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Abstract—We derive robust linear filtering and experimen-
tal design for systems governed by stochastic differential equa-
tions (SDEs) under model uncertainty. Given a model of signal and
ohservation processes, an optimal linear filter is found by solving
the Wiener-Hopf equation; with model uncertainty, it is desirable
to derive a corresponding robust filter. This article assumes that
the physical process is modeled via a SDE system with unknown
parameters; the signals are degraded by blurring and additive
noise. Due to time-dependent stochasticity in SDE systems, the
system is nonstationary: and the resulting Wiener-Hopf equation
is difficult to solve in closed form. Hence, we discretize the problem
to obtain a matrix system to carry out the overall procedure,
We further derive an intrinsically Bayesian robust (IBR) linear
filter together with an optimal experimental design framework
to determine the importance of SDE parameter(s). We apply the
theory to an SDE-based pharmacokinetic two-compartment model
to estimate drog concentration levels.

Index  Terms—Robust  filtering,  stochastic  differential
equation (SDE), model vncertainty, mean objective cost of
uncertainty (MOCU), optimal experimental design (OED).

I. INTRODUCTION

T IS common practice in signal processing to begin with a

stochastic-process model (signal plus noise), a covariance
{or power spectra) model, or a state-observation model, as with
Kalman filtering. However, in a physical context, the signal
model may be derived from a physical model, which can be
a parameterized mathematical system. Hence, the properties of
the signal, and of the resulting filter, depend on the physical
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maodel, and the signal parameters are expressed in terms of the
parameters of the physical model. If there is uncertainty with
regard to some parameters in the physical model, this uncertainty
is propagated to the signal model, for instance, uncertainty in
the covariance matrix. The key factor for this paper is that, if the
uncertainty in the physical model arises trom lack of scientific
knowledge and the uncertainty is characterized by a prior dis-
tribution governing the uncertain {random) parameters, thereby
characterizing our scientific understanding of the uncertainty,
then that prior distribution continues to govern the uncertain
parameters in the signal model. Tn summary, both the signal
maodel and its uncertainty are dictated by the physical model,
and not hypothesized independently.

We focus on optimally filtering signals generated by stochas-
lic differential equations (SDEs) when some parameters of the
SDEs are uncertain. Given an SDE, the desired {random) signal
satisfies the SDE and is derived from it. lts parameters are from
the SDE, and to the extent that the latter ones are uncertain, the
signal is uncertain.

We apply intrinsically optimal Bayesian (IBR) filtering to the
signal. An IBR filter is optimal relative to both the standard
mean-square-error (MSE) for linear filtering (which leads to
the Wiener-Hopf integral equation [1], [2]) and the uncertainty,
that is, the prior distribution on the parameters of the SDE.
With mode] uncertainty, the ordinary Wiener-Hopf equation is
replaced by the effective Wiener-Hopf equation, which incor-
porates the expectation of the correlation functions across the
uncertainty class.

When originally applied in [3], stationarity was assumed,
thereby leading to the IBR Wiener filter expressed in terms
of effective power spectra. Although a general continuous-time
non-stationary effective Wiener-Hopf equation is also presented
in [3], methods of solving non-stationary setups are not in
discussed. Here, because the signal is nonstationary due to the
SDE model in which we are operating, an IBR. linear filter will
have to be derived directly from the Wiener-Hopfl equation,
which must be done numerically. Ditferent approaches have
been proposed to approximate the nonstationary optimal linear
filter. Here we discretize the effective Wiener-Hopfl integral
equation Lo obtain an approximate solution. Note that since there
are no new observations, there is no state-observation pair and
recursive filtering does not apply.

An IBR filter is robust in the sense that it performs best on
average across the uncertainty class; however, it is not optimal
relative to the true model, Since the true model is unknown, we
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quantify the cost of uncertainty relative to the MSE by averaging
the loss of performance across the uncertainty class. The mean
objective cost of uncertainty (IMOCU) is the average increase
in error across the uncertainty class arising from using an [IBR
filter rather than individual optimal filters for each model in
the uncertainty class [4]. The MOCU provides a cost of the
uncertainty relative to the objective. A key aspect of the work
is to apply MOCU-based optimal experimental design [5] in
the framework of signal models derived from physical models:
determine the unknown parameter in the SDE physical system
model whose experimental assessment oplimally reduces the
expected (residual) MOCU when the obtained parameter value is
put into the mode] and a new IBR filter is derived. The procedure
can be done iteratively to yield sequential experimental design.
We would like to emphasize that here we have two types of data.
One is the observations of the signals generated from the SDE
model, which we aim to estimate using our IBR. filter; the other
is the experimental assessments of the parameters in the SDE
model, which help reduce the model uncertainty and MOCU by
experimental design.

The general idea is to tie physical modeling, optimal signal
processing, and experimental design (here in the SDE frame-
work). We will demonsirate aspects of the procedure via a
synthetic example. Then we will apply it to an SDE-based
pharmacokinetic iwo-compartment model that differentiates the
body into a central compartment (plasma) and a peripheral com-
partment (tissues), and describes the relationship between the
drug concentrations in the central and peripheral compartments,
and the measurement of the drug concentration in the central

compartment.

II. BACKGROUND

In this section, we briefly review the background for IBR
operators and optimal experimental design in the IBR context.

