
Formal Connections between Template and Anchor
Models via Approximate Simulation

Vince Kurtz, Rafael Rodrigues da Silva, Patrick M. Wensing, and Hai Lin

Abstract—Reduced-order template models like the Linear In-
verted Pendulum (LIP) and Spring-Loaded Inverted Pendulum
(SLIP) are widely used tools for controlling high-dimensional
humanoid robots. However, connections between templates and
whole-body models have lacked formal underpinnings, prevent-
ing formal guarantees when it comes to integrated controller
design. We take a small step towards addressing this gap by
considering the notion of approximate simulation. Derived from
simulation relations for discrete transition systems in formal
methods, approximate similarity means that the outputs of two
systems can remain ε-close. In this paper, we consider the case
of controlling a balancer via planning with the LIP model.
We show that the balancer approximately simulates the LIP
and derive linear constraints that are sufficient conditions for
maintaining ground contact. This allows for rapid planning
and replanning with the template model by solving a quadratic
program that enforces contact constraints in the full model. We
demonstrate the efficacy of this planning and control paradigm
in a simulated push recovery scenario for a planar 4-link
balancer.

I. INTRODUCTION

Template models like the Linear Inverted Pendulum (LIP),
Spring-Loaded Inverted Pendulum (SLIP), and Compass-
Gait Walker are widely used for analysis, planning, and
control of locomotion and balance [1–6]. These models
capture important properties of the full system, or anchor
model, while also being simple enough to enable efficient
planning. Often, the template model is used to generate a
plan via Model Predictive Control (MPC) (e.g., [7, 8]) while
the anchor model tracks this nominal trajectory, subject to
contact constraints. The template-anchor control paradigm
works well in practice, and is widely accepted in the robotics
community [1]. Furthermore, it has been hypothesized that
biological systems use templates as sensorimotor control
targets: animals may regulate their center-of-mass (CoM) to
follow a lower-order model [9].

However, a key weakness of the template-anchor paradigm
is a lack of formal correctness. So far, formal connections be-
tween template and anchor models have not been identified.
Beyond the insights that might come from identifying such
connections, it is also difficult to provide provably correct
whole-body controllers that track the template model while

The partial support of the National Science Foundation (Grant No.
ECCS-1253488, IIS-1724070, CNS-1830335, CMMI-1835186) is gratefully
acknowledged.

V. Kurtz, R. Silva, and H. Lin are with the Department of Electrical
Engineering, University of Notre Dame, Notre Dame, IN, 46556 USA.
{vkurtz,rrodri17,hlin1}@nd.edu.

P.M. Wensing is with the Department of Aerospace and Mechanical
Engineering, University of Notre Dame, Notre Dame, IN, 46556 USA.
pwensing@nd.edu.

h

xcop

xcom

(a) Linear Inverted Pendulum

q1

q2

q3

q4

(b) Planar Balancer

Fig. 1. Template (linear inverted pendulum) and anchor (balancer in
single support) models considered in this paper. We show that the balancer
approximately simulates the LIP, which allows us to bound the tracking error
between the two models.

also accounting for constraints on contact forces, joint limits,
joint torques, etc.

The state-of-the-art in this regard is to formulate the
tracking problem as a Quadratic Program (QP), which partial-
feedback linearizes the system dynamics while also encoding
contact, friction, and torque constraints [10–12]. Such QPs
can be solved at kHz rates for high-dimensional rigid-body
models, and have been applied to great effect in the control of
humanoid robots [13–15]. But this approach does not admit
formal guarantees: we cannot ensure that the solver will
always find a solution, or that the optimal solution will cause
the anchor to converge to the template trajectory (though
this property holds empirically under normal conditions with
appropriately tuned controllers).

An alternative, more formal, approach is to restrict the
anchor model to operate on a lower-dimensional manifold
that is diffeomorphic to the template dynamics. This approach
was taken by Poulakakis and Grizzle [16] in the context of an
asymmetric hopper wherein the SLIP model was embedded
as the Hybrid Zero Dynamics [17] of the monopod. This
approach admits strong formal guarantees, but finding a
whole-body controller that enforces this diffeomorphic rela-
tionship is difficult, especially for high-dimensional systems
like humanoids. Furthermore, it is challenging to repurpose
redundant degrees of freedom for other tasks (e.g., holding
a cup of coffee while walking) under this approach.

In this work, we present an alternative method of providing



formal guarantees for control with template models. Specif-
ically, we consider the paradigm of approximate simulation
[18]. This concept is a generalization of simulation relations
from formal methods [19] to continuous systems. If the
anchor approximately simulates the template, then there
exists a controller which tracks any trajectory of the template
model with ε precision. Such a controller is known as an
interface. For any approximate simulation relation, there is
also a simulation function, a Lyapunov-like function that
bounds the error between the two models.

