
1

Single-Error Detection and Correction for

Duplication and Substitution Channels
Yuanyuan Tang, Yonatan Yehezkeally, Student Member, IEEE,

Moshe Schwartz, Senior Member, IEEE, and Farzad Farnoud, Member, IEEE

Abstract—Motivated by mutation processes occurring in in-
vivo DNA-storage applications, a channel that mutates stored
strings by duplicating substrings as well as substituting symbols
is studied. Two models of such a channel are considered: one
in which the substitutions occur only within the duplicated
substrings, and one in which the location of substitutions is
unrestricted. Both error-detecting and error-correcting codes are
constructed, which can handle correctly any number of tandem
duplications of a fixed length k, and at most a single substitution
occurring at any time during the mutation process.

Index Terms—DNA storage, string-duplication systems, error
correction, error detection

I. INTRODUCTION

R
ECENT advances in DNA sequencing and synthesis

technologies have increased the potential of DNA as a

data-storage medium. In addition to its high data density, data

storage in DNA provides a long-lasting alternative to current

storage media. Furthermore, given the need for accessing bio-

logical data stored in DNA of living organisms, technologies

for retrieving data from DNA will not become obsolete, unlike

flash memory, magnetic disks, and optical disks.

Data can be stored in DNA in vitro or in vivo. While

the former will likely provide a higher density, the latter

can provide a more reliable and cost-effective replication

method, as well as a protective shell [10]. In-vivo storage also

has applications such as watermarking genetically modified

organisms. This technology was recently demonstrated exper-

imentally using CRISPR/Cas gene editing [9], [10]. One of

the challenges of this technology is that a diverse set of errors

are possible, including substitutions, duplications, insertions,

and deletions. Duplication errors, in particular, have been

previously studied by a number of recent works, including [3]–

[6], [8], among others. This paper focuses on error-control

codes for duplication and substitution errors.

This paper was presented in part at ISIT 2019.
Yuanyuan Tang is with the Department of Electrical and Computer En-

gineering, University of Virginia, Charlottesville, VA, 22903, USA, (email:
yt5tz@virginia.edu).

Yonatan Yehezkeally is with the School of Electrical and Computer En-
gineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
(e-mail: yonatany@bgu.ac.il).

Moshe Schwartz is with the School of Electrical and Computer Engineering,
Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel (e-mail:
schwartz@ee.bgu.ac.il).

Farzad Farnoud (Hassanzadeh) is with the Department of Electrical and
Computer Engineering and the Department of Computer Science, University
of Virginia, Charlottesville, VA, 22903, USA, (email: farzad@virginia.edu).

This work was supported in part by National Science Foundation (NSF)
grants under grant nos. 1816409 and 1755773, and a U.S-Israel Binational
Science Foundation (BSF) grant under grant no. 2017652.

In a (tandem) duplication event, a substring of the DNA

sequence, the template, is duplicated and the resulting copy is

inserted into the sequence next to the template [12]. Evidence

of this process is found in the genomes of many organisms as

patterns that are repeated multiple times [2]. In a substitution

event, a symbol in the sequence is changed to another symbol

of the alphabet. It has been observed that point mutations such

as substitutions are more common in tandem repeat regions

of the genomes [7]. We consider two models for combined

duplication and substitution errors. In the first model, called

the noisy-duplication model, the copy is a noisy version

of the template. Noisy duplications in this model can be

viewed as exact duplications followed by substitutions that

are restricted to the newly added copy. Hence, this model

is also referred to as the restricted-substitution model. We

also consider an unrestricted-substitution model, which relaxes

the noisy duplication model by allowing substitutions at any

position in the sequence.

In this paper we construct both error-detecting and error-

correcting codes, which are capable of correctly handling any

number of tandem duplications of a fixed length k, and at most

a single substitution error, which occurs at any stage during

the sequence of duplication events. The main approach in both

cases is to reverse the duplication process while accounting

for the single substitution (which may spuriously create the

appearance of a duplication that never happened, or eliminate

one that did). Different challenges are also presented by the

possible locations for substitutions. We bring these differences

to light by providing a construction for an error-detecting code

for the restricted substitution model, and an error-correcting

code for the unrestricted substitution model.

Our main contributions are the following:

• We present an upper bound on the minimum required

redundancy cost for detecting a single restricted substi-

tution, over the necessary rate loss required to correct an

unlimited number of duplication events, in Theorem 11.

That cost is upper bounded by O(log(n− k)).
• Through Construction B and Construction C, we also

show that the redundancy cost (over the rate loss due

to duplication noise) is upper bounded by O(log(k)) and

O(k), respectively. While the former guarantees larger

codes, it is nonconstructive, as opposed to the latter. In

the likely regime where k is fixed, both require only O(1)
extra redundancy.

• Through Construction D, we show that the redundancy

cost of detecting a single unrestricted substitution (again,

over the rate loss due to duplication noise) is upper

2

bounded by O
(

log(k2n)
)

.

• Finally, in Theorem 26 and Theorem 28, we correct a

single unrestricted substitution in addition to any number

of duplications, but we incur further rate loss.

This paper is organized as follows. In Section II, we provide

the notation as well as relevant background and known results.

In Section III, we construct error-detecting codes for the

restricted substitution model. In Section IV, we introduce

error-detecting codes for unrestricted substitution channels.

Finally, in Section V, we give a construction for an error-

correcting code for the unrestricted substitution model. We

conclude with a discussion of the results, and point out some

open problems, in Section VI.

II. NOTATION AND PRELIMINARIES

Throughout the paper, we assume that the alphabet Σ is

a unital ring of size q > 2 (e.g., Zq or, when q is a prime

power, Fq). Thus, addition (or subtraction) and multiplications

of letters from the alphabet are well-defined. The set of finite

strings and strings of length at least k over Σ is denoted Σ∗ and

Σ>k, respectively. The concatenation of two strings, u, v ∈ Σ∗

is denoted by uv, and uk denotes concatenating k copies of u.

To avoid confusion, the multiplication in the ring is denoted

as a · b. We say y ∈ Σ∗ is a substring of w ∈ Σ∗ if there exist

x, z ∈ Σ∗ such that w = xyz.

The length (number of letters) of u is denoted by |u|, and

for a ∈ Σ, we use |u|a to denote the number of occurrences of

a in u. The Hamming weight of u is denoted by wt(u), and

if |u| = |v| we use d(u, v) to denote the Hamming distance

between u and v. If the need arises to refer to specific positions

in words, positions are numbered 1, 2,

A (tandem) duplication of length k duplicates a substring

of length k and inserts it in tandem into the string, namely,

the copy immediately follows the template. For example, from

uvw, where |v| = k, we may obtain uvvw. As an example

for k = 3 and alphabet Σ = Z3, consider

x = 1012121 → x′ = 1012012121, (1)

where the underlined part is the copy. Since throughout the

paper all duplications considered will be in tandem and of

length k, we shall just use the term “duplication” to avoid

cumbersome terminology.

The analysis of duplication errors will be facilitated by the

k-discrete-derivative transform, defined in [1] in the following

way. For x ∈ Σ>k, we define φ(x) , φ̂(x)φ̄(x), where

φ̂(x) , x1 · · ·xk, φ̄(x) , xk+1 · · ·xn − x1 · · ·xn−k,

in which subtraction is performed entry-wise over Σ. We note

that φ(·) is a bijection. The duplication length k is implicit in

the definition of φ. For a set of strings S, we define φ(S) ,
{φ(s) | s ∈ S}.

Let x′ be obtained through a tandem duplication of length

k from x. It is not difficult to see that φ̂(x) = φ̂(x′) and

that φ̄(x′) can be obtained from φ̄(x) by inserting 0k in an

appropriate position [3]. For the example given in (1),

x = 1012121 → x′ = 1012012121

φ(x) = 101, 1112 → φ(x′) = 101, 1000112

Here, a comma separates the two parts of φ for clarity.

Sometimes duplications are noisy and the duplicated sym-

bols are different from the original symbols. (Unless otherwise

stated duplications are assumed to be exact.) We only consider

the case where a single symbol is different. We view a noisy

duplication as a duplication followed by a substitution in the

duplicated substring. Continuing the example, the duplication

resulting in x′ may be followed by a substitution,

x′ = 1012012121 → x′′ = 1012112121,

φ(x′) = 101, 1000112 → φ(x′′) = 101, 1100012.

