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Abstract—Approximate simulation, an extension of simula-
tion relations from formal methods to continuous systems, is
a powerful tool for hierarchical control of complex systems.
Finding an approximate simulation relation between the full
“concrete” system and a simplified “abstract” system establishes
a bound on the output error between the two systems, allowing
one to design a controller for the abstract system while formally
certifying performance on the concrete system. However, many
real-world control systems are subject to external disturbances,
which are not accounted for in the standard approximate
simulation framework. We present a notion of robust approx-
imate simulation, which considers external disturbances to the
concrete system. We derive output error bounds for the case
of linear systems subject to two types of additive disturbances:
bounded disturbances and a sequence of (unbounded) impulse
disturbances. We demonstrate the need for robust approximate
simulation and the effectiveness of our proposed approach with
a simulated robot motion planning example.

I. INTRODUCTION
A. Motivation

Complex and high-dimensional systems are often difficult
to control directly. This leads naturally to hierarchical control
strategies, where a simpler (abstract) system model is used in
the controller design process. One particularly useful frame-
work for hierarchical control is approximate simulation [1].
An approximate simulation relation between the abstract
system and the full (concrete) system certifies that the outputs
of both systems can remain e-close.

Approximate simulation relations give rise to control ar-
chitectures like that shown in Figure 1. The interface, which
maps controls from the abstract system to the concrete sys-
tem, is designed to enforce e-closeness of the outputs. Given
such an interface, we can design a controller for the abstract
system and guarantee that the concrete system’s output will
remain e-close. Furthermore, approximate simulation offers
elegant connections to other areas of control theory, as an
approximate simulation relation can be certified by finding a
Lyapunov-like simulation function, which bounds the output
error between the two systems.

Approximate simulation is a powerful framework for hier-
archical controller design. Since it builds off of the notions of
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Fig. 1. Hierarchical control system architecture considered in this work. We
extend the notion of approximate simulation [3] to account for disturbances
d to the concrete system.

simulation and bisimulation relations from formal methods,
it can be efficiently applied to discrete transition systems and
hybrid systems, as well as continuous systems. Recent results
suggest that approximate simulation can be used for control
of complex, high-dimensional, and highly nonlinear systems
such as legged robots [2]. However, the traditional notion
of approximate simulation does not account for disturbances
to the concrete system. This means that any guarantees
regarding e-closeness of the outputs may not be valid when
disturbances enter the concrete system. This property is
especially important when it comes to robotic and cyber-
physical systems which operate in the real world, and are
thus subject to a variety of disturbances.

In this work, we extend the approximate simulation frame-
work to account for disturbances to the concrete system.
We present this extension as a general notion of robust
approximate simulation for continuous systems, and provide
specific results for two special cases: linear systems subject
to bounded additive disturbances, and linear systems subject
to additive impulse disturbances.

B. Related Work

The notion of approximate simulation has its roots in the
formal methods literature, where exact simulation relations
are defined in terms of transition systems [4]. Such simulation
and bisimulation (both systems simulate each other) relations
have had a powerful impact on model checking and formal
synthesis, with widespread application in software and design
verification [4, 5]. Furthermore, simulation and bisimulation
relations have been successfully applied to controller synthe-
sis from temporal logic specifications [6—8]. If two systems
can be shown to be (bi)similar, the formal design process can
consider only the simpler model, improving computational
efficiency while maintaining formal guarantees.



More recently, there has been a growing movement to
apply these impactful techniques from formal methods to
(continuous) control systems. Large strides have been made
in this direction through the use of approximate simulation
and approximate bisimulation [9-11]. Since requiring two
continuous systems to have exactly the same output may be
too strict, approximate (bi)simulation relaxes this requirement
to enforce only that the outputs remain e-close. Beyond
enabling the application of formal methods techniques to con-
tinuous systems, approximate simulation provides an elegant
bridge between formal methods and classical control theory:
approximate simulation can be equivalently defined in terms
of a Lyapunov-like simulation function [3].

Hierarchical control and system equivalence have been
studied in the context of control systems as well. No-
tions such as asymptotic model matching [12] enforce out-
put global asymptotic stability of the joint system [13].
Since approximate simulation requires only closeness of
outputs, asymptotic model matching implies approximate
simulation but not vice versa [1]. Approximate simulation
is most closely related to Input-to-Output Stability (I0S)
[14]. Specifically, a simulation function can be viewed as
an IOS Lyapunov function [15] of the joint system. The
key difference between I0S and approximate simulation is
that the input us to the abstract system is considered a
control parameter rather than a disturbance in the framework
of approximate simulation [1]. Given this emphasis, a key
weakness of approximate simulation is that disturbances to
the concrete system are not considered. Drawing inspiration
from the robust control literature, we address this gap by
proposing the notion of robust approximate simulation. To
the best of our knowledge, this is the first work to extend
approximate simulation to account for external disturbances.

