
I E E E   T  R  A  N S  A C TI  O  N S   O  N  SI  G  N  A L  P  R  O  C E S SI  N  G,   V  O L.  6 8, 2 0 2 0 3 8 4 9

M o d el-  B as e d   R o b ust  Filt eri n g a n d   E x p eri  m e nt al
D esi g n f or  St o c h asti c   Diff er e nti al   E q u ati o n  S yst e  ms

G u a n g   Z h a o   ,   Xi a o ni n g   Qi a n   , S e ni or   M e  m b er, I E E E,   B y u n g-J u n   Yo o n   , S e ni or   M e  m b er, I E E E,
Fr a n cis J.   Al e x a n d er, a n d   E d  w ar d   R.   D o u g h ert y ,   Fell o  w, I E E E

A bstr a ct  —   We   d e ri v e   r o b ust  li n e a r   filt e ri n g   a n d   e x p e ri  m e n-
t al  d esi g n  f o r  s yst e  ms  g o v e r n e d  b y  st o c h asti c  diff e r e nti al  e q u a-
ti o ns ( S  D  Es) u n d e r   m o d el u n c e rt ai nt y.   Gi v e n a   m o d el of si g n al a n d
o bs e r v ati o n  p r o c ess es,  a n  o pti  m al li n e a r  filt e r is f o u n d  b y s ol vi n g
t h e    Wi e n e r-  H o pf e q u ati o n;   wit h   m o d el  u n c e rt ai nt y, it is  d esi r a bl e
t o  d e ri v e  a  c o r r es p o n di n g  r o b ust  filt e r.   T his  a rti cl e  ass u  m es  t h at
t h e  p h ysi c al  p r o c ess is   m o d el e d  vi a  a  S  D  E  s yst e  m   wit h  u n k n o  w n
p a r a  m et e rs;  t h e  si g n als  a r e  d e g r a d e d  b y  bl u r ri n g  a n d  a d diti v e
n ois e.    D u e  t o  ti  m e- d e p e n d e nt  st o c h asti cit y  i n  S  D  E  s yst e  ms,  t h e
s yst e  m is  n o nst ati o n a r y;  a n d t h e  r es ulti n g    Wi e n e r-  H o pf  e q u ati o n
is dif fi c ult t o s ol v e i n cl os e d f o r  m.   H e n c e,   w e dis c r eti z e t h e p r o bl e  m
t o  o bt ai n  a    m at ri x  s yst e  m  t o  c a r r y  o ut  t h e  o v e r all   p r o c e d u r e.
We  f u rt h e r  d e ri v e  a n  i nt ri nsi c all y   B a y esi a n  r o b ust  (I  B  R)  li n e a r
filt e r  t o g et h e r    wit h  a n  o pti  m al  e x p e ri  m e nt al  d esi g n  f r a  m e  w o r k
t o  d et e r  mi n e t h e i  m p o rt a n c e  of  S  D  E  p a r a  m et e r(s).    We  a p pl y t h e
t h e o r y t o a n S  D  E- b as e d p h a r  m a c o ki n eti c t  w o- c o  m p a rt  m e nt   m o d el
t o esti  m at e  d r u g c o n c e nt r ati o n l e v els.

I n d e x     Ter  ms —  R o b ust    filt e ri n g,    st o c h asti c    diff e r e nti al
e q u ati o n   ( S  D  E),     m o d el   u n c e rt ai nt y,     m e a n   o bj e cti v e   c ost   of
u n c e rt ai nt y (   M  O  C  U), o pti  m al e x p e ri  m e nt al  d esi g n (  O  E  D).

I.  IN T  R  O  D  U  C TI  O  N

I T I S  c o  m  m o n  pr a cti c e i n si g n al  pr o c essi n g t o  b e gi n   wit h  a
st o c h asti c- pr o c ess    m o d el  (si g n al  pl us  n ois e),  a  c o v ari a n c e

( or p o  w er s p e ctr a)   m o d el, or a st at e- o bs er v ati o n   m o d el, as   wit h
K al  m a n  filt eri n g.    H o  w e v er,  i n  a  p h ysi c al  c o nt e xt,  t h e  si g n al
m o d el    m a y  b e  d eri v e d  fr o  m  a  p h ysi c al    m o d el,   w hi c h  c a n  b e
a  p ar a  m et eri z e d   m at h e  m ati c al s yst e  m.   H e n c e, t h e  pr o p erti es  of
t h e  si g n al,  a n d  of  t h e  r es ulti n g  filt er,  d e p e n d  o n  t h e  p h ysi c al

M a n us cri pt  r e c ei v e d  S e pt e  m b er  1 5,  2 0 1 9;  r e vis e d    M ar c h  2,  2 0 2 0,    A pril
3 0,  2 0 2 0,  a n d    M a y  1 7,  2 0 2 0;  a c c e pt e d    M a y  3 1,  2 0 2 0.    D at e  of  p u bli c ati o n
J u n e  1 0,  2 0 2 0;  d at e  of  c urr e nt  v ersi o n  J u n e  3 0,  2 0 2 0.   T h e  ass o ci at e  e dit or
c o or di n ati n g t h e r e vi e  w of t his   m a n us cri pt a n d a p pr o vi n g it f or p u bli c ati o n   w as
Dr.   A b d-  Kri  m  S e g h o u a n e.   T h e   w or k  of   X.   Qi a n   w as  s u p p ort e d i n  p art  b y t h e
N ati o n al  S ci e n c e  F o u n d ati o n (  N S F)   A w ar ds  1 5 5 3 2 8 1 a n d  1 8 3 5 6 9 0.   T h e   w or k
of   B.-J.   Yo o n   w as s u p p ort e d i n  p art  b y t h e   N S F   A w ar d  1 8 3 5 6 9 0.   T h e   w or k  of
E.   R.   D o u g h ert y a n d  F. J.   Al e x a n d er   w as s u p p ort e d  b y t h e   U. S.   D e p art  m e nt  of
E n er g y,   Of fi c e of  S ci e n c e,   Of fi c e of   A d v a n c e d  S ci e nti fi c   C o  m p uti n g   R es e ar c h,
M at h e  m ati c al   M ultif a c et e d I nt e gr at e d   C a p a bilit y   C e nt ers pr o gr a  m u n d er   A w ar d
D E- S  C 0 0 1 9 3 0 3.   (  C orr es p o n di n g a ut h or:   G u a n g  Z h a o.)

G u a n g   Z h a o,   Xi a o ni n g   Qi a n, a n d   E d  w ar d   R.   D o u g h ert y ar e   wit h t h e   D e p art-
m e nt of   El e ctri c al a n d   C o  m p ut er   E n gi n e eri n g,   Te x as   A  &  M   U ni v ersit y,   C oll e g e
St ati o n,   T  X 7 7 8 4 3   U S  A ( e-  m ail: g u a n g z h a o   @t a  m u. e d u; x qi a n   @ e c e.t a  m u. e d u;
e d  w ar d   @ e c e.t a  m u. e d u).

B y u n g-J u n   Yo o n is   wit h t h e   D e p art  m e nt  of   El e ctri c al  a n d   C o  m p ut er   E n gi-
n e eri n g,   Te x as   A  &  M   U ni v ersit y,   C oll e g e  St ati o n,   T  X  7 7 8 4 3   U S  A,  a n d  als o
wit h  t h e   Br o o k h a v e n    N ati o n al   L a b or at or y,    U pt o n,    N  Y  1 1 9 7 3    U S  A  ( e-  m ail:
bj y o o n   @ e c e.t a  m u. e d u).

Fr a n cis J.   Al e x a n d er is   wit h t h e   Br o o k h a v e n   N ati o n al  L a b or at or y,   U pt o n,   N  Y
1 1 9 7 3   U S  A ( e-  m ail: f al e x a n d er   @ b nl. g o v).
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m o d el,  a n d t h e si g n al  p ar a  m et ers  ar e  e x pr ess e d i n t er  ms  of t h e
p ar a  m et ers  of t h e  p h ysi c al   m o d el.  If t h er e is  u n c ert ai nt y   wit h
r e g ar d t o s o  m e p ar a  m et ers i n t h e p h ysi c al   m o d el, t his u n c ert ai nt y
is  pr o p a g at e d t o t h e  si g n al   m o d el, f or i nst a n c e,  u n c ert ai nt y i n
t h e c o v ari a n c e   m atri x.   T h e k e y f a ct or f or t his p a p er is t h at, if t h e
u n c ert ai nt y i n t h e  p h ysi c al   m o d el  aris es fr o  m l a c k  of s ci e nti fi c
k n o  wl e d g e  a n d t h e  u n c ert ai nt y is  c h ar a ct eri z e d  b y  a  pri or  dis-
tri b uti o n g o v er ni n g t h e u n c ert ai n (r a n d o  m) p ar a  m et ers, t h er e b y
c h ar a ct eri zi n g  o ur  s ci e nti fi c  u n d erst a n di n g  of  t h e  u n c ert ai nt y,
t h e n  t h at  pri or  distri b uti o n  c o nti n u es  t o  g o v er n  t h e  u n c ert ai n
p ar a  m et ers  i n  t h e  si g n al    m o d el.  I n  s u  m  m ar y,  b ot h  t h e  si g n al
m o d el  a n d its  u n c ert ai nt y  ar e  di ct at e d  b y t h e  p h ysi c al   m o d el,
a n d n ot h y p ot h esi z e d i n d e p e n d e ntl y.

We f o c us o n o pti  m all y  filt eri n g si g n als g e n er at e d b y st o c h as-
ti c  diff er e nti al  e q u ati o ns ( S  D Es)   w h e n s o  m e  p ar a  m et ers  of t h e
S  D Es ar e u n c ert ai n.   Gi v e n a n  S  D E, t h e d esir e d (r a n d o  m) si g n al
s atis fi es t h e  S  D E a n d is d eri v e d fr o  m it. Its p ar a  m et ers ar e fr o  m
t h e  S  D E, a n d t o t h e e xt e nt t h at t h e l att er o n es ar e u n c ert ai n, t h e
si g n al is u n c ert ai n.

We a p pl y i ntri nsi c all y o pti  m al   B a y esi a n (I  B  R) filt eri n g t o t h e
si g n al.    A n  I  B  R  filt er  is  o pti  m al  r el ati v e  t o  b ot h  t h e  st a n d ar d
m e a n-s q u ar e- err or  (  M S E)  f or  li n e ar  filt eri n g  (  w hi c h  l e a ds  t o
t h e   Wi e n er-  H o pf i nt e gr al e q u ati o n [ 1], [ 2]) a n d t h e u n c ert ai nt y,
t h at  is,  t h e  pri or  distri b uti o n  o n  t h e  p ar a  m et ers  of  t h e  S  D E.
Wit h   m o d el  u n c ert ai nt y, t h e  or di n ar y    Wi e n er-  H o pf  e q u ati o n is
r e pl a c e d  b y t h e  eff e cti v e    Wi e n er-  H o pf  e q u ati o n,   w hi c h i n c or-
p or at es t h e  e x p e ct ati o n  of t h e  c orr el ati o n f u n cti o ns  a cr oss t h e
u n c ert ai nt y cl ass.

W h e n  ori gi n all y  a p pli e d  i n  [ 3],  st ati o n arit y    w as  ass u  m e d,
t h er e b y  l e a di n g  t o  t h e  I  B  R    Wi e n er  filt er  e x pr ess e d  i n  t er  ms
of eff e cti v e p o  w er s p e ctr a.   Alt h o u g h a g e n er al c o nti n u o us-ti  m e
n o n-st ati o n ar y eff e cti v e   Wi e n er-  H o pf e q u ati o n is als o pr es e nt e d
i n  [ 3],    m et h o ds  of  s ol vi n g  n o n-st ati o n ar y  s et u ps  ar e  n ot  i n
dis c uss e d.   H er e,  b e c a us e t h e si g n al is  n o nst ati o n ar y  d u e t o t h e
S  D E   m o d el i n   w hi c h   w e ar e  o p er ati n g, a n I  B  R li n e ar  filt er   will
h a v e  t o  b e  d eri v e d  dir e ctl y  fr o  m  t h e    Wi e n er-  H o pf  e q u ati o n,
w hi c h    m ust  b e  d o n e  n u  m eri c all y.    Diff er e nt  a p pr o a c h es  h a v e
b e e n  pr o p os e d t o a p pr o xi  m at e t h e  n o nst ati o n ar y  o pti  m al li n e ar
filt er.    H er e    w e  dis cr eti z e  t h e  eff e cti v e    Wi e n er-  H o pf  i nt e gr al
e q u ati o n t o o bt ai n a n a p pr o xi  m at e s ol uti o n.   N ot e t h at si n c e t h er e
ar e  n o  n e  w  o bs er v ati o ns, t h er e is  n o st at e- o bs er v ati o n  p air  a n d
r e c ursi v e  filt eri n g d o es n ot a p pl y.

A n I  B  R  filt er is r o b ust i n t h e  s e ns e t h at it  p erf or  ms  b est  o n
a v er a g e  a cr oss t h e  u n c ert ai nt y  cl ass;  h o  w e v er, it is  n ot  o pti  m al
r el ati v e t o t h e tr u e   m o d el.  Si n c e t h e tr u e   m o d el is u n k n o  w n,   w e
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q u a ntif y t h e c ost of u n c ert ai nt y r el ati v e t o t h e   M S E b y a v er a gi n g
t h e l oss  of  p erf or  m a n c e a cr oss t h e  u n c ert ai nt y cl ass.   T h e m e a n
o bj e cti v e  c ost  of  u n c ert ai nt y  (  M  O  C  U) is t h e  a v er a g e i n cr e as e
i n  err or  a cr oss t h e  u n c ert ai nt y  cl ass  arisi n g fr o  m  usi n g  a n I  B  R
filt er  r at h er  t h a n  i n di vi d u al  o pti  m al  filt ers  f or  e a c h    m o d el  i n
t h e  u n c ert ai nt y  cl ass  [ 4].   T h e    M  O  C  U  pr o vi d es  a  c ost  of  t h e
u n c ert ai nt y r el ati v e t o t h e  o bj e cti v e.   A  k e y  as p e ct  of t h e   w or k
is  t o  a p pl y    M  O  C  U- b as e d  o pti  m al  e x p eri  m e nt al  d esi g n  [ 5]  i n
t h e fr a  m e  w or k  of si g n al   m o d els  d eri v e d fr o  m  p h ysi c al   m o d els:
d et er  mi n e t h e  u n k n o  w n  p ar a  m et er i n t h e  S  D E  p h ysi c al s yst e  m
m o d el    w h os e  e x p eri  m e nt al  ass ess  m e nt  o pti  m all y  r e d u c es  t h e
e x p e ct e d (r esi d u al)   M  O  C  U   w h e n t h e o bt ai n e d p ar a  m et er v al u e is
p ut i nt o t h e   m o d el a n d a n e  w I  B  R filt er is d eri v e d.  T h e pr o c e d ur e
c a n  b e  d o n e it er ati v el y t o yi el d s e q u e nti al e x p eri  m e nt al  d esi g n.
We   w o ul d li k e t o e  m p h asi z e t h at h er e   w e h a v e t  w o t y p es of d at a.
O n e is t h e  o bs er v ati o ns  of t h e si g n als  g e n er at e d fr o  m t h e  S  D E
m o d el,   w hi c h   w e ai  m t o esti  m at e usi n g o ur I  B  R  filt er; t h e ot h er
is t h e  e x p eri  m e nt al  ass ess  m e nts  of t h e  p ar a  m et ers i n t h e  S  D E
m o d el,   w hi c h h el p r e d u c e t h e   m o d el u n c ert ai nt y a n d   M  O  C  U b y
e x p eri  m e nt al  d esi g n.

T h e  g e n er al i d e a is t o ti e  p h ysi c al   m o d eli n g,  o pti  m al  si g n al
pr o c essi n g,  a n d  e x p eri  m e nt al  d esi g n  ( h er e i n t h e  S  D E  fr a  m e-
w or k).    We    will  d e  m o nstr at e  as p e cts  of  t h e  pr o c e d ur e  vi a  a
s y nt h eti c  e x a  m pl e.    T h e n    w e    will  a p pl y  it  t o  a n  S  D E- b as e d
p h ar  m a c o ki n eti c t  w o- c o  m p art  m e nt   m o d el t h at diff er e nti at es t h e
b o d y i nt o a c e ntr al c o  m p art  m e nt ( pl as  m a) a n d a p eri p h er al c o  m-
p art  m e nt  (tiss u es),  a n d  d es cri b es t h e  r el ati o ns hi p  b et  w e e n t h e
dr u g c o n c e ntr ati o ns i n t h e c e ntr al a n d p eri p h er al c o  m p art  m e nts,
a n d t h e   m e as ur e  m e nt  of t h e  dr u g  c o n c e ntr ati o n i n t h e  c e ntr al
c o  m p art  m e nt.