We also consider unrestricted substitutions, which can occur

at any position in the string, rather than only in a substring that

is duplicated by the previous duplication. A substitution may

be considered as the mapping x → x + aei, where ei ∈ Σn

is a standard unit vector at index i, and a ∈ Σ, a 6= 0. Since

φ is linear over Σ (i.e., φ(x + aei) = φ(x) + aφ(ei)), we

denote the transform of ei as ǫi , φ(ei), and observe that

ǫi = ei − ei+k for i 6 n− k and ǫi = ei for n− k < i 6 n.

We note that substitutions might affect two positions in the

φ-transform domain.

Let Dt(p)(x) (for t > p) denote the set of strings that can be

obtained from x through t tandem duplications, p of which are

noisy (in any order), with each noisy duplication containing

a single substitution. Dt(p) is called a descendant cone of x.

Continuing our earlier examples, we have x′ ∈ D1(0)(x) and

x′′ ∈ D1(1)(x). We further define

D∗(p)(x) ,
∞
⋃

t=p

Dt(p)(x), D∗(P)(x) ,
⋃

p∈P

D∗(p)(x), (2)

where P is a subset of non-negative integers. We denote P =
{0, 1} as 6 1.

We define Dt,p(x) to be the set of strings obtained from

x through t tandem duplications and p substitutions, where

substitutions can occur in any position (and so we do not

require t > p), and at any stage during the duplication

sequence. We extend this definition similarly to (2). Obviously,

for all x ∈ Σ∗,

Dt(0)(x) = Dt,0(x).

For a string z ∈ Σ∗, µ(z) is obtained by removing all copies

of 0k from z. Specifically, for

z = 0m0w10
m1w2 · · ·wd0

md ,

where mi are non-negative integers and wi ∈ Σ \ {0} are

nonzero symbols, we define

µ(z) , 0m0 mod kw10
m1 mod kw2 · · ·wd0

md mod k,

where k is implicit in the notation µ(z). For example, if z =
1000112 = φ̄(x′) from our earlier example, with k = 3, then

µ(z) = 1112; note, then, that in that example, µ(z) = φ̄(x).
Define the duplication root drt(x) of x as the unique string

obtained from x by removing all tandem repeats of length k,

where the dependence on k is implicit in the notation. For

proof of the uniqueness of drt(x) see, e.g., [3]. Note that

φ(drt(x)) = φ̂(x)µ(φ̄(x))

3

(see [3]); indeed, in our running example, x = drt(x′). For a

set of strings S, we define

drt(S) , {drt(s) | s ∈ S}.

A string x is irreducible if x = drt(x). The set of

irreducible strings of length n is denoted Irr(n), where the

duplication length k is again implicit. We denote by RLL(m)
the set of strings in Σm that do not contain 0k as a substring,

i.e., the (0, k−1)-run-length limited (RLL) constrained strings

of length m. A string x of length n is irreducible if and only

if φ̄(x) ∈ RLL(n− k).
A code C ⊆ Σn that can correct any number of k-

duplication errors is called a k-duplication code. We note that

a code is a k-duplication code if and only if no two distinct

codewords c1, c2 ∈ C have a common descendant, namely,

D∗,0(c1) ∩D∗,0(c2) = ∅. (3)

It was proved in [3] that this condition is equivalent to all

codewords having distinct roots:

Theorem 1 ([3]) For all strings, x1, x2 ∈ Σ∗,

D∗,0(x1) ∩D∗,0(x2) 6= ∅

if and only if drt(x1) = drt(x2).

Using Theorem 1, it was suggested in [3] that error-

correcting codes that protect against any number of duplica-

tions may be obtained simply by taking irreducible words as

codewords. Up to a minor tweaking, this strategy was shown

in [3] to produce optimal codes.

Finally, we define the redundancy of a code C ⊆ Σn as

r(C) , n− logq|C| = n− log|Σ||C|,

and the code’s rate as

R(C) , 1−
r(C)

n
.

III. RESTRICTED ERROR-DETECTING CODES

A. The error model and the descendant cone

In this section, we consider the case of noisy-duplication

errors. Our goal is to correct errors consisting of any number

of exact duplications, or detect the presence of a single noisy

duplication, which contains only one substitution. We refer

to codes with this capability as 1-noisy duplication (1ND)

detecting. Let us first be more precise in our definition:

Definition 2 A code C ⊆ Σ∗ is a 1ND-detecting code if there

exists a decoding function D : Σ∗ → C ∪{error} such that if

c ∈ C was transmitted and y ∈ Σ∗ was received then D(y) = c
if only duplication errors occurred, and D(y) ∈ {c, error} if

exactly one of the duplication errors that occurred was noisy,

where the noisy duplication could have occurred at any point

in the sequence of the duplication errors.

The following lemma, which relates the intersection of

descendant cones to the intersection of the sets of roots of these

cones, is of use in the discussion of 1ND-detecting codes.

Lemma 3 For any strings x1, x2 ∈ Σ∗ and sets P1, P2 ⊆ Z>0,

D∗(P1)(x1) ∩D∗(P2)(x2) 6= ∅

if and only if

drt(D∗(P1)(x1)) ∩ drt(D∗(P2)(x2)) 6= ∅.

Proof: The ‘only if’ direction follows from definition.

For the other direction, assume there exist x′
1 ∈ D∗(P1)(x1)

and x′
2 ∈ D∗(P2)(x2) such that drt(x′

1) = drt(x′
2). But then,

by Theorem 1, there exists x ∈ D∗(0)(x′
1) ∩ D∗(0)(x′

2). It

follows that x ∈ D∗(P1)(x1) ∩D∗(P2)(x2). This is illustrated

in Figure 1, where y = drt(x′
1) = drt(x′

2).
We can now characterize 1ND-detecting codes in terms of

duplication roots and descendant cones.

Lemma 4 A code C ⊆ Σn is a 1ND-detecting k-duplication

code if and only if for any two distinct codewords c1, c2 ∈ C,

D∗(61)(c1) ∩D∗(0)(c2) = ∅, (4)

or equivalently,

drt(c2) 6= drt(c1), (5)

drt(c2) /∈ drt(D∗(1)(c1)). (6)

Proof: Consider the following decoder: If there is a

codeword with the same (exact-)duplication root as the re-

ceived word, output that codeword. If not, declare that a noisy

duplication error has occurred. Now, suppose (4) holds and

that c1 is transmitted. If only exact duplications occur, the

decoder outputs c1 since exact duplications do not alter the

root and there is no other codeword c2 with the same root as

c1. If, in addition, a noisy duplication occurs, then the received

word either has the same root as c1 or it does not. Note again

that the duplication root of the received word only changes as

a result of the noisy duplication, regardless of when it occurs

in the sequence of duplication events. In the former case, the

decoder correctly outputs c1. In the latter case, (4) implies

that no codeword has the same root as the received word, and

thus the decoder correctly declares that a noisy duplication has

occurred.

On the other hand, if (4) does not hold, no decoding method

can both ‘correct any number of exact duplications’ and ‘detect

the presense of one noisy duplication’. That is because there

exist distinct c1 and c2 and some x ∈ D∗(61)(c1)∩D∗(0)(c2).
If x is received then there is no way to determine whether c1
or c2 was transmitted.

The equivalence between (4) and (5, 6) follows from

Lemma 3.

Based on Lemma 4, we consider codes whose distinct

codewords satisfy (5) and (6). Further, the decoder outputs

the codeword with the same root as the retrieved word if it

exists, and otherwise declares a noisy duplication.

As a result of the substitution in the noisy duplication

error, the length of the duplication root may change. One

way to simplify the code design is to restrict ourselves to

codes whose codewords all have duplication roots with the

same length. Then, error patterns that modify this length can

be easily detected and we can focus on patterns that keep

4

T5 T6

T

U

T5
ñ

T6
ñ

Figure 1. Illustration for the proof of Lemma 3. Solid lines denote any number
of exact duplications and dashed lines represent a mixture of exact and noisy
duplications (the number of noisy duplications is determined by P1 and P2).

the duplication-root length the same. Specifically, for a given

length n, we consider codes whose codewords are irreducible

strings of length n. The effect of this restriction on the size

of the code is discussed following Theorem 11.

Definition 5 A substitution error (as a component of a noisy-

duplication error) that changes the root but not the length of

the root is called an ambiguous substitution.

It is easy to verify that when k = 1 a noisy duplication

is never ambiguous. Thus, challenges arise only when k > 2.

The following sequence of lemmas characterize the conditions

under which a substitution is ambiguous.