The contributions of this paper are as follows. First,
we show that classical whole-body controllers based on
task-space feedback linearization function as an interface,
which proves that a balancer in single support approximately
simulates a LIP. However, this simulation relation ignores
important constraints that exist in whole-body robot models
(e.g., contact constraints, joint limits, torque limits, etc.). As
a second contribution, we introduce a new MPC scheme that
uses the simulation relationship to address contact wrench
cone (CWC) [20] constraints during planning with the LIP.
Inspired by centroidal momentum planning methods [21, 22],
we address non-convexity in this MPC scheme by introducing
a convex inner approximation to the CWC constraints. This
inner approximation allows us to perform MPC for the LIP
model by solving a QP that already accounts for contact
constraints in the whole-body model, as shown in Figure 2.
In contrast to existing work [23], this new method does not
require an admissible region of the CoM to be specified a-
priori.

The remainder of this paper is organized as follows: Sec-
tion II presents a formal definition of approximate simulation
and introduces relevant results for linear systems. Section III
provides system definitions and a problem statement. Sec-
tion IV presents our principal results, which are illustrated
with a simulated push-recovery scenario in Section V. We
provide a brief discussion in Section VI, and conclude with
Section VII.

II. BACKGROUND

A. Approximate Simulation

Approximate simulation is formally defined in terms of
two systems Σ1 and Σ2:

Σ1 :

{
ẋ1 = f1(x1,u1)

y1 = g2(x1)
, Σ2 :

{
ẋ2 = f2(x2,u2)

y2 = g2(x2)
,

(1)
where xi ∈ Rni are the system states, ui ∈ Rpi are the
control inputs, and yi ∈ Rm are the system outputs. Note
that the states may be different sizes but the outputs—which
in our case correspond to the task-space—must be the same
size. Without loss of generality, we consider Σ1 to be the
whole-body (anchor) model and Σ2 to be the reduced-order
(template) model.

Approximate simulation for continuous systems [18] is
defined in terms of a Lyapunov-like simulation function V
and an interface function uV :

Cost Function

Contact Constraints

Template MPC QP @20Hz

Interface

Feedback Linearization

Robot

xlip, ulip

utask

τ

q, q̇

Fig. 2. Control flow for our approach. While most whole-body controllers
account for contact constraints in the feedback linearization phase with a
QP, we project contact constraints back to the template model using the
approximate simulation relation. Note that (q, q̇) are used only to compute
the task state xtask in the Template MPC block.

Definition 1. Let V : Rn2×Rn1 → R+ be a smooth function
and uV : Rp2×Rn1×Rn2 → Rp1 be a continuous function. V
is a simulation function of Σ2 by Σ1 and uV is an associated
interface if there exists a class-κ function1 γ such that for
all x1,x2 ∈ Rn1 × Rn2 ,

V(x1,x2) ≥ ‖g1(x1)− g2(x2)‖ (2)

and for all u2 ∈ Rp2 satisfying γ(‖u2‖) < V(x1,x2),

∂V
∂x2

f2(x2,u2) +
∂V
∂x1

f1(x1, uV(u2,x1,x2)) < 0. (3)

These conditions essentially state that when the interface
is applied, the simulation function always bounds the output
error (2) and decreases as long as u2 is not too large (3).

Definition 2 ([18]). Σ1 approximately simulates Σ2 if and
only if there exists a simulation function V of Σ2 by Σ1.

If Σ1 approximately simulates Σ2, we can use the simu-
lation function to bound the output error of the two systems
by ε:

Theorem 1 ([24]). Let V be a simulation function of Σ2

by Σ1 and uV be an associated interface. Let u2(t) be
an admissible input of Σ2 with associated state and output
trajectories x2(t) and y2(t). Let x1(t) be a state trajectory
of Σ1 satisfying

ẋ1 = f1(x1, uV(u2,x1,x2))

and y1(t) be the associated output trajectory. Then

‖y1(t)− y2(t)‖ ≤ ε (4)

where

ε = max
{
V(x1(0),x2(0)), γ(‖u2‖∞)

}
. (5)

1A function γ : R+ → R+ is a class-κ function if it is continuous,
strictly increasing, and γ(0) = 0.



Finding a simulation function for two arbitrary dynamical
systems is a difficult and open problem, though some promis-
ing results with sum-of-squares programming exist [25, 26].
For linear systems, however, there are well-defined conditions
for the existence of a simulation function [24]. We summarize
these conditions in the following subsection.