II.    BA C  K  G  R  O  U  N  D

I n  t his  s e cti o n,    w e  bri e fl y  r e vi e  w  t h e  b a c k gr o u n d  f or  I  B  R
o p er at ors a n d o pti  m al e x p eri  m e nt al  d esi g n i n t h e I  B  R c o nt e xt.

A.  I B R   Filt eri n g

O pti  m al  o p er at or  d esi g n i n v ol v es  a   m at h e  m ati c al   m o d el f or
t h e  p h ysi c al  s yst e  m,  a  cl ass  of  o p er at ors,  a n d  a n  o pti  mi z ati o n
pr o bl e  m d e fi n e d  b y a c ost f u n cti o n:

ψ o p t =  ar g   mi n
ψ  ∈  F

C  (ψ  ), ( 1)

w h er e   F   is t h e o p er at or cl ass a n d C  (ψ  ) is t h e c ost of a p pl yi n g a n
o p er at or  ψ  .   Wit h   m o d el  u n c ert ai nt y, t h e tr u e   m o d el is ass u  m e d
t o b el o n g t o a n  u n c ert ai nt y cl ass  of   m o d els p ar a  m et eri z e d b y a
v e ct or  θ  ∈   Θ  .   We  d e fi n e a n i ntri nsi c all y   B a y esi a n r o b ust (I B R)
o p er at or  b y

ψ Θ
I  B  R =  ar g   mi n

ψ  ∈  F
E Θ [C θ (ψ  )], ( 2)

w h er e e a c h   θ  ∈   Θ   c orr es p o n ds t o a   m o d el a n d t h e  pri or pr o b a-
bilit y distri b uti o n  π (θ ) q u a nti fi es o ur pri or k n o  wl e d g e r e g ar di n g
t h e  p h ysi c al  s yst e  m.   N ot e t h at t h e  e x p e ct ati o n is   wit h  r es p e ct
t o  π (θ )  o n  t h e  u n c ert ai nt y  cl ass   Θ   a n d   C θ (ψ  )  d e n ot es  t h e
c orr es p o n di n g c ost of a p pl yi n g  ψ  t o t h e   m o d el θ  [ 3], [ 4]. If t h er e
is  n o  pri or  k n o  wl e d g e  b e y o n d t h e  u n c ert ai nt y  cl ass its elf, t h e n
t h e pri or c a n b e t a k e n t o b e u nif or  m a n d π (θ ) is n o ni nf or  m ati v e.

A n I  B  R o p er at or is r o b ust i n t h e s e ns e t h at o n a v er a g e it p erf or  ms
w ell o v er t h e u n c ert ai nt y cl ass   Θ  .

W h e n t h er e is  a  d at a  s a  m pl e   S  , t h e  pri or  c a n  b e  u p d at e d t o
a  p ost eri or  distri b uti o n  π ∗ (θ )   =  π (θ |S  ),  a n d  ( 2)  t h e n  d e fi n es
a n  o pti  m al   B a y esi a n  o p er at or  (  O B  O)  ψ Θ

O  B  O [ 6],  [ 7].   A n  I  B  R
o p er at or is a n   O  B  O   wit h  S   =   ∅  , n a  m el y,   w h e n t h er e is n o d at a
b ut o nl y pri or k n o  wl e d g e c o nstr ai ni n g t h e   m o d el  θ  ∈   Θ  .

I n  t h e  si g n al   filt eri n g   pr o bl e  m,  t h e   o p er at ors    m e nti o n e d
a b o v e  ar e  j ust  filt ers.  Si g n al  filt eri n g  i n v ol v es  a  j oi nt  r a n d o  m
pr o c ess   (X   (t),  Y (s )),  t ∈   T, s  ∈   S  ,  a n d  o pti  m al  filt eri n g  i n-
v ol v es  esti  m ati n g  t h e  si g n al   Y  (s )  at  ti  m e   s   vi a  a   filt er   ψ
gi v e n  o bs er v ati o ns   { X   (t)} t ∈  T .    A  filt er  ψ   ∈   F   is  a    m a p pi n g
o n  t h e  s p a c e  S   of  p ossi bl e  o bs er v e d  si g n als  a n d  a  c ost  f u n c-
ti o n  t a k es  t h e  f or  m  C  (Y  (s ), Y  (s )),    wit h  Y  (s )   =  ψ  (X   )(s ).
F or   fi x e d   s  ∈   S  ,   a n   o pti  m al   filt er  is   d e fi n e d   b y  ( 1)    wit h
C  (ψ  )   =  C  (Y  (s ),  ψ(X   )(s )).    Wit h  u n c ert ai nt y, t h er e is  a n u n-
c ert ai nt y  cl ass  { (X θ (t),  Yθ (s )), t ∈   T, s  ∈   S, θ   ∈   Θ  } .   A n I  B  R
filt er, or o pti  m al   B a y esi a n filt er, is d e fi n e d b y ( 2)   wit h  C θ (ψ  )   =
C θ (Y θ (s ),  ψ(X θ )(s )) [ 3], [ 6].

Fi n di n g I  B  R filt ers i n v ol v es d e v el o pi n g a t h e or y b y   w hi c h ( 2)
c a n  b e s ol v e d  – i n a si  mil ar   w a y as ( 1) is s ol v e d e x c e pt t h at t h e
eff e cti v e  c h ar a ct eristi cs  p ert ai ni n g t o t h e f ull  u n c ert ai nt y  cl ass
ar e us e d r at h er t h a n t h e c h ar a ct eristi cs of a si n gl e si g n al   m o d el.
A n  o bs er v ati o n-si g n al  p air   (X   (t),  Y (s ))  is s ol v a bl e  u n d er t h e
f u n cti o n  cl ass  F   a n d  c ost  C   if  t h er e  e xists  a  s ol uti o n  t o  ( 1)
u n d er t h e pr o c ess es.   A n o bs er v ati o n-si g n al p air  (X Θ (t),  YΘ (s ))
is r ef err e d t o as a n eff e cti v e pr o c ess  u n d er t h e f u n cti o n cl ass  F  ,
u n c ert ai nt y cl ass  Θ  , a n d c osts C   a n d  C θ if f or all ψ   ∈   F  ,

E Θ [C θ (Y θ (s ),  ψ(X θ )(s ))]   =  C  (Y Θ (s ),  ψ(X Θ )(s )).   ( 3)

If t h er e e xists a s ol v a bl e eff e cti v e pr o c ess (X Θ (t),  YΘ (s )) wit h
t h e o pti  m al  filt er ψ Θ , t h e n ψ Θ

I  B  R =   ψ Θ [ 3].
R o b ust  filt er  d esi g n  g o es  b a c k t o t h e l at e  1 9 7 0s,   wit h r o b ust

Wi e n er  filt eri n g i n v ol vi n g   mi ni  m a x  o pti  m alit y i n r e g ar d t o  u n-
c ert ai n  p o  w er s p e ctr a [ 8] –[ 1 1].   R o b ust  d esi g n   w as  e xt e n d e d t o
n o nli n e ar  filt ers  a n d  pl a c e d i nt o  a   B a y esi a n fr a  m e  w or k  b y  as-
s u  mi n g a pri or pr o b a bilit y distri b uti o n g o v er ni n g t h e u n c ert ai nt y
cl ass, t h e ai  m  b ei n g t o  fi n d a  filt er   wit h   mi ni  m al e x p e ct e d err or
a cr oss t h e  u n c ert ai nt y  cl ass [ 1 2].  I  B  R  filt ers  ar e f ull y  o pti  m al
u n d er t his fr a  m e  w or k.

Ot h er  r o b ust  filt ers i n cl u d e  a   mi ni  m a x  esti  m at or  (  τ -r o b ust)
ass o ci at e d   wit h  τ - di v er g e n c e  s p a c e [ 1 3],  a   mi ni  m a x  esti  m at or
u n d er  c o v ari a n c e  u n c ert ai nt y    wit h  t h e  gi v e n  ei g e n v e ct or    m a-
tri x  a n d  b o u n d e d  ei g e n v al u es  [ 1 4],  a   mi ni  m a x  esti  m at or   wit h
a n  u n c ert ai n    m o d el    m atri x  [ 1 5],  a n d  a  distri b ut e d  esti  m ati o n
f or  m ul ati o n   wit h   m o d el  u n c ert ai nti es [ 1 6].

Alt h o u g h   w e  ar e  n ot  usi n g  r e c ursi v e  filt ers,  f or t h e  s a k e  of
c o  m pl et e n ess   w e   m e nti o n s o  m e r o b ust   K al  m a n filt ers.   A d a pti v e
K al  m a n  filt ers  si  m ult a n e o usl y  esti  m at e  t h e  n ois e  c o v ari a n c es
al o n g    wit h  t h e   st at e   esti  m ati o n  [ 1 7],  [ 1 8].   Fi nit e-i  m p uls e-
r es p o ns e  a n al o g u es  h a v e  als o  b e e n  pr o p os e d [ 1 9], [ 2 0].   A r e g-
ul ari z e d l e ast-s q u ar es fr a  m e  w or k  h as  b e e n  e  m pl o y e d i n   w hi c h
u n k n o  w n p ar a  m et ers e  m b o d y t h e d e vi ati o n of t h e   m o d el p ar a  m-
et ers fr o  m t h eir n o  mi n al v al u es [ 2 1].   A n ot h er a p pr o a c h p e n ali z es
s e nsiti vit y  of  esti  m ati o n r el ati v e t o   m o d eli n g  err or [ 2 2]. It  h as
als o  b e e n  e xt e n d e d  t o  t h e  sit u ati o n  i n    w hi c h  t h e  o bs er v ati o n
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c a n  b e  r a n d o  ml y  l ost  [ 2 3].   L ast  b ut  n ot  l e ast,  r o b ust   K al  m a n
filt eri n g h as  b e e n a d dr ess e d i n t h e I  B  R fr a  m e  w or k [ 2 4], [ 2 5].

B.    E x p eri  m e nt al   D esi g n

W hil e a n I  B  R  o p er at or is  o pti  m al  o v er t h e  u n c ert ai nt y cl ass,
it  is  li k el y  t o  b e  s u b o pti  m al  r el ati v e  t o  t h e  tr u e    m o d el.   T his
p erf or  m a n c e l oss is t h e  c ost  of  u n c ert ai nt y.  F or  a n y  θ  ∈   Θ   a n d
o p er at or f a  mil y  F  , t h e o bj e cti v e c ost of u n c ert ai nt y  r el ati v e t o θ
is C θ (ψ Θ

I  B  R ) −   C θ (ψ θ ).  T h e m e a n o bj e cti v e c ost of u n c ert ai nt y
(  M  O  C  U)  [ 4]  is  t h e  e x p e ct ati o n  of  t his  c ost  o v er  all  p ossi bl e
m o d els:

M F (  Θ)   =  E Θ [C θ (ψ Θ
I  B  R ) −   C θ (ψ θ )].   ( 4)

W hil e   w e h a v e d e fi n e d   M  O  C  U f or a n I  B  R o p er at or r el ati v e t o t h e
pri or, it c a n als o b e d e fi n e d f or a n   O  B  O r el ati v e t o t h e p ost eri or.

M  O  C  U  is  us e d  t o  c h o os e  e x p eri  m e nts  t o  o pti  m all y  r e d u c e
t h e    m o d el  u n c ert ai nt y  r el e v a nt  t o  t h e  o p er ati o n al  o bj e cti v e.
F or  e x a  m pl e,  gi v e n   k   e x p eri  m e nts   T 1 , ..., Tk ,    w h er e  e x p eri-
m e nt   T i e x a ctl y  d et er  mi n es t h e  u n c ert ai n  p ar a  m et er  θ i i n θ  =
(θ 1 , θ2 , ..., θk ), t h e iss u e f or e x p eri  m e nt al d esi g n is   w hi c h e x p er-
i  m e nt t o c o n d u ct  first.   L et θ |θ̄ i =   θ |(θ i = θ̄ i ) b e t h e  c o n diti o n al
u n c ert ai nt y  v e ct or  c o  m p os e d  of  all  u n c ert ai n  p ar a  m et ers  ot h er
t h a n  θ i wit h   θ i = θ̄ i .  Θ  |θ̄ i =   { θ |θ̄ i : θ  ∈   Θ  }   is  t h e  r e d u c e d
u n c ert ai nt y  cl ass  gi v e n  θ i = θ̄ i .   T h e  I  B  R  o p er at or  f or Θ  |θ̄ i i s

d e n ot e d  ψ
Θ  |θ̄ i

I  B  R a n d is c all e d t h e  r e d u c e d I B R o p er at or r el ati v e t o
θ̄ i .

If t h e  e x p eri  m e nt  T i o bt ai ns t h e   m o d el  p ar a  m et er  v al u e θ̄ i ,
t h e n t h e r e  m ai ni n g   M  O  C  U gi v e n  θ i = θ̄ i i s

M F (  Θ|θ̄ i )   =  E Θ  |θ̄ i
[C θ |θ̄ i

( ψ
Θ  |θ̄ i

I  B  R ) −   C θ |θ̄ i
( ψ θ |θ̄ i

)] ,   ( 5)

w h er e t h e e x p e ct ati o n is r el ati v e t o t h e c o n diti o n al  distri b uti o n

π (θ |θ̄ i ) .   T h e r e  m ai ni n g   M  O  C  U is t h e   M  O  C  U f or ψ
Θ  |θ̄ i

I  B  R r el ati v e
t o Θ  |θ̄ i .

Tr e ati n g t h e r e  m ai ni n g    M  O  C  U  as  a f u n cti o n  of   θ i a n d t a k-
i n g  t h e  e x p e ct ati o n   wit h  r es p e ct  t o  π (θ i )  yi el ds  t h e  e x p e ct e d
r e  m ai ni n g   M  O  C  U, gi v e n  p ar a  m et er θ i ,

E θ i
[   MF (  Θ|θ i )]    =  E θ i

[E Θ  |θ i
[C θ |θ i

( ψ
Θ  |θ i

I  B  R ) −   C θ |θ i
( ψ θ |θ i

)]],
( 6)

w hi c h is  c all e d t h e   e x p eri  m e nt al  d esi g n  v al u e  a n d  d e n ot e d  b y
D(  θ i ).   A n o pti  m al e x p eri  m e nt  T i ∗ i s d e fi n e d  b y

i∗ =  ar g   mi n
i = 1  ,..., k

D (  θ i )   =  ar g   mi n
i = 1  ,..., k

R (  θ i ),   ( 7)

w h er e

R(  θ i )   =  E θ i
[E Θ  |θ i

[C θ |θ i
( ψ

Θ  |θ i

I  B  R )]]   ( 8)

is c all e d t h e r esi d u al I B R c ost f or T i , a n d θ i ∗ i s c all e d t h e pri  m ar y
p ar a  m et er   [ 2 6].    T h e  r es ulti n g  T i ∗ i s  t h e  e x p eri  m e nt  t h at  is
e x p e ct e d t o   mi ni  mi z e t h e   m o d el u n c ert ai nt y p ert ai ni n g t h e c ost.
E x p eri  m e nts  c a n  b e  c h os e n i n  a  gr e e d y  s e q u e nti al   m a n n er  b y
r e p e ati n g t h e pr o c ess f or t h e r e  m ai ni n g u n k n o  w n p ar a  m et ers, or
b y usi n g d y n a  mi c al pr o gr a  m  mi n g.  T his s e q u e nti al e x p eri  m e nt al
d esi g n pr o c e d ur e is ill ustr at e d i n  Fi g. 1.

N ot e  t h at  i n  t h e  dis c ussi o n  a b o v e,    w e  ass u  m e  t h at  t h e  e x-
p eri  m e nt  T i c a n d et er  mi n e  θ i e x a ctl y.   T h e str at e g y c a n b e e asil y
e xt e n d e d t o   m or e g e n er al c as es   wit h i  m pr e cis e e x p eri  m e nts [ 2 7].

Fi g. 1.     M  O  C  U- b as e d e x p eri  m e nt al d esi g n l o o p f or r o b ust  filt eri n g.