A. IBR Filtering

Optimal operator design involves a mathematical model for
the physical system, a class of operators, and an optimization
problem defined by a cost function:

Yops = ATE g:}% Cla), (1)

where JF is the operator class and () is the cost of applying an
operator 1. With model uncertainty, the true model is assumed
to belong to an uncerfainiy class of models parameterized by a
vector | € ©. We define an infrinsically Bayesian robust (IBR)
operator by

Piin = arg min Ee [Cp(¥)], (2)
yeF

where each ¢ € 8 commesponds to a model and the prior proba-
bility distribution w(#) quantifies our prior knowledge regarding
the physical system. Note that the expectation is with respect
to w(f) on the uncertainty class © and Cjy(s’) denotes the
corresponding cost of applying + to the model & [3], [4]. If there
is no prior knowledge beyond the uncertainty class itself, then
the prior can be taken to be uniform and «(#) is noninformative.
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An IBR operator is robust in the sense that on average it performs
well over the uncertainty class 9.

When there is a data sample S, the prior can be updated to
a posterior distribution 7* () = w(#|S), and (2) then defines
an optimal Bayesian operator (OBO) 15'8&0 6], [7]. An IBR
operator is an OBO with § = &, namely, when there is no data
but only prior knowledge constraining the model § € €.

In the signal filtering problem, the operators mentioned
above are just filters. Signal filtering involves a joint random
process (X(#),Y(s)), t T,5s < S, and optimal filtering in-
volves estimating the signal Y(s) at time s via a filler o
given observations {X (¢)}eer. A filter ¢ € F is a mapping
on the space & of possible observed signals and a cost func-
tion takes the form C(Y(s), Y (2)), with ¥ () = (X )(s).
For fixed =< 5, an optimal filter is defined by (1) with
Clap) = C(Y (8), (X )(=)). With uncertainty, there is an un-
certainty class {{(XNa(t), Ya(s)),t € T,s € 5,6 £ ©}. AnIBR
filter, or optimal Bayesian filter, is defined by (2) with Ca(+) =
ColYo(s), v(Xg)(s)) [3], [6].

Finding IBR filters involves developing a theory by which (2)
can be solved — in a similar way as (1) is solved except that the
effective characteristics pertaining to the full uncertainty class
are used rather than the characteristics of a single signal model.
An observation-signal pair (X (2), Y (s)) is solvable under the
function class J and cost ' if there exisis a solution to (1)
under the processes. An observation-signal pair (X g(t), Ya(s))
is referred to as an effective process under the function class JF,
uncertainty class 8, and costs C' and Cy if for all & = F,

Ea[Ca(Yo(s), w(Xo)(s))] = C(Ye(s), w(Xe)(s)).  (3)

If there exists a solvable effective process (Xa(t), Ya(s)) with
the optimal filter v'g, then /i, = v [3].

Robust filter design goes back to the late 1970s, with robust
Wiener filtering involving minimax optimality in regard to un-
certain power spectra [8]-[11]. Robust design was extended to
nonlinear filters and placed into a Bayesian framework by as-
suming a prior probability distribution governing the uncertainty
class, the aim being to find a filter with minimal expected error
across the uncertainty class [12]. IBR filters are fully optimal
under this framework.

Other robust filters include a minimax estimator (T-robust)
associated with r-divergence space [13], a minimax estimator
under covariance uncertainty with the given eigenvector ma-
trix and bounded eigenvalues [14], a minimax estimator with
an uncertain model matrix [15], and a distributed estimation
formulation with model uncertainties [16].

Although we are not using recursive filters, for the sake of
completeness we mention some robust Kalman filters. Adaptive
Kalman filters simultaneously estimate the noise covariances
along with the state estimation [17], [18]. Finite-impulse-
response analogues have also been proposed [19], [20]. A reg-
ularized least-squares framework has been employed in which
unknown parameters embody the deviation of the model param-
eters from their nominal values [21]. Another approach penalizes
sensitivity of estimation relative to modeling error [22]. It has
also been extended to the situation in which the observation
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can be randomly lost [23]. Last but not least, robust Kalman
filtering has been addressed in the IBR framework [24], [25].

B. Experimental Design

While an IBR operator is optimal over the uncertainty class,
it is likely to be suboptimal relative to the true model. This
performance loss is the cost of uncertainty. For any # = 8 and
operator family F, the objective cost of uncertainty relative to ¢
is Ca(thihr) — Calvba). The mean objective cost of uncertainty
(MOCU) [4] is the expectation of this cost over all possible
models:

Mz(8) = Eo[Coltinr) — Calva)]. 4

While we have defined MOCU for an IBR. operator relative to the
prior, it can also be defined for an OBO relative to the posterior.

MOCU is used to choose experiments to optimally reduce
the model uncertainty relevant to the operational objective.
For example, given & experiments T4, ..., Ty, where experi-
ment T; exactly determines the uncertain parameter &, in # =
(#1, 02, ..., B ), the issue for experimental design is which exper-
iment to conduct first. Let #6; = #|(6; = #;) be the conditional
uncertainty vecior composed of all uncertain parameters other
than #; with 8; = 6,. Of; = {6|6, : # € B} is the reduced
uncertainty class given ; = ;. The IBR operator for ©|6; is
denoted :.!:ﬁ'_-l'i"t and is called the reduced IBR operator relative to
&! .