B. Approximate Simulation for Linear Systems

Consider the case when both the template and the anchor
are linear systems, i.e.,

Σi :

{
ẋi = Aixi + Biui

yi = Cixi

, i = {1, 2}. (6)

In this case, there are strong results regarding whether a
simulation relation exists. First note the following Lemma:

Lemma 1 (Girard and Pappas [27]). If the anchor system
Σ1 is stabilizable with feedback gain K, i.e., (A1 +B1K) is
Hurwitz, then there exists a positive definite symmetric matrix
M and positive scalar constant λ such that the following
hold:

M ≥ CT
1 C1, (7)

(A1 + B1K)TM + M(A1 + B1K) ≤ −2λM. (8)

Such an M can be used to show exponential convergence
of y1 to zero with rate λ under the feedback u1 = Kx1.
Note that these conditions are linear matrix inequalities in
M. This means that given K and λ, M can be computed
using semidefinite programming.

We can now state the following Theorem:

Theorem 2 (Girard and Pappas [24]). Assume that Σ1

is stabilizable with feedback gain K and that there exist
matrices P and Q such that the following conditions hold:

PA2 = A1P + B1Q, (9)
C2 = C1P. (10)

Then a simulation function of Σ2 by Σ1 is given by

V(x1,x2) =
√

(x1 −Px2)TM(x1 −Px2), (11)

an associated interface is

uV = Ru2 + Qx2 + K(x1 −Px2), (12)

and the class-κ function γ is given by

γ(ν) =
‖
√

M(B1R−PB2)‖
λ

ν, (13)

where R is an arbitrary matrix of proper dimensions.

The matrix R acts as a “feedforward” mapping from u2 to
u1. While the simulation relation holds for any R of proper
dimensions, choosing R to minimize (13) is a logical choice,
as this tightens the error bound ε (5).

III. PROBLEM FORMULATION

A. System Definitions

In this paper, we consider controlling a balancer in single
support using the LIP model as a template.

An example of a balancer used as the anchor model is
shown in Figure 1b. We assume that all joints are actuated
and that the system is mounted to a single foot in contact.
By modeling the balancer as a kinematic tree, we can
write the equations of motion with minimal coordinates in
“manipulator” form:

H(q)q̈ + C(q, q̇)q̇ + τg = τ (14)

where q are joint angles, H(q) is the mass matrix, C(q, q̇)
accounts for Coriolis and centripetal terms, τg is torque due
to gravity, and τ are applied torques. The gravitational vector
is denoted g and has magnitude g. The total mass of the robot
is m. Note that (14) is valid only if contact constraints are
not violated.

We consider the CoM position pG ∈ R3 and centroidal
momentum hG = [kT

G lTG]T ∈ R6 as the task-space of the
anchor model:

xtask =
[
pT
G hT

G

]T
,

where kG is the angular momentum about the CoM and lG
is the net linear momentum. The task-space dynamics can be
computed in terms of the centroidal dynamics [28, 29]:

ṗG =
1

m
lG, (15)

hG = AG(q)q̇, (16)

ḣG = AG(q) q̈ + ȦG(q, q̇) q̇. (17)

The LIP model [3], shown in Figure 1a, is constrained to
the (x, z) plane and governed by the horizontal position of
the CoM xcom and the center of pressure xcop. The vertical
position of the CoM is fixed at height h at all times. The
dynamics of the LIP model are given by

ẍcom = ω2(xcom − xcop), (18)

where ω =
√

g
h is the natural frequency of the LIP.

For easier comparison with the task-space of the anchor
model, we can write the LIP dynamics as a linear system

ẋlip = Alipxlip + Blipulip, (19)

where

xlip =
[
xcom 0 h 0 0 0 mẋcom 0 0

]T
expresses the CoM position and spatial momentum of the
LIP model and ulip = xcop is the x-position of the center of
pressure. While it may seem odd to include static elements
like angular momentum in the LIP model, this particular
definition of xlip will allow us to draw a connection between
an interface that certifies approximate simulation and the PD
control law often used to track template models.



B. Problem Statement

As per Section II-A, finding an interface and a simulation
function allows us to bound the output error between two
systems. With this in mind, our primary goal is to certify
that the balancer approximately simulates the LIP.

More formally, we define the output of the template (LIP)
model to be the full system state, i.e.,

ylip = xlip,

and the output of the anchor model to be the task-space
(position and spatial momentum of the CoM):

ytask = xtask =
[
pT
G hT

G

]T
.

