Y. Yehezkeally, M. Schwartz, and F. Farnoud, “Single-
error detection and correction for duplication and substitution
channels,” in 2019 IEEE International Symposium on Informa-
tion Theory (ISIT). 1EEE, 2019.

[12] G. Tenengolts, “Nonbinary codes, correcting single deletion or
insertion,” IEEE Transactions on Information Theory, vol. 30,
no. 5, pp. 766-769, 1984.

[13] S. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao,
and O. Milenkovic, “DNA-based storage: Trends and methods,”
IEEE Transactions on Molecular, Biological and Multi-Scale
Communications, vol. 1, no. 3, pp. 230-248, 2015.

[14] Y. Yehezkeally and M. Schwartz, “Reconstruction codes for
DNA sequences with uniform tandem-duplication errors,” in
2018 IEEE International Symposium on Information Theory
(ISIT). 1EEE, 2018, pp. 2535-2539.