Lemma 6 Let x ∈ Σ∗ be some string resulting from a k-

duplication, k > 2. If a substitution occurs (as part of a

noisy duplication) in the last k positions of x then it is not

ambiguous.

Proof: Since a substitution that occurs as part of a noisy

duplication changes the copied part, we must have z , φ̄(x) =
u0kw, with |w| 6 k − 1. After the substitution we get x′,

with z′ , φ̄(x′) = u0k−i−1b0iw, for some b ∈ Σ \ {0} and

i+ |w| 6 k − 1. It is, however, obvious that |µ(z)| < |µ(z′)|,
and thus |drt(x)| < |drt(x′)|.

Lemma 7 Let x ∈ Σ∗ be some string resulting from a k-

duplication, k > 2. If x′ is obtained from x as a result of

a substitution that occurs (as part of a noisy duplication) in

position ℓ 6 |x|−k, and in φ(x) positions ℓ+1, . . . , ℓ+k−1
contain only zeros, then the substitution is not ambiguous.

Proof: Denote z = φ̄(x). Assume z′ , z+b ·ǫℓ−k (where

the subscript is indeed ℓ−k since by considering φ̄(x) we are

omitting the prefix φ̂(x) of length k). Then we may write

z = u 0 0k−1 b′ w
b · ǫℓ−k = 0|u| b 0k−1 (−b) 0|w|

z′ = u b 0k−1 (b′ − b) w

where u ∈ Σℓ−k−1, w ∈ Σ∗, b ∈ Σ \ {0}, and b′ ∈ Σ. We

now have two cases. If b′ 6= b, then obviously |µ(z)| < |µ(z′)|,
namely |drt(x)| < |drt(x′)|. If b′ = b, then drt(x) = drt(x′),
which is again not ambiguous.

The remaining cases are all handled in the following lemma.

TABLE I
EXAMPLES OF AMBIGUOUS SUBSTITUTION ERRORS FOUND IN LEMMA 8.

IN ALL CASES y = φ̂(x), z = φ̄(x), z′ = φ̄(x′)

1a 2c

x = 12122022002200
(y, z) = (121, 10200010201)

drt(x) = 12122002200

x = 12122122002200
(y, z) = (121, 10000210201)

drt(x) = 12122002200

x′ = 12122022202200
(y, z′) = (121, 10200210001)

drt(x′) = 12122022200

x′ = 12122120002200
(y, z′) = (121, 10001212201)

drt(x′) = 12120002200

Lemma 8 Let x ∈ Σ∗ be some string resulting from a k-

duplication, k > 2, and let x′ be obtained from x as a result

of a substitution that occurs as part of a noisy duplication.

Denote z , φ̄(x) and z′ , φ̄(x′) = z + ǫℓ−k. Assume

z = u 0pk+m+i−1 0 0k−i v b′ w
b · ǫℓ−k = 0|u| 0pk+m+i−1 b 0k−i 0|v| (−b) 0|w|

z′ = u 0pk+m+i−1 b 0k−i v (b′ − b) w

where u,w ∈ Σ∗, v ∈ Σi−1, v is not empty and begins with a

non-zero letter, b ∈ Σ\{0}, b′ ∈ Σ, the run of zeros 0pk+m+k

in z between u and v is maximal, p ∈ Z>0, 0 6 m < k,

1 < i 6 k. Furthermore, denote the length of the run of zeros

to the left of b′ in z by m1, and to its right by m2. Then the

substitution is ambiguous exactly when either:

C.1 1 < i 6 k −m, b′ = b, and ⌊m2

k ⌋ < ⌊m1+m2+1
k ⌋.

C.2 k−m < i 6 k and (b′ /∈ {0, b} or ⌊m2

k ⌋ = ⌊m1+m2+1
k ⌋).

Proof: The following cases are possible:

1) If 1 < i 6 (k −m) then:

a) if b′ = b and ⌊m2

k ⌋ < ⌊m1+m2+1
k ⌋, then a run of

0s of length at least k will be created in z′, leading

to |µ(z′)| = |µ(z)| but µ(z′) 6= µ(z). Thus the

substitution is ambiguous.

b) if b′ = 0 and ⌊m2

k ⌋ < ⌊m1+m2+1
k ⌋, then length of the

root over all increases by 2k.

c) in all other cases, the root’s length increases by k.

2) If (k−m) < i 6 k, then a run of 0s of length m+i−1 >
k will exist before b, implying that the length of the root

before v will not change. Then:

a) if b′ = b and ⌊m2

k ⌋ < ⌊m1+m2+1
k ⌋, then the length of

the root decreases by k.

b) if b′ = 0 and ⌊m2

k ⌋ < ⌊m1+m2+1
k ⌋, then the length of

the root increases by k.

c) in all other cases, the length of the root remains the

same, resulting in an ambiguous substitution.

Examples for the two cases in which ambiguous substitu-

tions occur, as described in Lemma 8, are given in Table I.

B. Bounds on the size of the code

We use the analysis of the previous section to find lower

bounds on the size of 1ND-detecting codes. For x ∈ Σn, a

5

quantity that will be useful in bounding the size of codes is

the following:

V (x) ,
∣

∣

∣
drt(D∗(61)(x)) ∩ Σn

∣

∣

∣
.

This counts the number of strings x′ that can be obtained from

x through any number of duplications, at most one of them

noisy, and such that |drt(x)| = |drt(x′)|.

Lemma 9 For x ∈ Irr(n), where n > 2k > 4,

V (x) 6 (n− k)(q − 1)− wt
(

φ̄(x)
)

(q − 2).

Proof: We first assume, without loss of generality, that the

noisy duplication occurs last, since subsequent duplications

(which are not noisy) do not change the duplication root.

Assume the notation is as defined in Lemma 8.

We first bound the contribution of the case 1a of the proof

of Lemma 8 to V (x). Since n > 2k and x is irreducible, we

have that wt(z) > 1. There are wt(z) non-zero elements in z
that can serve as the first letter of v, which we shall call the

anchor. In this case, b′ 6= 0, and it is found at most k−m−1
positions after the anchor. We contend that there is at most

one such choice for b′. Indeed, if we are in case 1a, then there

is a run of m1 zeros immediately to the left of b′, and m2 to

the right. But
⌊

m1 +m2 + 1

k

⌋

>
⌊m2

k

⌋

> 0,

implying

m1 +m2 + 1 > k.

Thus, if case 1a holds then there is a single non-zero element

in the k positions following the anchor. Additionally, since

b′ = b, we have a single choice for the value of b. Finally, we

note that case 1a cannot occur when the anchor is the last non-

zero element in z. Hence, in total, the contribution of case 1a

does not exceed wt(z)− 1.

We now turn to the case of 2c. Assuming an anchor was

chosen, the value of i can take at most m values, which is

the length of the run of zeros before the anchor, taken modulo

k. Ranging over all the run’s zeros, the effect of modulo k
simply leaves us with a choice of a position containing a 0
in z, since x is irreducible. There are n − k − wt(z) such

positions. Finally, there are at most q − 1 possibilities for b.
Thus, this case contributes at most (n− k−wt(z))(q− 1) to

V (x). Noting that x itself also contributes to V (x) completes

the proof.

To find a lower bound on the size of the code, we apply the

Gilbert-Varshamov (GV) bound with the average size of the

sphere (see, e.g., [11]).

Lemma 10 Let x be a randomly and uniformly chosen string

from Irr(n). If n > 2k > 4, then

E[V (x)] 6 2(n− k)(q − 1)/q.

Proof: Let z = φ̄(x). From Lemma 9, to find the expected

value of V (x), it suffices to find the expected value of wt(z).
Fix i and let U be the set of strings obtained by removing

position i from the strings in RLL(n− k) (if multiple copies

of a string exist we keep only one). Let S be the set of strings

s in U that contain a run of 0s of length at least k − 1 that

includes si−1 or si. Furthermore, let Sc = U \ S. Now, the

number of strings in RLL(n− k) that contain a 0 in position

i equals |Sc|, while the total number of strings in RLL(n−k)
equals |Sc|q + |S|(q − 1). Hence, for a randomly chosen z ∈
RLL(n− k),

Pr(zi = 0) =
|Sc|

|Sc|q + |S|(q − 1)
6

1

q

Thus, E[wt(z)] > (n − k)(q − 1)/q. The result then follows

from Lemma 9.

The above lemma leads to the lower bound in the following

theorem.