Our goal is to find a simulation function and an interface that
certify that the anchor model (14) approximately simulates
the template model (19).

Finding such an interface and simulation function would
allow us to guarantee that the CoM of the balancer tracks the
LIP’s CoM and bound the associated tracking error, subject to
constraints on contact, torques, joint limits, etc. This leads us
to our secondary goal, which is to use the simulation relation
to project contact constraints for the balancer to constraints
on the LIP model. That way, when we plan with the LIP
model, we can be sure that the balancer will maintain ground
contact.

IV. THEORETICAL RESULTS

A. Approximate Simulation for the LIP and Balancer

In order to harness the results presented in Section II-B,
we take a task-space feedback linearization of the balancer.
To do so, we define a task-space interia matrix

Λ = (AGH−1AT
G)−1 (20)

and apply torques τ such that

τ = AT
GΛ(utask − ȦGq̇ + AGH−1(Cq̇ + τg)), (21)

where utask = ḣG is a virtual control. This gives rise to the
task-space dynamics

ẋtask = Ataskxtask + Btaskutask, (22)

where

Atask =

[
03×6 (1/m)I3×3
06×6 06×3

]
, Btask =

[
03×6
I6×6

]
.

In the case where dim(q) > dim(xtask), we can resolve
redundancies in the standard manner via the null-space
projector N , such that applying τ +Nτ0 has the same effect
on the task-space as applying τ alone [30]. This allows us
to design τ0 to achieve secondary control objectives like
reducing extraneous motion or controlling a certain limb. In
our example, we designed τ0 to regulate the balancer to the
nominal pose shown in Figure 1b.

Now we have a linear system that describes the evolution
of the planar balancer’s CoM (22), and another linear system
describing the evolution of the LIP’s CoM (19). Taking the
outputs as described above, i.e., Ctask = Clip = I9×9, we

Template Model

Task-Space Model

Whole-Body (Anchor) Model

approximate simulation

feedback linearization

Fig. 3. Heirarchy of models used in our approach. We show that the whole
body (anchor) model simulates the template model via a task-space feedback
linearization.

can use the results from Section II-B to find a simulation
function and an associated interface.

First, we find a feedback control gain matrix K to stabilize
the centroidal dynamics (22). There are many techniques to
choose such a gain: LQR can be used to find a K that is
optimal with respect to a certain cost functional. Given K,
we can use semi-definite programming to find M following
Lemma 1.

Then, following Theorem 2, we define the matrices P, Q,
and R as follows:

P = I9×9, Q =

03×1
ω2

02×1

06×8

 , R =

03×1
−ω2

02×1

 .
This choice of P and Q satisfies the conditions of Theorem
2. This particular choice of R not only minimizes (13), but
also establishes a connection between the interface and the
PD controller often used in practice.

To see this connection, consider a robot with mass m = 1.
A controller for the feedback-linearized anchor model is often
designed as follows:

utask =

[
−KangkG

p̈G

]
, (23)

p̈G =

[
ẍcom
02×1

]
+ KD(ṗlip − ṗG) + KP (plip − pG), (24)

where plip, ṗlip are the CoM positions and velocities of the
LIP, Kang is an angular momentum damping term, and KP

and KD are matrices of tuned control gains. Recalling that
ẍcom = ω2(xcom − ulip), we can rewrite the first term of
(23) as 03×1

ẍcom
02×1

 =

 0
ω2(xcom − ulip)

0


= Rulip + Qxlip.

Similarly, we can use the fact that xlip = [pT
lip 0T

3×1 ṗT
lip]

and xtask = [pT
G kT

G ṗT
G] to rearrange the PD gain terms as[

KangkG

KD(ṗlip − ṗG) + KP (plip − pG)

]
= K(xtask − xlip),

recovering the familiar form of the interface

utask = Rulip + Qxlip + K(xtask − xlip). (25)



Thus the commonly used task-space PD controller is in fact
a special case of an interface that admits an approximate
simulation relation.

Regardless of whether the stabilizing gain matrix K is
generated as a PD controller or via techniques like LQR, the
resulting simulation function takes the form

V(xtask,xlip) =
√

(xtask − xlip)TM(xtask − xlip), (26)

where M can be computed with semi-definite programming
as per Lemma 1.

Recall from Theorem 1 that the simulation function V
always bounds the output error, which in this case is
‖xtask − xlip‖. Furthermore, V always decreases, except
when γ(‖ulip‖) ≥ V(xtask,xlip). From Theorem 2, we have

γ(ν) =
‖
√

M(BtaskR−PBlip)‖
λ

ν

=
‖
√

M(0)‖
λ

ν = 0.