If the experiment T; obtains the model parameter value 6;,
then the remaining MOCU given 8; = 8, is

7 1 |
M#(810:) = Eays, [Cop, (Vi) — Cop, (Yop)ls  (5)
where the expectation is relative to the conditional distribution
w(6]6;). The remaining MOCU is the MOCU for ¢ 1p; relative
to elﬁi.
Treating the remaining MOCU as a function of #; and tak-
ing the expectation with respect to «(f};) yields the expected
remaining MOCU, given parameter #;,

Ey, [M5(©16;)] = Eq,[Eoyp, [Core, (¥inin ) — Coro. (er0.)]l;
(6)
which is called the experimental design value and denoted by
D(#;). An optimal experiment T;. is defined by

i = arg min D) = arg min R({#,), (7

i=1,...k i=1...,k
where

R(6:) = Eg,[Eq)g, [Caia, (¥ )] (8)

is called the residual TBR cost for T3, and 8;. is called the primary
parameter [26]. The resulting Ty is the experiment that is
expected to minimize the model uncertainty pertaining the cost.
Experiments can be chosen in a greedy sequential manner by
repeating the process for the remaining unknown parameters, or
by using dynamical programming. This sequential experimental
design procedure is illustrated in Fig. 1.

MNote that in the discussion above, we assume that the ex-
periment T; can determine #; exactly. The strategy can be easily
extended to more general cases with imprecise experiments [27].
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When the value ¢, obtained from the experiment T} is imprecise
with distribution p(#;|#;), the piror 7(#) can be accordingly
updated to a posterior distribution (6|f;). Then the TBR filter

-[E;}f{ defined by (2) is optimal with respect to the posterior
w(f|@;), and the residual IBR cosi is still in the same form as

(8).

[II. IBE LINEAR FILTER FOR NOMSTATIONARY SIGNALS
Consider an uncertain signal model [ Xa, Yg). & £ 6, with the
MSE cost function and the class of linear functions
F={osune= [awoxon). o
T
The solvable class & consists of all process pairs (X, Y) such

that+( X)(s) has a finite second moment for any (s, t) and there
exists gl s, ¢) for which the Wiener-Hopf equation is satistied:

Ry x(s,1) =/ dl&, u) Ry (1, t)du, {10y
T

where Ry (wu, t) and Ry y (s, t) are autocorrelation and cross-
correlation functions, respectively.

With the uncertain signal model, we now define the ef-
fective correlation functions by Reg v (s,v) = Eg|Ry, (s, v)].
Rg x(t,u) = Eg[Rx,(t,u)]. and Reyx(s t) = Ea[Ry,x,
(s, t)]. As an autocorrelation function, Ry, (¢, u) is conjugate
symmetric and nonnegative definite for all # € 8. Re x(t,u)
has the same properties and is therefore also a valid autocorrela-
tion function. It is straightforward to show that (3) is satisfied. If
(XNa, Ya) € &, meaning that the Wiener-Hopfl equation relative
to (Xg, Ya) is satisfied, then (Xa, Va) is an effective process
for the uncertainty class © and an [BR linear filter is given by
the solution, §(#, t), to the effective Wiener-Hopf equation [3]:

Royx(s.)= [ ls.wRex(du. (D

All basic equations hold with characteristics replaced by effec-
tive characteristics Ra y. Ra x, and Ra v x.

In the nonstationary case, the integral-form Wiener-Hopf
equation can be difficult to solve in closed form, and numerical
approximations are employed. The authors in [28] proposed a

time-frequency formulation of the nonstationary linear filter,
which can be approximately valid for underspread cases. It is
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also possible to approximately approach it by solving discrete-
time Wiener-Hopt equations [29], [30]. Here we use the discrete-
time approach to approximate the continuous time signal and
observation with signal vector Y = {¥(s;)} at N discrete time
points s;, ¢ < N and observation vector X = {X (#;)} at M
discrete time points t;, 7 = M. The integral form of the Wiener-
Hopf equation then turns into the following matrix form:

Ryy = GRy, (12)

where Ry = E[X XT|, Ry x = E[Y X7| are the autocorre-
lation and cross-correlation of the matrix form, respectively;
and @ is the matrix-form optimal filter. Similarly, the effective
Wiener-Hopf equation in the matrix form can be writlen as:

e vy = aeﬂa,x-. (13)

and the solution is

&e = IZH.YX[IEE,X]-'-'-

where the superscript + denotes the pseudoinverse. The error
covariance matrix of ¥ pp = Ge Xy is

Ea[E[(Yigr — Vo) (Vier — V)"
= Eo[E[(V1mr — Yo)¥ 13pll - Eo[E[(¥Y 1 — ¥ o) Y 7]
= —Eo[E[(¥mr — Ye)Y])]
= Eo[E[Y Y]] - Eo[E[Y mrY )]
=Ray — Rayx[Rex] R yyx, (15)

where the second equality holds because f’mn — Yy isorthogo-
nal to any linear combination of ¥, Especially, ¥ pg as an TBR
filter achieves the Bayesian optimality [31]. The last equality
follows from (14). The MSE of the IBR filter is just the trace of
the error covariance matrix.