Theorem 11 For positive integers n > 2k > 4, the maximum

size A1ND(n, q, k) of a 1ND-detecting codes of length n over

Zq satisfies

1

4(n− k)
·M 6 A1ND(n, q, k) 6 M,

where

M ,

⌊n/k⌋−1
∑

i=0

|Irr(n− ik)| =

⌊n/k⌋
∑

i=1

qk|RLL(n− ik)| (7)

is the number of irreducible words whose descendant cones

intersect Σn.

Proof: First we show that

qk+1|RLL(n− k)|

2(n− k)(q − 1)
6 A1ND(n, q, k) 6 M.

The lower bound follows by applying the generalized GV

bound [11] with Lemma 10. The upper bound follows from

the fact that the code must be able to correct any number

of duplication errors and from [3] where such codes are

discussed.

To get the lower bound to the more appealing form we

claim, we note that to any string of length m− k that has no

0k substring, we can append a string of length k whose first

element is nonzero, and thus obtain a string of length m that

has no 0k substring. Hence,

|RLL(m)| > |RLL(m− k)|(q − 1)qk−1.

Thus

|RLL(n− ik)| 6
|RLL(n− k)|

(q − 1)i−1q(i−1)(k−1)
.

We then have

M =

⌊n/k⌋
∑

i=1

qk|RLL(n− ik)|

6 qk|RLL(n− k)|

⌊n/k⌋
∑

i=1

1

(q − 1)i−1q(i−1)(k−1)

6 qk|RLL(n− k)|
∞
∑

i=1

1

(q − 1)i−1q(i−1)(k−1)

6 qk|RLL(n− k)|
(q − 1)qk−1

(q − 1)qk−1 − 1
.

6

Since q + k > 4,

|Irr(n)| = qk|RLL(n− k)| > M/2, (8)

and we have the desired claim.

C. Code construction

The goal of this section is to construct 1ND-detecting codes.

We shall first consider an auxiliary code construction which

will be useful not only here, but also in the following section.

The error we would like to detect by this auxiliary code is as

follows:

Definition 12 For n, k > 0, let z, z′ ∈ Σn be some strings. If

we can write
z = u v w 0|v| x
z′ = u 0|v| w v x

where u, v, w, x ∈ Σ∗, 1 6 |v| 6 k−1, v is a non-zero string,

and |v| + |w| = k, then we say z and z′ differ by a single

k-switch error.

Intuitively, a single k-switch error takes a non-zero non-

empty substring of length at most k− 1, and switches it with

an all-zero substring of the same length found k positions

before or after it.

Any non-empty string z ∈ Σn may be partitioned into non-

overlapping blocks of length k:

z = B1(z)B2(z) . . . B⌈n/k⌉(z),

where Bi(z) ∈ Σk for all i, except if k does not divide n, in

which case, B⌈n/k⌉ ∈ Σn mod k. We note that k is implicit in

the definition of Bi(z).
We now give a construction for a family of codes which we

then show are all capable of detecting a single k-switch error.

Construction A Let k > 2 and let p be the smallest odd

integer larger than k − 1, namely

p , 2

⌈

k − 1

2

⌉

+ 1.

Fix a code length n ∈ N and let S ⊆ Σn be an arbitrary set

of strings. For any string x ∈ S, and ℓ = 0, 1, 2, 3, we define

Zℓ(x) ,
∑

i∈Iℓ

|Bi(x)|0,

where Iℓ = {1 6 t 6 ⌈n/k⌉ | t ≡ ℓ (mod 4)}. For all

0 6 i, j < p, we construct

Caux
i,j (S) ,

{

x ∈ S
∣

∣ Z0(x) + 2Z2(x) ≡ i (mod p),

Z1(x) + 2Z3(x) ≡ j (mod p)
}

.

Theorem 13 Each code Caux
i,j (S) of Construction A can detect

a single k-switch error or a single zero replaced by a non-zero

letter.

Proof: Since k > 2 we have p > 3 which immediately

enables the detection of a single zero replaced by a non-zero

letter. Let us therefore focus on the problem of detecting a

single k-switch error.

We assume n > k+1, otherwise the claim is trivial. Assume

x ∈ Caux
i,j (S) sustains a single k-switch error, resulting in the

string x′ ∈ Σn. For 0 6 ℓ 6 3, let

∆ℓ , Zℓ(x
′)− Zℓ(x).

Furthermore, for 0 6 ℓ 6 1, let

Fℓ , ∆ℓ + 2∆ℓ+2.

To prove the error detection capabilities of the code it now

suffices to show that

F0 6≡ 0 (mod p) or F1 6≡ 0 (mod p). (9)

Based on the definition of a k-switch error, the number

of zeros changes in some blocks. We consider the following

possible cases.

First, if the number of zeros changes in 2 consecutive

blocks, then one of the pairs (∆0,∆1), (∆1,∆2), (∆2,∆3),
(∆3,∆0) equals (δ,−δ) for 0 < |δ| < k, and the two other

∆’s are equal to 0. Then, |F0| = |δ| or |F0| = 2|δ|. In the

former case F0 6≡ 0 (mod p) since 0 < |δ| < k 6 p. In the

latter case, F0 6≡ 0 (mod p) since 0 < 2|δ| < 2p and 2δ 6= p
(recall that p is odd).

Second, if the number of zeros changes in two non-

consecutive blocks, then only one of the pairs (∆0,∆2) and

(∆1,∆3) equals (δ,−δ) for 0 < |δ| < k, and the other equals

(0, 0). Then, either |F0| = |δ| or |F1| = |δ|, and in both

cases (9) is satisfied.

Third, if the change of number of zeros occurs in three

consecutive blocks, then there exists ℓ such that ∆ℓ = δ′ 6= 0
and ∆2+ℓ = 0 (indices taken modulo 4), where 0 < |δ′| < k
and 2|δ′| 6= p. Then either F0 or F1 takes on the value of δ′

or 2δ′. But δ′ 6≡ 0 (mod p) and 2δ′ 6≡ 0 (mod p), implying

that (9) is satisfied.

We now turn to construct 1ND-detecting codes. As before,

we consider codes that consist of irreducible strings of length

n. We thus need to devise a method to detect ambiguous

substitutions.

As mentioned before, when k = 1 ambiguous substitutions

cannot occur. Hence Irr(n) is a 1ND-detecting code. For

k > 2, our analysis rests on the following lemma.

Lemma 14 Let k > 2. If x ∈ Σ∗ and x′ is obtained from x
via any number of duplications among which one contains an

ambiguous substitution, then φ̄(drt(x)) and φ̄(drt(x′)) differ

by a single k-switch error, or

∣

∣|φ̄(drt(x))|0 − |φ̄(drt(x′))|0
∣

∣ = 1.

Proof: Denote z , φ̄(x) and z′ , φ̄(x′). With the

notation of Lemma 8, one can verify that in Case 1a we have

µ(z) = u′ v 0i−1−|v|b0k−i 0|v| w′

µ(z′) = u′ 0|v| 0i−1−|v|b0k−i v w′ (10)

and in Case 2c,

µ(z) = u′ 0 0k−|v|−1v b′ w′

µ(z′) = u′ b 0k−|v|−1v (b′ − b) w′ (11)

7

for some u′, w′ ∈ Σ∗. In (10) we see a single k-switch error.

In (11), if b′ = b we have a single k-switch error, and if b 6= b′

then the number of zeros differ by one.

Construction B Let n, k be positive integers, n > k, and let

S , RLL(n− k). For all 0 6 i, j < p, we construct

Ci,j ,
{

φ−1(yz)
∣

∣ y ∈ Σk, z ∈ Caux
i,j (S)

}

,

where p and Caux
i,j (S) are defined in Construction A.

Theorem 15 With the setting as in Construction B, the code

Ci,j is a 1ND-detecting code.

Proof: By our choice of S, we necessarily have that

Ci,j ⊆ Irr(n). If k = 1, then C0,0 = Irr(n) is the only code

and the theorem is immediate.

Assume k > 2. Let c1, c2 ∈ Ci,j be distinct codewords.

Since Ci,j ⊆ Irr(n), drt(c1) = c1 and drt(c2) = c2, which

are distinct. Based on (6) it suffices to show that for any c′1 ∈
D∗(1)(c1), we have c2 6= drt(c′1).

If drt(c′1) = drt(c1) = c1, then clearly c2 6= drt(c′1). So

we assume drt(c′1) 6= c1. It is then sufficient to show that

drt(c′1) /∈ Ci,j . This is obvious if | drt(c′1)| 6= n and the

substitution is not ambiguous. If the substitution is ambiguous,

we obtain the claimed result by combining Lemma 14 and

Theorem 13.