In other words, V is decreasing along all trajectories of the
LIP model, regardless of the value of ulip.

B. Projecting Contact Constraints to the Template

When we use this simulation relation to control the anchor
system, we do have some restrictions. Intuitively, the CoM
cannot follow arbitary trajectories: at the very least, it cannot
reside beyond the limits imposed by a fixed ground contact.
As an initial step toward handling such constraints, we
show that contact constraints on the anchor model can be
reformulated as linear constraints for MPC planning with the
template model.

The Contact Wrench Cone (CWC) contact constraint states
that all contact forces must remain in cones defined by a
Coulomb friction model [20]. In terms of the spatial force
expressed at the ground frame f0, the CWC can be expressed
as

CWC =
{

f0 | f0 =
∑
j

[
S(pcj )

I

]
fcj ,

∥∥∥∥[fxcjfycj
]∥∥∥∥ ≤ µfzcj},

(27)
where cj are ground contacts, pcj are their associated posi-
tions in the 0 frame, fcj ∈ R3 are ground contact forces, µ
is the coefficient of friction, and S(·) is the skew-symmetric
cross product matrix.

We can express the CWC constraint in terms of utask =
ḣG:

0X∗G

(
utask −

[
0
mg

])
∈ CWC,

where 0X∗G is the spatial force transform from the CoM
frame {G} to the ground frame {0} given by

0X∗G =

[
I S(pG)
0 I

]
.

If we consider friction pyramids as inner approxima-
tions of friction cones, we can derive a polytopic under-
approximation of the CWC [31, 32], i.e., Af0 ≤ 0. In this

case, the CWC criterion can be written as a bilinear constraint
on xtask, utask

A0X∗G(utask −
[

0
mg

]
) ≤ 0, (28)

where the bilinearity arises due to the dependence of 0X∗G
on a cross-product term of pG.

However, if we constrain the CoM acceleration l̇G, we can
formulate the CWC criterion as a linear constraint on utask

and xtask [22]. This is shown by the following Theorem:

Theorem 3. If the CoM acceleration l̇G of the anchor model
is constrained by ‖l̇G‖∞ ≤ l̇max, then there exists a linear

constraint Acwc

[
xtask

utask

]
≤ bcwc that is a sufficient condition

for the CWC contact criterion.

Proof. We will prove by construction. First, recall that a ×
b = S(a)b = −S(b)a. With this in mind, the CWC criterion
(28) can be written as

A0X∗GḣG ≤ A0X∗G

[
0
mg

]
(29)

A

[
I
0

]
k̇G + A

[
S(pG)

I

]
l̇G ≤ A

[
I S(pG)
0 I

] [
0
mg

]
(30)

AḣG + A

[
S(mg)− S(l̇G)

0

]
pG ≤ A

[
0
mg

]
(31)

Noting that mg and A are fixed for a given ground contact,
the only remaining nonconvexity is from the S(l̇G) term.

Note that the left hand side of (31) is bilinear in
[xT

task uT
task]T but linear in l̇G alone. Furthermore, the

constraint ‖l̇G‖∞ ≤ l̇max defines a polytope (specifically,
a cube in R3). Linear functions constrained to polytopes
have extrema at the vertices, so we can create a linear inner
approximation of (31) by enforcing (31) for l̇G evaluated at
all 8 corners of the cube defined by ‖l̇G‖∞ ≤ l̇max.

This new constraint is linear in the position of the CoM
pG and the time derivative of the centroidal momentum ḣG,
allowing us to write it as a constraint of the form

Acwc

[
xtask

utask

]
≤ bcwc. (32)

This linear encoding of the CWC criterion allows us to
perform MPC for the template model by solving a QP.
To account for contact constraints, we consider the anchor
variables xtask,utask as additional optimization variables,
and enforce the interface (25) as a constraint. We then



Fig. 4. Snapshots taken at 1Hz as the multi-link balancer recovers from an initial push via planning with the LIP model. Using the approximate simulation
relation between the balancer and the LIP allows us to guarantee that the balancer will track the LIP trajectory and maintain ground contact.

perform MPC using a simple forward Euler direct collocation
scheme as follows:

min
N−1∑
t=1

‖xt
lip‖2Qmpc

+ ‖utlip‖2Rmpc
+ ‖xN

lip‖Qf
(33)

s.t. x0
lip,x

0
task given (34)

xt+1
lip = xt

lip + (Alipxlip + Blipulip)dt (35)

xt+1
task = xt

task + (Ataskxtask + Btaskutask)dt (36)
ut
task = Rutlip + Qxt

lip + K(xt
task − xt

lip) (37)

Acwc

[
xt
task

ut
task

]
≤ bcwc (38)

‖l̇G‖∞ ≤ l̇max, (39)

where (34) fixes the initial conditions, (35-36) enforce for-
ward Euler dynamic constraints, (37) enforces the feasibility
of the interface, and (38-39) ensures contact constraints are
met in the anchor model.