(14)

A, MOCU for the Discrete Wiener-Hopf Equation

With the derived IBR. Wiener filter, we can quantify the model
uncertainty in the MOCU framework relative to the IBR filter:

Mx(8) = Ea[Co(Go) — Co(Gp)]
— Ea[Cs(Go)| — Ea[Ca(Gs)]
=tr(Rey — Royx[Re x]"Riyx)
— Ealtr(Rsy — Ry x[Ro x]T Ry y )]
= —tr(Reyx[Re x| R yx)

+ Egir(Rayx|Ra x|t Ry v x)]- (16)

Experimental design for IBR Wiener filtering involves minimiz-
ing the IBR residual cost: i* =

*:i %mi? E‘ﬂ', [U'{Ruw.,y - Rem,_vx [nghx ]+Ré|a=. YX :']

(17)

= argmax[E, [“":Rtawf,vx[fzelﬂ;.x]+R;|{T.-,Yx]]-. (18)

icl,... &
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where  Rgj v = Egi [Ry;).  Rap, x = Ea, [Rx,).
Rgjg vx = Egg [Ry,x,|. and the second equation holds
for the reason that

Es [Rejp, v = Ep, [Egg, [Ry;|] = Eo[Ry,| = Ray (19)

is unrelated to the index ¢. As shown in (17) and (18), the
IBR residual cost is only a function of the auto- and cross-
correlations, in the form of the MSE of the linear IBR filier.
Therefore there is no need to re-derive the filter during the
experimental design procedure.

I'V. IBE LineEaR FILTER AND EXPERIMENTAL DESIGN WITH
STOCHASTIC DIFFERENTIAL EQUATIONS

Stochastic differential equations (SDEs) are widely applied
for stochastic process modeling in areas such as pharmacol-
ogy [32], population biology [33], [34] and mathematical fi-
nance [35]. In addition to the differential equations governing
the processes under study, SDEs include diffusion processes
to model potential random eftects disturbing the processes of
interest. Usually the diffusion process is a Wiener process.
Assume that the n-dimensional random process under study,
Y (t) e ¥ € R", is defined within the time interval ¢ < [0, T7;
and the corresponding SDE is driven by an m-dimensional
Wiener process W(t). Then the typical form of an It SDE
is [36]:

dY (t) = fit, ¥Y(2))di + git, Y (1))dW (i), (203

where £ : [0,T] « B" — R™, g [0,T] = B® — BE™*"™ are the
drift vector and diffusion matrix, respectively.

If f and g are in the linear form shown in (21), the solutions
of the corresponding SDEs can be Gaussian processes. Assume
the functions f and g are given by

f(t,Y(t) = A(£)Y (2) + a(t),
g(t. Y (i) = B(i),

where A(t) and B(t) are matrices of size n « n and n x m,
respectively, and a(t) is a vector of size n. The resulting SDE
takes the form

(21)

d¥Y (t) = (ALY (1) + alf))dt + B{t)dW(t), ¥{0) =«
(22)
The initial-valued SDE has a unique solution if and only if the
initial condition ¢ is either a constant or a Gaussian distributed
random variable. The mean and auto-correlation of the Gaussian
process are given by

m(t) = $(t)Eid + [ CB(a) Ta(s)ds)  23)
and

Dt t;) = B(t;) (E [l{c —Ele])(c — E|¢] }T]

+fc’ B (u) 1B (u)B(u)" (P(u) 'JTdu) ®(t,)", (24
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where 0 < ; < ¢; < T and ®(¢) is the fundamental matrix of
the ordinary differential equation

dY (t) = A(t)Y (t)dt. (25)

When there is no closed-form solution, approximate numeri-
cal solutions of SDEs can be obtained by the Euler-Maruyama
method [37]: Partition the interval [0, T into NV equal subin-
tervals of the width Ad =T /N: O =iy < &y < --- <ty =T.
Then the numerical solution to the SDE is computed recursively
by the difference equation:

Yo =Yoo+ fltn, Ya)At 4 gltn, Ya ) AW,

where AW, =W,  — W, isa Gaussian random vector
with independent components and the variance of each com-
ponent is Af. Monte Carlo discrete samples of Y (¢) can be
generated according to (26), based on which we can estimate
the stochastic characteristics.

In this paper, we consider IBR filtering and optimal exper-
imental design for the stochastic signal ¥ (t) described by an
SDE with a vector § = (4, fa, ..., ) of uncertain parameters,
so that Y (t) satisfies the SDE

dY (t) = F(L Y (£):0)dt + g(t. Y (£): 0)dW(t).  (27)

The model uncertainty can be characterized by =(f), the prior
distribution of #. Denote the observation of Y (t) as X ().
Assume the observation procedure follows a linear observation
mixdel:

26)

T
X(t) =f Y (=)h(s, t)ds + n(t), (28)
o

where hi(s,t) is the blurring function and n(t) is white noise.
We derive the IBR linear filter to estimate ¥ (t) from X (#).
The function class F is defined by (%) and the MSE is used
as the cost function. Among the experiments that can exactly
determine one of the uncertain parameters, we aim to predict
the one minimizing the design value defined in (6).

V. COMPUTATIONAL COMPLEXITY ANALYSIS

Here we analyze the complexity of optimal experimental
design for SDE model-based filtering considered in this paper.
Assume the dimensions of the signal vector ¥ and observation
vector X are N, and N, respectively. Note that N, and V..
are equal to the multiplication of the number of discrete time
points for discrete approximation and the channel numbers of the
corresponding signal and observation processes. In addition, we
assume that we have & uncertain parameters in the SDE system
and therefore there are & possible experiments to specify each
parameter for our experimental design setup, which requires
solving the optimization problem in (18) over & parameters.

