Session 1A: Knitting, Weaving, Fabrics

UIST '19, October 20-23, 2019, New Orleans, LA, USA

KnitPicking Textures: Programming and Modifying Complex
Knitted Textures for Machine and Hand Knitting

Megan Hofmann Lea Albaugh Ticha Sethapakadi
Carnegie Mellon University Carnegie Mellon University Massachusetts Institute of
Pittsburgh, PA Pittsburgh, PA Technology Cambridge, MA
Jessica Hodgins Scott E. Hudson James McCann
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA Pittsburgh, PA Pittsburgh, PA
Jennifer Mankoff
University of Washington
Seattle, WA

k2tog, yo
rep from *

KnitSpeak Compiler

KnitSpeak File

B B0 8%
Knit Graph

Knitout Compiler

Y
R
.
wd
L8
e \!
{4 ‘4.

Figure 1: KnitPick converts KnitSpeak into KnitGraphs which can be carved, patched, and output to knitted results.

ABSTRACT

Kanitting creates complex, soft fabrics with unique texture prop-
erties that can be used to create interactive objects.However,
little work addresses the challenges of designing and using
knitted textures computationally. We present KnitPick: a
pipeline for interpreting hand-knitting texture patterns into
KnitGraphs which can be output to machine and hand-knitting
instructions. Using KnitPick, we contribute a measured and
photographed data set of 300 knitted textures. Based on find-
ings from this data set, we contribute two algorithms for ma-
nipulating KnitGraphs. KnitCarving shapes a graph while
respecting a texture, and KnitPatching combines graphs with
disparate textures while maintaining a consistent shape. Knit-
Pick is the first system to bridge the gap between hand- and
machine-knitting when creating complex knitted textures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or UISTtributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to reUISTtribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions @acm.org.

UIST ’19, October 20-23, 2019, New Orleans, LA, USA.

Copyright © 2019 Association of Computing Machinery.

ACM ISBN 978-1-4503-6816-2/19/10 ...$15.00.
http://dx.doi.org/10.1145/3332165.3347886

CCS Concepts
*Human-Centered Computing — HCI design and evalua-
tion methods;

Author Keywords
machine knitting; fabrication; knitting; soft fabrication;
compiler; knitspeak

INTRODUCTION

Digital fabrication of textiles is crucial to the production of
interactive physical objects [10, 4, 3]. Knitted fabric, in partic-
ular, can create complex, seamless shapes with diverse struc-
tural properties (e.g., stiffness, curl, stretch, opacity). Hand-
knitters have also developed, documented, and curated a mas-
sive amount of practical knowledge on knitted textures [29, 26,
19, 16]. Industrially, automatic knitting machines are robust
digital fabrication devices; however, machine knitting design
interfaces require training to use and cannot directly leverage
the widely available knowledge of hand-knitters.

Ultimately, the basis of a computer aided knitting design
pipeline would enable the combination and manipulation of
knitted textures to create complex textured fabric objects. We
present KnitPick, a design pipeline that weaves together the

http://dx.doi.org/10.1145/3332165.3347886
mailto:permissions@acm.org

Session 1A: Knitting, Weaving, Fabrics

UIST '19, October 20-23, 2019, New Orleans, LA, USA

Figure 2: Three interactive knitted-texture pillows that support rolling (left), tugging (middle) and sliding (right) interactions.

knitting texture expertise of hand-knitters and the speed and
reliability of machine knitting. KnitPick is a programming
pipeline for interpreting and modifying hand-knitting patterns
to create textured knitted objects that can be machine- or hand-
knitted. There are three main contributions: a compiler for
parsing and processing a large range of hand-knitting patterns
into KnitGraphs; a large, measured data set of knit textures;
and algorithms that can be used to modify (KnitCarve) and
combine (KnitPatch) textures to create knit objects (Figure 1).

The KnitSpeak compiler interprets a pseudo-natural language
often used in hand-knitting patterns — KnitSpeak — into a Knit-
Graph data structure. The KnitSpeak compiler is not the first to
handle this task [6, 7], however it is the first language demon-
strated over a large number of patterns and to support both
machine knitting and hand knitting output. The KnitGraph
data structure builds on the structure presented by Narayanan
et al. [23], which automatically generates machine knitting
instructions to fit arbitrary 3D meshes. Our KnitGraph is
generated by the KnitSpeak compiler, which can verify four
properties related to hand- and machine-knittablity.

Using the compiler, we contribute a large, diverse, measured
data set of knitted textures and their properties. We compiled
and machine-knitted 300 hand-knitting patterns. We pho-
tographed and measured the gauge (loops per inch of width
and height) of each texture, with and without a loading force.
Using the photographs, we measured the opacity of each tex-
ture. This data then serves as the basis for heuristics used in
our core algorithms: KnitCarving and KnitPatching.

The relationship between shape and texture is tangled and
fraught; it raises two challenges. First, textures are repeated
patterns with the connections across repetition borders that are
critical to the structure of the whole knitted object. That is,
simply cutting a repeat to fit a desired size will likely cause
the entire knitted object to unravel. The KnitPick pipeline
addresses this with a dynamic programming approach to scal-
ing textures, KnitCarving, based on a classic image-scaling
algorithm, Seam Carving [5]. Second, combining many knit-
ted textures into a single object often causes the properties
of these textures to clash, stretching and distorting the shape
of the object. The KnitPick pipeline addresses this with a
heuristic-based optimization algorithm, KnitPatching, which
joins knitted textures such that their boundaries remain flat.

Scenario

Imagine a designer creating a set of interactive machine-
knitted pillows. She finds a tutorial on interacting with pho-
tocells and decides to control the pillows by laying opaque
knitted fabric over the sensors. She browses our data set of
knitted textures looking for variance in stretch and opacity, se-
lecting four unique textures: stockinette that rolls up on itself,
welts that spring vertically, ribbing that springs horizontally,
and lace windows to let light shine onto the sensors. To create
this design, she will need to: (1) convert hand-knitting texture
patterns into knitting machine instructions, (2) combine the
textures so that the lace window lays flat on the pillow case,
and (3) adjust the textures to fit stitch-counts that align on
the flat-case. This design process is cumbersome, requiring a
machine-knitting expert to carefully define each stitch in the
patterns. KnitPick provides a pipeline that automates each of
these steps, laying the groundwork for computer aided knitting
design that supports the creation of unique, interactive textured
knitted objects. First she compiles her hand-knitted textures
using the KnitSpeak compiler. Second, she lays out rectan-
gular patches of the textures as she designs each pillow and
uses KnitPatching to join the textures together to create one
whole KnitGraph. In order to do this, KnitPick must adjust the
number of repetitions and the sizes of each texture with Knit-
Carving. The KnitGraph is output to machine instructions so
that she can manufacture and assemble her interactive pillows
(Figure 2).

RELATED WORKS

There are a wide range of tools for computer-aided knitting.
Commercial tools often target either hand or machine knitters,
not both. Knitting machines use proprietary low-level chart-
based design systems [27, 31, 28] that support customization
of a few common patterns through a “wizard” interface. How-
ever, the user’s options are extremely limited, particularly with
regards to texture. For hand-knitters, there are numerous on-
line pattern repositories [16, 26, 7], some of which guide users
to make limited stitch-level changes. Ultimately, texture is
reserved for knitting experts.