The remainder of this paper is organized as follows.
Section II introduces necessary background on approximate
simulation, with particular attention to the case of linear
systems. Section III presents our main results, which include
a definition of robust approximate simulation for general con-
tinuous systems and detailed derivation of error bounds for
linear systems subject to bounded and impulse disturbances.
We illustrate these results with a robot motion planning
example in Section IV and conclude with Section V.

II. BACKGROUND
A. Approximate Simulation

The classical notion of approximate simulation is defined
in terms of two systems, 21 and Xo:

5, {5{1 = fi(x1,u1) N, {5(2 = fa2(x2,u2) 7
1
where x; € R™ are the system states, u; € RP¢ are the
control inputs, and y; € R™ are the system outputs. Note
that the states may be different sizes but the outputs must
be the same size. Without loss of generality, we consider
331 to be a more complex “concrete” model and 35 to be the
simpler “abstract” model. This typically means that ny < n;.

y1 = g1(x1) Y2 = g2(x2)

Approximate simulation is defined in terms of a Lyapunov-
like simulation function V and an interface function wu,:

Definition 1 (Girard and Pappas [3]). Consider two systems
of the form (I1). Let V : R™ x R"? — RT be a smooth
function and uy : RP2 x R™ x R™ — RP! be a continuous
function. V is a simulation function of 3o by ¥1 and wy is
an associated interface if there exists a class-r function'
such that for all x1,x9 € R" x R"2,

V(x1,%2) 2 [lg1(x1) — g2(x2) |, 2
and for all uy € RP? satisfying vy(||uz|)) < V(x1,Xz2),
oV ov
szﬁ(xz,lu) + Tmﬁ(xl,uv(u%xhxz)) <0. 3

Definition 2 (Girard and Pappas [3]). X1 approximately
simulates Yo if there exists a simulation function V of Yo
by 21.

The conditions (2-3) essentially state that the simulation
function bounds the output error, and as long as the input to
the abstract system is not too large, the simulation function
will be decreasing.

If ¥; approximately simulates 3, we can bound the
output error of the two systems as follows:

Theorem 1 (Girard and Pappas [1]). Consider two systems
of the form (I). Let V be a simulation function of o by
31 and uy be an associated interface. Let us(t) be an
admissible input of Yo with associated state and output
trajectories X2(t) and yo(t). Let x1(t) be a state trajectory
of 31 satisfying

x1 = fi(x1, uy(uz,x1,%2))

and y1 (t) be the associated output trajectory. Then

ly1(t) —y2(0)] <€,

where

€ = max {V (x1(0),x2(0)) 7V(||u2||oo)}~

B. Approximate Simulation for Linear Systems

“4)

Finding a simulation function and an interface for two
arbitrary systems is a difficult and open problem, though
some promising results with sum-of-squares programming
do exist [9, 16]. For linear systems, however, there are well-
defined conditions for the existence of a simulation function
[1], which we summarize below.

Consider the case when both the concrete and the abstract
systems are linear, i.e.,

Zi : {Xz = AiXi + Biui

o 5)

. i={1,2}.

In this case, there are strong results regarding the form of a
simulation function. First note the following Lemma:

YA function v : Rt — Rt is a class-x function if it is continuous,
strictly increasing, and v(0) = 0.



Lemma 1 (Girard and Pappas [10]). If 3, is stabilizable with
feedback gain K, ie. (A1 + B1K) is Hurwitz, then there
exists a positive definite symmetric matrix M and positive
scalar constant A such that the following hold:
M Z OlTCIM
(A1 + B1K)TM + M(A; + BiK) < —2)\M.

(6)
)
Such an M can be used to show exponential convergence
of y1 to zero with rate A under the feedback u; = Kx;. Note
that M and K can be computed jointly using semi-definite
programming [1]: letting K = KM~! and M = M~!, we
have the equivalent linear matrix inequality conditions

Y T

M MCy >0

CiM 1 =
MAT + A\M + KTBT + BJK < —2)\M.