W h e n t h e v al u e θ̄ i o bt ai n e d fr o  m t h e e x p eri  m e nt  T i is i  m pr e cis e
wit h  distri b uti o n   p ( θ̄ i |θ i ),  t h e  pir or  π (θ )  c a n  b e  a c c or di n gl y
u p d at e d t o  a  p ost eri or  distri b uti o n  π (θ |θ̄ i ) .   T h e n t h e I  B  R  filt er

ψ
Θ  |θ̄ i

I  B  R d e fi n e d  b y  ( 2)  is  o pti  m al    wit h  r es p e ct  t o  t h e  p ost eri or
π (θ |θ̄ i ) ,  a n d t h e r esi d u al I  B  R  c ost is  still i n t h e  s a  m e f or  m  as
( 8).

III.  I  B  R   LI  N E  A  R F I L T E  R  F  O  R N O  N S T A TI  O  N  A  R  Y S I  G  N  A L S

C o nsi d er a n u n c ert ai n si g n al   m o d el  (X θ ,  Yθ ), θ ∈   Θ  ,   wit h t h e
M S E c ost f u n cti o n a n d t h e cl ass of li n e ar f u n cti o ns

F   =   ψ   : ψ  (X   )(s )   =
T

g (s, t )X   (t)dt   .   ( 9)

T h e s ol v a bl e  cl ass   Φ   c o nsists  of  all  pr o c ess  p airs  (X,  Y   )  s u c h
t h at ψ  (X   )(s ) h as a fi nit e s e c o n d   m o  m e nt f or a n y  g (s, t ) a n d t h er e
e xists  g (s, t ) f or   w hi c h t h e   Wi e n er-  H o pf e q u ati o n is s atis fi e d:

R Y   X ( s, t )   =
T

g (s, u )R X (u, t )d u,   ( 1 0)

w h er e   R X (u, t )  a n d  R Y   X ( s, t )  ar e  a ut o c orr el ati o n  a n d  cr oss-
c orr el ati o n f u n cti o ns, r es p e cti v el y.

Wit h  t h e   u n c ert ai n  si g n al    m o d el,    w e   n o  w   d e fi n e  t h e   ef-
f e cti v e  c orr el ati o n  f u n cti o ns  b y  R Θ  ,  Y ( s, v )   =  E Θ [R Y θ

( s, v )],
R Θ  ,   X ( t, u)   =  E Θ [R X θ

( t, u)],  a n d  R Θ  ,  Y   X ( s, t )   =  E Θ [R Y θ X θ

( s, t )].   As  a n  a ut o c orr el ati o n  f u n cti o n, R X θ
( t, u)  is  c o nj u g at e

s y  m  m etri c  a n d  n o n n e g ati v e  d e fi nit e f or  all  θ  ∈   Θ  . R Θ  ,   X ( t, u)
h as t h e s a  m e pr o p erti es a n d is t h er ef or e als o a v ali d a ut o c orr el a-
ti o n f u n cti o n. It is str ai g htf or  w ar d t o s h o  w t h at ( 3) is s atis fi e d. If
(X Θ ,  YΘ )  ∈   Φ  ,   m e a ni n g t h at t h e   Wi e n er-  H o pf e q u ati o n r el ati v e
t o (X Θ ,  YΘ )  is s atis fi e d, t h e n (X Θ ,  YΘ )  is  a n  eff e cti v e  pr o c ess
f or t h e  u n c ert ai nt y  cl ass Θ   a n d  a n I  B  R li n e ar  filt er is  gi v e n  b y
t h e s ol uti o n, g (s, t ), t o t h e eff e cti v e   Wi e n er-  H o pf e q u ati o n  [ 3]:

R Θ  ,  Y   X ( s, t )   =
T

g (s, u )R Θ  ,   X ( u, t )d u.   ( 1 1)

All  b asi c e q u ati o ns  h ol d   wit h c h ar a ct eristi cs r e pl a c e d  b y eff e c-
ti v e c h ar a ct eristi cs R Θ  ,  Y , R Θ  ,   X , a n d R Θ  ,  Y   X .

I n  t h e  n o nst ati o n ar y  c as e,  t h e  i nt e gr al-f or  m    Wi e n er-  H o pf
e q u ati o n c a n b e dif fi c ult t o s ol v e i n cl os e d f or  m, a n d n u  m eri c al
a p pr o xi  m ati o ns  ar e  e  m pl o y e d.   T h e  a ut h ors i n [ 2 8]  pr o p os e d  a
ti  m e-fr e q u e n c y  f or  m ul ati o n  of  t h e  n o nst ati o n ar y  li n e ar  filt er,
w hi c h  c a n  b e  a p pr o xi  m at el y  v ali d f or  u n d ers pr e a d  c as es. It is
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als o  p ossi bl e t o a p pr o xi  m at el y a p pr o a c h it  b y s ol vi n g  dis cr et e-
ti  m e   Wi e n er-  H o pf e q u ati o ns [ 2 9], [ 3 0].   H er e   w e us e t h e dis cr et e-
ti  m e  a p pr o a c h t o  a p pr o xi  m at e t h e  c o nti n u o us ti  m e  si g n al  a n d
o bs er v ati o n   wit h si g n al v e ct or  Y   =   { Y  (s i )}  at  N   dis cr et e ti  m e
p oi nts  s i , i ≤   N   a n d  o bs er v ati o n  v e ct or  X   =   { X   (t j )}  at  M
dis cr et e ti  m e p oi nts  t j , j ≤   M   .  T h e i nt e gr al f or  m of t h e   Wi e n er-
H o pf e q u ati o n t h e n t ur ns i nt o t h e f oll o  wi n g   m atri x f or  m:

R Y   X =   G  R X , ( 1 2)

w h er e   R X =   E  [X   X T ], R Y   X =   E  [Y   X T ]  ar e  t h e  a ut o c orr e-
l ati o n  a n d  cr oss- c orr el ati o n  of  t h e    m atri x  f or  m,  r es p e cti v el y;
a n d  G   is t h e   m atri x-f or  m  o pti  m al  filt er.  Si  mil arl y, t h e eff e cti v e
Wi e n er-  H o pf e q u ati o n i n t h e   m atri x f or  m c a n b e   writt e n as:

R Θ  ,  Y   X =   G Θ R Θ  ,   X , ( 1 3)

a n d t h e s ol uti o n is

G Θ =   R Θ  ,  Y   X [R Θ  ,   X ]
+ , ( 1 4)

w h er e t h e  s u p ers cri pt   +   d e n ot es t h e  ps e u d oi n v ers e.   T h e  err or
c o v ari a n c e   m atri x of Ŷ I  B  R =   G Θ X θ is

E Θ [E  [(Ŷ I  B  R −   Y θ )( Ŷ I  B  R −   Y θ ) T ]]

=   E Θ [E  [(Ŷ I  B  R −   Y θ ) Ŷ
T

I  B  R ]] −   E Θ [E  [(Ŷ I  B  R −   Y θ )Y T
θ ]]

=   −   E Θ [E  [(Ŷ I  B  R −   Y θ )Y T
θ ]]

=   E Θ [E  [Y θ Y T
θ ]] −   E Θ [E  [Ŷ I  B  R Y

T
θ ]]

=   R Θ  ,  Y −   R Θ  ,  Y   X [R Θ  ,   X ]
+ R T

Θ  ,  Y   X , ( 1 5)

w h er e t h e s e c o n d e q u alit y h ol ds b e c a us e Ŷ I  B  R −   Y θ is ort h o g o-
n al t o a n y li n e ar c o  m bi n ati o n of  Y θ .  Es p e ci all y, Ŷ I  B  R a s a n I  B  R
filt er  a c hi e v es t h e   B a y esi a n  o pti  m alit y  [ 3 1].   T h e l ast  e q u alit y
f oll o  ws fr o  m ( 1 4).   T h e   M S E of t h e I  B  R  filt er is j ust t h e tr a c e of
t h e err or c o v ari a n c e   m atri x.

A.    M  O  C  U f or t h e   Dis cr et e   Wi e n er-  H o pf   E q u ati o n

Wit h t h e d eri v e d I  B  R   Wi e n er filt er,   w e c a n q u a ntif y t h e   m o d el
u n c ert ai nt y i n t h e   M  O  C  U fr a  m e  w or k r el ati v e t o t h e I  B  R  filt er:

M F (  Θ)   =  E Θ [C θ (G Θ ) −   C θ (G θ )]

=   E Θ [C θ (G Θ )] −   E Θ [C θ (G θ )]

=   tr(R Θ  ,  Y −   R Θ  ,  Y   X [R Θ  ,   X ]
+ R T

Θ  ,  Y   X )

−   E Θ [tr(R θ,  Y −   R θ,  Y   X [R θ,   X ]+ R T
θ,  Y   X )]

=   −   tr(R Θ  ,  Y   X [R Θ  ,   X ]
+ R T

Θ  ,  Y   X )

+   E Θ [tr(R θ,  Y   X [R θ,   X ]+ R T
θ,  Y   X )].   ( 1 6)

E x p eri  m e nt al d esi g n f or I  B  R   Wi e n er filt eri n g i n v ol v es   mi ni  mi z-
i n g t h e I  B  R r esi d u al c ost: i∗ =

ar g  mi n
i ∈  1 ,..., k

E θ̄ i
[tr(R Θ  |θ̄ i ,  Y −   R Θ  |θ̄ i ,  Y   X [R Θ  |θ̄ i ,   X ]

+ R T
Θ  |θ̄ i ,  Y   X )]

( 1 7)

=   ar g  m a x
i ∈  1 ,..., k

E θ̄ i
[tr(R Θ  |θ̄ i ,  Y   X [R Θ  |θ̄ i ,   X ]

+ R T
Θ  |θ̄ i ,  Y   X )],   ( 1 8)

w h er e   R Θ  |θ̄ i ,  Y =   E Θ  |θ̄ i
[R Y θ

],   R Θ  |θ̄ i ,   X =   E Θ  |θ̄ i
[R X θ

],
R Θ  |θ̄ i ,  Y   X =   E Θ  |θ̄ i

[R Y θ X θ
],   a n d  t h e   s e c o n d   e q u ati o n   h ol ds

f or t h e r e as o n t h at

E θ̄ i
[R Θ  |θ̄ i ,  Y ]   = E θ̄ i

[E Θ  |θ̄ i
[R Y θ

]]   = E Θ [R Y θ
]   = R Θ  ,  Y ( 1 9)

is  u nr el at e d  t o  t h e  i n d e x  i.    As  s h o  w n  i n  ( 1 7)  a n d  ( 1 8),  t h e
I  B  R  r esi d u al  c ost  is  o nl y  a  f u n cti o n  of  t h e  a ut o-  a n d  cr oss-
c orr el ati o ns,  i n  t h e  f or  m  of  t h e    M S E  of  t h e  li n e ar  I  B  R  filt er.
T h er ef or e  t h er e  is  n o  n e e d  t o  r e- d eri v e  t h e  filt er  d uri n g  t h e
e x p eri  m e nt al  d esi g n pr o c e d ur e.

I  V.  I  B  R   LI  N E  A  R F I L T E  R   A  N  D E X P E  RI  M E  N T A L D E SI  G  N W I T  H

S T  O  C  H  A S TI  C D I F F E  R E  N TI  A L E Q  U  A TI  O  N S

St o c h asti c  diff er e nti al  e q u ati o ns  ( S  D Es)  ar e   wi d el y  a p pli e d
f or  st o c h asti c  pr o c ess    m o d eli n g  i n  ar e as  s u c h  as  p h ar  m a c ol-
o g y  [ 3 2],  p o p ul ati o n  bi ol o g y  [ 3 3],  [ 3 4]  a n d    m at h e  m ati c al  fi-
n a n c e [ 3 5]. I n  a d diti o n t o t h e  diff er e nti al  e q u ati o ns  g o v er ni n g
t h e  pr o c ess es  u n d er  st u d y,  S  D Es  i n cl u d e  diff usi o n  pr o c ess es
t o   m o d el  p ot e nti al  r a n d o  m  eff e cts  dist ur bi n g t h e  pr o c ess es  of
i nt er est.    Us u all y  t h e  diff usi o n  pr o c ess  is  a    Wi e n er  pr o c ess.
Ass u  m e  t h at  t h e   n - di  m e nsi o n al  r a n d o  m  pr o c ess  u n d er  st u d y,
Y   (t)  ∈   Y   ⊆   R n , is  d e fi n e d   wit hi n t h e ti  m e i nt er v al t ∈   [ 0,  T ];
a n d  t h e  c orr es p o n di n g  S  D E  is  dri v e n  b y  a n   m  - di  m e nsi o n al
Wi e n er  pr o c ess   W   (t).   T h e n  t h e  t y pi c al  f or  m  of  a n  It ô  S  D E
is [ 3 6]:

d Y   (t)   =  f  (t, Y   (t))d t +   g (t, Y   (t))d W   (t),   ( 2 0)

w h er e  f   : [ 0,  T ] ×   R n →   R n , g  : [ 0,  T ] ×   R n →   R n  ×  m ar e t h e
drift v e ct or a n d diff usi o n   m atri x, r es p e cti v el y.

If f   a n d  g  ar e i n t h e li n e ar f or  m s h o  w n i n ( 2 1), t h e s ol uti o ns
of t h e c orr es p o n di n g  S  D Es c a n b e   G a ussi a n pr o c ess es.   Ass u  m e
t h e f u n cti o ns f   a n d  g  ar e gi v e n  b y

f  (t, Y   (t))   =  A  (t)Y   (t)   + a (t),

g (t, Y   (t))   =  B   (t), ( 2 1)

w h er e   A  (t)  a n d  B   (t)  ar e   m atri c es  of  si z e  n  ×   n   a n d  n  ×   m  ,
r es p e cti v el y,  a n d a (t)  is  a  v e ct or  of si z e n .   T h e r es ulti n g  S  D E
t a k es t h e f or  m

d Y   (t)   =  (A  (t)Y   (t)   + a (t))d t +   B   (t)d W   (t), Y   ( 0)   =  c.
( 2 2)

T h e i niti al- v al u e d  S  D E  h as a  u ni q u e s ol uti o n if a n d  o nl y if t h e
i niti al c o n diti o n c  is eit h er a c o nst a nt  or a   G a ussi a n  distri b ut e d
r a n d o  m v ari a bl e.  T h e   m e a n a n d a ut o- c orr el ati o n of t h e   G a ussi a n
pr o c ess ar e gi v e n  b y

m   (ti )   =  Φ  (ti )(E  [c ]   +
t i

0

Φ  (s ) −  1 a (s )d s )   ( 2 3)

a n d

Ψ  (ti , tj )   =  Φ  (ti )   E   (c  −   E  [c ])(c  −   E  [c ])T

+
t i

0

Φ  (u ) −  1 B   (u )B   (u ) T (Φ  (u ) −  1 ) T d u   Φ  (tj )
T ,   ( 2 4)

A ut h ori z e d li c e n s e d u s e li mit e d t o: B y u n g- J u n Y o o n. D o w nl o a d e d o n S e pt e m b er 1 0, 2 0 2 0 at 2 0: 2 0: 1 2 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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w h er e   0  ≤   ti ≤   tj ≤   T   a n d  Φ  (t)  is t h e f u n d a  m e nt al   m atri x  of
t h e or di n ar y  diff er e nti al e q u ati o n

d Y   (t)   =  A  (t)Y   (t)d t. ( 2 5)

W h e n t h er e is n o cl os e d-f or  m s ol uti o n, a p pr o xi  m at e n u  m eri-
c al s ol uti o ns  of  S  D Es  c a n  b e  o bt ai n e d  b y t h e   E ul er-  M ar u y a  m a
m et h o d  [ 3 7]:  P artiti o n t h e i nt er v al   [ 0,  T ] i nt o N   e q u al  s u bi n-
t er v als  of t h e   wi dt h Δ  t =   T /  N  : 0   =  t 0 < t 1 <   · · · < t N =   T  .
T h e n t h e n u  m eri c al s ol uti o n t o t h e S  D E is c o  m p ut e d r e c ursi v el y
b y t h e diff er e n c e e q u ati o n:

Y n  + 1 =   Y n +   f  (tn , Y n )  Δt +   g (tn , Y n )  ΔW n ,   ( 2 6)

w h er e   Δ  W n =   W t n  +  1
−   W t n

i s  a   G a ussi a n  r a n d o  m  v e ct or
wit h  i n d e p e n d e nt  c o  m p o n e nts  a n d  t h e  v ari a n c e  of  e a c h  c o  m-
p o n e nt  is  Δ  t.    M o nt e   C arl o  dis cr et e  s a  m pl es  of  Y   (t)  c a n  b e
g e n er at e d  a c c or di n g t o  ( 2 6),  b as e d  o n   w hi c h   w e  c a n  esti  m at e
t h e st o c h asti c c h ar a ct eristi cs.