The objective function in (18) involves the computation of
the expectation over f;, which can be calculated by Monte
Carlo (MC) integration. Assume we sample M; samples of
E?fj ' j < M,. Given each HEJ}, if we have closed-form effective
correlation matrices in {18), we just need to calculate the matrix
multiplication and the trace given effective correlation matri-
ces inside the expectation. First, computing the psendoinverse

3853

[Rajs, x| has cubic complexity O((N;)*). The matrix mul-
tiplication to derive A = Rg 5, v x [Rg)5, x| has complexity
of O(Ny(N;)?) and calculating the trace ETI:AR}_;WHY ) has
the complexity C{ NNy ). The complexity of the matrix caleu-
lations for each sample is O(Ny(Nz)% + (Nz)*), and therefore
the complexity of optimal experimental design by solving (18)
is O(KM; (Ny(N2)? + (N.)?).

In practice, there is typically no closed-form solution to the
underlying SDE system modeling the signal process, hence there
is no closed-form expression for effective correlation matrices,
In such cases, we would also need to estimate the effective
correlation matrices in (18) by MC sampling in addition to
the matrix calculations analyzed above. Assume we generale
M, samples of (9|67, V() X)) j < My, where Y9) can
be generated by (26) and X '/ by (28). Due to the Markovian
property of (26), the complexities of sampling ¥/} and X 7}
are all lingar. The effective cross-correlation is estimated by:

Ma

1
Ry vx = W Z Yy U xnT, (29)
1=1

with the complexity O{MzNyN:). Similarly, the complexity
of estimating the effective auto-correlation of X is O(MyN2).
With these, the complexity of optimal experimental design is

O(KM:[Ny(N2)* + (N2)? + Ma(NZ + NN )J). (30)

Note that the MC integration procedure for effective correlation
matrix estimation has to sample the uncertainty class of all k
parameters and Mo can grow exponentially with k.

V1. SYNTHETIC EXPERIMENTS

To demonstrate the performance of the proposed robust filter-
ing and optimal experimental design methods, we first considera
synthetic example, which assumes that the original signal ¥ (i)
is generated by an SDE of the form in (22). Assume ¥ (1) is
a two-channel signal and the parameters of the corresponding

SDE are given by
6 (10
A= 1050 (u 1)-

= (5)-

B(t) = 0.1 (;2 ﬁ;’-) ,

vo= ().

where ! = (f1,8) is the uncertain parameter vector, Y (t) is
defined within the time interval [0, T = 100].

X (t) is the observation of ¥ (#), which is corrupted by a
blurring function k(¢) with additive noise IV (1):

(31)

T
X(t) = l h(t — s)¥ (s)ds + N(2), (32)
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where

h(t) = 5 (sgn(t) — sgn(t — B)), (33)

with B = 10, is a scalar function, so the blurring effect is the
same for both channels. The variances of additive noise for both
channels are the same, o2 = (.01,

As mentioned earlier, the SDE has a unique solution as
a Gaussian process. Therefore, we can oblain a closed-form
expression of correlations between Y (¢) and X (¢). Let’s begin
with the fundamental matrix of (25):

_ﬂﬂ 0
'b{t} = (ED Ea't) 1

with d®(t)/dt = A{#)P(t). The auto-correlation of ¥ (t) can
be calculated by (24):

R}’-l:fi-rt_‘f}

(34)

—a(,) ( L " ®(u) " B(u)B(w)"(@(u) )T du) B(t,)"

_ 1 Guiti+t;) Gyt —ts) 1+E§ 2
— E{e i ghtlls } 20, 1+|5‘§
e 1+62 26
_i‘r'{tnf.r}( o, 1+62)° (35)
where
ry(tits) = L{EE]{L'PIJ} _ Pty 36)
26,

Equation (35) holds for ¢; = £; = 0, and we have Ry ({,,¢;) =
Ry-(t;,1;). Based on the observation model in (32), the cross-
correlation is

Ry x ([t ty)

T
=£ hit; — s)Hy(t;, =)ds

T
L+03 20
= hit; — ty, s)d 2
fﬂ- {_‘f S]TY{ '!13:: S( 232 1 HE)

1+0% 20
=’”"~“'"*~"':'( 2, 1+fﬂ§) 37
with
T
rexttity) = [ - Ory s G8)

The auto-correlation of X (t) is

th-;tj

- [ [ e
_ j; fn h(ts — s)ry (s, u)h(t; — u)dsdu-

— s) Ry (s, u)h(l; —u)dsdu + o 25(t; — ti 2

1+l‘?§ 20y 2 _
1+65 20
=rx(ti,t;) ( 2&"22 1+f¥§) + a?8(t; — t;)1, (39)
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with

vttty [ [

The integrals in (38) and (40) can be calculated directly and
have piecewise closed-form expressions depending on the value
relationships between £;, ¢;, B and T

As noted previously, we consider the discrete filtering prob-
lem. The signals from the SDE system are sampled at discrete
time points £ = 0,1, 2, ..., 100. We denote the flattened discrete
time vectors of X (¢) and ¥'(t) as:

N _ 1 1 2
_{.Xl:]v'"-XN'-Xls'“

t; — s)ry (s, u)h(ty; —u)dsdu. (40)

Xa)T (41)

and
YN :{Yul....,Y!}-,le,-”-,Yj%)T. {42}

where Y and X} indicate the signal and observation values
at the i-th channel and time j, respectively, for i = 1,2 and
D<j<N.