®)
€))

We can now state the following Theorem:

Theorem 2 (Girard and Pappas [1]). Consider two systems
of the form (5). Assume that X1 is stabilizable with feedback
gain K and that there exist matrices P € R™*™2 and () €
R™1%"2 sych that the following conditions hold:

PA, = AP+ B1Q, (10)
Cy=CP. (11)
Then a simulation function of Yo by Y1 is given by
V(x1,%x2) = \/(Xl — Px)TM(x1 — Px2), (12)
an associated interface is
uy = Rug + Qxa + K(x1 — Pxa2), (13)
and the class-k function v is given by
M(B1R— PB
) = WIBR= PE)I, "

where R is an arbitrary matrix of proper dimensions and
M, \ satisfy (6-7).

The matrix R acts as a “feedforward” mapping from us to
u;. While the simulation relation holds for any R of proper
dimensions, choosing R to minimize (14) is a logical choice,
as this tightens the error bound (4).

III. MAIN RESULTS
A. Robust Approximate Simulation

Consider the systems

) {5(1 = fi(x1,u1,d)
31 ,
15)
where x; € R™ are the system states, u; € RP? are the
control inputs, y; € R™ are the system outputs, and d € R
is an unknown disturbance.

We define robust approximate simulation in terms of a
Lyapunov-like robust simulation function as follows:

y2 = gz(xz)

T, Xy = fa(x2,u2)
) 2 -
y1 = g1(x1)

Definition 3 (Robust Simulation Function). Consider two
systems of the form (15). Let V : R™ x R"2 — R* be a

smooth function and uy : RP2 x R™ x R" — RPL be a
continuous function. V is a robust simulation function of ¥
by Y1 and wy is an associated interface if there exists class-x
functions 71, o such that for all x1,xo € R™ x R"2,

V(x1,%2) > [|g1(x1) — ga(x2)| (16)

and for all vy € RP2 satisfying v1(||d]]) + v2(Jluzl]) <
V(Xl,XQ),

av oV

aﬁ)@fz(xzﬂm) + Tmfl(xlaul)(u%xbx?)ad) < 0. (17)
Definition 4 (Robust Approximate Simulation). 3 robustly
approximately simulates Yo if there exists a robust simulation
function V of ¥a by ¥.

Note that Definition 3 is a direct generalization of the typi-
cal approximate simulation notion: taking d = 0, we recover
System (1) and Definition 1. The primary difference between
robust approximate simulation and traditional approximate
simulation is the conditions under which V decreases along
a trajectory. This suggests that for many cases, a simulation
function may also be a robust simulation function, though
the resulting error bounds would be different.

As with conventional approximate simulation, finding a
robust simulation function and an interface for two general
systems is very difficult. In the following subsections, we
consider the special cases of linear systems under bounded
and impulse disturbances. For each case, we show that the
conventional approximate simulation function is also a robust
simulation function, and derive the associated error bounds.
Proofs are available in the extended online version [17].

B. Linear Systems under Bounded Disturbances

Consider the following special case of System (15):

21 . 5(1 = A1X1 + Bllll + de
y1=C1xy

; (18)

%2 = Aoxo + Bauy
dig:
y2 = Caoxa

where A;, B;, C;, and By are matrices of proper dimension,
and d(¢) € RY is an external disturbance signal that is
unknown but bounded in the sense that ||d|cc < dimaz. We
assume that By, the mapping from disturbances to the system,
is known.

Taking inspiration from [1, Theorem 2], we can establish
the following analogue to Theorem 2:

Theorem 3. Consider two systems of the form (18). Assume
that 31 is stabilizable with feedback gain K and that there
exist matrices P and @ such that the following conditions
hold:

PAy = AP + B1Q,
Cy =C1P.

19)
(20)

Then a robust simulation function of Yo by X1 is given by

V(X17X2) = \/(Xl — PXQ)TM(Xl — PXQ), (21)



an associated interface is

uy ZRUQ+QX2+K(X1 —PX2)7 (22)
the class-r function ~y1 is given by
vVMB
v(v) = My, (23)
and the class-k function v, is given by
vM(B1R—- PB
aly) = IR, 24)

where R is an arbitrary matrix of proper dimensions and
M, X\ are such that (6-7) hold.

Furthermore, we can establish a modified error bound for
this case of bounded disturbances:

Theorem 4. Consider two systems of the form (18). Let V
be a robust simulation function of o by X1 and uy be an
associated interface. Let uy(t) be an admissible input of Yo
with associated state and output trajectories X (t) and ya(t).
Let x1(t) be a state trajectory of X1 satisfying

X, = A1x1 + Biuy + Bgd

and y1(t) be the associated output trajectory. Then

ly1(t) = y2(8)] <
max {V(x1(0),x2(0)), y1(lld]lsc) + 72 (l[uz]ls) }-

C. Linear Systems under Impulse Disturbances

(25)

Here we consider the case of linear systems under un-
bounded disturbances that take the form of impulses. We are
inspired to consider this type of disturbance model by recent
research applying approximate simulation to legged robot
locomotion [2]. In legged locomotion, disturbances from
foot impacts with the ground result in infinite-magnitude
disturbances over infinitesimally small time periods, and
thus cannot be described by the bounded disturbance model
described above.