Researchers have approached sizing as a challenge of manipu-
lating 3D meshes that are hand [22, 33] and machine [25, 23,
24] knittable. The addition of texture, when supported [24],
may change the shape in unpredictable ways. Simulation of

Session 1A: Knitting, Weaving, Fabrics

knit purl decrease cable
increase (yarnover)
Figure 3: Loop-to-loop structures of the most common

stitches: knits, purls, decreases, increases, and cables

knitted fabric has shown promising results [21, 12, 8], includ-
ing supporting interactive design of small texture patches [17],
but still requires case-specific hand-tuning to provide results
that resemble a given yarn.

There are few tools that support interpreting, manipulating,
and manufacturing machine knit objects. McCann et al. de-
scribes a base machine-knitting language [20] to support shap-
ing un-textured objects made of sheets and tubes, and provide
a transfer planning algorithm for converting these primitive
shapes into machine code. McCann et al. stops short of sup-
porting textures, neither expressing them or manipulating them.
Narayanan et al. introduced knit graphs, representing stitches
as nodes, with yarn and loop connections as edges [23]. This
work did not support texture. Among six properties of ma-
chine knittable graphs, the properties of consistent orientation
and limited node-degree are restrictive [23].

In later work, Narayanan et al. updated their system to use an
annotated mesh structure in order to support arbitrary textures
[24]. However their system includes only a limited number of
pre-programmed textures and does not automatically account
for how the shape changes because of the texture.Concurrently
to KnitPick, Kaspar et al. approached texturing parameterized
garments using a custom domain specific language, recog-
nizing the same repeating, programmatic nature of knitted
textures that KnitPick is based on [13].

BACKGROUND ON KNITTED STRUCTURES

A knitted structure is composed of a series of loops of yarn
pulled through other loops; each loop stabilizes the loop it was
pulled through [20]. A loop through a loop is called a stitch.
A course is series of stitches side-by-side; these may also be
called rows in a flat sheet of knitting, or rounds in a tube.

Texture derives from interconnected stitches. There are three
composable properties of a stitch that change its effect on
the texture: (1) the direction a loop is pulled through another
loop, (2) how many loops it connects to, (3) how many other
loops it crosses over. Hand knitters have developed a large set
of named stitch-types that cover a variety of the most useful
combinations. To demonstrate, we describe three groups: knits
and purls, increases and decreases, twists and cables.

Knit/Purl: Loops can be pulled through other loops in either
of two directions: from the back of the fabric to the front or,
conversely, from the front to the back. The most basic stitch
is a knit—a loop pulled from the back of the fabric, through

UIST '19, October 20-23, 2019, New Orleans, LA, USA

another loop, to the front (Figure 3). A purl is the opposite:
a loop pulled front-to-back through another loop (Figure 3).
A single stitch in isolation cannot meaningfully be labeled as
one or the other: a purl is simply a knit viewed from the back.

Decrease/Increase: More than one loop can be pulled through
another loop (an increase), and a loop can be pulled through
multiple other loops (a decrease). For textures, decreases
and increases are locally paired (canceling each other out)
to produce lace patterns. For example, a yarn-over (yo)
leaves a small hole (i.e. an eyelet) in the fabric when paired
with a decrease. Special types of increases and decreases are
used create the first loops in a knitted object, and to stabilize
the last loops in the object. Cast-ons are increases that increase
the number of loops on the first course so that they can be
pulled through subsequent courses. Bind-offs are decreases
on the last course that decrease loops on the same course until
only one loop is available which is knotted off by pulling the
tail of the yarn through it.

Twist/cable: Finally, a stitch can cross over neighboring
stitches. Cables are formed by transposing adjacent sets of
stitches in the same course. A cable with just two stitches
involved may additionally be called a rwist. Cables tend to
stiffen the fabric by creating additional tension on the loops
as they are stretched across other loops. Cables give the ap-
pearance of a column of stitches winding across the fabric,
colloquially known as a "traveling stitch".

KNITGRAPH REPRESENTATION

We define a KnitGraph as a directed graph where nodes rep-
resent loops! with yarn-wise and loop-to-loop edges. A Knit-
Graph is: an ordered set of loops on a yarn, [€ Y; a set
of yarn-wise edges, e(u — v) € Ey between loops in the or-
der they are constructed; and a set of loop-to-loop edges,
e(u1v) € Ep, representing how loops are pulled through other
loops. Each loop-to-loop edge is labeled with an orientation:
a loop pulled back-to-front or pulled front-to-back. By con-
vention, the first yarn edge is directed from right-to-left when
the cloth is viewed from the front. We explain our notation in
Table 1 and diagrams in Figure 4.

Notation Interpretation

t(1) The time loop ! was constructed

u<vy Loop u was constructed before v

e(u—v) Loop u comes just before loop v on the yarn
e(utv) Loopvis pulled through loop u
d(utv) The edge from u to v has depth of d

Table 1: Summary of KnitGraph notation.

A knittable KnitGraph has the following four properties?
These properties are stated for complete courses (i.e. no slip

1123] use stitches as nodes. This difference is primarily for conve-
nience with respect to our core algorithms.

ZProperties 2 and 4 are adopted from [23].

Session 1A: Knitting, Weaving, Fabrics

@~~~)~ B~

OUOHGEONOHCH)
(a) Property 1 (Loop-to-Loop Stability) and (b) Property 3
Property 2 (Time Aligned Loops) (Explicit Edge Depths)

UIST '19, October 20-23, 2019, New Orleans, LA, USA

L. N 3R

(A o s

(c) Property 4 (Limited Loop Distance)

Figure 4: Each loop (yellow circle) is constructed on a yarn (green arrows) which is pulled through (purple arrows) another loop.
Loop-to-loop edges can cross over one another as long as the order they are crossed is defined (b). We limit the width of decreases,
increases, and cables to prevent the yarn from tearing (c).

stitches [2] or short rows [1]). Our system uses similar proper-
ties to ensure knittability of graphs with partial courses.

Property 1: Loop-to-Loop Stability

The primary constraint of a knitted object is that each loop
must have at least one other loop pulled through it. Any
KnitGraph that satisfies this property will not unravel. For
every loop, p, there exists a loop, /, that is pulled through p.

VpeY3dleY:e(ptl)€EL (1)

Property 2: Time Aligned Loops

During knitting, yarn-wise edges establish the relative hori-
zontal position of neighboring loops and the time that they are
constructed. If a child loop, c, is pulled through a parent loop,
p, p must be constructed before c.

Ve(ptc)€EL:p<c 2)

Property 3: Explicit Edge Depths

Decreases and cables lean to the left or right. In a cable, if the
front-most parent loop is right of the other parent loops, it will
make a left leaning cable. If the front-most parent is left of
the other parents, it will create a right leaning cable. Similarly,
loops stack on top of each other to create decreases. If the left
most loop is stacked at the front, the increase and decrease
will lean to the right. Conversely, stacking the rightmost loop
at the front will create a left leaning decrease.