Then the matrix forms of correlations are

(1463 28, N
jo"x—( 20, 1467 ) FTVX

v _ (1103 26
WX 232

o N 2
1+ﬂ%)3’f‘x+ﬂ’ L, (44)
where & indicates the Kronecker product, and

(43)

ryx(to.fo) --- rrx(to.tw)
iy = : : :
ryx(tnto) -+ Tvx (i, ta)
rx(to.to) -+ rx(to,tn)
Ty = : : (45)
rx(ty.to) - Tx(tn.ty)

are corresponding matrix forms of ry x (. ¢;) and ra (£, 45 ).

A. IBR Filter Performance

To examine the performance of the TBR filter Ga =
RY ¢ [RY | *.fix#; = 1 and let #; be uniformly distributed
over the interval { —1, 1). We then have a closed-form expression
for the expectation over #:

r 4/3 0
RS:YX = ( 3{ 4};3) ®T¥x~ (46)
4/3 0 ;
Rax ( é 4{3) 8rY+ o0 L. (47}

Note that the effective correlation doesn’t correspond to any
specific value of f;. Inserting (46) and (47) to (14) yields the
matrix-form TBR filter G'g.

To show the performance of the IBR filter, we compare it
with the optimal filter for 3 = (.8 and the recently developed
T-robust filter which is robust with bounded r-divergence and
is the optimal filter based on the nominal statistics with respect
to #z = 0 [13]. The result for applying the three filters on the
observation of the signal generated by the SDE with ff; = 0.8
is shown in Fig. 2. Note that the IBR filter has a performance
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Fig. 2.  One sample from the SDE (22), (31) with #2 = 0.8. Left and right
sub-figures show the signals from the first and the second channels, respectively.
The original signals are in blue. The fillered signals based on the opimal filter
for fla = 0,8 are in red. The filtered signals using the T-robust filter are in green,
The IBR filtered signals are in yellow. The cormupted observations are in purple
CIOSSEs.

signal channel 1 signal channel 2

slgnal value

Fig, 3. One sample simulated from the SDE (22), (31) with #z = —0.7, Left
and right sub-figures show the signals from the first and the second channels,
respectively. The original signals are in blue. The filtered signals based on the
optimal Wiener filter for #2 = 0.8 are in red. The filtered signals using the
T-robust filter are in green, The TRR filtered signals are in yellow, The cormpted
chaervations are in purple crosses.

{Mean Square Error (MSE) = 2.6015) fairly close to the filter
that is optimal for f#z = 0.8 (MSE = 2.5269) and performs better
than the r-robust filter (MSE = 2.6121).

Next we applied the same filters on the observation of the
signal generated by the SDE with #; = —0.7, the result being
shown in Fig. 3. Here the IBR filter still maintains relatively
good performance (MSE = 2.2360), followed by the T-robust
filter with MSE = 2.2416, but the filter optimal for fi; = 0.8
shows a significantly degraded performance (MSE = 4.4331)
due to the model mismatch.

B. Optimal Experimental Design

The optimal experimental design problem is to determine
which one of the two parameters, &) or 3, should be specified
first to minimize the cost due to uncertainty. Taking MSE for
signal filtering as the cost, the cost function for experimental
design is the residual IBR cost of two parameters, expressed as:

R(f1) = Eo, [Egjs, [Coo, (Cayo, )l (48)

R(f2) = Ep, [Eej, [Coo (Geys, ). (49)
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Fig.4. Comparisonof Residual TBR cost of @1 and iz, The parameter with less
Residual IBR cost is suggested to be specified by next expeniment. Red circles
and blue circles are precise calculations of Ri#y ) and R ), respectively, and
the surfaces are obtained by cubic spline interpolation.

We assume #; and #; are independent. #, is distributed over the
interval (—1, 1) as:

o =2 —1, e~ Beta(d,S3), (507

with & the distribution parameter. f; is uniformly distributed as
8 ~U(5—L/2, 5+ L/2), (51)

with distribution parameter L.

In our simulations, we set three different values for 5 =
0.5,1.5 5and L = 0.5, 1.5, 2, so that we have 9 combinations
of distribution hyperparameters. The residual IBR cost is calcu-
lated by Monte Carlo sampling. For R(#, ), for each given pair
of distribution parameters, 200 sample pairs of /, are taken for
Monte Carlo computation, and for each #,, the inner term has a
closed-form expression as in (17):

Eojs, [Coys, (Goe, )]

= By, [tr(Rajs, v — Rojs, vx|[Reps, x| Rap, vx))-

R(f)y) is calculated similarly by Monte Carlo sampling. We just
need to substitute #; with #; in the above expression to calcu-
late Eg g, [Cae, (Ga)g, )] The residual IBR costs are shown in

Fig. 4. The variances of the two parameters are Var(fl) = 3314-7

and Var{#;) = fl‘—;

From the figure we can see how the variances of the uncertain
parameters influence the IBR residuals. The variance of ff; has
a higher influence on the TBR residuals than the variance of #;
does. As Var(flz) increases, both IBR residuals increase as a
larger variance introduces more uncertainty in the model. But
when Var(#z) is large, R(#;) is smaller than R(#,), because
estimating 63 can reduce the uncertainty (or the cost thereof)
more than estimating 4, pertaining to the filtering performance
in this case. For small Var(#; ), we have the opposite conclusion.