Remark 1. The constraints (38-39) represent an inner ap-
proximation of the CWC, and as such, involve a tradeoff with
the parameter l̇max. If l̇max is too high, the intersection of
constraints defined by (31) will be negligible or empty. On
the other hand, if l̇max is too small, utask may not be able
to meet the interface constraint (37). Similarly, while we can
find simulation relations with arbitrarily high decay rates
λ, the resulting large K may cause a conflict between the
interface constraint (37) and the CWC constraints (38-39).

These constraints allow us to plan using the (lower-order)
LIP model in an MPC fashion. The fact that the constraints
are linear means that planning is as simple as solving a QP,
for which many fast solvers exist. Then, when the anchor
model tracks the nominal LIP trajectory using the interface
(25), tracking is guaranteed to be ε-close by Theorem 1, as
long as additional constraints on torques, joint limits, self-
collisions, etc. are met.

V. SIMULATION RESULTS

As an example, we control the balancer shown in Figure 1.
We assume the balancer is constrained to the (x, z) plane, so
xtask ∈ R5, utask ∈ R3. All links except the “torso” are

1m long, uniform density, and have mass of 1kg. The foot
was a square platform with length 1m and mass 5kg. The
coefficient of friction was 0.3. The torso link has length 2m
and mass 2kg. For the LIP model, we assume a height of
h = 1.75m.

We simulated the balancer in Gazebo [33], interfacing with
Matlab via ROS [34]. We used Casadi [35] and the qpOASES
solver [36] to solve (33). All computation was performed on
a laptop with an Intel i7 processor and 32GB RAM.

For the interface, we chose K by solving the following
infinite horizon LQR problem:

min
utask

∫ ∞
0

(xT
taskxtask + 0.01uT

taskutask)dt

s.t. ẋtask = Ataskxtask + Btaskutask.

We then set λ = 0.1 and solved the SDP described in Section
II-B to find M. To linearize the CWC constraint, we chose
l̇max = 5N .

We compared this approach with a standard QP for track-
ing the template model as per [10–12]:

min‖Jcomq̈ + J̇comq̇− ucom‖22 + w‖q̈− q̈des‖22 (40)
s.t. Hq̈ + Cq̇ + τg = τ (41)

f0 ∈ CWC (42)
τmin ≤ τ ≤ τmax, (43)

where Jcom is the CoM jacobian and ucom is a desired
CoM acceleration, which tracks a nominal template trajectory
(see Section IV-A). The secondary objective, weighted by
w = 0.1, is determined by a desired joint-space acceleration
q̈des, which regulates the robot to the static position shown
in Figure 1b.

Starting from an initial balanced state, a force was applied
for 10ms to the top of the torso link in the −x direction to
simulate a push. For our approach, we performed MPC for
the template model (33) with Qmpc = diag([10 0 0 10 0]),
Rmpc = 5.0, and Qf = 100Qmpc. We applied commands
and solved this MPC problem at 20Hz (dt = 0.05) with hori-
zon N = 5. For the traditional QP approach, we computed a
nominal control for the template model via LQR and solved
(40) at 20Hz as well.



(a) QP Approach, 20N Push (b) Our Approach, 20N Push (c) QP Approach, 100N Push (d) Our Approach, 100N Push

Fig. 5. task-space trajectories for the push recovery scenario. A high angular momentum disturbance in the 100N scenario causes the traditional QP
approach to fail, while our approximate simulation-based controller successfully balances the robot.

(a) QP Approach, 20N Push (b) Our Approach, 20N Push (c) QP Approach, 100N Push (d) Our Approach, 100N Push

Fig. 6. Output error and the simulation function (26) over time for the push-recovery scenario. For all scenarios, the simulation function bounds the output
error. Using our approach, the simulation function is nonincreasing (apart from time-discretization error) after the push.

For a 20N push, both the QP approach and our approxi-
mate simulation approach successfully returned the balancer
to an upright position. For a 100N push, however, the tradi-
tional QP (40) became infeasible after 5 timesteps, causing
the robot to fall down. Our approach successfully recovered
from the 100N push.