Cables are created when loop-to-loop edges cross. There is a
cable between any two loop-to-loop edges e(u 1 y) and e(v 1 x)
if the child loops are constructed in the order y then x and
either: (1) the parent loops are constructed in the order u then
v in rows or (2) v then u in rounds (Figure 4b).

e(uty) €EL (3a)
e(vTx) €EEL (3b)
cable(utyvtx)=< y<x (3c)

(3d)

u < vin Rows
v < u in Rounds

Increases are created when there are more than one loop-to-
loop edges from a common parent loop, p, to many children
in the set C C Y. Similarly, decreases are created when there
are many loop-to-loop edges from a set of parent loops, P C Y,
into child loop c.

ine(p1C)
dec(P 1 ¢)

=VeeC,de(ptc)€EL (4a)
=VpePIe(ptc)€EL (4b)

In a cable or decrease, we need to know how edges cross
(cable) and stack (decrease): we must know each edge’s depth.
In a cable, if the loop-to-loop edge between u and y crosses the
loop-to-loop edge between v and x, the depth of these edges
cannot be equal. In a decrease, each loop-to-loop edge must
have a unique stacking-order (i.e. each edge’s depth).

cable(uty,vtx) <=duty)#dvTx) ®)

dec(P1c) <=

Ip eP:d(p'te)A\VpeP:d(ptc) = p'=p ©

Property 4: Limited Loop Distance

If a loop is stretched to be pulled through another loop that is
far away, the yarn is likely to tear; additionally, on a knitting
machine, a needle may not be able to pull a new loop through
very many loops stacked together. We allow loops to be pulled
through loops up to 4 loops away (Figure 4c). For increases
and decreases, the size of the set of child, C, or parent, P,
loops must be less than or equal to 4. For a cable, both the
distance between the parents (1, v) and the distance between
the children (x,y) must be less than 4.

inc(ptC) < |C| <4 (7a)
dec(P1c) < |P| <4 (7b)
1(v) —2(u)| <4

1)~ 1(x)] <4 7

cable(uty,vtx) < {
KNITSPEAK COMPILER
Knitting patterns are complex and vary sufficiently that they

cannot easily be parsed; knitted fextures, however, are often
described with a consistent notation. Within curated sets of

Session 1A: Knitting, Weaving, Fabrics

knitted textures [30, 7], this notation is strictly enforced. It
follows a consistent pattern for describing stitch-level instruc-
tions across repeated courses of texture. Colloquially, this
notation is called KnitSpeak. Similar to programming, KnitS-
peak loops through stitch instructions. Hand-knitters interpret
these instructions like a computer interpreting machine-code.

At a high level, KnitSpeak is set of instructions for creating tex-
tures made up of tiles of repeatable patterns with a fixed num-
ber of loops and courses (Fig.5a). Tiles may be surrounded by
bordering patterns on the left and right edge. Within a course,
a KnitSpeak pattern defines a set of stitches that are repeated
once, a set of stitches that are repeated in each width-wise tile,
and another set of stitches that are repeated once. Each stitch
is described with a keyword (e.g., k for knit, p for purl, yo for
yarn-over), or a keyword with associated variables (i.e. k2tog
for knit two stitches together). Each course generally reads
like a do-while loop (e.g., k *k,p* to last st, k means
“knit, then do knit and purl while there is one loop left on the
last course, then knit”). Sets of courses are repeated to create
vertical tiles. Courses are defined on each line of code and
have a declared index (e.g., 1st row; every odd row).

Compiling KnitSpeak

Despite the programmatic structure, KnitSpeak is not directly
transferable to machine instructions. We contribute the KnitS-
peak Compiler, which translates the KnitSpeak used by Stan-
field and Griffiths [30] and Stitch-Maps [7] into KnitGraphs.
We compile KnitSpeak in three phases that ensure knittability.

Phase 1: Parsing KnitSpeak

We implement a parser using the Grammar-Kit parser genera-
tor [11] and JFlex lexer generator [15]. Grammar-Kit translates
KnitSpeak into an abstract syntax tree based on a context-free
grammar that covers both the Stanfield and Griffith and Stitch-
Maps variants. We do not support knitting keywords that de-
scribe operations that are not strictly knitting (e.g., wrapping
yarn around loops). The grammar denotes the loop construc-
tion order with the keywords row and round. We exclude
rounds if the KnitGraph will be constructed on our machine.

KnitSpeak is composed of stitch-tokens corresponding to
canonical stitch structures (e.g., k,p,yo, k2tog, yo, t21,
c3b). Our compiler interprets each stitch-token as instructions
for creating and connecting loops. It optionally rejects stitches
wider than the allowable loop-distance on the machine (Prop-
erty 4). Tokens related to twists (e.g., t21, t2r), cables (e.g.,
c3b, c3f), decrease (e.g., k2tog, skpo)imply the direction
they lean, from which the crossing depth of stitches can be
derived (Property 3).

Phase 2: Semantic Analysis

Semantic analysis determines the execution order of stitch-
token instructions, creating repeatable structures in a Knit-
Graph. This phase ensures the construction order of loops
(Property 2) and connects all loops to a child (Property 1).

Each course instruction is stored in a symbol table with indices
indicating the order that they will be executed. As the symbol
table is filled in, variables for the tile and border width are

UIST '19, October 20-23, 2019, New Orleans, LA, USA

o

13

1st and 5th rows k. &-
2nd and 4th rows p.
3rd row k2, [yo, k2tog, k2]
to last 3 sts,
yo, k2tog, k1.
6th row p3, [p2tog, yo, p2]
to last 2 sts,
p2.

(a) KnitSpeak

(b) Machine knitted sample

Figure 5: Our system converts KnitSpeak (a) to KnitGraph
that is machine knittable (b).

updated based on the calculated loop counts from each instruc-
tion. If these values are not equal across courses, then one
course could produce more loops than the following course
consumes, resulting in a violation of the loop-to-loop con-
straint (Property 1). Mismatches in a loop count result in an
error. Each course in the symbol table relies on the loops
created on the course below it. As long as the loop counts
match up between courses, the stitch-token instructions will
be able consume the child loops of the last course and create
new loops for the next course. The new loops are guaranteed
to be created after the parents, satisfying Property 2.

Phase 3: KnitGraph Instantiation

Given a complete symbol table, we instantiate a KnitGraph
with a specified number of repeated tiles (width and height).
First, the compiler creates a cast-on course with the user spec-
ified loop count. Next, the compiler traverses all of the course
instructions in the KnitSpeak pattern. At each instruction it
creates the specified stitches, consuming available loops left
on the last course. First it creates the stitches in the starting
border, next it consumes available loops to create the width-
wise tiles until the required number of loops for the ending
border are left available. Once all of the course instructions
have been actualized the system may repeat the process, to
lengthen the graph by a specified number of height-wise tiles.