I n t his  p a p er,   w e  c o nsi d er  I  B  R  filt eri n g  a n d  o pti  m al  e x p er-
i  m e nt al  d esi g n  f or t h e  st o c h asti c  si g n al Y   (t)  d es cri b e d  b y  a n
S  D E   wit h a  v e ct or  θ  =  (  θ 1 , θ2 , ..., θk )  of  u n c ert ai n  p ar a  m et ers,
s o t h at Y   (t) s atis fi es t h e  S  D E

d Y   (t)   =  f  (t, Y   (t); θ )d t +   g (t, Y   (t); θ )d W   (t).   ( 2 7)

T h e   m o d el  u n c ert ai nt y  c a n  b e  c h ar a ct eri z e d  b y   π (θ ), t h e  pri or
distri b uti o n  of   θ .    D e n ot e  t h e  o bs er v ati o n  of  Y   (t)  as   X   (t).
Ass u  m e t h e  o bs er v ati o n  pr o c e d ur e f oll o  ws a li n e ar  o bs er v ati o n
m o d el:

X   (t)   =
T

0

Y   (s )h (s, t )d s  +   n (t),   ( 2 8)

w h er e   h (s, t )  is t h e  bl urri n g f u n cti o n  a n d n (t)  is   w hit e  n ois e.
We  d eri v e  t h e  I  B  R  li n e ar  filt er  t o  esti  m at e   Y   (t)  fr o  m  X   (t).
T h e  f u n cti o n  cl ass   F   is  d e fi n e d  b y  ( 9)  a n d  t h e    M S E  is  us e d
as t h e  c ost  f u n cti o n.   A  m o n g t h e  e x p eri  m e nts t h at  c a n  e x a ctl y
d et er  mi n e  o n e  of t h e  u n c ert ai n  p ar a  m et ers,   w e  ai  m t o  pr e di ct
t h e o n e   mi ni  mi zi n g t h e d esi g n v al u e  d e fi n e d i n ( 6).

V.   C O  M P  U T A TI  O  N  A L C O  M P L E  XI T  Y A N  A L Y SI S

H er e    w e  a n al y z e  t h e  c o  m pl e xit y  of  o pti  m al  e x p eri  m e nt al
d esi g n f or  S  D E   m o d el- b as e d  filt eri n g  c o nsi d er e d i n t his  p a p er.
Ass u  m e t h e di  m e nsi o ns  of t h e si g n al v e ct or   Y   a n d  o bs er v ati o n
v e ct or  X   ar e  N y a n d  N x ,  r es p e cti v el y.   N ot e t h at N y a n d  N x

ar e  e q u al t o t h e   m ulti pli c ati o n  of t h e  n u  m b er  of  dis cr et e ti  m e
p oi nts f or dis cr et e a p pr o xi  m ati o n a n d t h e c h a n n el n u  m b ers of t h e
c orr es p o n di n g si g n al a n d o bs er v ati o n pr o c ess es. I n a d diti o n,   w e
ass u  m e t h at   w e h a v e  k  u n c ert ai n p ar a  m et ers i n t h e  S  D E s yst e  m
a n d t h er ef or e t h er e  ar e  k  p ossi bl e  e x p eri  m e nts t o s p e cif y  e a c h
p ar a  m et er  f or  o ur  e x p eri  m e nt al  d esi g n  s et u p,    w hi c h  r e q uir es
s ol vi n g t h e o pti  mi z ati o n  pr o bl e  m i n ( 1 8) o v er  k  p ar a  m et ers.

T h e  o bj e cti v e  f u n cti o n i n  ( 1 8) i n v ol v es t h e  c o  m p ut ati o n  of
t h e  e x p e ct ati o n  o v er θ̄ i ,    w hi c h  c a n  b e  c al c ul at e d  b y    M o nt e
C arl o  (  M  C)  i nt e gr ati o n.    Ass u  m e    w e  s a  m pl e   M 1 s a  m pl es  of

θ
( j )
i , j ≤   M 1 .   Gi v e n e a c h θ

( j )
i , if   w e h a v e cl os e d-f or  m eff e cti v e

c orr el ati o n   m atri c es i n  ( 1 8),   w e j ust n e e d t o c al c ul at e t h e   m atri x
m ulti pli c ati o n  a n d  t h e  tr a c e  gi v e n  eff e cti v e  c orr el ati o n    m atri-
c es i nsi d e t h e  e x p e ct ati o n.  First,  c o  m p uti n g t h e  ps e u d oi n v ers e

[R Θ  |θ i ,   X ]
+ h as  c u bi c  c o  m pl e xit y  O  ((N x ) 3 ).   T h e   m atri x   m ul-

ti pli c ati o n t o  d eri v e A   =   R Θ  |θ̄ i ,  Y   X [R Θ  |θ̄ i ,   X ]
+ h as c o  m pl e xit y

of  O  (N y (N x ) 2 )  a n d  c al c ul ati n g t h e tr a c e  t r(A  R T
Θ  |θ̄ i ,  Y   X

)  h as

t h e c o  m pl e xit y O  (N x N y ).   T h e c o  m pl e xit y of t h e   m atri x c al c u-
l ati o ns f or e a c h s a  m pl e is O  (N y (N x ) 2 + (  N x ) 3 ), a n d t h er ef or e
t h e c o  m pl e xit y  of  o pti  m al e x p eri  m e nt al  d esi g n  b y s ol vi n g ( 1 8)
is O  (k   M 1 (N y (N x ) 2 + (  N x ) 3 )).

I n  pr a cti c e, t h er e is t y pi c all y  n o  cl os e d-f or  m s ol uti o n t o t h e
u n d erl yi n g S  D E s yst e  m   m o d eli n g t h e si g n al pr o c ess, h e n c e t h er e
is  n o cl os e d-f or  m e x pr essi o n f or eff e cti v e c orr el ati o n   m atri c es.
I n  s u c h  c as es,    w e    w o ul d  als o  n e e d  t o  esti  m at e  t h e  eff e cti v e
c orr el ati o n    m atri c es  i n  ( 1 8)  b y    M  C  s a  m pli n g  i n  a d diti o n  t o
t h e    m atri x  c al c ul ati o ns  a n al y z e d  a b o v e.   Ass u  m e   w e  g e n er at e

M 2 s a  m pl es  of  (θ |θ
( j )
i , Y ( j ) , X ( j ) ) , j ≤   M 2 ,   w h er e Y ( j ) c a n

b e  g e n er at e d  b y ( 2 6)  a n d  X ( j ) b y ( 2 8).   D u e t o t h e   M ar k o vi a n
pr o p ert y  of ( 2 6), t h e  c o  m pl e xiti es  of s a  m pli n g  Y ( j ) a n d  X ( j )

ar e all li n e ar.   T h e eff e cti v e cr oss- c orr el ati o n is esti  m at e d b y:

R Θ  |θ̄ i ,  Y   X =
1

M 2

M 2

j = 1

Y ( j ) ( X ( j ) ) T ,   ( 2 9)

wit h  t h e  c o  m pl e xit y   O  (M 2 N y N x ).  Si  mil arl y,  t h e  c o  m pl e xit y
of esti  m ati n g t h e eff e cti v e a ut o- c orr el ati o n  of  X   is O  (M 2 N 2

x ) .
Wit h t h es e, t h e c o  m pl e xit y  of o pti  m al e x p eri  m e nt al  d esi g n is

O  (k   M 1 [N y (N x ) 2 + (  N x ) 3 +   M 2 (N 2
x +   N y N x )]).   ( 3 0)

N ot e t h at t h e   M  C i nt e gr ati o n pr o c e d ur e f or eff e cti v e c orr el ati o n
m atri x  esti  m ati o n  h as t o  s a  m pl e t h e  u n c ert ai nt y  cl ass  of  all   k
p ar a  m et ers a n d  M 2 c a n gr o  w e x p o n e nti all y   wit h  k .

VI.   S Y  N T  H E TI  C E X P E  RI  M E  N T S

T o d e  m o nstr at e t h e p erf or  m a n c e of t h e pr o p os e d r o b ust filt er-
i n g a n d o pti  m al e x p eri  m e nt al d esi g n   m et h o ds,   w e first c o nsi d er a
s y nt h eti c e x a  m pl e,   w hi c h ass u  m es t h at t h e ori gi n al si g n al  Y   (t)
is  g e n er at e d  b y  a n  S  D E  of t h e  f or  m i n  ( 2 2).   Ass u  m e  Y   (t)  is
a t  w o- c h a n n el  si g n al  a n d t h e  p ar a  m et ers  of t h e  c orr es p o n di n g
S  D E ar e gi v e n  b y

A  (t)   =
θ 1

1 0 0

1  0
0  1

,

a (t)   =
0
0

,

B  (t)   =  0.1
1   θ 2

θ 2 1
,

Y   ( 0)   =
0
0

, ( 3 1)

w h er e   θ  =  (  θ 1 , θ2 )  is t h e  u n c ert ai n  p ar a  m et er  v e ct or,  Y   (t)  is
d e fi n e d   wit hi n t h e ti  m e i nt er v al  [ 0,  T  =  1 0 0]  .

X   (t)  is  t h e  o bs er v ati o n  of  Y   (t),    w hi c h  is  c orr u pt e d  b y  a
bl urri n g f u n cti o n  h (t) wit h a d diti v e  n ois e   N   (t):

X   (t)   =
T

0

h (t −   s )Y   (s )d s  +   N   (t),   ( 3 2)

A ut h ori z e d li c e n s e d u s e li mit e d t o: B y u n g- J u n Y o o n. D o w nl o a d e d o n S e pt e m b er 1 0, 2 0 2 0 at 2 0: 2 0: 1 2 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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w h er e

h (t)   =
1

B
(s g n(t) −   s g n(t −   B  )),   ( 3 3)

wit h   B   =  1 0  , is  a  s c al ar f u n cti o n,  s o t h e  bl urri n g  eff e ct is t h e
s a  m e f or b ot h c h a n n els.   T h e v ari a n c es of a d diti v e n ois e f or b ot h
c h a n n els ar e t h e s a  m e,  σ 2 =  0  .0 1 .

As    m e nti o n e d  e arli er,  t h e   S  D E  h as  a  u ni q u e  s ol uti o n  as
a    G a ussi a n  pr o c ess.   T h er ef or e,    w e  c a n  o bt ai n  a  cl os e d-f or  m
e x pr essi o n of c orr el ati o ns b et  w e e n  Y   (t) a n d  X   (t).   L et’s b e gi n
wit h t h e f u n d a  m e nt al   m atri x of ( 2 5):

Φ(  t)   =
e θ 1 t 0
0   e θ 1 t , ( 3 4)

wit h  d  Φ(  t)/ d t =   A  (t)  Φ(t).   T h e  a ut o- c orr el ati o n  of Y   (t)  c a n
b e c al c ul at e d  b y ( 2 4):

R Y (ti , tj )

=   Φ  (ti )
t i

t 0

Φ  (u ) −  1 B  (u )B  (u ) T (Φ  (u ) −  1 ) T d u   Φ  (tj )
T

=
1

2 θ 1
{ e θ 1 ( t i +  t j ) −   e θ 1 ( t j −  t i ) }

1   +  θ 2
2 2 θ 2

2 θ 2 1   +  θ 2
2

=   r Y (ti , tj )
1   +  θ 2

2 2 θ 2

2 θ 2 1   +  θ 2
2

, ( 3 5)

w h er e

r Y (ti , tj )   =
1

2 θ 1
{ e θ 1 ( t i +  t j ) −   e θ 1 ( t j −  t i ) } .   ( 3 6)

E q u ati o n ( 3 5) h ol ds f or  t j ≥   ti ≥   0 , a n d   w e h a v e R Y (ti , tj )   =
R Y (tj , ti ).   B as e d  o n t h e  o bs er v ati o n   m o d el i n ( 3 2), t h e  cr oss-
c orr el ati o n is

R Y   X ( ti , tj )

=
T

0

h (tj −   s )R Y (ti , s)d s

=
T

0

h (tj −   s )r Y (ti , s)d s
1   +  θ 2

2 2 θ 2

2 θ 2 1   +  θ 2
2

=   r Y   X ( ti , tj )
1   +  θ 2

2 2 θ 2

2 θ 2 1   +  θ 2
2

, ( 3 7)

wit h

r Y   X ( ti , tj )   =
T

0

h (tj −   s )r Y (ti , s)d s.   ( 3 8)

T h e a ut o- c orr el ati o n  of  X   (t) is

R X (ti , tj )

=
T

0

T

0

h (ti −   s )R Y (s, u )h (t j −   u )d s d u  +   σ 2 δ (ti −   tj )I 2

=
T

0

T

0

h (ti −   s )r Y (s, u )h (t j −   u )d s d u ·

1   +  θ 2
2 2 θ 2

2 θ 2 1   +  θ 2
2

+   σ 2 δ (ti −   tj )I 2

=   r X (ti , tj )
1   +  θ 2

2 2 θ 2

2 θ 2 1   +  θ 2
2

+   σ 2 δ (ti −   tj )I 2 ,   ( 3 9)

wit h

r X (ti , tj )   =
T

0

T

0

h (ti −   s )r Y (s, u )h (t j −   u )d s d u.   ( 4 0)

T h e  i nt e gr als  i n  ( 3 8)  a n d  ( 4 0)  c a n  b e  c al c ul at e d  dir e ctl y  a n d
h a v e pi e c e  wis e cl os e d-f or  m e x pr essi o ns d e p e n di n g o n t h e v al u e
r el ati o ns hi ps b et  w e e n t i , tj , B   a n d  T  .

As  n ot e d  pr e vi o usl y,   w e  c o nsi d er t h e  dis cr et e  filt eri n g  pr o b-
l e  m.   T h e si g n als fr o  m t h e  S  D E s yst e  m  ar e s a  m pl e d  at  dis cr et e
ti  m e p oi nts t =  0  , 1 , 2 , ..., 1 0 0 .   We d e n ot e t h e  fl att e n e d dis cr et e
ti  m e v e ct ors  of X   (t) a n d  Y   (t) as:

X N =  (  X 1
0 , . . . ,   X1

N ,   X2
1 , . . . ,   X2

N ) T ( 4 1)

a n d

Y N =  (  Y 1
0 , . . . ,  Y 1

N ,  Y 2
1 , . . . ,  Y 2

N ) T ,   ( 4 2)

w h er e   Y i
j a n d  X i

j i n di c at e  t h e  si g n al  a n d  o bs er v ati o n  v al u es
at  t h e  i-t h  c h a n n el  a n d  ti  m e  j ,  r es p e cti v el y,  f or  i =  1  , 2   a n d
0  ≤   j  ≤   N   .

T h e n t h e   m atri x f or  ms of c orr el ati o ns ar e

R N
θ,  Y   X =

1   +  θ 2
2 2 θ 2

2 θ 2 1   +  θ 2
2

⊗   r N
Y   X , ( 4 3)

R N
θ,   X =

1   +  θ 2
2 2 θ 2

2 θ 2 1   +  θ 2
2

⊗   r N
X +   σ 2 I 2 N ,   ( 4 4)

w h er e   ⊗   i n di c at es t h e   Kr o n e c k er  pr o d u ct, a n d

r N
Y   X =

⎛

⎜
⎝

r Y   X ( t0 , t0 )  · · ·  r Y   X ( t0 , tN )
...

...
...

r Y   X ( tN , t0 )  · · ·  r Y   X ( tN , tN )

⎞

⎟
⎠ ,

r N
X =

⎛

⎜
⎝

r X (t0 , t0 )  · · ·  r X (t0 , tN )
...

...
...

r X (tN , t0 )  · · ·  r X (tN , tN )

⎞

⎟
⎠ ( 4 5)

ar e c orr es p o n di n g   m atri x f or  ms of  r Y   X ( ti , tj ) a n d  r X (ti , tj ).