To further illustrate the strength of the MOCU-based ex-
perimental design, here we perform experiments with a more
complicated uncertainty class and compare its performance with
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Avarage MSE

1 1.5 F 25 3 3.5 4 4.5 5

Number of conducted experiments
Fig, 5. The average performance of sequential experimental design with

different strategies. In each setup, the MSE is obtained afier conducting each
experiment in a sequence of experiments for the SDE signal and observation
model with four unknown parameters.

both entropy-based [38] and random sequential experimental
design.

Assume that we have four uncertain parameters, ! =
{61, #2, B, o) in the model described by (31~33). These un-
certain model parameters follow independent uniform distribu-
tions. For each parameter, we assume an experiment can be
performed to obtain its value. In addition we assume all the
parameter measurements have Gaussian errors. We perform a
sequential experimental design to decide which model parameter
to measure in each iteration so that we can most effectively
improve the filtering performance within a relatively small
number of iterations. For this experimental design problem, we
compare the MOCU-based strategy described by (18) with both
entropy-based strategy and random strategy. The entropy-based
strategy chooses the experiment to measure the parameter with
the largest Shannon entropy: and the random strategy simply
chooses one out of the uncertain parameters in a random tash-
ion. To compare the different strategies in different cases, we
set three different groups of parameter distributions for se-
quential experimental design: (1) ~ UV(3,6), 82 ~ U'{—2, 2),
B~ U(8,10.5), o~ U[0.01,1.2); (2) & ~U(3,6), O ~
U(-14,14), B ~U(&10.5), &~ U(0.01,1.2); (3) & ~
U(3.7,6), 6o ~U(—=1,1), B~ U(8,10.5), & ~ U(0.01,2).
For all the cases, the parameters have Gaussian measurement
error with avariance 2 = 0.05. In each cases, we randomly gen-
erate 100 groups of parameters, and perform sequential experi-
mental design following the three strategies. After each iteration,
we calculate the remaining MSE of the corresponding TBR filter
to quantify the remaining uncertainty. Fig. 5 provides the change
of the average MSE with the number of experiment iterations
tor these three experimental design strategies. As expected, our
MOCU-based strategy consistently identifies the most critical
uncertain parameter, whose measurement leads to the maximum
reduction of the MSE with our filtering objective in design. As
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a result, after two experiments, when two parameters have been
determined, the performance of our MOCU-based strategy has
almost reached the level obtained when there is no uncertainty
remaining (after four experiments), whereas for both entropy
and random design there remains significant uncertainty after
two experiments, meaning that they have not identified the best
two parameters to estimate.

WVII. PHARMACOKINETICS MODEL

In this section, we illustrate the IBR filter and experimental
design for a pharmacokinetic two-compartment model based
on a SDE system [39]. Differentiating the body into a central
compartment (plasma) and a peripheral compartment (lissues),
the two-compartment model describes the relationship between
the drug concentration in the central compartment ¥ (i), the
drug concentration in the peripheral compartment ¥3(t), and
the measurement x, of the drug concentration in the central
compartment. The transit of the dmg throughout the body is
described by the SDE shown below:

dYi(f) = (k21Y2(t) — k12Yi(t) — kwoYi(t)) dt + o1d Wi(t),
dYo(t) = (kYo (f) — ka Ya(t)) dt + o2 d Walt),
X(t)=Yi(t)+e. e~ N0, (52)

where W (t), Wy(t) are independent Wiener processes, and
kg, k12, and kg are individual rate constants (parameters)
possessing the joint prior distribution

0 = (k0. k12, k21)T ~ N(p, Q).

Following the case example in [32], we set the statistics of the
prior as: g = (0.2,0.5,0.25)T, and Q a diagonal matrix with
ding(12) = (0.01%,0.1%,0.02%)". Other parameters are set to
a:_f' =0.04, 7y = 0.1, o2 = 0.1, The initial condition of ¥3(t)
and ¥ (t) are set to be 10 and 0, respectively, which corresponds
to the case of Intravenous injection: the pharmacy is initially
injected to the plasma and then ditfuse to the tissue. After finding
the IBR filter using the preceding theory, we consider its perfor-
mance, and then turn to the problem of specifying in what order
to determine the individual rate constants to optimally reduce
the MSE of estimating ¥ (t) = (Y3 (2), Y2(t))". We consider the
discrete case with sampling points from 0 to 10 by an increment
of 0.01.

The SDE in (52) also follows the form of (22), with the
matrices below:

A= (e Ea ),
an = (o).

Bo)= (5 0)-

Y(0) = (1{;]) _

Therefore, similar to the procedure in the synthetic example, we
can calculate the IBR filter G'g through numerical integrals.

(53)
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Fig. . Oneexample based on the SDE with # = p. Left and right sub-figures
show the drug concentration levels of central and peripheral companments,
respectively. Blue curves correspond to the actual signals; purple crosses indicate
the measurements of concentration in the central compartment; red curves depict
the estimation with the optimal filter for 8 = g + 3mg; green curves ame the
estimated signals with the T-robust filter: and yellow curves are filtered signals
using the IBR filier. Only one out of every 20 measurements is visualized here
to avoid corve cluttaring,

cantral compartment peripheral compartment

8
—— 8 = u + Joy signal
e —— = g+ 3oy fler 5
1 ——r=robust flter |
o 8f TER flter wal |
z % + observation 3 !
= af Zaty
g |4 g
g i % 'E‘z ;
b
2 it 1
e
L o
@ 2 i & B o 2 4 & 8w
Lirme time
Fig. 7. One example based on the SDE with & = p + 3oy, Left and right

sub-figures show the drug concentration levels of central and peripheral com-
pariments, respectively. Blue curves correspond (o the actual signals; purple
crosses indicate the measuremants of concentration in the central compartment;
red curves depict the estimation with the optimal filter for & = p + 30y, green
curves are the estimated signals with the T-robust filter; and yellow curves ane
filiered signals using the IBR filter. Only one out of every 20 measurements is
visualized hare to avoid curve cluttering.