Generating Knitting Instructions

We output instructions for both hand knitting and automatic
machine knitting. Knitting machines use rows (“beds”) of
hook-shaped needles; for more details, see [20, 4]. Unlike in
hand knitting, in which the most recent course of loops is free
to slide along the single long needle, each column of machine-
made stitches is held at the top loop by its own separate needle.
Thus, each loop must be allocated a specific needle at the time
of its construction, and its parent must be located there at that
time to receive it. Combining loops onto needles for decreases,
creating spaces for increases on empty needles between loops,
and using the front and back beds for knitting and purling, can
all require re-arranging loops between courses of knitting.

By convention, the first course is allocated right-to-left, with
each loop assigned a needle directly leftward of the one before
it. For subsequent courses, two variables are maintained: a
cursor, corresponding to the loop’s position in the course, and
a slide variable. While iterating over the loops from left to
right (which may be the opposite of the order they will be
constructed, in the case of a right-to-left course), cursor is
incremented and slide is updated per loop: if a loop has one
parent, slide remains the same; if a loop has more than one
parent, slide is decreased for each parent; if a loop has no

Session 1A: Knitting, Weaving, Fabrics

Figure 6: Data set measurement setup, including camera, scale,
and stretching rig.

parents or its parents have other children, slide is increased.
Note that for a swatch with only local increases and decreases
(that is, no net loop count change), slide will be zero at the
end of the course.

Each loop is allocated to a needle at position = [cursor] +
[slide]. The allocated needles are then used to determine the
amount that each parent will be offset to support the new
course of loops. These re-arrangements are accomplished via
needle transfers determined by Lin et al. ’s “schoolbus+sliders”
transfer solver [18].

To support hand knitters, we decompile KnitGraphs into Knit-
Speak. Information about repetition is lost in the KnitGraph.
We iterate over all loops in the yarn and determine which key-
word corresponds to the set of edges entering connecting the
loop. Each stitch is written out in the order it is found on the
yarn. When we encounter a loop that is dependent on loops in
the current course, a new course is created, starting with this
loop.

KNITPICK TEXTURE DATA SET

Thousands of knitting patterns are available online. Even
among textures such as those supported by our KnitSpeak
compiler, the possibilities available number at least in the
thousands. By using the KnitSpeak compiler on these patterns,
we can better understand its capabilities and limitations. Thus,
our next contribution focuses on creating a curated set of real-
world textures. Using the KnitSpeak compiler we created a
data set of 166 samples from Stanfield and Griffiths [30] and
306 samples from Stitch-Maps [7]. Given these compiled
textures, as of publication we machine knit and measured 300
textures.

Sampling Strategy

Stanfield and Griffiths curated 300 knitted textures. Of these,
the KnitSpeak compiler interpreted 166 (55.3%) into Knit-
Graphs which we machine-knitted. All textures in the book
section “Bobbles and Leaves” were excluded for using wide

10

UIST '19, October 20-23, 2019, New Orleans, LA, USA

,,;3 ‘&n‘zsﬁ. N

Figure 7: Sample swatches from data set against a black back-
ground.

increases, decreases, and cables that violate Property 4. All
other excluded patterns included annotations that described
actions that are not machine-knittable or included multiple
yarns.

We collected 1454 of the most recent and popular KnitSpeak
samples from the 5979 patterns on Stitch-Maps . We excluded
393 (27.0%) samples that were written in the round and 755
(51.9%) because they violated Properties 1 or 2. We observed
that these 755 samples were not textures but full patterns (e.g.,
sweaters) which are beyond the scope of this study. Ultimately,
we compiled and knit 306 (21.0%) textures from Stitch-maps.

Swatch Construction and Measuring

We constructed and measured textures as follows: (1) machine
knit a 60 loop by 60 course swatch with an additional border
including eyelets for alignment; (2) weigh the swatch; (3) lay
the swatch on fine-grained sandpaper to prevent curling; (4)
photograph the swatch in the un-stretched state; (5) measure
the un-stretched swatch across the center axes; (6) connect the
swatch to a stretching rig and load it with a constant mass; (7)
photograph the stretched swatch; (8) measure the stretched
swatch. Our measurement station is shown in Figure 6.

We knit our swatches on an Shima Seiki SWG91N2 15-gauge
v-bed knitting machine using Tamm Petit, a 2/30NM (8,147
yards per pound) acrylic yarn with moderate twist. We used
our machine’s digital stitch control system to regulate yarn
tension and our stitch size was 40 with leading set 25. We tiled
each texture to fit a 60 loop by 60 course swatch, then added
knit-stitches to the borders to fill in the gaps. The texture is
surrounded by a 12-stitch-wide border of a checkered knit
and purl texture to stabilize the swatch edges and normalize
their connection to the rig. We placed an eyelet at the center
and ends of each edge of the swatch. To stretch a swatch, we
hooked each eyelet to rods that can roll freely in one direction,
pulling the swatch linearly along its width and height. These

Session 1A: Knitting, Weaving, Fabrics

Measurement Min Max Mean STD
Loops per Tile 1 60 14 17
Courses per Tile 1 60 11 9
Loops per Inch 5 25 12 3
Courses per Inch 9 27 17 2

Table 2: Texture repetition and gauge data

UIST '19, October 20-23, 2019, New Orleans, LA, USA

S -
T

Figure 8: The top case shows the removal of connected loops
in a path. The bottom case shows the removal of neighboring
loops in a graph.

rods were attached to 608g weights. We gently dropped the
weights off the edge of the table.

We collected four measurements to derive gauge: stretched
width (1) and height (2); un-stretched width (3) and height
(4). Gauge is the number of loops per unit width and height
in a texture. Gauge decreases as a texture is stretched. We
calculated opacity as the count of black pixels (matching the
sand paper background) shown through the knitted texture and
appearing per photograph.

Summary of Knitted Textures

We saw a wide range of gauges and tile sizes; we summarize
these statistics in Table 2 and show swatch samples in Figure
7. The smallest horizontal gauge, 25 loops per inch, was
five times as tight as the widest. This variation underpins a
challenge of using textures on knitted objects: it is difficult
to match desired measurements using discrete tiles, and the
variation in gauges can compound the problem when multiple
textures are integrated into a design.

KNITCARVING: RESIZING KNITTED TEXTURES

A knitted object is typically defined with a specific size, which
is in turn refined into a specific loop and course count based on
the gauge (loops per inch horizontally and vertically). Indeed,
modifications to loop count is one of the first challenges a
knitter encounters when changing a pattern. If a new texture
(or a new yarn, or even new needles) is applied to an existing
design, it is likely to change the gauge. A more complicated
concern is that textures are discrete tile units. Thus, the knit-
ting designer must not only adjust gauge, but also ensure that
the size of the texture divides evenly into the number of loops
and courses of each tile.

A naive solution is to stop knitting mid-tile. In the best case,
this will create an obvious line where the tile is stopped. How-
ever if cables, increases, and decreases are present in the pat-
tern the result may violate Property 1. For example, a tile may

11

(a)

(d)

(©) (d

Figure 9: A “Star” knit/purl pattern is shown with knits rep-
resented as empty squares and purls represented as squares
containing dots (a). The cost to remove each loop is repre-
sented by a heat-map (b); minimum-cost stitches along a path
(c) can be removed to narrow the pattern (d).

have a decrease, but if that decreases’ child loop is removed,
the parent loops will not have a child loop stabilizing them.