Consider the following special case of System (15):

o x1 = A1x1 + Biuy + Bgd
1:
y1=01x

22 : {Xg = A2X2 + Bgug 7 (26)

y2 = Coxy

where d(t) is a sequence of unit impulses at times T, i.e.,

d(t) = > 6t —t),
t;€T

where (t) is the Dirac delta function. By(t) € R"™ is a
mapping from the impulse disturbances d(t) to the system,
which we assume is unknown and possibly time varying, but
bounded in the sense that || B4|| < bina.. We make the further
assumption that the impulses ¢; € T are separated by at least
a minimum dwell time ¢4, > 0.

27)

Remark 1. Even though the disturbances we consider with
this system model are unbounded, Definition 3 is flexible

enough to handle impulse disturbances. This is because at the
instant of an impulse, d(t) is infinite magnitude, and therefore
the condition (17) is not enforced.

First, we establish a straightforward analogue to Theorem
2 for the the case of the impulse sequence model.

Theorem 5. Consider two systems of the form (26). Assume
that 31 is stabilizable with feedback gain K and that there

exist matrices P and @ such that the following conditions
hold:

PAy = AP+ B1Q,
Cy =C1P.

(28)
(29)

Then a robust simulation function of X9 by X is given by

V(x1,X2) = \/(xl — Px5)TM (%1 — Px3), (30)
an associated interface is
uy = Ruy + Qx2 + K(x1 — Px2), (€2))
the class-k function ~y is given by
(V) =v (32)
and the class-k function 7y, is given by
(V) = |VM(BiR — PBy)| 33)

v
)\ )
where R is an arbitrary matrix of proper dimensions and
M, \ are such that (6-7) hold.

We can now establish an error bound analogous to that
of Theorem 1. To do so, first consider the case of a single
impulse disturbance at time ¢;. For this case, we establish a
relaxed upper bound on the output error as follows:

Proposition 1. Consider two systems of the form (26). Let
V be a robust simulation function of ¥o by X1 and wy be an
associated interface. Let us(t) be a smooth admissible input
of X9 with associated state and output trajectories X (t) and
va(t). Let x1(t) be a state trajectory of X1 satisfying

).(1 = A1X1 + Bluv + de

and y1(t) be the associated output trajectory. Assume that
the disturbance signal d(t) = 6(t —t;) is a single impulse at
time t;. Then

[y1(t) = ya2(t)|| <
max {V(x1(0), x2(0)), v(|[uzlloc) } + brmaz v/ Amaz, (34)

where \paz IS the maximum eigenvalue of M and by, is
the upper bound on || By

To extend this result to the case of a sequence of impulse
disturbances, we recall from the proof of [3, Theorem 2] that
the decay rate of the simulation function is bounded by

ay

= S A= V0 xa) +y(|[uz])-

This minimum decay rate allows us to establish a dwell
time %47 such that as long as the impulse disturbances are



separated by at least tg,,¢;, the simulation function decays
enough between impulses that the resulting error bound is
the same as that of a single impulse. This is stated formally
as follows:

Proposition 2. Consider two systems of the form (26). Let
V be a robust simulation function of o by >y and uy be an
associated interface. Let uz(t) be a smooth admissible input
of ¥o with associated state and output trajectories xo(t) and
va(t). Let x1(t) be a state trajectory of 1 satisfying

x1 = A1x1 + Biuy + Bgd

and y1(t) be the associated output trajectory. Assume that
tawel > 1/\, where X is defined as per Lemma 1. Then

ly1(t) —y2(0)[ <

max {V(Xl(O), x2(0)), 'Y(HUQHDO)} + bimaz V Amaz, (35)

where \paz Is the maximum eigenvalue of M and by,q, is
the upper bound on || Bgl|.