Corollary 16 If n > k > 2 then

A1ND(n, q, k) >
1

2(k + 1)2
·M,

where M is given by (7).

Proof: Let p and Ci,j be defined as in Construction B.

The set {Ci,j | 0 6 i, j < p} forms a partition of Irr(n).
Thus, a simple averaging argument shows that there exist i
and j such that

|Ci,j | >
|Irr(n)|

p2
.

Since p 6 k + 1, and by (8), we obtain the claim.

Note that the lower bound on A1ND(n, q, k) in this corollary

may be better than the one given in Theorem 11.

The problem with the bound of Corollary 16 is that it is

not constructive. In particular, we do not know exactly what

choice of i and j gives the largest code Ci,j in Construc-

tion B. Construction C below provides a sub-code of C0,0

from Construction B whose size can be lower bounded, albeit,

somewhat smaller than the guarantee of Corollary 16.

Construction C Let k > 2 and let p be the smallest odd

integer larger than k − 1, namely

p , 2

⌈

k − 1

2

⌉

+ 1.

Fix a code length n ∈ N, n > 5k. We construct a code C ⊆ Σn

in the following way: For each y ∈ RLL(n − 5k), construct

four strings of length k, denoted B0, B1, B2, B3 ∈ Σk,

Bi = 0βi1k−βi , ∀0 6 i 6 3

where

βi = (−(ζi + 2ζi+2) mod p)− 2βi+2, i = 0, 1

βi+2 =

⌊

(−(ζi + 2ζi+2) mod p)

2

⌋

, i = 0, 1

ζi = Zi(φ
−1(0ky)), i = 0, 1, 2, 3

and add the codewords φ−1(BB0B1B2B3y) where B runs

over all strings in Σk.

Theorem 17 Let q be the alphabet size, k the duplication

length, q + k > 4, and n ∈ N, n > 5k. Then the code C
from Construction C is a 1ND-detecting code of size

|C| = Irr(n− 4k) >
1

2 · q4k
·M,

where M is given in (7).

Proof: One can easily verify that 0 6 β1 < k, hence

all the blocks Bi end with a non-zero symbol and therefore

all the codewords are irreducible. Additionally, by inspection

we can verify that C ⊆ C0,0, where C0,0 is obtained from

Construction B. Thus, C is 1ND-detecting. Finally, all the

codewords constructed are distinct, hence

|C| = qk|RLL(n− 5k)| = |Irr(n− 4k)| >
1

2 · q4k
·M,

where the last inequality follows from the fact that

|Irr(n− 4k)| > |Irr(n)|/q4k and then from (8).

IV. UNRESTRICTED ERROR-DETECTING CODES

Substitution mutations might occur not only in duplication

copies, but also independently in other positions. In what

follows, we consider a single substitution error occurring in

addition to however many duplications, at any stage during the

sequence of duplication events, but not necessarily in a dupli-

cated substring. We refer to codes correcting many duplication

errors and detecting a single independent substitution error as

1S-detecting codes.

Definition 18 A code C ⊆ Σ∗ is a 1S-detecting code if there

exists a decoding function D : Σ∗ → C ∪{error} such that if

c ∈ C was transmitted and y ∈ Σ∗ was received then D(y) = c
if only duplication errors occurred, and D(y) ∈ {c, error}
if in addition to the duplications, exactly one unrestricted

substitution occurred.

Lemma 19 A code C ∈ Σn is a 1S-detecting code if and only

if for any two distinct codewords c1, c2 ∈ C, we have

drt(c1) 6= drt(c2) and drt(c2) /∈ drt(D∗,1(c1)). (12)

Proof: In the one direction, we define for any y ∈ Σ∗,

D(y) = c if drt(c) = drt(y), and D(y) = error otherwise.

Clearly if (12) holds then D is a decoding function proving

that C is a 1S-detecting code.

In the other direction, if (4) does not hold we have two

(not mutually exclusive) cases. If there exist c1, c2 ∈ C
such that drt(c1) = drt(c2) then by Theorem 1 there exists

y ∈ D∗,0(c1)∩D∗,0(c2) and no decoding function can always

8

correctly decode y. Similarly, if drt(c2) ∈ drt(D∗,1(c1)) then

there exists y ∈ D∗,1(c1) such that drt(y) = drt(c2) and no

decoding function D can always decode y correctly.

We shall adopt the same general strategy as the previous

section. Namely, we will construct a code based on irreducible

words of length n. Descendants whose duplication root is not

of length n will be easily detected. Our challenge is therefore

to detect errors that do not change the length of the root caused

by, what we refer to as, ambiguous substitutions.

Definition 20 An unrestricted substitution error that changes

the root but not the length of the root is called an ambiguous

unrestricted substitution.

As in the previous section, when the duplication length is

k = 1 there are no ambiguous unrestricted substitutions. In

that case Irr(n) can easily serve as a 1S-detecting code. Thus,

we shall focus on the case of k > 2.

Lemma 21 Let n > 2k > 4. For any string x ∈ Σn, let

x′ ∈ drt(D∗,61(x)) ∩ Σn be a string obtained from x via a

single ambiguous unrestricted substitution. If

d(φ(drt(x)), φ(drt(x′))) > 3,

then φ̄(drt(x)) and φ̄(drt(x′)) differ by a single k-switch

error.

To improve the flow of reading, the proof of this technical

lemma is given in the appendix.

Our strategy, based on Lemma 21, is to build a code as an

intersection of two other component codes. If one component

code can detect the swapping of two substrings and the other

component code has a minimum Hamming distance of 3 or

more, then their intersection is a 1S-detecting code.

Construction D Let q be a prime power, and Σ , Fq be

the finite field of q elements. Let n > k > 2 and let r be the

unique positive integer such that qr−1−1
q−1 < n 6 qr−1

q−1 , namely,

r ,
⌈

logq(n(q − 1) + 1)
⌉

.

Denote by CH the [n, n−r, 3] shortened Hamming code over

Fq , and by CH
0 , CH

1 , . . . , CH
qr−1 its qr cosets. Finally, let p

and Ci,j be defined as in Construction B. For all 0 6 i, j < p
and 0 6 ℓ < qr, we construct

Ci,j,ℓ ,
{

c ∈ Ci,j

∣

∣ φ(c) ∈ CH
ℓ

}

.

Theorem 22 With the setting as in Construction D, the code

Ci,j,ℓ is a 1S-detecting code. In particular, there exist i, j, ℓ
such that

|Ci,j,ℓ| >
|Irr(n)|

qrp2
>

|Irr(n)|

q(n(q − 1) + 1)(k + 1)2
.

Proof: By Construction B we have that Ci,j ⊆ Irr(n),
hence also Ci,j,ℓ ⊆ Irr(n), which implies it can correct any

number of duplications. Thus, following Lemma 19, it only

remains to consider two distinct codewords c1, c2 ∈ Ci,j,ℓ and

show that drt(c2) /∈ drt(D∗,1(c1)), namely consider the case

in which a single ambiguous unrestricted substitution occurred

as part of the duplications.

Assume to the contrary this is not the case. By Lemma 21,

if d(φ(c1), φ(c2)) > 3, then φ̄(c1) and φ̄(c2) differ by a single

k-switch error, and this is contradicts the fact that Ci,j detects

a single k-switch error in the φ̄ part of the root, a fact that

has already been used in Theorem 15. If d(φ(c1), φ(c2)) 6 2,

then this contradicts the minimum distance implied by using

the shortened Hamming code.

Finally, the existence of the code with the lower bounded

size is guaranteed using a simple averaging argument since

{Ci,j,ℓ | 0 6 i, j < p, 0 6 ℓ < qr} forms a partition of

Irr(n).

V. UNRESTRICTED ERROR-CORRECTING CODES

In this section, we again observe the case of many tandem-

duplications and a single substitution, occurring at any point

during the duplication sequence, and not necessarily in a

duplicated substring. However, unlike previous sections, there

is no mix of correction and detection – rather we aim to correct

all duplications and a single substitution (occurring at any

stage during the sequence of duplication events), which makes

the definition of the code more straightforward. We refer

to codes able to correct such errors as a single-substitution

correcting (1S-correcting) code. Obviously, a code C is 1S-

correcting if and only if for any two distinct codewords

c1, c2 ∈ C, we have

D∗,61(c1) ∩D∗,61(c2) = ∅.