KnitCarving is an alternate approach that maintains the sta-
bility of a KnitGraph, while removing a continuous path of
loops that narrows * the graph with minimal changes to the
texture. This is based on the “Seam Carving” technique for
scaling images [5]. KnitCarving is a dynamic programming
optimization that removes loops from the path with the least-
significance (i.e. lowest cost) to the knittability and aesthetics
of the KnitGraph. To ensure that a path is continuous, we
require that loops which are removed in a given course be
directly above the removed loop in the previous course, or
directly above one of its yarn-wise neighbors. To maintain
continuity across repetitions, the user can set an option which
will remove repetitions before KnitCarving, or may carve the
texture, maintaining the placement of repetitions. Addition-
ally, rather than removing one path, they can remove a set of
least valuable paths all at once.

A loop’s removal cost is calculated locally. The path with the
minimum removal cost is the path of loops with the lowest sum
of each loop’s removal cost. This path is found in a dynamic
programming fashion. First, for each loop we calculate the
local cost of removing the loop. Next, we use Dijkstra’s
shortest path algorithm [9] to find the path from a loop on
the cast-on course to a loop on the bind-off course with the
minimum removal cost.

Once a path has been selected, the loops in the path are re-
moved from the KnitGraph, leaving behind loop-to-loop edges
that are missing either a parent or a child. Figure 8 shows the
two possible cases that can occur. In the simplest case, a loop
v, its direct child y, and the edge between them are removed.
The more complex case is when a loop v is removed, but its
yarn-wise neighbor’s (#’s) child x is lower cost than its own
child y. In this case, the edge from v to y most be removed
and the edge from u to x most be reconnected from u to y to
repair the KnitGraph and maintain Property 1.

3This same approach can be used to shorten a graph, but for brevity
we describe the algorithm with respect to width.

Session 1A: Knitting, Weaving, Fabrics

UIST '19, October 20-23, 2019, New Orleans, LA, USA

(a) Original swatch (b) 6 columns removed

(¢) 9 columns removed

(d) 12 columns removed (e) 15 columns removed

Figure 10: The above images show a progression from the original Star texture to the same texture with 15 columns removed by
texture carving. These photographs were shown to crowd-workers who rated their similarity. Even with a whole repetition width
removed from the Stars, the pattern remains a recognizable star pattern.

Group All Textures Knit-Purl Texture = Twist Texture Cable Texture Lace Texture Wide Repeats Narrow Repeats
Knit Carving: Mean (Std.) | 51.73 (13.66) 12.53 (3.84) 12.7 (4.04) 13.54 (3.68) 13.19 (3.74) 26.43 (7.02) 25.30(7.12)
Control Mean 41.38 (11.57) 10.39 (3.30) 10.78 (3.23) 10.20 (3.42) 10.40 (3.53) 20.46 (6.20) 20.92 (5.90)
Significance T=6.8 (p<.0001) T=4.25 (p<.0001) T=3.71 (p<.0001) T=6.65 (p<.0001) T=5.42 (p<.0001) T=4.12 (p<.0001) T=2.56 (p<.0001)

Table 3: Summary statistics of a independent-sample t-test comparing the sum of similarity scores for KnitCarving and control

conditions. The degrees of freedom across all tests was 199.

Although loops used for knits, purls, twists, and cables are all
candidates for removal, loops used in decreases and increases
cannot be removed as easily. For example, recall that a de-
crease involves many parent loops pulled through one child
loop. If this child loop is removed, it is possible the repaired
graph will violate either Properties1 or 4 by leaving a parent
loop without a child or by creating a wide decrease. To forbid
this, we assign an infinite cost to these loops.

For all other loops, we calculate a ratio representing that loop’s
rarity in the graph. We assess the value of the remaining
removable loops based on the rarity of the stitch they are
involved in. If a loop’s relationship to other loops is rare in
the graph, it is more significant. Loops are equivalent to other
loops (i.e. u =v) if all of their incoming and outgoing edges
have the same orientation.

Y| — Y: =
cost(l):|| |{u|€Y| [=u}|

®)

Crowd-Sourced Evaluation

We evaluated KnitCarving in a study with 200 crowd workers.
Each worker rated the similarity of eight sets of two images
using a scale from 1 to 10 (10 being the very similar). The first
image was a photograph of a texture swatch and the second
image was a photograph of swatch where the texture had some
number of paths removed. We asked workers to compare the
images based on a list of features (i.e. skew, size, number of
whole repetitions, stretch, opacity) with simple descriptions
of how they apply to knitted textures.

We divided workers into two groups: 100 workers compared
swatches that were narrowed with KnitCarving and 100 work-
ers compared swatches that were narrowed with a control
algorithm that removes the right most loop from each course
in a swatch. The control algorithm may violate our Knittability

12

properties, so some control swatches visibly unraveled (Figure
11). Workers were further grouped based on what portion of
the repetition was removed.

Eight textures were selected from our texture data set: two
knit/purl patterns, two twist patterns, two cable patterns, and
two lace patterns. All eight textures were carved five times by
one fifth of their repetition width. Within each texture category,
one texture had a large repetition (in the third quartile), and the
other had a small repetition (at least five, in the first quartile).
Within these constraints, we randomly selected the textures.

Figure 11: KnitCarving is effective on a variety of textures,
including lace patterns with dependencies across repetitions
of the pattern. Top: two repetitions of the lace texture “Lit-
tle Branches.” Middle: four columns naively removed from
lace texture, causing it to unravel. Bottom: Four KnitCarves
removed from texture, leaving behind a similar texture.

Session 1A: Knitting, Weaving, Fabrics

(a) Original texture from Ravelry (left) (b) The hand-knit Hat created by Knit-

and a new “Twisted” texture (right) Carving the Twisted Texture

Figure 12: A simple change (replacing knits with cables) (a)
causes significant gauge variances. As a result, the entire hat
pattern must be adjusted given the new gauge. KnitCarving
until only a few stitches remains will produce the crown of the
hat (b).

We conducted seven independent-samples t-tests to compare
the sum-total similarity score across (1) all textures per worker,
(2-5) individual texture types, (6) wide repeat textures, and
(7) narrow repeat textures. Across all tests, KnitCarving per-
formed significantly better than the control algorithm. We
summarize the results in Table 3.

Demonstration: Hand-Knitted Custom Hat

We created a hand-knitting pattern for a KnitCarved hat based
on a free Ravelry pattern [32]. Knitting patterns specify the
yarn type and needle size because they dramatically effects
the texture’s gauge. The pattern author selectively placed
decreases on each course; essentially doing the work of Knit-
Carving. But when we change the texture, her work is lost.

Consider a hat; when flattened out it is essentially a triangle,
with a wide base that narrows down to a few stitches that
are sewn together at the tip of hat. We extracted KnitSpeak
from the pattern and modified it to include twists. Figure 12a
shows the difference between the basic texture and our twisted
texture. To create the hat, we carved the pattern, decreasing
the number of loops in each course over each height repetition
until only a few loops remain that can be sewn together at the
tip of the head. We generated KnitSpeak instructions for the
resulting KnitGraph and hand knitted the hat (Figure 12b).