Task-space trajectories for these simulations are shown in
Figure 5, and the associated errors and simulation functions
are shown in Figure 6. For all the scenarios, the simulation
function (26) bounds the output error ‖xtask − xlip‖. How-
ever, this bound is tighter when using our approach, and apart
from some noise due to time discretization, decreases over
time. Snapshots of our approach recovering from a 100N
push are shown in Figure 4.

VI. DISCUSSION

Our primary result is showing a formal connection between
template and anchor models, namely that a balancer in
single support approximately simulates a LIP. The associated
interface, interestingly, is a generalization of the partial
feedback linearization-based PD controller often used to track
template models. Controlling the anchor model with this
interface brings us closer to providing formal guarantees
regarding tracking performance. Specifically, we can compute
a simulation function which bounds the output error between
the two models as long as constraints on contacts, torques,
joint limits, etc. are not violated.

As a secondary result, we derived linear constraints that
are sufficient conditions for maintaining ground contact. This
allows for MPC planning with the template model by solving
a QP, for which there are many fast solvers. While our
simulation demonstrated solving this QP with a relatively
short horizon (N = 5), we expect that further optimization

of the code and conversion to C/C++ will enable planning
with longer horizons.

Using this approach for control of a planar balancer
enabled recovery from a large-magnitude push, which a
standard QP controller was unable to recover from. While
additional tuning of this controller and running it at a higher
rate would likely improve performance, the fact that our
controller explicitly accounts for angular momentum and
contact constraints in the template planning phase suggests
that it is more robust to angular momentum disturbances.
Furthermore, this explicit accounting for angular momentum
results in non-preprogrammed behavior of the “arm” link: the
arm swings upward after the push, seemingly in at attempt
to regulate angular momentum.

Finally, the particular interface (25) that we propose cer-
tifies approximate simulation, but approximate simulation
is a relationship between models. This means that there
may be other control policies that also provide guaranteed
tracking performance. An important open question is whether
other control approaches, such as the QP constraint approach
commonly used in whole-body control, can also be shown to
provide such provably correct tracking of the template model.

VII. CONCLUSION

We explored approximate simulation as a means of provid-
ing formal connections between template and anchor models.
We showed that a balancer in single support approximately
simulates a linear inverted pendulum and derived the associ-
ated interface. We found that this interface is a generalization
of the PD controller that is commonly used to track template
models. As a secondary result, we derived linear constraints
that are sufficient conditions for maintaining ground contact.
These allow for rapid planning and replanning in the template



Fig. 7. Slack for the full CWC constraint (28) and the linearized CWC
constraint (38) following a 20N push.

model by solving a quadratic program. In a simulated push-
recovery scenario for a planar balancer, our approximate
simulation-based controller recovered from a large push
disturbance that a conventional whole-body controller failed
to recover from. Future work will extend these results to
account for joint and torque limits, self-collisions, and multi-
contact scenarios.

REFERENCES
[1] P.-B. Wieber, R. Tedrake, and S. Kuindersma, “Modeling and control

of legged robots,” in Springer Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Springer, 2016, pp. 1203–1234.

[2] H. Geyer and U. Saranli, “Gait based on the spring-loaded inverted
pendulum,” in Humanoid Robotics: A Reference, A. Goswami and
P. Vadakkepat, Eds. Springer Netherlands, 2018, pp. 1–25.

[3] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The
3D linear inverted pendulum mode: A simple modeling for a biped
walking pattern generation,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 1, 2001, pp. 239–246.

[4] M.-Y. Chen and K. Byl, “Analysis and control techniques for the
compass gait with a torso walking on stochastically rough terrain,”
in American Control Conference (ACC), 2012, pp. 3451–3458.

[5] P. M. Wensing and D. E. Orin, “High-speed humanoid running through
control with a 3D-SLIP model,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2013, pp. 5134–5140.

[6] M. Posa, T. Koolen, and R. Tedrake, “Balancing and step recovery
capturability via sums-of-squares optimization,” in Robotics: Science
and Systems, 2017.

[7] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in IEEE International Conference on
Robotics and Automation, vol. 2, 2003, pp. 1620–1626.

[8] P.-B. Wieber, “Trajectory free linear model predictive control for
stable walking in the presence of strong perturbations,” in IEEE-RAS
International Conference on Humanoid Robots, 2006, pp. 137–142.

[9] R. J. Full and D. E. Koditschek, “Templates and anchors: neu-
romechanical hypotheses of legged locomotion on land,” Journal of
experimental biology, vol. 202, no. 23, pp. 3325–3332, 1999.

[10] A. Herzog, L. Righetti, F. Grimminger, P. Pastor, and S. Schaal,
“Balancing experiments on a torque-controlled humanoid with hier-
archical inverse dynamics,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2014, pp. 981–988.