A.  I B R   Filt er   Perf or  m a n c e

T o   e x a  mi n e   t h e   p erf or  m a n c e   of   t h e   I  B  R   filt er   G Θ =
R N

Θ  ,  Y   X [R
N
Θ  ,   X ]

+ ,  fi x θ 1 =  1   a n d l et  θ 2 b e u nif or  ml y distri b ut e d
o v er t h e i nt er v al  (−  1 , 1) .   We t h e n h a v e a cl os e d-f or  m e x pr essi o n
f or t h e e x p e ct ati o n  o v er θ :

R N
Θ  ,  Y   X =

4 / 3   0
0   4 / 3

⊗   r N
Y   X , ( 4 6)

R N
Θ  ,   X =

4 / 3   0
0   4 / 3

⊗   r N
X +   σ 2 I 2 N .   ( 4 7)

N ot e  t h at  t h e  eff e cti v e  c orr el ati o n  d o es n’t  c orr es p o n d  t o  a n y
s p e ci fi c  v al u e  of  θ 2 . I ns erti n g ( 4 6)  a n d ( 4 7) t o ( 1 4)  yi el ds t h e
m atri x-f or  m I  B  R  filt er   G Θ .

T o  s h o  w  t h e  p erf or  m a n c e  of  t h e  I  B  R  filt er,   w e  c o  m p ar e  it
wit h t h e  o pti  m al  filt er f or   θ 2 =  0  .8  a n d t h e r e c e ntl y  d e v el o p e d
τ -r o b ust  filt er   w hi c h is r o b ust   wit h  b o u n d e d  τ - di v er g e n c e  a n d
is t h e  o pti  m al  filt er  b as e d  o n t h e  n o  mi n al st atisti cs   wit h r es p e ct
t o θ 2 =  0   [ 1 3].   T h e r es ult f or  a p pl yi n g t h e t hr e e  filt ers  o n t h e
o bs er v ati o n  of t h e  si g n al  g e n er at e d  b y t h e  S  D E   wit h  θ 2 =  0  .8
is  s h o  w n i n  Fi g.  2.   N ot e t h at t h e I  B  R  filt er  h as  a  p erf or  m a n c e
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Fi g.  2.     O n e  s a  m pl e  fr o  m t h e  S  D E  ( 2 2),  ( 3 1)   wit h   θ 2 =  0  .8 .   L eft  a n d  ri g ht
s u b- fi g ur es s h o  w t h e si g n als fr o  m t h e first a n d t h e s e c o n d c h a n n els, r es p e cti v el y.
T h e  ori gi n al si g n als ar e i n  bl u e.   T h e  filt er e d si g n als  b as e d  o n t h e  o pti  m al  filt er
f or θ 2 =  0  .8  ar e i n r e d.  T h e filt er e d si g n als usi n g t h e  τ -r o b ust filt er ar e i n gr e e n.
T h e I  B  R  filt er e d si g n als ar e i n y ell o  w.   T h e c orr u pt e d o bs er v ati o ns ar e i n p ur pl e
cr oss es.

Fi g. 3.     O n e s a  m pl e si  m ul at e d fr o  m t h e  S  D E ( 2 2), ( 3 1)   wit h  θ 2 =   −  0 .7 .  L eft
a n d ri g ht  s u b- fi g ur es  s h o  w t h e  si g n als fr o  m t h e  first  a n d t h e  s e c o n d  c h a n n els,
r es p e cti v el y.   T h e  ori gi n al si g n als  ar e i n  bl u e.   T h e  filt er e d si g n als  b as e d  o n t h e
o pti  m al    Wi e n er  filt er  f or  θ 2 =  0  .8   ar e  i n  r e d.   T h e  filt er e d  si g n als  usi n g  t h e
τ -r o b ust filt er ar e i n gr e e n.   T h e I  B  R filt er e d si g n als ar e i n y ell o  w.   T h e c orr u pt e d
o bs er v ati o ns ar e i n p ur pl e cr oss es.

(  M e a n  S q u ar e   Err or (  M S E)  =   2. 6 0 1 5) f airl y  cl os e t o t h e  filt er
t h at is o pti  m al f or θ 2 =  0  .8  (  M S E =   2. 5 2 6 9) a n d p erf or  ms b ett er
t h a n t h e τ -r o b ust  filt er (  M S E =   2. 6 1 2 1).

N e xt   w e  a p pli e d  t h e  s a  m e  filt ers  o n  t h e  o bs er v ati o n  of  t h e
si g n al  g e n er at e d  b y t h e  S  D E   wit h  θ 2 =   −  0 .7 , t h e r es ult  b ei n g
s h o  w n  i n  Fi g.  3.   H er e  t h e  I  B  R  filt er  still    m ai nt ai ns  r el ati v el y
g o o d  p erf or  m a n c e (  M S E  =   2. 2 3 6 0), f oll o  w e d  b y t h e  τ -r o b ust
filt er   wit h    M S E   =   2. 2 4 1 6,  b ut t h e  filt er  o pti  m al  f or  θ 2 =  0  .8
s h o  ws  a  si g ni fi c a ntl y  d e gr a d e d  p erf or  m a n c e  (  M S E  =   4. 4 3 3 1)
d u e t o t h e   m o d el   mis  m at c h.

B.    O pti  m al   E x p eri  m e nt al   D esi g n

T h e  o pti  m al  e x p eri  m e nt al  d esi g n  pr o bl e  m  is  t o  d et er  mi n e
w hi c h  o n e  of t h e t  w o  p ar a  m et ers,   θ 1 or  θ 2 , s h o ul d  b e s p e ci fi e d
first t o   mi ni  mi z e t h e  c ost  d u e t o  u n c ert ai nt y.   Ta ki n g    M S E  f or
si g n al  filt eri n g  as t h e  c ost, t h e  c ost  f u n cti o n  f or  e x p eri  m e nt al
d esi g n is t h e r esi d u al I  B  R c ost of t  w o p ar a  m et ers, e x pr ess e d as:

R(  θ 1 )   =  E θ 1
[E Θ  |θ 1

[C Θ  |θ 1
( G Θ  |θ 1

)]],   ( 4 8)

R(  θ 2 )   =  E θ 2
[E Θ  |θ 2

[C Θ  |θ 2
( G Θ  |θ 2

)]].   ( 4 9)

Fi g. 4.     C o  m p aris o n of  R esi d u al I  B  R c ost of  θ 1 a n d θ 2 .  T h e p ar a  m et er   wit h l ess
R esi d u al I  B  R c ost is s u g g est e d t o  b e s p e ci fi e d  b y  n e xt e x p eri  m e nt.   R e d cir cl es
a n d bl u e cir cl es ar e pr e cis e c al c ul ati o ns of  R  ( θ 1 )  a n d  R  ( θ 2 ) , r es p e cti v el y, a n d
t h e s urf a c es ar e o bt ai n e d b y c u bi c s pli n e i nt er p ol ati o n.

We ass u  m e   θ 1 a n d  θ 2 ar e i n d e p e n d e nt.  θ 2 is distri b ut e d o v er t h e
i nt er v al (−  1 , 1)  as:

θ 2 =  2   −   1 ,   ∼   B et a  (β,  β ),   ( 5 0)

wit h   β  t h e distri b uti o n p ar a  m et er. θ 1 is u nif or  ml y distri b ut e d as

θ 1 ∼   U  ( 5 −   L /  2 ,   5   +  L /  2) ,   ( 5 1)

wit h distri b uti o n p ar a  m et er   L  .
I n  o ur  si  m ul ati o ns,    w e  s et  t hr e e  diff er e nt  v al u es  f or  β  =

0 .5 , 1 .5 , 5  a n d  L   =  0  .5 , 1 .5 , 2 , s o t h at   w e  h a v e  9  c o  m bi n ati o ns
of distri b uti o n h y p er p ar a  m et ers.   T h e r esi d u al I  B  R c ost is c al c u-
l at e d  b y   M o nt e   C arl o s a  m pli n g.  F or R(  θ 1 ), f or e a c h  gi v e n  p air
of  distri b uti o n  p ar a  m et ers,  2 0 0 s a  m pl e  p airs  of  θ 1 ar e t a k e n f or
M o nt e   C arl o c o  m p ut ati o n, a n d f or e a c h   θ 1 , t h e i n n er t er  m h as a
cl os e d-f or  m e x pr essi o n as i n ( 1 7):

E Θ  |θ 1
[C Θ  |θ 1

( G Θ  |θ 1
)]

=   E θ 1
[tr(R Θ  |θ 1 ,  Y −   R Θ  |θ 1 ,  Y   X [R Θ  |θ 1 ,   X ]

+ R Θ  |θ 1 ,  Y   X )].

R(  θ 2 ) is c al c ul at e d si  mil arl y b y   M o nt e   C arl o s a  m pli n g.   We j ust
n e e d t o s u bstit ut e  θ 1 wit h   θ 2 i n t h e  a b o v e  e x pr essi o n t o  c al c u-
l at e E Θ  |θ 2

[C Θ  |θ 2
( G Θ  |θ 2

)] .   T h e r esi d u al I  B  R c osts ar e s h o  w n i n

Fi g. 4.   T h e v ari a n c es of t h e t  w o p ar a  m et ers ar e   Var (θ 2 )   = 1
2 β  + 1

a n d   Var (θ 1 )   = L 2

1 2 .
Fr o  m t h e fi g ur e   w e c a n s e e h o  w t h e v ari a n c es of t h e u n c ert ai n

p ar a  m et ers i n fl u e n c e t h e I  B  R r esi d u als.   T h e  v ari a n c e  of  θ 2 h as
a  hi g h er i n fl u e n c e  o n t h e I  B  R r esi d u als t h a n t h e  v ari a n c e  of  θ 1

d o es.   As   Var (θ 2 )  i n cr e as es,  b ot h  I  B  R  r esi d u als  i n cr e as e  as  a
l ar g er  v ari a n c e i ntr o d u c es   m or e  u n c ert ai nt y i n t h e   m o d el.   B ut
w h e n    Var  (θ 2 )  is  l ar g e,   R(θ 2 )  is  s  m all er  t h a n   R(θ 1 ),  b e c a us e
esti  m ati n g  θ 2 c a n  r e d u c e t h e  u n c ert ai nt y  ( or t h e  c ost t h er e of)
m or e t h a n esti  m ati n g   θ 1 , p ert ai ni n g t o t h e  filt eri n g p erf or  m a n c e
i n t his c as e. F or s  m all   Var(θ 2 ),   w e h a v e t h e o p p osit e c o n cl usi o n.

T o  f urt h er  ill ustr at e  t h e  str e n gt h  of  t h e    M  O  C  U- b as e d  e x-
p eri  m e nt al  d esi g n,  h er e   w e  p erf or  m  e x p eri  m e nts   wit h  a   m or e
c o  m pli c at e d u n c ert ai nt y cl ass a n d c o  m p ar e its p erf or  m a n c e   wit h

A ut h ori z e d li c e n s e d u s e li mit e d t o: B y u n g- J u n Y o o n. D o w nl o a d e d o n S e pt e m b er 1 0, 2 0 2 0 at 2 0: 2 0: 1 2 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 



3 8 5 6 I E E E   T  R  A  N S  A C TI  O  N S   O  N  SI  G  N  A L  P  R  O  C E S SI  N  G,   V  O L.  6 8, 2 0 2 0

Fi g.  5.     T h e  a v er a g e  p erf or  m a n c e  of  s e q u e nti al  e x p eri  m e nt al  d esi g n    wit h
diff er e nt  str at e gi es. I n  e a c h  s et u p, t h e    M S E is  o bt ai n e d  aft er  c o n d u cti n g  e a c h
e x p eri  m e nt i n  a  s e q u e n c e  of  e x p eri  m e nts f or t h e  S  D E  si g n al  a n d  o bs er v ati o n
m o d el   wit h f o ur u n k n o  w n p ar a  m et ers.

b ot h  e ntr o p y- b as e d  [ 3 8]  a n d  r a n d o  m  s e q u e nti al  e x p eri  m e nt al
d esi g n.

Ass u  m e   t h at     w e   h a v e   f o ur   u n c ert ai n   p ar a  m et ers,   θ  =
(θ 1 , θ2 ,   B,  σ)  i n t h e   m o d el  d es cri b e d  b y  ( 3 1) –( 3 3).   T h es e  u n-
c ert ai n   m o d el  p ar a  m et ers f oll o  w i n d e p e n d e nt  u nif or  m  distri b u-
ti o ns.  F or  e a c h  p ar a  m et er,    w e  ass u  m e  a n  e x p eri  m e nt  c a n  b e
p erf or  m e d  t o  o bt ai n  its  v al u e.  I n  a d diti o n    w e  ass u  m e  all  t h e
p ar a  m et er   m e as ur e  m e nts  h a v e   G a ussi a n  err ors.    We  p erf or  m  a
s e q u e nti al e x p eri  m e nt al d esi g n t o d e ci d e   w hi c h   m o d el p ar a  m et er
t o    m e as ur e  i n  e a c h  it er ati o n  s o  t h at    w e  c a n    m ost  eff e cti v el y
i  m pr o v e  t h e   filt eri n g   p erf or  m a n c e    wit hi n  a  r el ati v el y  s  m all
n u  m b er of it er ati o ns.  F or t his e x p eri  m e nt al d esi g n pr o bl e  m,   w e
c o  m p ar e t h e   M  O  C  U- b as e d str at e g y d es cri b e d b y ( 1 8)   wit h b ot h
e ntr o p y- b as e d str at e g y a n d r a n d o  m str at e g y.   T h e e ntr o p y- b as e d
str at e g y c h o os es t h e e x p eri  m e nt t o   m e as ur e t h e  p ar a  m et er   wit h
t h e  l ar g est  S h a n n o n  e ntr o p y;  a n d  t h e  r a n d o  m  str at e g y  si  m pl y
c h o os es  o n e  o ut  of t h e  u n c ert ai n  p ar a  m et ers i n  a r a n d o  m f as h-
i o n.   T o  c o  m p ar e t h e  diff er e nt  str at e gi es i n  diff er e nt  c as es,   w e
s et  t hr e e  diff er e nt  gr o u ps  of  p ar a  m et er  distri b uti o ns  f or  s e-
q u e nti al e x p eri  m e nt al d esi g n: ( 1)  θ 1 ∼   U  ( 3, 6) , θ 2 ∼   U  (−  2 , 2) ,
B   ∼   U  ( 8, 1 0 .5) ,  σ  ∼   U  ( 0.0 1 , 1 .2) ;   ( 2)   θ 1 ∼   U  ( 3, 6) ,  θ 2 ∼
U  (−  1 .4 , 1 .4) ,  B   ∼   U  ( 8, 1 0 .5) ,  σ  ∼   U  ( 0.0 1 , 1 .2) ;   ( 3)   θ 1 ∼
U  ( 3.7 , 6) ,  θ 2 ∼   U  (−  1 , 1) ,  B   ∼   U  ( 8, 1 0 .5) ,  σ  ∼   U  ( 0.0 1 , 2) .
F or  all t h e  c as es, t h e  p ar a  m et ers  h a v e   G a ussi a n   m e as ur e  m e nt
err or   wit h a v ari a n c e σ 2 =  0  .0 5 . I n e a c h c as es,   w e r a n d o  ml y g e n-
er at e  1 0 0  gr o u ps  of  p ar a  m et ers, a n d  p erf or  m s e q u e nti al e x p eri-
m e nt al d esi g n f oll o  wi n g t h e t hr e e str at e gi es.   Aft er e a c h it er ati o n,
w e c al c ul at e t h e r e  m ai ni n g   M S E of t h e c orr es p o n di n g I  B  R filt er
t o q u a ntif y t h e r e  m ai ni n g u n c ert ai nt y. Fi g. 5 pr o vi d es t h e c h a n g e
of t h e  a v er a g e    M S E   wit h t h e  n u  m b er  of  e x p eri  m e nt it er ati o ns
f or t h es e t hr e e e x p eri  m e nt al d esi g n str at e gi es.   As e x p e ct e d, o ur
M  O  C  U- b as e d  str at e g y  c o nsist e ntl y i d e nti fi es t h e   m ost  criti c al
u n c ert ai n p ar a  m et er,   w h os e   m e as ur e  m e nt l e a ds t o t h e   m a xi  m u  m
r e d u cti o n  of t h e   M S E   wit h  o ur  filt eri n g  o bj e cti v e i n  d esi g n.   As

a r es ult, aft er t  w o e x p eri  m e nts,   w h e n t  w o p ar a  m et ers h a v e b e e n
d et er  mi n e d, t h e  p erf or  m a n c e  of  o ur   M  O  C  U- b as e d str at e g y  h as
al  m ost r e a c h e d t h e l e v el  o bt ai n e d   w h e n t h er e is  n o  u n c ert ai nt y
r e  m ai ni n g  ( aft er  f o ur  e x p eri  m e nts),   w h er e as  f or  b ot h  e ntr o p y
a n d  r a n d o  m  d esi g n t h er e  r e  m ai ns  si g ni fi c a nt  u n c ert ai nt y  aft er
t  w o e x p eri  m e nts,   m e a ni n g t h at t h e y h a v e n ot i d e nti fi e d t h e b est
t  w o p ar a  m et ers t o esti  m at e.