KNITPATCHING: COMBINING KNITTED TEXTURES

Many knit objects are made up of multiple textures; however,
a beginning knitter may not have the expertise to properly
combine them. KnitPatching lets knitters use multiple tex-
tures to create unique aesthetic and functional effects. Using
multiple textures is non-trivial because the interactions be-
tween textures may change the fabric’s shape in unintended
ways, particularly when the textures have disparate gauges
(Figure 13). We model different knitted textures as patches on
a sheet of knitted fabric. Using heuristics based on common
hand-knitting practice, we optimize the number of loops in
each patch to minimize gauge variance and produce a flat,
rectangular sheet of fabric.

Knitted Sheets made of Patches
Our knit patching solution focuses on flat (unshaped) Knit-
Graphs. We support combining an arbitrary layout of rectan-

13

UIST '19, October 20-23, 2019, New Orleans, LA, USA

gular, textured patches. Each patch has a position, an assigned
texture, a width, wy, and height, h,, in inches®. A sheet is
completely covered in non-overlapping patches.

To create a KnitGraph for a given sheet, the textured patches
must be assigned to loops in the KnitGraph so that the sheet
is knittable. A tile of knitted texture, with width ¢,, in loops
and height #;, in courses, is unlikely to exactly match a patch’s
width and height; tiles are typically just big enough to uniquely
define the textural effect. When a region or patch is textured,
tiles are typically repeated to fill it.

A texture is defined in units of loops and courses. A texture’s
gauge converts from loop/course to inches. A texture is de-
fined by two measures of gauge. The texture’s width gauge,
&1, 18 the number of loops per inch. Its height gauge, g, , is
the number of courses per inch. Gauge was calculated in our
texture data set and can also easily be hand-calculated from a
small sample of a provided texture.

Given a gauge and a patch size, it is trivial to determine how
many repetitions of the texture fit in the patch in each direction:
the patch size multiplied by the gauge and divided by the
tile size. When a patch doesn’t fit perfectly this introduces a
sizing error (i.e. (p,,-g;,) mod t,, # 0 or (p;-g,) mod 1, #0).
KnitCarving is used to ensure that the texture fits into the
number of loops that satisfy the patch size, but this introduces
a texture error.

A third joining error occurs when the number of loops and
courses of adjacent patches do not match up. If each patch
were given the number of loops and courses dictated by its
gauge, no patch would line up because their gauges are dif-
ferent. If not corrected, this can lead to knittability violations
— since loops or yarn edges will not be able to connect 1-1
between patches (Properties 1 and 2).

4 Any real world measurement unit could be used.

Figure 13: A naively joined texture, left, is distorted by
variance in gauge and limited by repetitions of its constituent
textures. The KnitPatched texture, right, lies flat and better
matches the target size.

Session 1A: Knitting, Weaving, Fabrics

Our solution to this problem is KnitPatching. KnitPatch-
ing forces neighboring patches to have the same loop/course
counts while minimizing the changes made to the patches’
textures and sizes. This is done by judiciously deciding to
increase or decrease the number of loops in a patch. We ap-
proach KnitPatching as an optimization problem.

KnitPatching Objective Function

We calculate error at the sheet level in terms of the three error
metrics introduced above: error in the size of each patch,
error in the texture of each patch, and error introduced by
using decreases or increases to ensure correct loop counts
at the borders between patches. Formally, the error, E, of a
KnitPatch sheet, S, is a weighted sum of these three errors
(Equation (9)). a, 8,0 denote the weights of each error type.
We describe each type of error in more detail below.

E(S)=Y aE(p)+BE(p)+0E;(p) ©9)

pES

Sizing error, E;, describes how much a patch varies from the
user-specified size. For a patch, p, this is the proportion of the
absolute difference in inches between the desired patch size
and the size predicted given the patch texture’s gauge and the
assigned loop and course counts, divided by the patch’s size to
capture the importance of scale. An inch difference in size is
significant on a 4 inch patch, but insignificant over 100 inches.

|hl7 —Cp 'glh|
hp

Wwp—1p- 8l
Wp

Es(p) = (10)

Texture error, E;, is introduced by carving a texture to fit
the assigned loop/course count. KnitCarving will remove
A,, loops and Aj, courses from a patch. Texture error is the
fraction of total loops/course removed from the patch. Carving
a path from a patch with 4 loops is more significant than
carving a patch that is 100 loops. Note, that at this point no
KnitGraph has been constructed, so we do not know the actual
cost of carving the texture based on the objective function of
KnitCarving (Equation 8).

Av,

lp Cp

Any

E/(p) = an

Joining error, E;, describes the use of increases and decreases
at patch borders to align loop counts. This has a similar effect
to KnitCarving, but instead creates loop-to-loop edges at patch
borders as needed between misaligned loops. This technique
can only be used to align the top and bottom edges of a patch.
The loop count of the top, /4, or bottom, /| ,, neighbors of a
patch, p, is compared to the loop count for the patch, /,, to
determine the number of new edges needed on each border.
The joining error, E;, is the number of these new edges divided
by the original number of loops in p. Again, adding a new
edge among 4 connected loops is more significant than adding
that edge among 100 connected loops.

14

UIST '19, October 20-23, 2019, New Orleans, LA, USA

Figure 14: A 4x4 inch panel with cable (left) and lace (right)
patterns bordered by stretchy garter and ribbing textures

_ lp = 1| + Ly =1l
% p

E;(p) 12)

Heuristic-Based Patch Sizing
This objective function reveals trade-offs between properly
sized patches and variations in the texture.

Consider the trade off between sizing and texture errors. To
minimize sizing error, we would ideally create loops for each
patch based on its width w, and texture gauge g; (i.e. [, =
wp - &,,). However, it is unlikely that these counts will be
evenly divide by the tile size, /;, so we will need to carve it
down, which will increase the texture error. The search space
for minimizing the sum of E; and E; is small, bounded by
the size of a tile. We search for the minimum weighted sum
of these errors by iterating over possible loop counts, l;, (i.e.

I, =1 < l;, < I, +1;). We use the same approach to determine
course counts.

Given these improved loop/course counts on each patch we
must force these values to align across neighboring patches.
Some patches will increase their sizing and texture errors to
accommodate their neighbor. We determine which patches
will increase their error by assigning each patch a significance
value. This value can be set by a user or determined heuristi-
cally. We use the following heuristics to assign significance:

e Tile Size: The larger the tile size of a texture, the more
texture error will likely be introduced by changing the
loop/course count. The larger the tile size, the more signifi-
cant the patch.

e Stretch: Stretchier textures are more likely to stretch to
match the size of their neighbors, reducing the actual er-
ror in sizing. Thus stretchier textures have lower patch
significance.

e Carve-ability: Patterns with many increases and decreases
cannot be KnitCarved as effectively. Higher numbers of
increases/decreases increase the significance.