[11] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, vol. 33, no. 7, pp. 1006–
1028, 2014.

[12] P. M. Wensing and D. E. Orin, “Generation of dynamic humanoid
behaviors through task-space control with conic optimization,” in 2013
IEEE International Conference on Robotics and Automation, May
2013, pp. 3103–3109.

[13] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for the atlas
humanoid robot,” Autonomous Robots, vol. 40, no. 3, pp. 429–455,
2016.

[14] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson, “Optimization-
based full body control for the DARPA robotics challenge,” Journal
of Field Robotics, vol. 32, no. 2, pp. 293–312, 2015.

[15] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics,” in IEEE-RAS Interna-
tional Conference on Humanoid Robots, 2014, pp. 295–302.

[16] I. Poulakakis and J. W. Grizzle, “The spring loaded inverted pendulum
as the hybrid zero dynamics of an asymmetric hopper,” IEEE Trans-
actions on Automatic Control, vol. 54, no. 8, pp. 1779–1793, 2009.

[17] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero
dynamics of planar biped walkers,” IEEE transactions on automatic
control, vol. 48, no. 1, pp. 42–56, 2003.

[18] A. Girard and G. J. Pappas, “Approximate bisimulation: A bridge
between computer science and control theory,” European Journal of
Control, vol. 17, no. 5-6, pp. 568–578, 2011.

[19] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
2008.

[20] J.-S. Pang and J. Trinkle, “Stability characterizations of rigid body
contact problems with coulomb friction,” ZAMM-Journal of Applied
Mathematics and Mechanics, vol. 80, no. 10, pp. 643–663, 2000.

[21] H. Dai and R. Tedrake, “Planning robust walking motion on uneven
terrain via convex optimization,” in IEEE-RAS International Confer-
ence on Humanoid Robots, 2016, pp. 579–586.

[22] H. Audren and A. Kheddar, “3-D robust stability polyhedron in
multicontact,” IEEE Transactions on Robotics, vol. 34, no. 2, pp. 388–
403, 2018.

[23] S. Caron and A. Kheddar, “Multi-contact walking pattern generation
based on model preview control of 3D COM accelerations,” in IEEE-
RAS International Conference on Humanoid Robots, 2016, pp. 550–
557.

[24] A. Girard and G. J. Pappas, “Hierarchical control system design using
approximate simulation,” Automatica, vol. 45, no. 2, pp. 566–571,
2009.

[25] ——, “Approximate bisimulations for nonlinear dynamical systems,”
in IEEE Conference on Decision and Control, 2005, pp. 684–689.

[26] A. Murthy, M. A. Islam, S. A. Smolka, and R. Grosu, “Computing
bisimulation functions using sos optimization and δ-decidability over
the reals,” in International Conference on Hybrid Systems: Computa-
tion and Control. ACM, 2015, pp. 78–87.

[27] A. Girard and G. J. Pappas, “Approximate bisimulation relations for
constrained linear systems,” Automatica, vol. 43, no. 8, pp. 1307–1317,
2007.

[28] D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a
humanoid robot,” Autonomous Robots, vol. 35, no. 2-3, pp. 161–176,
2013.

[29] P. M. Wensing and D. E. Orin, “Improved computation of the humanoid
centroidal dynamics and application for whole-body control,” Interna-
tional Journal of Humanoid Robotics, vol. 13, no. 01, p. 1550039,
2016.

[30] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[31] S. Caron, Q.-C. Pham, and Y. Nakamura, “Stability of surface contacts
for humanoid robots: Closed-form formulae of the contact wrench cone
for rectangular support areas,” in IEEE International Conference on
Robotics and Automation, 2015, pp. 5107–5112.

[32] ——, “Leveraging cone double description for multi-contact stability
of humanoids with applications to statics and dynamics.” in Robotics:
Science and Systems, 2015.

[33] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 3, 2004, pp. 2149–
2154.

[34] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot
operating system,” in IEEE Intl. Conf. on Robotics and Automation
Workshop on Open Source Robotics, 2009.

[35] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: a software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, no. 1, pp.
1–36, 2019.

[36] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl,
“qpOASES: A parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, no. 4, pp.
327–363, 2014.


	Introduction
	Background
	Approximate Simulation
	Approximate Simulation for Linear Systems

	Problem Formulation
	System Definitions
	Problem Statement

	Theoretical Results
	Approximate Simulation for the LIP and Balancer
	Projecting Contact Constraints to the Template

	Simulation Results
	Discussion
	Conclusion