Interestingly, the minimum dwell time of 1/A does not
depend on the magnitude of the disturbances B, but only
on A, which is essentially the decay rate of the simulation
function. A larger disturbance magnitude does increase the
error bound, however, through the parameter by,q. > || Bql|-

Finally, we consider the case of arbitrary dwell times,
which may be shorter than 1/), and derive an associated
error bound:

Theorem 6. Consider two systems of the form (26). Let V
be a robust simulation function of Yo by ¥ and wy be an
associated interface. Let uz(t) be a smooth admissible input
of ¥o with associated state and output trajectories Xo(t) and
va(t). Let x1(t) be a state trajectory of X1 satisfying

x1 = A1x1 + Biuy + Bgd

and y1(t) be the associated output trajectory. Assume that
taweur > 0. Then

1 () = y2(8)]| < max {V(0),y(|luz]l) }

1
+ max {1, } bmazp\/my (36)

tawell A

where \paq IS the maximum eigenvalue of M, by,q. Is the
upper bound on ||Byl|, and X is defined by Lemma 1.

IV. EXAMPLE

To illustrate the importance of accounting for disturbances
when using approximate simulation, we present a variation
of the example presented in [1]. In this example, shown
in Figure 2, a robot must navigate a narrow passageway
before reaching a goal region (yellow). The concrete system
is a robot with triple integrator dynamics while the abstract
system is a single integrator. The output of both systems
represents the position of the robot in the plane.

Following [1, Section 5], we found an interface that
enforces approximate simulation and output error bound (4)
€ = 0.2258. The abstract system is fully actuated, making it

Fig. 2. A robot navigates a passageway to reach a goal (yellow circle) with-
out any disturbances. A classical approximate simulation relation guarantees
that the concrete system (red solid line) will stay close (green shaded region)
to the abstract system trajectory (blue dashed lines).

Fig. 3. When a bounded disturbance is applied to the concrete system,
the classical approximate simulation relation breaks down. The robot leaves
the safe region around the planned trajectory, occasionally colliding with
obstacles.

easy to find a trajectory that reaches the goal and stays € away
from all obstacles. In this example, we used the probabilistic
roadmap strategy [18] to find such a trajectory. This is shown
in Figure 2 by the blue dashed lines. The green shaded region
represents the area in which the concrete system is guaranteed
to remain. The associated concrete system trajectory (red
solid line) tracks the abstract trajectory effectively, staying
within the safe region and eventually arriving at the goal.
Note that the output error bound e is fairly tight.

We now consider planning with this same approximate
simulation relation under bounded disturbances. Specifically,
we choose By = [-0.2 — 0.2 0 0 0 0]7, d(t) = 1. This
represents a constant disturbance pushing the robot down and
to the left. This is analogous to what would happen if there
was a steady gust of wind pushing the robot when it was
deployed in the real world.

First, we naively (and improperly) apply the classical
approximate simulation relation to this case. The resulting
trajectories are shown in Figure 3. The robot is unable to stay
e-close to the planned abstract system trajectory, leading to
several collisions with the walls of the passageway.

This motivates the use of a robust approximate simulation
relation. Following Theorems 3 and 4, we find the correct er-
ror bound (25) of € = 0.6767. Using this robust approximate
simulation relation to plan an abstract system trajectory, we
obtain the more conservative results shown in Figure 4. The
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Fig. 4. Using the robust simulation relation and the correct output error
bound for bounded disturbances (25) results in a more conservative plan for
the abstract system and allows the robot to reach the goal.

Fig. 5. When the concrete system experiences unbounded impulse distur-
bances, the classical approximate simulation relation breaks down. The robot
leaves the safe region around the planned trajectory, occasionally colliding
with obstacles.

robot is able to stay within these relaxed error bounds despite
the disturbances, and successfully reaches the goal. We can
also see that the associated error bound is reasonably tight.

Finally, we consider the case of unbounded (impulse)
disturbances. We use the same disturbance mapping B, as
above, and consider impulses occurring every 2.5s. This
corresponds to the case of the robot experiencing a push
at regular intervals. As in the case of bounded disturbances,
improperly applying a classical approximate simulation rela-
tion results in the robot leaving the safe region and colliding
with obstacles (Figure 5). Following Theorem 6, we find
a relaxed error bound of ¢ = 0.678. Replanning with this
revised margin leads to the safe plan shown in Figure 6.
The robot stays within the safe region, avoids collisions, and
reaches the goal.

V. CONCLUSION

We proposed a notion of robust approximate simulation as
a generalization of approximate simulation. This framework
can be used for formally correct hierarchical control in the
case when the concrete system is subject to external distur-
bances. We provided detailed results, including the associated
error bounds, for linear systems subject to bounded distur-
bances and impulse disturbances. Future work will focus
on generalizing these results to finite-energy disturbances,
nonlinear systems, and general transition systems.

Fig. 6. Using the robust simulation relation and the correct output error
bound for impulse disturbances (36) results in a more conservative plan for
the abstract system and allows the robot to reach the goal.
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