Given significance values, we propagate the loop/course
counts from the most significant patches to the least significant
patches in a depth-first traversal across the borders between
patches. Starting from the most significant patch, p, we assign
its ideal loop count, /,,, to each of p’s neighbors, starting with

Session 1A: Knitting, Weaving, Fabrics

the most significant neighbor, n. This changes the neighbor’s
loop count from /, to I,. Note that we only assign the loops of
[, proportional to the overlapping width between p and n. n
then propagates its new loop count, /,, to its most significant
neighbors. We traverse the edges between neighbors until the
edge of the sheet is reached.

We repeat the process in parallel to assign course counts. At
this point the course counts have been optimized. Put another
way, the objective function for course optimization does not
include joining. This is because joining changes the number
of loops using increases and decreases, but we do not support
an equivalent for courses (this would violate Property 1).

The final step of our algorithm is to optimize loop counts to
minimized the sum of sizing and texture error. At this point,
patches have a propagated loop count, l;, and a loop count that
minimizes the sum of sizing and texture errors, [,. If these
counts differ, we can correct this difference by creating new
loop-to-loop edges to the misaligned loops. There is a trade-
off between creating edges and KnitCarving. If the propagated
loop count is less than the ideal loop count we can either:
(1) create a new edge for each additional propagated loop
(increasing joining error), or (2) carve out loops from the ideal
loop count (increasing texture error).To find the minimum sum
of the texture and joining error we iterate over the possible
combinations of KnitCarving and additional edges (i.e. l;, <

L<l,—1)

This heuristic based approach does not guarantee a globally
optimal solution, but as shown in Figure 14, it generally results
in flat knitted sheets. This method can accommodate a variety
of knitted textures including lace and cable patterns. It is
particularly well suited to the gauge variances in knit-purl
patterns such as ribbing and garter stitch.

LIMITATIONS

KnitPick introduces a new technique for describing, using,
and manufacturing knitted textures. However, it is primarily
suited for creating shaped sheets of knitted textures rather
than shaped objects. Clever hand-knitters construct complex
custom-fit garments using the techniques we have automated.
However, a simplified, graphical, interface is a necessary next
step to making knitted textures widely accessible. Further,
KnitPick’s algorithmic core, KnitCarving and KnitPatching,
may benefit from objective functions rooted in physics rather
than hand-knitting practices. Little is codified about how tex-
tures shape an object. Accurate simulation of this interaction
between shaping and texture requires an approach based in
physics, not just visually plausibility [12]. It would be inter-
esting to see if the measured properties of our data set could
be used to predict the properties of the Kaspar et al. data set
[14] and/or be combined in other ways to benefit research and
knitting communities.

CONCLUSION

In this paper we presented the KnitPick programming pipeline
for describing, shaping, combining, and manufacturing tex-
tured knitted objects. Central to this pipeline is a KnitGraph
structure which maintains four properties: (1) each loop is sta-
bilized by having another loop pulled through it; (2) each loop

15

UIST '19, October 20-23, 2019, New Orleans, LA, USA

is pulled through loop[s] that were previously constructed; (3)
cables have an explicit crossing-depth; and (4) all loops are
pulled a limited distance, preventing yarn tears. Our KnitSpeak
compiler translates a pre-existing pseudo-natural language cre-
ated by hand-knitters to describe textures into KnitGraphs and
verifies that they are hand- or machine-knittable. Using this
compiler, we machine-knit, measured, and photographed 300
textures. Based on these textures we developed a KnitCarv-
ing algorithm which selectively scales a KnitGraph in width
and/or height while maintaining the texture’s aesthetic proper-
ties. Finally we contribute KnitPatching, which joins patches
of knitted textures while accommodating disparate gauges to
create flat sheets of fabric. Using the KnitPick pipeline, we
have created three knitted interactions: roll, tug, and slide.

This work contributes to the body of literature that is helping
to soften the hard corners of plastic and metal fabrication work.
Knitting is certainly an important option if we want to create
comfortable, wearable, or soft solutions to complex problems.
In future work, we hope to untangle the relationship between
texture and more complex shapes as represented in hand knit-
ting patterns that describe whole objects. We also hope to
develop new methods for pattern design by inexperienced knit-
ters and knitters who are not experienced with programming.
Finally, our work has the potential to inform simulation of
knitting.

ACKNOWLEDGMENTS
This work was funded by: National Science Foundation Grants
1IS-1718651 and 11S-1907337.

REFERENCES
[1] 2009. Short rows: method. (2009). http://techknitting.
blogspot.com/2009/10/short-rows-method.html

[2] 2016. How to Knit: Slipping Stitches Purlwise and
Knitwise | Lion Brand Yarn. (2016). http:
//www.lionbrand.com/how-to-knit-slipping-stitches

[3] Sean Ahlquist, Wes McGee, and Shahida Sharmin. 2017.
PneumaKnit: Actuated Architectures Through Wale-and
Course-Wise Tubular Knit-Constrained Pneumatic
Systems. (2017).

Lea Albaugh, Scott Hudson, and Lining Yao. 2019.
Digital Fabrication of Soft Actuated Objects by Machine
Knitting. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. DO :
http://dx.doi.org/10.1145/3290605.3300414

Shai Avidan and Ariel Shamir. 2007. Seam Carving for
Content-aware Image Resizing. In ACM SIGGRAPH
2007 Papers (SIGGRAPH "07). ACM, New York, NY,
USA. DOI:http://dx.doi.org/10.1145/1275808.1276390

[4

—

[5

—_

[6

—_

Chelsea Battell. 2016. Domain Specific Language for
Modular Knitting Pattern Definitions: Purl. CoRR
abs/1606.08708 (2016).
http://arxiv.org/abs/1606.08708

JC Briar. 2013. Stitch Maps. (2013).
https://stitch-maps.com/

[7

—

http://techknitting.blogspot.com/2009/10/short-rows-method.html
http://techknitting.blogspot.com/2009/10/short-rows-method.html
http://www.lionbrand.com/how-to-knit-slipping-stitches
http://www.lionbrand.com/how-to-knit-slipping-stitches
http://dx.doi.org/10.1145/3290605.3300414
http://dx.doi.org/10.1145/1275808.1276390
http://arxiv.org/abs/1606.08708
https://stitch-maps.com/
https://error).To

Session 1A: Knitting, Weaving, Fabrics

(8]

[9

—

(10]

[11

—

(12]

[13

—_—

(14]

(15]

[16]

(17]

(18]

(19]

Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, and
Miguel A. Otaduy. 2014. Yarn-level Simulation of
Woven Cloth. ACM Trans. Graph. 33, 6 (Nov. 2014),
207:1-207:11.DOI:
http://dx.doi.org/10.1145/2661229.2661279

E. W. Dijkstra. 1959. A note on two problems in
connexion with graphs. Numer. Math. 1, 1 (01 Dec
1959), 269-271. DOI:
http://dx.doi.org/10.1007/BF01386390

Scott E. Hudson. 2014. Printing Teddy Bears: A
Technique for 3D Printing of Soft Interactive Objects. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’14). ACM, New
York, NY, USA, 459-468. DOI:
http://dx.doi.org/10.1145/2556288.2557338

JetBrains. 2017. Grammar-Kit: Grammar files support &
parser/PSI generation for IntelliJ IDEA. (Dec. 2017).
https://github.com/JetBrains/Grammar-Kit original-date:
2011-08-04T12:28:11Z.