In this context, we will find it easier to consider strings in

the φ-transform domain. We also define the substitution dis-

tance σ(u, v) to measure the number of substitutions required

to transform one string into the other, when u, v are assumed

to be in the transform domain. More precisely, if u, v ∈ Σn

and v − u =
∑n

i=1 ai · ǫi, then

σ(u, v) , |{1 6 i 6 n | ai 6= 0}|.

A. Error-correcting codes

In contrast to Lemma 21 and Construction D, we shall see

in the following example that an intersection of a single

substitution correcting code with a duplication correcting code

is not, in general, a 1S-correcting code.

Example 23 Set Σ = Z2 and k = 3, and observe the following

two sequences of duplication and substitution, as seen in the

φ-transform domain:

u , 111010111 → 111010111000 → 111000101000

v , 111101010 → 111000101010 → 111000101000

It is clear that if C ⊆ Σ>k is a code correcting even a

single duplication and a single substitution, even given the

order in which they occur, then φ−1(u) = 111101010 and

φ−1(v) = 111010000 cannot both belong to C. Observing that

u, v ∈ RLL(9) and σ(u, v) = 4, however, we find that C ,
{φ−1(u), φ−1(v)} can correct any number of duplications, or

correct a single substitution. Simple intersections, hence, do

9

not suffice for a code correcting a combination of such errors.

�

In what follows, we propose a constrained-coding approach

which resolves the issue demonstrated in the last example. It

relies on the following observation: substitution noise might

create a 0k substring in the transform domain–that is not due

to a duplication–as well as break a run of zeros. However,

a constrained system exists which allows us to de-couple the

effects of duplication and substitution noise.

More precisely, we denote

W ,
{

u ∈ Σ>k
∣

∣ ∀ substring v of u, |v| = k : wt(v) > 1
}

.

We shall show that intersecting a single-substitution-error-

correcting code with the reverse image of W ∩Σn−k, instead

of RLL(n − k), is a 1S-correcting code. More precisely, we

aim to show that restricting codewords to be taken from W
(in the transform domain), the following holds.

Lemma 24 Take an irreducible x ∈ Σ>k, and y ∈ D∗,61(x).
If v , φ̄(y) contains a 0k substring, and v̄ is derived from

v by removing that substring, and if φ̄(x) ∈ W , then v̄ ∈
φ̄
(

D∗,61(x)
)

.

Proof: We denote

v = αc0kβ

for 0 6= c ∈ Σ and α, β ∈ Σ∗, and by abuse of notation

assume |αc| > 0 is the shortest with the properties stated

above (allowing v = 0kβ as a private case).

We also take y′ ∈ D∗,0(x) to be the descendant of x derived

by the same sequence of duplications as y, where a substitution

never occurs, and

v′ = φ̄(y′) = α′c′0ja0k−j−1β′,

for 0 6 j < k, c′, a ∈ Σ, α′, β′ ∈ Σ∗, where |α′c′| = |αc|.
(We know v′ can be represented in this fashion since y suffered

a single substitution.)

If a = 0 then the claim is trivial. Assume, therefore, a 6= 0.

Note that φ̄(x) ∈ W and wtH(0ja0k−j−1) = 1, implying that

0k−j−1β′ begins with a k-tuple of zeros. I.e., β′ = 0j+1β′′,

for some β′′ ∈ Σ∗. Thus, a descendant of x is also z′, where

φ̄(z′) = α′c′0jaβ′′.

We now reexamine v′, v:

v′ = α′ c′ 0j a 0k−j−1 β′

v = α c 0j 0 0k−j−1 β

and since y is derived from x by the same sequence of tandem-

duplications as y′, with a single substitution, we may deduce

that α, β and α′, β′ differ, respectively, in precisely one of the

following manners:

• There exist b ∈ Σ and α1, α2 ∈ Σ∗, with |α2c| = k−j−1,

such that

v′ = α1 (b− a) α2 c′ 0j a 0k−j−1β
v = α1 b α2 c 0j 0 0k−j−1β

and, again, by abuse of notation, including the case of

|α2c| = 0, meaning b = c and b − a = c′; in all other

cases c′ = c.

In this case

v̄ = αcβ = α1bα2c0
j+1β′′

= α1(b− a)α2c
′0jaβ′′ + a · ǫ|xc|+j−k

= φ̄(z) + a · ǫ|xc|+j−k.

• β = 0jaβ′′, implying α′c′ = αc and

v̄ = αcβ = αc0jaβ′′ = φ̄(z).

• There exist s > 0, b ∈ Σ, γ ∈ Σk−1 and β′′′ ∈ Σ∗ such

that β′′ = 0skγbβ′′′, and

v′ = αc 0j a 0k−j−1 0j+1+skγ b β′′′

v = αc 0j 0 0k−j−1 0j+1+skγ (b+ a) β′′′

Let z′′ be the ancestor of z′ (thus descendant of x)

satisfying

φ̄(z′′) = αc0jaγbβ′′′

and note that

v̄ = αc0j+sk0γ(b+ a)β′′′

= αc0j+skaγbβ′′′ + (−a) · ǫ|αc|+sk+j

∈ φ̄
(

D∗,0
(

z′′ + (−a) · e|αc|+j

))

Recall from [3] that a decoder for correcting an unbounded

number of duplications simply has to remove incidents of 0k

from the φ̄-part of the noisy string. This lemma shows that

the same approach can be taken with the addition of a sin-

gle substitution–without increasing the substitution distance–

provided that coding is done in W .

Next, we consider the case where a substitution breaks a

run of zeros (in the transform domain). The following lemma

allows us to remove appearances of 0ja0k−1−j from the φ̄-

part of a noisy string (by applying an appropriate substitution)

without increasing the substitution distance.

Lemma 25 Suppose u ∈ Σ>k contains a substring 0k starting

at index i, and suppose v = u+ a · ǫℓ for some i 6 j < i+ k,

0 6= a ∈ Σ, and ℓ ∈ {j, j − k} (so that vj 6= 0). Note that

v′ , v−vj ·ǫj has a 0k substring at index i (like u); we remove

that substring from both u, v′ to produce ū, v̄, respectively.

Then, irrespective of what value ℓ takes, σ(ū, v̄) 6 1.

Proof: The lemma is straightforward to prove by case for

ℓ. If ℓ = j then v′ = u, and consequently v̄ = ū.

Otherwise, ℓ = j − k and vj = −a, hence

v′ = u+ a · (ǫj−k + ǫj)

and v̄ = ū+ a · ǫj−k, which concludes the proof.

It is therefore seen that a restriction to W allows the

correction of the substitution error without encountering the

issue demonstrated in Example 23. This fact is more precisely

stated in the following theorem:

Theorem 26 If C ⊆ Σn, n > k, is an error-correcting code

for a single substitution, and φ̄(C) ⊆ W , then C is a 1S-

correcting code.

10

Proof: Take x ∈ C, y ∈ D∗,61(x), and define u , φ̂(x),
v , φ̄(y). We first remove 0k substrings from v, stopping

if we reach length n − k. By Lemma 24, every removal of

0k does not increase the substitution distance of the received

sequence from a duplication descendant of x; if indeed it is

possible to arrive at v̂ of length n−k, then the error-correcting

capabilities of C now suffice to deduce x from φ−1(uv̂).
The only other possible case is that we ultimately arrive

at v̂ of length n which contains a substring of length k of

weight 1. We remove that substring to obtain v̂′, and reverse

the φ-transform, namely, y′ , φ−1(uv̂′). By Lemma 25, this

produces y′ of the same length as x and differing from it by at

most a single substitution, which we may once more correct

in the standard fashion.

B. Code Construction and Size

In this section we construct a family of codes satisfying

Theorem 26. We also study the redundancy and rate of the

proposed construction. We start by bounding the rate loss of

using constrained coding by restricting codes to W:

Lemma 27 For every integers q > 2 and n > k > 1,

r(W ∩ Σn)

n
6

2

k
logq

q

q − 1
.

Proof: We note that Cn ⊆ W ∩Σn, where Cn is the set

of length-n strings in which, divided into blocks of length k,

every block ends with two non-zero elements. Hence,

r(W ∩ Z
n
q)

n
6

r(Cn)

n
=

1

n

(

⌊n

k

⌋

+

⌊

n+ 1

k

⌋)

6
2

k
logq

q

q − 1
.