VII.   P H  A  R  M  A C  O  KI  N E TI  C S M O  D E L

I n t his s e cti o n,   w e ill ustr at e t h e I  B  R  filt er  a n d  e x p eri  m e nt al
d esi g n  f or  a  p h ar  m a c o ki n eti c  t  w o- c o  m p art  m e nt    m o d el  b as e d
o n  a  S  D E  s yst e  m [ 3 9].   Diff er e nti ati n g t h e  b o d y i nt o  a  c e ntr al
c o  m p art  m e nt ( pl as  m a) a n d a  p eri p h er al c o  m p art  m e nt (tiss u es),
t h e t  w o- c o  m p art  m e nt   m o d el d es cri b es t h e r el ati o ns hi p b et  w e e n
t h e  dr u g  c o n c e ntr ati o n  i n  t h e  c e ntr al  c o  m p art  m e nt  Y 1 (t),  t h e
dr u g  c o n c e ntr ati o n  i n  t h e  p eri p h er al  c o  m p art  m e nt   Y 2 (t),  a n d
t h e    m e as ur e  m e nt  x t of  t h e  dr u g  c o n c e ntr ati o n  i n  t h e  c e ntr al
c o  m p art  m e nt.   T h e  tr a nsit  of  t h e  dr u g  t hr o u g h o ut  t h e  b o d y  is
d es cri b e d b y t h e  S  D E s h o  w n  b el o  w:

d Y 1 (t)   =  (k 2 1 Y 2 (t) −   k 1 2 Y 1 (t) −   k 1 0 Y 1 (t)) d t +   σ 1 d  W 1 (t),

d Y 2 (t)   =  (k 1 2 Y 1 (t) −   k 2 1 Y 2 (t)) d t +   σ 2 d  W 2 (t),

X   (t)   =  Y 1 (t)   +   ,    ∼   N   ( 0,  σ2 ), ( 5 2)

w h er e   W 1 (t),  W 2 (t)  ar e  i n d e p e n d e nt    Wi e n er  pr o c ess es,  a n d
k 1 0 ,  k 1 2 ,  a n d  k 2 1 ar e  i n di vi d u al  r at e  c o nst a nts  ( p ar a  m et ers)
p oss essi n g t h e j oi nt pri or distri b uti o n

θ  =  (  k 1 0 ,  k1 2 ,  k2 1 ) T ∼   N   (μ,  Ω)  .

F oll o  wi n g t h e  c as e  e x a  m pl e i n [ 3 2],   w e s et t h e st atisti cs  of t h e
pri or  as:  μ  =  ( 0  .2 , 0 .5 , 0 .2 5) T ,  a n d Ω   a  di a g o n al    m atri x   wit h
di a g (  Ω)   = ( 0 .0 1 2 , 0 .1 2 , 0 .0 2 2 ) T .    Ot h er  p ar a  m et ers  ar e  s et  t o
σ 2 =  0  .0 4 , σ 1 =  0  .1 , σ 2 =  0  .1 .   T h e i niti al  c o n diti o n  of Y 1 (t)
a n d Y 2 (t) ar e s et t o b e 1 0 a n d 0, r es p e cti v el y,   w hi c h c orr es p o n ds
t o t h e  c as e  of  I ntr a v e n o us  i nj e cti o n:  t h e  p h ar  m a c y  is i niti all y
i nj e ct e d t o t h e pl as  m a a n d t h e n diff us e t o t h e tiss u e.   Aft er fi n di n g
t h e I  B  R filt er usi n g t h e pr e c e di n g t h e or y,   w e c o nsi d er its p erf or-
m a n c e, a n d t h e n t ur n t o t h e pr o bl e  m of s p e cif yi n g i n   w h at or d er
t o  d et er  mi n e t h e i n di vi d u al  r at e  c o nst a nts t o  o pti  m all y r e d u c e
t h e   M S E of esti  m ati n g Y   (t)   =  (Y 1 (t),  Y2 (t)) T .   We c o nsi d er t h e
dis cr et e c as e   wit h s a  m pli n g p oi nts fr o  m 0 t o 1 0 b y a n i n cr e  m e nt
of 0. 0 1.

T h e  S  D E  i n  ( 5 2)  als o  f oll o  ws  t h e  f or  m  of  ( 2 2),    wit h  t h e
m atri c es b el o  w:

A  (t)   =
−  k 1 2 −   k 1 0 k 2 1

k 1 2 −  k 2 1
,

a (t)   =
0
0

,

B  (t)   =
σ 1 0
0   σ 2

,

Y   ( 0)   =
1 0
0

. ( 5 3)

T h er ef or e, si  mil ar t o t h e pr o c e d ur e i n t h e s y nt h eti c e x a  m pl e,   w e
c a n c al c ul at e t h e I  B  R  filt er  G Θ t hr o u g h  n u  m eri c al i nt e gr als.
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Fi g. 6.     O n e e x a  m pl e b as e d o n t h e S  D E   wit h  θ  =   μ .   L eft a n d ri g ht s u b- fi g ur es
s h o  w  t h e  dr u g  c o n c e ntr ati o n  l e v els  of  c e ntr al  a n d  p eri p h er al  c o  m p art  m e nts,
r es p e cti v el y.  Bl u e c ur v es c orr es p o n d t o t h e a ct u al si g n als; p ur pl e cr oss es i n di c at e
t h e   m e as ur e  m e nts of c o n c e ntr ati o n i n t h e c e ntr al c o  m p art  m e nt; r e d c ur v es d e pi ct
t h e  esti  m ati o n   wit h  t h e  o pti  m al  filt er  f or  θ  =   μ  +  3  σ θ ;  gr e e n  c ur v es  ar e t h e
esti  m at e d si g n als   wit h t h e  τ -r o b ust  filt er; a n d y ell o  w c ur v es ar e  filt er e d si g n als
usi n g t h e I  B  R  filt er.   O nl y  o n e  o ut  of e v er y  2 0   m e as ur e  m e nts is  vis u ali z e d  h er e
t o a v oi d c ur v e cl utt eri n g.

Fi g.  7.     O n e  e x a  m pl e  b as e d  o n  t h e  S  D E   wit h   θ  =   μ  +  3  σ θ .   L eft  a n d  ri g ht
s u b- fi g ur es s h o  w t h e  dr u g  c o n c e ntr ati o n l e v els  of  c e ntr al  a n d  p eri p h er al  c o  m-
p art  m e nts,  r es p e cti v el y.   Bl u e  c ur v es  c orr es p o n d  t o  t h e  a ct u al  si g n als;  p ur pl e
cr oss es i n di c at e t h e   m e as ur e  m e nts of c o n c e ntr ati o n i n t h e c e ntr al c o  m p art  m e nt;
r e d c ur v es d e pi ct t h e esti  m ati o n   wit h t h e o pti  m al  filt er f or θ  =   μ  +  3  σ θ ; gr e e n
c ur v es ar e t h e esti  m at e d si g n als   wit h t h e  τ -r o b ust  filt er; a n d  y ell o  w c ur v es ar e
filt er e d si g n als  usi n g t h e I  B  R  filt er.   O nl y  o n e  o ut  of e v er y  2 0   m e as ur e  m e nts is
vis u ali z e d h er e t o a v oi d c ur v e cl utt eri n g.

We c o  m p ar e t h e p erf or  m a n c e of t h e I  B  R  filt er   wit h t  w o ot h er
filt ers: t h e   Wi e n er  filt ers gi v e n s p e ci fi c v al u es of t h e p ar a  m et ers
θ  =   μ  +  3  σ θ wit h  σ θ =  ( 0  .0 1 , 0 .1 , 0 .0 2) T t h e v e ct or of st a n d ar d
d e vi ati o ns of p ar a  m et ers a n d t h e t a u-r o b ust  filt er.   T h e c o  m p ari-
s o n of t h e filt eri n g p erf or  m a n c e o n si g n als g e n er at e d   wit h θ  =   μ
a n d  θ  =   μ  +  3  σ θ ar e s h o  w n i n Fi gs. 6 a n d 7, r es p e cti v el y. Si n c e
t h er e  is  n o  dir e ct  o bs er v ati o n  i n  t h e  p eri p h er al  c o  m p art  m e nt,
t h e    m ai n  s o ur c e  of  t h e  esti  m ati o n  err or  is  i n  t h e  p eri p h er al
c o  m p art  m e nt.    O bs er v ati o n  fr o  m  t h e  p eri p h er al  c o  m p art  m e nt
s h o  ws  t h at  t h e  I  B  R  filt er  p erf or  ms  f airl y    w ell  i n  b ot h  c as es,
w hil e t h e    Wi e n er  filt er   wit h   θ  =   μ  +  3  σ θ p erf or  ms   w ell  o nl y
i n  t h e  c as e    wit h    m at c h e d  p ar a  m et ers  as  e x p e ct e d.    We  n oti c e
t h at t h e τ -r o b ust  filt er  d o es  n ot  s h o  w its r o b ust n ess  o n  si g n als
g e n er at e d   wit h  θ  =   μ  +  3  σ θ , pr o b a bl y b e c a us e i n t h e s etti n g of
t his  p h ar  m a c o ki n eti cs   m o d el, t h e  u n c ert ai n  p ar a  m et ers  f oll o  w
u n b o u n d e d   G a ussi a n  distri b uti o ns,   w hil e t h e  τ -r o b ust  filt er is
pr o p os e d  u n d er t h e b o u n d e d  τ - di v er g e n c e ass u  m pti o n.

T h e n   w e p erf or  m s e q u e nti al e x p eri  m e nt al d esi g n b y c al c ul at-
i n g t h e  d esi g n  v al u es  of  p ar a  m et ers k 1 0 ,  k1 2 a n d  k 2 1 .  S u p p os e
o ur  e x p eri  m e nt al  b u d g et  c a n  aff or d  t o  p erf or  m  t  w o  e x p eri-
m e nts  t o  d et er  mi n e  t  w o  of  t h e  u n k n o  w n  p ar a  m et ers,  a n d    w e
w a nt t o  s e q u e nti all y   mi ni  mi z e t h e    M  O  C  U   wit h t h e r e  m ai ni n g
u n c ert ai nt y.  F or  t h e  first  e x p eri  m e nt,  t h e  I  B  R  r esi d u al  c osts
ar e  R 1 (k 1 0 )   =  5 1.3 , R 1 (k 1 2 )   =  4 5.2  a n d  R 1 (k 2 1 )   =  3 6.4 .  S o
t h e  first  e x p eri  m e nt  s h o ul d  d et er  mi n e  k 2 1 .  F oll o  wi n g t h e  first
e x p eri  m e nt, t h e tr u e  v al u e  of  k 2 1 i s  p ut i nt o t h e   m o d el  a n d t h e
d esi g n  v al u es  ar e  c al c ul at e d  b as e d  o n t h e  u p d at e d   m o d el.    We
r a n d o  ml y s a  m pl e 1 0 v al u es of k 2 1 a s t h e r es ult of t h e first e x p er-
i  m e nt, a n d t h e n c al c ul at e t h e I  B  R r esi d u al c osts R 2 (k 1 0 |k 2 1 ) a n d
R 2 (k 1 2 |k 2 1 ) .   All 1 0 r a n d o  m c as es s h o  w t h at k 1 2 s h o ul d b e d et er-
mi n e d i n t h e s e c o n d e x p eri  m e nt, a n d t h e a v er a g e  d esi g n  v al u es
ar e  E k 2  1

[D 2 (k 1 0 |k 2 1 )]   =  3 3.4  a n d  E k 2  1
[D 2 (k 1 2 |k 2 1 )]   =  1 4.2 .

Alt h o u g h t h e  c h oi c e  of t h e  s e c o n d  e x p eri  m e nt i n  o ur  e x a  m pl e
is  t h e  s a  m e  f or  all  s a  m pl e d  v al u es  of  t h e  pri  m ar y  p ar a  m et er,
i n  g e n er al, t h e  c h oi c e  of t h e  s e c o n d  e x p eri  m e nt  d e p e n ds  u p o n
t h e  v al u e  of  t h e  pri  m ar y  p ar a  m et er,  s o  t h at  t h e  c h oi c e  of  t h e
s e c o n d e x p eri  m e nt c a n v ar y d e p e n di n g o n t h e d et er  mi n e d v al u e
of t h e  pri  m ar y  p ar a  m et er. I n t his  e x a  m pl e, t h e  esti  m ati o n  err or
of  Y 2 (t)  d o  mi n at es t h e f ull  esti  m ati o n  c ost,  si n c e  Y 2 (t)  is  n ot
o bs er v e d  dir e ctl y,  a n d  t h e  esti  m ati o n  of  Y 2 (t)  is  b as e d  o n  its
c orr el ati o n    wit h  Y 1 (t).   T h er ef or e,  k 1 0 i s  l ess  i  m p ort a nt  t h a n
t h e  ot h er  p ar a  m et ers,  si n c e  it  is  c o n diti o n all y  i n d e p e n d e nt  of
Y 2 (t)  gi v e n  Y 1 (t).   O ur  c al c ul ati o n  c o n fir  ms  t his  o bs er v ati o n,
pr ef erri n g t h e esti  m ati o n of  k 1 2 o v er t h at of  k 1 0 .

VIII.    C O  N  C L  U SI  O  N

T h e   m at h e  m ati cs  of  t h e  I  B  R/  M  O  C  U  p ar a di g  m  d e p e n ds  o n
t h e p h ysi c al   m o d el, t h e o p er ati o n al o bj e cti v e, t h e c ost f u n cti o n,
a n d  t h e  o p er at or  f or  m.    A p pli e d  t o  cl assi fi c ati o n,  u n c ert ai nt y
r esi d es  i n  t h e  f e at ur e-l a b el  distri b uti o ns;  a p pli e d  t o    M ar k o v
c h ai ns, it r esi d es i n t h e tr a nsiti o n pr o b a bilit y   m atri x; a n d a p pli e d
t o  diff er e nti al  or  st o c h asti c  diff er e nti al  e q u ati o ns, it r esi d es i n
t h e  p h ysi c al  c o nst a nts  of t h e  e q u ati o ns,  or  p er h a ps  e v e n i n t h e
diff er e nti al o p er at ors t h e  ms el v es.

I n f a ct, t his is a n o v ersi  m pli fi c ati o n. I n t h e c as e of cl assi fi c a-
ti o n, it c o ul d b e t h at t h e si g n als b ei n g cl assi fi e d ar e g e n er at e d vi a
a n S  D E, a n d   w e   wis h t o cl assif y a si g n al b as e d u p o n a s a  m pli n g
of its ti  m e tr aj e ct or y.   T his is  pr e cis el y t h e  sit u ati o n i n  a  st u d y
c o n c er ni n g o pti  m al   B a y esi a n cl assi fi c ati o n of si g n als g e n er at e d
b y  a n  u n c ert ai n  S  D E   m o d el  [ 4 0],  alt h o u g h t h at  st u d y  di d  n ot
c o nsi d er t h e e x p eri  m e nt al d esi g n pr o bl e  m.   We r ais e t his p oi nt t o
e  m p h asi z e t h at u n c ert ai nt y is pr o p a g at e d t hr o u g h t h e   m o d el a n d
c a n   m a nif est its elf i n t h e c h ar a ct eristi cs us e d i n o p er at or d esi g n.
T his   m e a ns t h at, i n   G a ussi a n cl assi fi c ati o n, t h e u n c ert ai nt y cl ass
f or t h e p ar a  m et ers i n d u c es a n u n c ert ai nt y cl ass of   m e a n v e ct ors
a n d  c o v ari a n c e   m atri c es,  a n d i n li n e ar  filt eri n g, t h e  p ar a  m et er
u n c ert ai nt y cl ass i n d u c es a n u n c ert ai nt y cl ass of r a n d o  m-si g n al
pr o c ess es.