Jonathan M. Kaldor, Doug L. James, and Steve
Marschner. 2008. Simulating Knitted Cloth at the Yarn
Level. In ACM SIGGRAPH 2008 Papers (SIGGRAPH
’08). ACM, New York, NY, USA, 65:1-65:9. DO :
http://dx.doi.org/10.1145/1399504.1360664

Alexandre Kaspar, Liane Makatura, and Wojciech
Matusik. 2019a. Knitting Skeletons: A Computer-Aided
Design Tool for Shaping and Patterning of Knitted
Garments. In Proceedings of 32nd Annual ACM
Symposium on User Interface Software and Technology
(UIST ’19). ACM, New Orleans, LA.

Alexandre Kaspar, Tae-Hyun Oh, Liane Makatura, Petr
Kellnhofer, Jacqueline Aslarus, and Wojciech Matusik.
2019b. Neural Inverse Knitting: From Images to
Manufacturing Instructions. CoRR abs/1902.02752
(2019). http://arxiv.org/abs/1902.62752

Gerwin Klein, Steve Rowe, and Régis Décamps. 1999.
JFlex - JFlex The Fast Scanner Generator for Java.
(1999). http://jflex.de/

Knit It Now LLC. 2013. KnitltNow Pattern Library.
[Online]. Available from:
https://www.knititnow.com/knit/catalog.cfm. (2013).

Jonathan Leaf, Rundong Wu, Eston Schweickart,

Doug L. James, and Steve Marschner. 2018. Interactive
Design of Periodic Yarn-level Cloth Patterns. ACM
Trans. Graph. 37, 6, Article 202 (Dec. 2018), 15 pages.
DOI:http://dx.doi.org/10.1145/3272127.3275105

Jenny Lin, Vidya Narayanan, and James McCann. 2018.

Efficient Transfer Planning for Flat Knitting. In
Proceedings of the 2Nd ACM Symposium on
Computational Fabrication (SCF ’18). ACM, New York,
NY, USA, Article 1, 7 pages. DOI:
http://dx.doi.org/10.1145/3213512.3213515

Knitty Magazine. 2017. Knitty Index : Knitty.com -
Winter 2017. (2017).
http://knitty.com/ISSUEw17/index.php

16

UIST '19, October 20-23, 2019, New Orleans, LA, USA

[20]

[21]

[22]

(23]

[24]

[25

—_

[26]

[27]

[28

—_—

[29]

[30

—_

[31

—_—

[32]

(33]

James McCann, Lea Albaugh, Vidya Narayanan, April
Grow, Wojciech Matusik, Jennifer Mankoff, and Jessica
Hodgins. 2016. A Compiler for 3D Machine Knitting.
ACM Trans. Graph. 35, 4 (July 2016), 49:1-49:11. DO :
http://dx.doi.org/10.1145/2897824.2925940

Michael MeiB3ner and Bernd Eberhardt. 1998. The art of
knitted fabrics, realistic & physically based modelling of
knitted patterns. In Computer Graphics Forum, Vol. 17.
Wiley Online Library, 355-362.

Yuki Mori and Takeo Igarashi. 2007. Plushie: An
Interactive Design System for Plush Toys. In ACM
SIGGRAPH 2007 Papers (SIGGRAPH ’07). ACM, New
York, NY, USA. DOI:
http://dx.doi.org/10.1145/1275808.1276433

Vidya Narayanan, Lea Albaugh, Jessica Hodgins,
Stelian Coros, and James McCann. 2018. Automatic
Machine Knitting of 3D Meshes. ACM Trans. Graph. 37,
3, Article 35 (Aug. 2018), 15 pages. DOTI:
http://dx.doi.org/10.1145/3186265

Vidya Narayanan, Kui Wu, Cem Yuksel, and James
McCann. 2019. Visual Knit Programming. ACM Trans.
Graph. 38, 4 (July 2019).

Mariana Popescu, Matthias Rippmann, Tom Van Mele,
and Philippe Block. 2018. Automated generation of knit
patterns for non-developable surfaces. In Humanizing
Digital Reality. Springer, 271-284.

Ravelry 2017. Ravelry: Home. (2017).
https://www.ravelry.com/

Shima Seiki. 2011. SDS-ONE Apex3. [Online].
Available from: http://www.shimaseiki.com/product/
design/sdsone_apex/flat/. (2011).

Soft Byte LTD. 2012. DesignaKnit 8. [Online].
Available from:
https://softbyte.co.uk/designaknit.htm. (2012).

David J Spencer. 2001. Knitting technology: a
comprehensive handbook and practical guide. Vol. 16.
Crc Press.

Lesley Stanfield and Melody Griffiths. 2010. The
Essential Stitch Collection. The Reader’s Digest
Association, Inc.

Stoll. 2011. M1Plus pattern software. [Online].
Available from: http://www.stoll.com/stoll_software
solutions_en_4/pattern_software_mlplus/3_1. (2011).

Linda Suda. 2013. Bulky Waffle Hat pattern by Linda
Suda. (Nov. 2013). https:
//www.ravelry.com/patterns/library/bulky-waffle-hat

Kui Wu, Hannah Swan, and Cem Yuksel. 2019.
Knittable Stitch Meshes. ACM Trans. Graph. 38, 1,
Article 10 (Jan. 2019), 13 pages. DOI:
http://dx.doi.org/10.1145/3292481

http://dx.doi.org/10.1145/2661229.2661279
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1145/2556288.2557338
https://github.com/JetBrains/Grammar-Kit
http://dx.doi.org/10.1145/1399504.1360664
http://arxiv.org/abs/1902.02752
http://jflex.de/
https://www.knititnow.com/knit/catalog.cfm
http://dx.doi.org/10.1145/3272127.3275105
http://dx.doi.org/10.1145/3213512.3213515
http://knitty.com/ISSUEw17/index.php
http://dx.doi.org/10.1145/2897824.2925940
http://dx.doi.org/10.1145/1275808.1276433
http://dx.doi.org/10.1145/3186265
https://www.ravelry.com/
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
https://softbyte.co.uk/designaknit.htm
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
https://www.ravelry.com/patterns/library/bulky-waffle-hat
https://www.ravelry.com/patterns/library/bulky-waffle-hat
http://dx.doi.org/10.1145/3292481
https://Knitty.com

	Introduction
	Scenario

	Related Works
	Background on Knitted Structures
	KnitGraph representation
	KnitSpeak Compiler
	Compiling KnitSpeak
	Phase 1: Parsing KnitSpeak
	Phase 2: Semantic Analysis
	Phase 3: KnitGraph Instantiation

	Generating Knitting Instructions

	KnitPick Texture Data Set
	Sampling Strategy
	Swatch Construction and Measuring
	Summary of Knitted Textures

	KnitCarving: Resizing Knitted Textures
	Crowd-Sourced Evaluation
	Demonstration: Hand-Knitted Custom Hat

	KnitPatching: Combining Knitted Textures
	Knitted Sheets made of Patches
	KnitPatching Objective Function
	Heuristic-Based Patch Sizing

	Limitations
	Conclusion
	Acknowledgments
	References