We compare the performance of the IBR filter with two other
filters: the Wiener fillers given specific values of the parameters
fl = p + 3oy withag = (0.01,0.1,0.02)" the vector of standard
deviations of parameters and the tau-robust filter. The compari-
son of the filtering performance on signals generated with # = p
and ## = ¢ 4 3y are shown in Figs. 6 and 7, respectively. Since
there is no direct observation in the peripheral compartment,
the main source of the estimation error is in the peripheral
compartment. Observation from the peripheral compartment
shows that the IBR filter performs fairly well in both cases,
while the Wiener filter with # = p + 3o performs well only
in the case with matched parameters as expected. We notice
that the +-robust filter does not show its robustness on signals
generated with # = p + Jop. probably because in the setting of
this pharmacokinetics model, the uncertain parameters follow
unbounded Gaussian distributions, while the T-robust filter is
proposed under the bounded +-divergence assumption.
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Then we perform sequential experimental design by calculat-
ing the design values of parameters kg, k12 and k3;. Suppose
our experimental budget can afford to perform two experi-
ments (o determine two of the unknown parameters, and we
want to sequentially minimize the MOCU with the remaining
uncertainty. For the first experiment, the IBE residual costs
are RY(kyp) = 51.3, RY(ky2) = 45.2 and R'(kz;) = 36.4. So
the first experiment should determine ksq. Following the first
experiment, the true value of ks is put into the model and the
design values are calculated based on the updated model. We
randomly sample 10 values of ko as the result of the first exper-
iment, and then calculate the IBR residual costs B%(kyg|kzy ) and
R?(kyz|kay ). All 10 random cases show that k3 should be deter-
mined in the second experiment, and the average design values
are Ekﬂ [Dzﬁrkmlkm]] = 33.4 and Ek'-}. [Dz{kmlk-n }] = 14.2,
Although the choice of the second experiment in our example
is the same for all sampled values of the primary parameter,
in general, the choice of the second experiment depends upon
the value of the primary parameter, so that the choice of the
second experiment can vary depending on the determined value
of the primary parameter. In this example, the estimation error
of Y3(¢) dominates the full estimation cost, since Y5 (t) is not
observed directly, and the estimation of Y5(1) is based on its
correlation with ¥7(t). Therefore, kqp is less important than
the other parameters, since it is conditionally independent of
Ya(t) given Yy (¢). Our calculation confirms this observation,
preferring the estimation of k2 over that of k.

VI CoNCLUSION

The mathematics of the IBR/MOCU paradigm depends on
the physical model, the operational objective, the cost function,
and the operator form. Applied to classification, uncertainty
resides in the feature-label distributions; applied to Markov
chains, it resides in the transition probability matrix; and applied
to differential or stochastic differential equations, it resides in
the physical constants of the equations, or perhaps even in the
differential operators themselves.

In fact, this is an oversimplification. In the case of classifica-
tion, it could be that the signals being classified are generated via
an SDE, and we wish to classify a signal based upon a sampling
of its time trajectory. This is precisely the situation in a study
concerning optimal Bayesian classification of signals generated
by an uncertain SDE model [40], although that study did not
consider the experimental design problem. We raise this point to
emphasize that uncertainty is propagated through the model and
can manifest itself in the characteristics used in operator design.
This means that, in Gaussian classification, the uncertainty class
for the parameters induces an uncertainty class of mean vectors
and covariance matrices, and in linear filtering, the parameter
uncertainty class induces an uncertainty class of random-signal
processes.

A subtle, but fundamental point arises concerning the distri-
bution of the uncertainty vector. In the present study, we have
propagated the prior distribution through the SDE so that the
same distribution governs the uncertainty of signal processes. In
the former classification study [40], no assumption was made on
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the distribution of the parameter uncertainty class and it was then
assumed that a normal-inverse-Wishart distribution governed the
mean and covariance matrix of the uncertain Gaussian features
constructed by sampling the signal trajectories. This was conve-
nient because it allowed direct application of the theory of opti-
mal Bayesian classification for Gaunssian features [41], thereby
resulting in a closed-form solution for the optimal Bayesian
classifier. The convenience of the previous assumplion comes
at a significant price: if there is physical knowledge reparding
the distribution of the uncertain parameters, it has been ignored.
Thus, we believe that uncertainly propagation, as used in the
present paper is more sound from a physical perspective, even if
it leaves us with no hope of a convenient closed-form solution.

Although computational complexity did not impede us in the
present paper, it can become a problem when there is high
dimensionality, especially when the uncertainty class is large.
Model reduction can be used to reduce the computations. For
instance, a regulatory network model can be compressed by
eliminating or combining nodes [42]. Model reduction remains
an important research topic from a practical perspective, and
to be effective, such reduction should be made in a way that
maintains the structure most relevant to the objective — which
makes it application dependent.

Finally, we note that MOCU-based experimental design can
be generalized [43] in such a way that the original MOCU [4], as
used herein, as well as both the knowledge gradient (KG) [44]
and efficient global optimization (EGO) [45], are special cases.
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