A s u btl e,  b ut f u n d a  m e nt al  p oi nt aris es c o n c er ni n g t h e  distri-
b uti o n  of t h e  u n c ert ai nt y  v e ct or. I n t h e  pr es e nt  st u d y,   w e  h a v e
pr o p a g at e d t h e  pri or  distri b uti o n t hr o u g h t h e  S  D E  s o t h at t h e
s a  m e distri b uti o n g o v er ns t h e u n c ert ai nt y of si g n al pr o c ess es. I n
t h e f or  m er cl assi fi c ati o n st u d y [ 4 0], n o ass u  m pti o n   w as   m a d e o n
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t h e distri b uti o n of t h e p ar a  m et er u n c ert ai nt y cl ass a n d it   w as t h e n
ass u  m e d t h at a n or  m al-i n v ers e-   Wis h art distri b uti o n g o v er n e d t h e
m e a n a n d c o v ari a n c e   m atri x  of t h e  u n c ert ai n   G a ussi a n f e at ur es
c o nstr u ct e d b y s a  m pli n g t h e si g n al tr aj e ct ori es.   T his   w as c o n v e-
ni e nt b e c a us e it all o  w e d dir e ct a p pli c ati o n of t h e t h e or y of o pti-
m al   B a y esi a n cl assi fi c ati o n f or   G a ussi a n f e at ur es [ 4 1], t h er e b y
r es ulti n g  i n  a  cl os e d-f or  m  s ol uti o n  f or  t h e  o pti  m al   B a y esi a n
cl assi fi er.   T h e  c o n v e ni e n c e  of t h e  pr e vi o us  ass u  m pti o n  c o  m es
at  a  si g ni fi c a nt  pri c e: if t h er e is  p h ysi c al  k n o  wl e d g e r e g ar di n g
t h e distri b uti o n of t h e u n c ert ai n p ar a  m et ers, it h as b e e n i g n or e d.
T h us,   w e  b eli e v e  t h at  u n c ert ai nt y  pr o p a g ati o n,  as  us e d i n t h e
pr es e nt p a p er is   m or e s o u n d fr o  m a p h ysi c al p ers p e cti v e, e v e n if
it l e a v es  us   wit h n o h o p e  of a c o n v e ni e nt cl os e d-f or  m s ol uti o n.

Alt h o u g h c o  m p ut ati o n al c o  m pl e xit y di d n ot i  m p e d e us i n t h e
pr es e nt  p a p er,  it  c a n  b e c o  m e  a  pr o bl e  m    w h e n  t h er e  is  hi g h
di  m e nsi o n alit y,  es p e ci all y   w h e n t h e  u n c ert ai nt y  cl ass is l ar g e.
M o d el r e d u cti o n  c a n  b e  us e d t o r e d u c e t h e  c o  m p ut ati o ns.  F or
i nst a n c e,  a  r e g ul at or y  n et  w or k    m o d el  c a n  b e  c o  m pr ess e d  b y
eli  mi n ati n g or c o  m bi ni n g n o d es [ 4 2].   M o d el r e d u cti o n r e  m ai ns
a n  i  m p ort a nt  r es e ar c h  t o pi c  fr o  m  a  pr a cti c al  p ers p e cti v e,  a n d
t o  b e  eff e cti v e,  s u c h  r e d u cti o n  s h o ul d  b e    m a d e  i n  a   w a y  t h at
m ai nt ai ns t h e  str u ct ur e   m ost r el e v a nt t o t h e  o bj e cti v e  –   w hi c h
m a k es it a p pli c ati o n  d e p e n d e nt.

Fi n all y,   w e  n ot e t h at   M  O  C  U- b as e d  e x p eri  m e nt al  d esi g n  c a n
b e g e n er ali z e d [ 4 3] i n s u c h a   w a y t h at t h e ori gi n al   M  O  C  U [ 4], as
us e d  h er ei n,  as   w ell  as  b ot h t h e  k n o  wl e d g e  gr a di e nt (  K  G) [ 4 4]
a n d ef fi ci e nt gl o b al o pti  mi z ati o n ( E  G  O) [ 4 5], ar e s p e ci al c as es.

R E F E  R E  N  C E S

[ 1]    T.   K ail at h,  “ L e ct ur es  o n    Wi e n er  a n d   K al  m a n  filt eri n g,”  i n  L e ct ur es  o n
Wi e n er  a n d   K al  m a n   Filt eri n g  .   B erli n,   G er  m a n y:  S pri n g er-  Verl a g,  1 9 8 1,
p p. 1 – 1 4 3.

[ 2]    V.   N.   F o  mi n,  O pti  m al   Filt eri n g:   Vol u  m e  I:   Filt eri n g  of  St o c h asti c   Pr o-
c ess es ,  v ol. 4 5 7.   B erli n,   G er  m a n y:  S pri n g er-  Verl a g, 2 0 1 2, p p. 1 1 1 – 1 1 9.

[ 3]    L.   A.   D alt o n a n d   E.   R.   D o u g h ert y, “I ntri nsi c all y o pti  m al   B a y esi a n r o b ust
filt eri n g,”   I E E E   Tr a ns.  Si g n al    Pr o c ess.,  v ol.  6 2,  n o.  3,  p p.  6 5 7 – 6 7 0,
F e b. 2 0 1 4.

[ 4]    B.-J.    Yo o n,   X.    Qi a n,  a n d   E.   R.   D o u g h ert y,  “  Q u a ntif yi n g  t h e  o bj e cti v e
c ost  of  u n c ert ai nt y i n  c o  m pl e x  d y n a  mi c al  s yst e  ms,”  I E E E  Tr a ns.  Si g n al
Pr o c ess. ,  v ol. 6 1, n o. 9, p p. 2 2 5 6 – 2 2 6 6,   M a y 2 0 1 3.

[ 5]    R.   D e h g h a n n asiri,   X.   Qi a n, a n d   E.   R.   D o u g h ert y, “  O pti  m al e x p eri  m e nt al
d esi g n  i n  t h e  c o nt e xt  of  c a n o ni c al  e x p a nsi o ns,”   I E T  Si g n al    Pr o c ess.,
v ol. 1 1, n o. 8, p p. 9 4 2 – 9 5 1, 2 0 1 7.

[ 6]    X.   Qi a n  a n d   E.   R.   D o u g h ert y,  “  B a y esi a n r e gr essi o n   wit h  n et  w or k  pri or:
O pti  m al    B a y esi a n  filt eri n g  p ers p e cti v e,”   I E E E  Tr a ns.  Si g n al   Pr o c ess.,
v ol. 6 4, n o. 2 3, p p. 6 2 4 3 – 6 2 5 3,   D e c. 2 0 1 6.

[ 7]    E.   R.   D o u g h ert y, O pti  m al Si g n al   Pr o c essi n g   U n d er   U n c ert ai nt y  .   B elli n g-
h a  m,   W A,   U S  A:  S PI E, 2 0 1 8.

[ 8]    V. P.   K u z n ets o v, “ St a bl e d et e cti o n   w h e n t h e si g n al a n d s p e ctr u  m of n or  m al
n ois e  ar e  i n a c c ur at el y  k n o  w n,”   Tel e c o  m  m.   R a di o   E n g. ,  v ol.  3 0,  n o.  3,
p p. 5 8 – 6 4, 1 9 7 6.

[ 9]   S.   A.   K ass a  m  a n d   T.   L.   Li  m,  “  R o b ust    Wi e n er  filt ers,”  J.   Fr a n kli n  I nst. ,
v ol. 3 0 4, n o. 4- 5, p p. 1 7 1 – 1 8 5, 1 9 7 7.

[ 1 0]    H. P o or, “  O n r o b ust   Wi e n er filt eri n g,” I E E E Tr a ns.  A ut o  m.  C o ntr ol, v ol. 2 5,
n o. 3, p p. 5 3 1 – 5 3 6, J u n. 1 9 8 0.

[ 1 1]    K.   Vast ol a a n d   H. P o or, “  R o b ust   Wi e n er-  K ol  m o g or o v t h e or y,” I E E E Tr a ns.
I nf.  T h e or y, v ol. 3 0, n o. 2, p p. 3 1 6 – 3 2 7,   M ar. 1 9 8 4.

[ 1 2]    A.    M.   Gri g or y a n  a n d   E.   R.   D o u g h ert y,  “  D esi g n  a n d  a n al ysis  of  r o b ust
bi n ar y  filt ers i n t h e c o nt e xt of a pri or distri b uti o n f or t h e st at es of n at ur e,”
J.   M at h. I  m a g.  Vis. ,  v ol. 1 1, n o. 3, p p. 2 3 9 – 2 5 4, 1 9 9 9.

[ 1 3]     M.   Z or zi,  “  O n t h e r o b ust n ess  of t h e   B a y es  a n d    Wi e n er  esti  m at ors  u n d er
m o d el u n c ert ai nt y,”   A ut o  m ati c a , v ol. 8 3, p p. 1 3 3 – 1 4 0, 2 0 1 7.

[ 1 4]    Y.   C.   El d ar  a n d   N.   M er h a v,  “  Mi ni  m a x   M S E-r ati o  esti  m ati o n   wit h si g n al
c o v ari a n c e  u n c ert ai nti es,”  I E E E  Tr a ns.  Si g n al   Pr o c ess.,  v ol.  5 3,  n o.  4,
p p. 1 3 3 5 – 1 3 4 7,   A pr. 2 0 0 5.

[ 1 5]    Y.   C.   El d ar,  “  Mi ni  m a x  esti  m ati o n  of  d et er  mi nisti c  p ar a  m et ers i n  li n e ar
m o d els   wit h a r a n d o  m   m o d el   m atri x,”   I E E E Tr a ns. Si g n al  Pr o c ess., v ol. 5 4,
n o. 2, p p. 6 0 1 – 6 1 2,  F e b. 2 0 0 6.

[ 1 6]    A.  S a ni a n d   A.   Vos o u g hi, “  O n distri b ut e d li n e ar esti  m ati o n   wit h o bs er v a-
ti o n   m o d el  u n c ert ai nti es,” I E E E  Tr a ns.  Si g n al   Pr o c ess.,  v ol.  6 6,  n o.  1 2,
p p. 3 2 1 2 – 3 2 2 7, J u n. 2 0 1 8.

[ 1 7]    R.   M e hr a, “  O n t h e i d e nti fi c ati o n  of  v ari a n c es a n d a d a pti v e   K al  m a n  filt er-
i n g,” I E E E  Tr a ns.   A ut o  m.   C o ntr ol, v ol. 1 5, n o. 2, p p. 1 7 5 – 1 8 4,   A pr. 1 9 7 0.

[ 1 8]   S. S ar k k a a n d   A.   N u  m  m e n  m a a, “  R e c ursi v e n ois e a d a pti v e   K al  m a n filt eri n g
b y  v ari ati o n al   B a y esi a n  a p pr o xi  m ati o ns,”   I E E E  Tr a ns.   A ut o  m.   C o ntr ol,
v ol. 5 4, n o. 3, p p. 5 9 6 – 6 0 0,   M ar. 2 0 0 9.

[ 1 9]    O.   K.   K  w o n,   W.   H.   K  w o n, a n d   K.  S.   L e e, “ FI  R  filt ers a n d r e c ursi v e f or  ms
f or dis cr et e-ti  m e st at e-s p a c e   m o d els,” A ut o  m ati c a , v ol. 2 5, n o. 5, p p. 7 1 5 –
7 2 8, 1 9 8 9.

[ 2 0]    Y.  S.  S h  m ali y,  “ Li n e ar  o pti  m al  FI  R  esti  m ati o n  of  dis cr et e ti  m e-i n v ari a nt
st at e-s p a c e   m o d els,” I E E E Tr a ns. Si g n al  Pr o c ess., v ol. 5 8, n o. 6, p p. 3 0 8 6 –
3 0 9 6, J u n. 2 0 1 0.

[ 2 1]    A.    H.  S a y e d,  “  A  fr a  m e  w or k  f or  st at e-s p a c e  esti  m ati o n    wit h  u n c ert ai n
m o d els,”   I E E E  Tr a ns.   A ut o  m a.   C o ntr ol,  v ol.  4 6,  n o.  7,  p p.  9 9 8 – 1 0 1 3,
J u n. 2 0 0 1.

[ 2 2]    T.    Z h o u,   “ S e nsiti vit y   p e n ali z ati o n   b as e d  r o b ust   st at e   esti  m ati o n  f or
u n c ert ai n  li n e ar  s yst e  ms,”  I E E E  Tr a ns.   A ut o  m.   C o ntr ol ,  v ol.  5 5,  n o.  4,
p p. 1 0 1 8 – 1 0 2 4,   A pr. 2 0 1 0.

[ 2 3]    T.   Z h o u,  “  R o b ust  r e c ursi v e  st at e  esti  m ati o n   wit h  r a n d o  m    m e as ur e  m e nt
dr o p pi n gs,”   I E E E  Tr a ns.   A ut o  m.   C o ntr ol,  v ol.  6 1,  n o.  1,  p p.  1 5 6 – 1 7 1,
J a n. 2 0 1 6.

[ 2 4]    R.   D e h g h a n n asiri,    M.  S.   Esf a h a ni,  a n d   E.   R.   D o u g h ert y,  “I ntri nsi c all y
B a y esi a n  r o b ust   K al  m a n  filt er:   A n i n n o v ati o n  pr o c ess  a p pr o a c h,”   I E E E
Tr a ns. Si g n al   Pr o c ess. ,  v ol. 6 5, n o. 1 0, p p. 2 5 3 1 – 2 5 4 6,   M a y 2 0 1 7.

[ 2 5]    R.   D e h g h a n n asiri,   X.   Qi a n, a n d   E.   D o u g h ert y, “  B a y esi a n r o b ust   K al  m a n
s  m o ot h er i n t h e  pr es e n c e  of  u n k n o  w n  n ois e st atisti cs,”  E  U R A SI P  J.   A d v.
Si g n al   Pr o c ess. ,  v ol. 5 5, p p. 1 9 8 2 – 1 9 9 6, 2 0 1 8.

[ 2 6]    R.   D e h g h a n n asiri,  B.-J.   Yo o n, a n d  E.  R.   D o u g h ert y, “  O pti  m al e x p eri  m e nt al
d esi g n  f or  g e n e  r e g ul at or y  n et  w or ks  i n  t h e  pr es e n c e  of  u n c ert ai nt y,”
I E E E/ A C  M  Tr a ns.   C o  m p ut.   Bi ol.   Bi oi nf.,  v ol.  1 2,  n o.  4,  p p.  9 3 8 – 9 5 0,
J ul./  A u g. 2 0 1 5.

[ 2 7]    D.   N.   M o hs e ni z a d e h,   R.   D e h g h a n n asiri,  a n d   E.   R.   D o u g h ert y,  “  O pti  m al
o bj e cti v e- b as e d  e x p eri  m e nt al  d esi g n  f or  u n c ert ai n  d y n a  mi c al  g e n e  n et-
w or ks   wit h e x p eri  m e nt al err or,”   I E E E/ A C  M  Tr a ns.   C o  m p ut.   Bi ol.   Bi oi nf.,
v ol. 1 5, n o. 1, p p. 2 1 8 – 2 3 0, J a n./ F e b. 2 0 1 8.

[ 2 8]    H.   Kir c h a u er,  F.   Hl a  w ats c h, a n d   W.   K o z e k, “ Ti  m e-fr e q u e n c y f or  m ul ati o n
a n d  d esi g n  of  n o nst ati o n ar y    Wi e n er  filt ers,” i n  Pr o c.  I nt.   C o nf.   A c o ust.,
S p e e c h, Si g n al   Pr o c ess. ,  1 9 9 5, v ol. 3, p p. 1 5 4 9 – 1 5 5 2.

[ 2 9]    Y. S u gi y a  m a, “  A n al g orit h  m f or s ol vi n g dis cr et e-ti  m e   Wi e n er-  H o pf e q u a-
ti o ns  b as e d  u p o n   E u cli d’s  al g orit h  m,” I E E E  Tr a ns. I nf.  T h e or y,  v ol.  3 2,
n o. 3, p p. 3 9 4 – 4 0 9,   M a y 1 9 8 6.

[ 3 0]     M.   M orii,   M.   K as a h ar a, a n d   D.  L.   W hiti n g, “ Ef fi ci e nt bit-s eri al   m ulti pli c a-
ti o n a n d t h e  dis cr et e-ti  m e   Wi e n er-  H o pf e q u ati o n  o v er  fi nit e  fi el ds,” I E E E
Tr a ns. I nf.  T h e or y , v ol. 3 5, n o. 6, p p. 1 1 7 7 – 1 1 8 3,   N o v. 1 9 8 9.