Theorem 28 If q is a prime power, r > 2, and n =
qr−1
q−1 +

⌈

2r
k

⌉

, then a 1S-correcting k-duplication code C ⊆
W ∩ F

n
q exists, with

R(C) > 1−
2

k
logq

q

q − 1
− o(1).

Proof: We begin by encoding data into W ∩ F

qr−1

q−1
−r

q ,

incurring by Lemma 27 redundancy

r

(

W ∩ F

qr−1

q−1
−r

q

)

6

(

qr − 1

q − 1
− r

)

2

k
logq

q

q − 1
.

Next, a systematic encoder for the
[

qr−1
q−1 , r, 3

]

Ham-

ming code (under the change of basis to {ǫi}) can encode

W ∩ F

qr−1

q−1
−r

q → F

qr−1

q−1

q , incurring r additional symbols of

redundancy, and resulting in a code which can correct a single

substitution.

Note, due to the systematic encoding, that the projection

of this code onto the first qr−1
q−1 − r coordinates is contained

in W . We may simply cushion the last r symbols with
⌈

2r
k

⌉

interleaved 1’s (two per k data symbols) to achieve a code

C ⊆ W ∩ F
n
q which may still correct a single substitution.

Taking n → ∞, we can compare the rate obtained by the

code in Theorem 28 to a simple upper bound of the best codes

correcting only tandem duplications of length k (see [3]),

R(C) 6 1−
(q − 1) logq e

qk+2
+ o(1).

Clearly, then, a gap in rate exists, as 2
k logq

(

q
q−1

)

>
(q−1)
qk+2 logq(e) + o(1) for all k > 2. Note, however, that this

upper bound is not necessarily tight, as it does not account for

the combined error mode.

VI. CONCLUSION

We have studied the combination of a single substitution

error with an unlimited number of tandem-duplication errors,

with a fixed duplication-window length. We focused on two

noise models, where the substitution error is either restricted

to occur in an inserted copy during one of the duplication

events, or may occur at any position in the string. We have

presented bounds and a construction of error-detecting codes

in the former error-model, as well as constructions of error-

detecting and error-correcting codes in the latter.

In all cases, a rate loss is observed due to the need to

recover from an unlimited number of duplications. Thus, we

are interested in the extra redundancy cost due to single-error

detection or correction. In the first case, of detecting a single

restricted substitution, we show that the additional required

cost in redundancy is bounded from above by logq(4(n− k))
using a GV argument in Theorem 11, where Construction B

also shows that it is bounded from above by logq(2(k+1)2);
depending on the asymptotic regime of k, either may be

tighter than the other. In Construction C we find a constructive

procedure for generating codes for that purpose, which incur

a higher redundancy cost of 4k logq(2); if k is fixed, which

is a likely scenario, then that cost is nonetheless constant as

well, and improves upon Theorem 11.

Further, in the second case of unrestricted substitution noise,

Construction D provides error-detecting codes for a single sub-

stitution incurring an extra redundancy cost of O(log(k2n)).
Finally, in the same error model, Theorem 26 and Theorem 28

provide error-correcting codes which have lower rates than

codes designed solely to correct duplication errors. Although

we did not develop lower bounds on the required redundancy,

it is our conjecture that both solutions offered here are sub-

optimal. In particular, these latter codes rely on a constrained-

coding approach which we do not believe is necessary in this

context. We also note that while both the upper bound and

lower bound on the rates of these codes approach 1 as k → ∞,

the lower bound does so as Θ(k−1) whereas the upper bound

is much faster as Θ(q−k), implying a gap yet to be resolved.

For future research, we would like to suggest a few general-

izations of the noise model considered herein. First, we suggest

studying codes capable of handling a higher number of sub-

stitution errors. We also believe codes designed for handling

only a bounded number of duplication events are of interest.

Finally, we suggest to observe combinations of different noise

mechanisms, including bounded tandem-duplication, end- or

interspersed-duplication noise [1], or duplication and deletion

noise.

11

REFERENCES

[1] F. Farnoud, M. Schwartz, and J. Bruck, “The capacity of string-
duplication systems,” IEEE Transactions on Information Theory, vol. 62,
no. 2, pp. 811–824, 2016.

[2] ——, “Estimation of duplication history under a stochastic model for
tandem repeats,” BMC Bioinformatics, vol. 20, no. 1, 2019.

[3] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-correcting
codes for data storage in the DNA of living organisms,” IEEE Trans-

actions on Information Theory, vol. 63, no. 8, pp. 4996–5010, Aug.
2017.

[4] M. Kovačević and V. Y. F. Tan, “Asymptotically optimal codes cor-
recting fixed-length duplication errors in DNA storage systems,” IEEE

Communications Letters, vol. 22, no. 11, pp. 2194–2197, Nov. 2018.
[5] A. Lenz, A. Wachter-Zeh, and E. Yaakobi, “Duplication-correcting

codes,” Designs, Codes and Cryptography, vol. 87, no. 2, pp. 277–298,
Mar. 2019.

[6] H. Mahdavifar and A. Vardy, “Asymptotically optimal sticky-insertion-
correcting codes with efficient encoding and decoding,” in 2017 IEEE

International Symposium on Information Theory (ISIT), Jun. 2017, pp.
2683–2687.

[7] D. Pumpernik, B. Oblak, and B. Borštnik, “Replication slippage versus
point mutation rates in short tandem repeats of the human genome,”
Molecular Genetics and Genomics, vol. 279, no. 1, pp. 53–61, 2008.

[8] F. Sala, R. Gabrys, C. Schoeny, and L. Dolecek, “Exact reconstruction
from insertions in synchronization codes,” IEEE Transactions on Infor-

mation Theory, vol. 63, no. 4, pp. 2428–2445, 2017.
[9] S. L. Shipman, J. Nivala, J. D. Macklis, and G. M. Church, “Molecular

recordings by directed CRISPR spacer acquisition,” Science, Jun. 2016.
[10] ——, “CRISPR–Cas encoding of a digital movie into the genomes of a

population of living bacteria,” Nature, vol. 547, no. 7663, pp. 345–349,
Jul. 2017.

[11] L. M. G. M. Tolhuizen, “The generalized Gilbert-Varshamov bound is
implied by Turán’s theorem,” IEEE Transactions on Information Theory,
vol. 43, no. 5, pp. 1605–1606, Sep. 1997.

[12] K. Zhou, A. Aertsen, and C. W. Michiels, “The role of variable DNA
tandem repeats in bacterial adaptation,” FEMS Microbiology Reviews,
vol. 38, no. 1, pp. 119–141, Jan. 2014.

APPENDIX

Proof of Lemma 21: Let x′ ∈ D∗,61(x), where

|drt(x′)| = |drt(x)|, but drt(x′) 6= drt(x),

namely, an ambiguous unrestricted substitution occurred. Let

us denote

y , φ̂(x), z , φ̄(x),

y′ , φ̂(x′), z′ , φ̄(x′).

Since duplications do not change the root, we assume without

loss of generality that no duplications occur and only a single

substitution occurs. Thus, we can write

x′ = x+ a · ei, yz = y′z′ + a · ǫi,

where i denotes the location of the substitution, and a ∈
Σ \ {0}. Depending on i, a single substitution may result in

one or two changed positions in the transform doamin of φ.

The proof of the claim comprises of many cases, and we start

with some simple ones.

In the first simple case, the substitution occurs in the first

k positions, namely, 1 6 i 6 k. Since φ(drt(x′)) = y′µ(z′),
and y 6= y′, if we have |drt(x′)| = |drt(x)| then

d(φ(drt(x)), φ(drt(x′))) 6 2,

by virtue of positions i and i+ k.

In a similar fashion, if the substitution occurs in the last k
positions, namely, |x|−k+1 6 i 6 |x|, only a single position

is changed in the transform φ. Since φ(drt(x′)) = y′µ(z′),
and z 6= z′, if we have |drt(x′)| = |drt(x)| then

d(φ(drt(x)), φ(drt(x′))) 6 1,

by virtue of positions i.
We are now left with the last interesting case, in which the

substitution changes two positions, i and i+ k, both in the z
part of the φ-transform. We therefore disregard the part y = y′.
We may now write

z = u a1 v a2 w
z′ = u (a1 + a) v (a2 − a) w

where u,w ∈ Σ∗, v ∈ Σk−1, a, a1, a2 ∈ Σ, and a 6= 0. We

distinguish between two major cases, depending on whether

v = 0k−1.