[ 3 1]   S.    M.   K a y,  F u n d a  m e nt als  of  St atisti c al  Si g n al   Pr o c essi n g .   E n gl e  w o o d
Cliffs,   NJ,   U S  A:  Pr e nti c e-  H all, 1 9 9 3.

[ 3 2]   F.-  R.    Ya n  et  al. ,  “ P ar a  m et er  esti  m ati o n  of  p o p ul ati o n  p h ar  m a c o ki n eti c
m o d els   wit h st o c h asti c  diff er e nti al  e q u ati o ns: I  m pl e  m e nt ati o n  of  a n esti-
m ati o n al g orit h  m,”   J.   Pr o b a bilit y St atist. , v ol. 2 0 1 4, p p. 4 – 5, 2 0 1 4.

[ 3 3]    C.   A.   Br a u  m a n n, “It ô  v ers us  Str at o n o vi c h c al c ul us i n r a n d o  m  p o p ul ati o n
gr o  wt h,”  M at h.   Bi os ci e n c es  ,  v ol. 2 0 6, n o. 1, p p. 8 1 – 1 0 7, 2 0 0 7.

[ 3 4]    A.    Gr a y,    D.    Gr e e n h al g h,    L.    H u,    X.    M a o,  a n d  J.   P a n,  “  A  st o c h asti c
diff er e nti al e q u ati o n  SI S e pi d e  mi c   m o d el,”  SI A  M J.   A p pl.   M at h. ,  v ol.  7 1,
n o. 3, p p. 8 7 6 – 9 0 2, 2 0 1 1.

[ 3 5]   P.   M alli a vi n a n d   A.   T h al  m ai er, St o c h asti c   C al c ul us of   Vari ati o ns i n   M at h-
e  m ati c al   Fi n a n c e .   B erli n,   G er  m a n y:  S pri n g er-  Verl a g, 2 0 0 6.

[ 3 6]    L.   Ar n ol d a n d   A.   V.  B al a kris h n a n, “ St o c h asti c diff er e nti al e q u ati o ns t h e or y
a n d a p pli c ati o ns,”  B ull.   A  m er.   M at h. S o c , v ol. 8 1, p p. 8 3 7 – 8 4 0, 1 9 7 5.

[ 3 7]   P.   E.   Kl o e d e n a n d   E. Pl at e n, N u  m eri c al S ol uti o n of St o c h asti c   Diff er e nti al
E q u ati o ns , v ol. 2 3.   B erli n,   G er  m a n y:  S pri n g er-  Verl a g, 2 0 1 3.

[ 3 8]    D.   C ol es  a n d   M.  Pr a n g e,  “ T o  w ar d  ef fi ci e nt  c o  m p ut ati o n  of t h e  e x p e ct e d
r el ati v e e ntr o p y f or n o nli n e ar e x p eri  m e nt al d esi g n,” I n v ers e  Pr o bl e  ms,  v ol.
2 8, n o. 5, 2 0 1 2,   Art. n o. 0 5 5 0 1 9.

[ 3 9]    L.  S h ar g el,   B.   A n dr e  w,  a n d  S.    W u- P o n g, A p pli e d   Bi o p h ar  m a c e uti cs  a n d
P h ar  m a c o ki n eti cs .   N e  w   Yor k,   N  Y,   U S  A:   A p pl et o n   &   L a n g e  St a  mf or d,
1 9 9 9.

[ 4 0]    A.   Z oll a n v ari  a n d   E.   R.   D o u g h ert y,  “I n c or p or ati n g  pri or  k n o  wl e d g e i n-
d u c e d fr o  m st o c h asti c diff er e nti al e q u ati o ns i n t h e cl assi fi c ati o n of st o c h as-
ti c o bs er v ati o ns,” E  U R A SI P J.  Bi oi nf. S yst.  Bi ol. , v ol. 2 0 1 6, n o. 1, p p. 1 – 1 4,
2 0 1 6.

A ut h ori z e d li c e n s e d u s e li mit e d t o: B y u n g- J u n Y o o n. D o w nl o a d e d o n S e pt e m b er 1 0, 2 0 2 0 at 2 0: 2 0: 1 2 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 



Z  H  A  O  et al. :   M  O  D E L-  B  A S E  D   R  O  B  U S T  FI L T E  RI  N  G   A  N  D   E  X P E  RI  M E  N T A L   D E SI  G  N  F  O  R  S T  O  C  H  A S TI  C   DI F F E  R E  N TI  A L   E  Q  U  A TI  O  N  S  Y S T E  M S 3 8 5 9

[ 4 1]    L.   A.   D alt o n  a n d   E.   R.   D o u g h ert y,  “  O pti  m al  cl assi fi ers   wit h   mi ni  m u  m
e x p e ct e d err or   wit hi n a   B a y esi a n fr a  m e  w or k- P art I:   Dis cr et e a n d   G a ussi a n
m o d els,”   P att er n   R e c o g nit. , v ol. 4 6, n o. 5, p p. 1 3 0 1 – 1 3 1 4, 2 0 1 3.

[ 4 2]    R.   D e h g h a n n asiri,   B.-J.   Yo o n, a n d   E.   R.   D o u g h ert y, “ Ef fi ci e nt e x p eri  m e n-
t al  d esi g n f or  u n c ert ai nt y r e d u cti o n i n  g e n e r e g ul at or y  n et  w or ks,”  B  M  C
Bi oi nf. , v ol. 1 6, n o. 1 3, p p. 1 – 1 8, 2 0 1 5.

[ 4 3]   S.    B ol u ki,    X.    Qi a n,  a n d    E.    R.    D o u g h ert y,  “ E x p eri  m e nt al  d esi g n  vi a
g e n er ali z e d    m e a n  o bj e cti v e  c ost  of  u n c ert ai nt y,”   I E E E   A c c ess,   v ol.   7,
p p. 2 2 2 3 – 2 2 3 0, 2 0 1 8.

[ 4 4]   P. I. Fr a zi er,   W.   B. P o  w ell, a n d S.   D a y a ni k, “  A k n o  wl e d g e- gr a di e nt p oli c y
f or  s e q u e nti al i nf or  m ati o n  c oll e cti o n,”  SI A  M  J.   C o ntr ol   O pti  m. ,  v ol.  4 7,
n o. 5, p p. 2 4 1 0 – 2 4 3 9, 2 0 0 8.

[ 4 5]    D.   R. J o n es,   M. S c h o nl a u, a n d   W. J.   Wel c h, “ Ef fi ci e nt gl o b al o pti  mi z ati o n
of  e x p e nsi v e  bl a c k- b o x  f u n cti o ns,”   J.    Gl o b al    O pti  m. ,  v ol.  1 3,  n o.  4,
p p. 4 5 5 – 4 9 2, 1 9 9 8.

G u a n g   Z h a o   r e c ei v e d t h e   B. S. d e gr e e i n   m e c h a ni c al
e n gi n e eri n g fr o  m t h e   H ar bi n I nstit ut e of   Te c h n ol o g y,
H ar bi n,   C hi n a, i n  2 0 1 1, a n d t h e   M. S.  d e gr e e i n el e c-
tri c al  e n gi n e eri n g  fr o  m  P e ki n g   U ni v ersit y,   B eiji n g,
C hi n a i n  2 0 1 5.   H e is  c urr e ntl y   w or ki n g t o  w ar d t h e
P h.  D.  d e gr e e  i n  t h e    D e p art  m e nt  of    El e ctri c al  a n d
C o  m p ut er   E n gi n e eri n g,   Te x as   A  &  M   U ni v ersit y,   C ol-
l e g e  St ati o n,   T  X,   U S  A.   His   m ai n  r es e ar c h i nt er ests
ar e  B a y esi a n o pti  mi z ati o n a n d  B a y esi a n e x p eri  m e nt al
d esi g n.

Xi a o ni n g   Qi a n   ( S e ni or   M e  m b er, I E E E) r e c ei v e d t h e
P h.  D. d e gr e e i n el e ctri c al e n gi n e eri n g fr o  m   Yal e   U ni-
v ersit y,    N e  w    H a v e n,   C T,    U S  A.    H e  is  c urr e ntl y  a n
Ass o ci at e  Pr of ess or    wit h  t h e    D e p art  m e nt  of   El e c-
tri c al  a n d   C o  m p ut er   E n gi n e eri n g,   Te x as   A  &  M   U ni-
v ersit y,   C oll e g e  St ati o n,   T  X,   U S  A.   H e  is  af fili at e d
wit h  t h e   T E E S-  A gri Lif e   C e nt er  f or   Bi oi nf or  m ati cs
&    G e n o  mi c   S yst e  ms    E n gi n e eri n g  a n d  t h e    C e nt er
f or   Tr a nsl ati o n al   E n vir o n  m e nt al   H e alt h   R es e ar c h  at
Te x as   A  &  M   U ni v ersit y.   His r e c e nt h o n ors i n cl u d e t h e
N ati o n al  S ci e n c e  F o u n d ati o n   C  A  R E E  R   A w ar d,  t h e

Te x as    A  &  M    E n gi n e eri n g    E x p eri  m e nt   St ati o n  ( T E E S)   F a c ult y   F ell o  w,  a n d
t h e   M o nt a g u e-  C e nt er f or   Te a c hi n g   E x c ell e n c e  S c h ol ar at   Te x as   A  &  M   U ni v er-
sit y.   His r es e ar c h i nt er ests i n cl u d e   m a c hi n e l e ar ni n g a n d   B a y esi a n c o  m p ut ati o n
a n d  t h eir  a p pli c ati o ns  i n    m at eri als  s ci e n c e,  c o  m p ut ati o n al  n et  w or k  bi ol o g y,
g e n o  mi c si g n al pr o c essi n g, a n d bi o  m e di c al si g n al a n d i  m a g e a n al ysis.

B y u n g- J u n   Yo o n   ( S e ni or    M e  m b er,  I E E E)  r e c ei v e d
t h e    B. S. E.  (s u  m  m a  c u  m  l a u d e )  d e gr e e  fr o  m  S e o ul
N ati o n al   U ni v ersit y,  S e o ul,   K or e a, i n  1 9 9 8,  a n d t h e
M. S. a n d  P h.  D.  d e gr e es fr o  m t h e   C alif or ni a I nstit ut e
of   Te c h n ol o g y,  P as a d e n a, i n  2 0 0 2 a n d  2 0 0 7, r es p e c-
ti v el y,  all  i n  el e ctri c al  e n gi n e eri n g.    H e  j oi n e d  t h e
D e p art  m e nt of   El e ctri c al a n d   C o  m p ut er   E n gi n e eri n g,
Te x as    A  &  M    U ni v ersit y,    C oll e g e  St ati o n,  i n  2 0 0 8,
w h er e  h e is  c urr e ntl y  a n   Ass o ci at e  Pr of ess or.  Si n c e
2 0 1 9,  h e  h ol ds  a  j oi nt  a p p oi nt  m e nt  at   Br o o k h a v e n
N ati o n al   L a b or at or y,   U pt o n,   N  Y,   w h er e h e is a S ci e n-

tist i n   C o  m p ut ati o n al  S ci e n c e I niti ati v e.   His r e c e nt h o n ors i n cl u d e t h e   N ati o n al
S ci e n c e  F o u n d ati o n (  N S F)   C  A  R E E  R   A w ar d, t h e   B est  P a p er   A w ar d  at t h e  9t h
Asi a  P a ci fi c    Bi oi nf or  m ati cs    C o nf er e n c e  (  A P  B  C),  t h e    B est  P a p er    A w ar d  at
t h e  1 2t h   A n n u al    M  C  BI  O S   C o nf er e n c e,  a n d t h e  S L  A T E   Te a c hi n g   E x c ell e n c e
A w ar d  fr o  m t h e   Te x as   A  &  M   U ni v ersit y  S yst e  m.   His   m ai n  r es e ar c h i nt er ests
ar e i n si g n al pr o c essi n g,   m a c hi n e l e ar ni n g, c o  m p ut ati o n al n et  w or k bi ol o g y, a n d
bi oi nf or  m ati cs.

F r a n cis   J.    Al e x a n d e r   r e c ei v e d   P h.  D.   d e gr e e  i n
P h ysi cs  fr o  m   R ut g ers   U ni v ersit y  a n d  a   B. S.  d e gr e e
i n  p h ysi cs  a n d    m at h e  m ati cs  fr o  m    T h e    O hi o  St at e
U ni v ersit y.   H e  is  t h e   D e p ut y   Dir e ct or  of  t h e   C o  m-
p ut ati o n al  S ci e n c e I niti ati v e  at t h e   U. S.   D e p art  m e nt
of   E n er g y (  D  O E)’s   Br o o k h a v e n   N ati o n al   L a b or at or y.
Pri or t o t h at   Al e x a n d er   w as  at   L os   Al a  m os   N ati o n al
L a b or at or y,   w h er e h e   w as t h e a cti n g   Di visi o n   L e a d er
of t h e   C o  m p ut er,   C o  m p ut ati o n al, a n d  St atisti c al  S ci-
e n c es (  C  C S)   Di visi o n.   D uri n g his   m or e t h a n 2 0 y e ars
at   L os   Al a  m os,  h e  h el d  s e v er al l e a d ers hi p r ol es, i n-

cl u di n g  as   D e p ut y   L e a d er  of t h e   C  C S   Di visi o ns  I nf or  m ati o n  S ci e n c es   Gr o u p
a n d  l e a d er  of  t h e  I nf or  m ati o n  S ci e n c e  a n d   Te c h n ol o g y  I nstit ut e.    Al e x a n d er
first j oi n e d   L os   Al a  m os i n  1 9 9 1 as a  P ost d o ct or al   R es e ar c h er at t h e   C e nt er f or
N o nli n e ar  St u di es.   H e r et ur n e d t o   L os   Al a  m os i n 1 9 9 8 aft er d oi n g p ost d o ct or al
w or k  at  t h e  I nstit ut e  f or  S ci e nti fi c   C o  m p uti n g   R es e ar c h  at    D  O Es   L a  wr e n c e
Li v er  m or e   N ati o n al   L a b or at or y  a n d s er vi n g  as  a   R es e ar c h   Assist a nt  Pr of ess or
at   B ost o n   U ni v ersit ys   C e nt er f or   C o  m p ut ati o n al  S ci e n c e.   His  c urr e nt r es e ar c h
i nt er ests  i n cl u d e  o pti  m al  d esi g n  of  e x p eri  m e nts,  c o  m p ut ati o n al  p h ysi cs,  a n d
n o n e q uili bri u  m  st atisti c al   m e c h a ni cs.   H e  h as l e d   m a n y  r es e ar c h  pr oj e cts  a n d
h as p u blis h e d   m or e t h a n 5 0 p a p ers i n p e er r e vi e  w e d j o ur n als.

E d  w a r d    R.    D o u g h e rt y   ( F ell o  w,   I E E E)  r e c ei v e d
P h.  D.   d e gr e e  i n    m at h e  m ati cs  fr o  m    R ut g ers    U ni-
v ersit y  a n d  a n    M. S.  d e gr e e  i n    C o  m p ut er   S ci e n c e
fr o  m  St e v e ns I nstit ut e  of   Te c h n ol o g y,  a n d  h as  b e e n
a  w ar d e d t h e   D o ct or   H o n oris   C a us a  b y t h e   Ta  m p er e
U ni v ersit y of   Te c h n ol o g y.   H e is a   Disti n g uis h e d Pr o-
f ess or i n t h e   D e p art  m e nt  of   El e ctri c al a n d   C o  m p ut er
E n gi n e eri n g at  Te x as   A  &  M   U ni v ersit y i n  C oll e g e St a-
ti o n,   T  X,   w h er e h e h ol ds t h e   R o b ert   M.   K e n n e d y ‘ 2 6
C h air i n  El e ctri c al  E n gi n e eri n g.   H e is a f ell o  w of b ot h
I E E E  a n d  S PI E,  h as  r e c ei v e d  t h e  S PI E  Pr esi d e nt’s

A w ar d, a n d s er v e d as t h e e dit or of t h e S PI E/I S  & T J o ur n al of  El e ctr o ni c I  m a gi n g.
Pr of.   D o u g h ert y is a ut h or of 1 9 b o o ks a n d a ut h or of   m or e t h a n 3 5 0 j o ur n al p a p ers.

A ut h ori z e d li c e n s e d u s e li mit e d t o: B y u n g- J u n Y o o n. D o w nl o a d e d o n S e pt e m b er 1 0, 2 0 2 0 at 2 0: 2 0: 1 2 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 