Case I: In the first major case we have v = 0k−1. Let us

write

u = u′0m1 , w = 0m4w′,

where all the indicated runs of zeros are maximal. Thus,

z = u′ 0m1 a1 0k−1 a2 0m4 w′

z′ = u′ 0m1 (a1 + a) 0k−1 (a2 − a) 0m4 w′.

The length of the substring between u′ and w′ is m1 +m4 +
k + 1 and we note that

⌊

m1 +m4 + k + 1

k

⌋

=
⌊m1

k

⌋

+
⌊m4

k

⌋

+ s,

where s ∈ {1, 2}. We distinguish between the following cases:

1) If a1 6= 0 and a2 6= 0:

a) If a1 + a 6= 0 and a2 − a 6= 0

d(φ(drt(x)), φ(drt(x′))) 6 2.

b) If exactly one of a1 + a and a2 − a is zero, the length

of µ(z′) decreases by k.

c) If a1 + a = a2 − a = 0, the length of µ(z′) decreases

by sk.

2) If a1 6= 0 and a2 = 0:

a) If a1 + a 6= 0, since a2 − a 6= 0 the length of µ(z′)
increases by k.

b) If a1 + a = 0, since a2 − a 6= 0

d(φ(drt(x)), φ(drt(x′))) 6 1.

3) If a1 = 0 and a2 6= 0:

a) If a2 − a 6= 0, since a1 + a 6= 0 the length of µ(z′)
increases by k.

b) If a2 − a = 0, since a1 + a 6= 0

d(φ(drt(x)), φ(drt(x′))) 6 1.

4) If a1 = a2 = 0, the length of µ(z′) increases by sk.

Case II: In the second major case, assume v 6= 0k−1. Let

us write

u = u′0m1 , v = 0m2v′0m3 , w = 0m4w′,

where all the indicated runs of zeros are maximal. Let c ∈
Σ \ {0} be some nonzero letter in v′, important to us only for

12

the purpose of being able to refer to the part of the string left

of c and the part of the string to the right of c.

1) Examining the part of the string to the left of c:

a) If a1 6= 0:

i) If a1 = −a:

A) If
⌊

m1+m2+1
k

⌋

>
⌊

m1

k

⌋

, the length before c
decreases by k and the substring 0j−1(−a)0k−j

is deleted.

B) If
⌊

m1+m2+1
k

⌋

=
⌊

m1

k

⌋

, the length before c
stays the same and the substitution a1 → 0
occurs.

ii) If a1 6= −a, the length before c stays the same and

the substitution a1 → (a1 + a) occurs.

b) If a1 = 0, then a1 6= −a, and:

i) If
⌊

m1+m2+1
k

⌋

>
⌊

m1

k

⌋

, the length before c in-

creases by k and 0j−1a0k−j is inserted.

ii) If
⌊

m1+m2+1
k

⌋

=
⌊

m1

k

⌋

, the length before c stays

the same and the substitution 0 → a occurs.

2) Examining the part of the string to the right of c:

a) If a2 6= 0:

i) If a2 = a:

A) If
⌊

m3+m4+1
k

⌋

>
⌊

m4

k

⌋

, the length after c
decreases by k and 0t−1a0k−t is deleted.

B) If
⌊

m3+m4+1
k

⌋

=
⌊

m4

k

⌋

, the length after c stays

the same and the substitution a2 → 0 occurs.

ii) If a2 6= a, the length after c stays the same and the

substitution a2 → (a2 − a) occurs.

b) If a2 = 0, then a2 6= a, and:

i) If
⌊

m3+m4+1
k

⌋

>
⌊

m4

k

⌋

, the length after c increases

by k and 0t−1(−a)0k−t is inserted.

ii) If
⌊

m3+m4+1
k

⌋

=
⌊

m4

k

⌋

, the length after c stays the

same and the substitution 0 → (−a) occurs.

Based on the changes of a1 and a2, there are two types of

ambiguous unrestricted substitutions:

• Define the sets of cases A , {1(a)iB, 1(a)ii, 1(b)ii} and

B , {2(a)iB, 2(a)ii, 2(b)ii}. Any substitution scenario

from A×B results in only two changed symbols, hence

d(φ(drt(x)), φ(drt(x′))) 6 2.

• The scenarios (1(a)iA,2(b)i) and (1(b)i,2(a)iA) are more

complex because they involve both an inserted a substring

and a deleted substring of length k. Since the two cases

are similar, we only show the analysis of the first case

(1(a)iA,2(b)i). We therefore have

z = u′ 0m1 a 0m2 v′ 0m3 0 0m4 w′

z′ = u′ 0m1 0 0m2 v′ 0m3 a 0m4 w′

where we recall that a 6= 0, |v′| 6 k−1, and v′ starts and

ends with a non-zero letter. Looking at µ(z′) compared

with µ(z), the part to the left of v′ becomes shorter by k
letters, whereas the part to the right of it becomes longer

by k letters. In particular, we can write

µ(z) = u′′ 0|v
′| 0m3a0m2 v′ w′′

µ(z′) = u′′ v′ 0m3a0m2 0|v
′| w′′ (13)

where m2 +m3 + |v′|+ 1 = k.

Having considered all cases, this last case is the only one

in which we have an ambiguous unrestricted substitution in

which potentially d(φ(drt(x)), φ(drt(x′))) > 3. The swap-

ping described in (13) completes the proof of the claim.

Yuanyuan Tang is a Ph.D. candidate in the Department of Electrical and
Computer Engineering at the University of Virginia. His research interests
consist of information theory, coding theory, and wireless communications.

He received the Bachelor’s degree in Engineering from the Department of
Communication Engineering at Chongqing University in 2015 and the Mas-
ter’s degree in Engineering from the Department of Electronic Engineering at
Tsinghua University in 2018.

Yonatan Yehezkeally (S’12) is a graduate student at the School of Electrical
and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva,
Israel. His research interests include coding for DNA storage, combinatorial
structures, algebraic coding and finite group theory.

Yonatan received the B.Sc. (cum laude) degree in Mathematics in 2013, and
the M.Sc. (summa cum laude) degree in Electrical and Computer Engineering
in 2017, all from Ben-Gurion University of the Negev.

Moshe Schwartz (M’03–SM’10) is a professor at the School of Electrical
and Computer Engineering, Ben-Gurion University of the Negev, Israel.
His research interests include algebraic coding, combinatorial structures, and
digital sequences.

Prof. Schwartz received the B.A. (summa cum laude), M.Sc., and Ph.D. de-
grees from the Technion – Israel Institute of Technology, Haifa, Israel, in
1997, 1998, and 2004 respectively, all from the Computer Science Department.
He was a Fulbright post-doctoral researcher in the Department of Electrical
and Computer Engineering, University of California San Diego, and a post-
doctoral researcher in the Department of Electrical Engineering, California
Institute of Technology. While on sabbatical 2012–2014, he was a visiting
scientist at the Massachusetts Institute of Technology (MIT).

Prof. Schwartz received the 2009 IEEE Communications Society Best
Paper Award in Signal Processing and Coding for Data Storage, and the 2020
NVMW Persistant Impact Prize. He has also been serving as an Associate
Editor for Coding Techniques for the IEEE Transactions on Information
Theory since 2014.

Farzad Farnoud (Hassanzadeh) (M’13) is an Assistant Professor in the
Department of Electrical and Computer Engineering and the Department
of Computer Science at the University of Virginia. Previously, he was a
postdoctoral scholar at the California Institute of Technology.

He received his MS degree in Electrical and Computer Engineering from
the University of Toronto in 2008. From the University of Illinois at Urbana-
Champaign, he received his MS degree in mathematics and his Ph.D. in
Electrical and Computer Engineering in 2012 and 2013, respectively. His
current research interests include coding for data storage, data deduplication,
and probabilistic modeling of genomic data for computational biology and
data compression. He is the recipient of the 2013 Robert T. Chien Memorial
Award from the University of Illinois for demonstrating excellence in research
in electrical engineering and the recipient of the 2014 IEEE Data Storage Best
Student Paper Award.

	Introduction
	Notation and Preliminaries
	Restricted Error-Detecting Codes
	The error model and the descendant cone
	Bounds on the size of the code
	Code construction

	Unrestricted Error-detecting codes
	Unrestricted Error-Correcting Codes
	Error-correcting codes
	Code Construction and Size

	Conclusion
	References
	Appendix
	Biographies
	Yuanyuan Tang
	Yonatan Yehezkeally
	Moshe Schwartz
	Farzad Farnoud (Hassanzadeh)

