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Abstract—Motivated by mutation processes occurring in in-
vivo DNA-storage applications, a channel that mutates stored
strings by duplicating substrings as well as substituting symbols
is studied. Two models of such a channel are considered: one
in which the substitutions occur only within the duplicated
substrings, and one in which the location of substitutions is
unrestricted. Both error-detecting and error-correcting codes are
constructed, which can handle correctly any number of tandem
duplications of a fixed length k, and at most a single substitution
occurring at any time during the mutation process.

Index Terms—DNA storage, string-duplication systems, error
correction, error detection

I. INTRODUCTION

ECENT advances in DNA sequencing and synthesis

technologies have increased the potential of DNA as a
data-storage medium. In addition to its high data density, data
storage in DNA provides a long-lasting alternative to current
storage media. Furthermore, given the need for accessing bio-
logical data stored in DNA of living organisms, technologies
for retrieving data from DNA will not become obsolete, unlike
flash memory, magnetic disks, and optical disks.

Data can be stored in DNA in vitro or in vivo. While
the former will likely provide a higher density, the latter
can provide a more reliable and cost-effective replication
method, as well as a protective shell [10]. In-vivo storage also
has applications such as watermarking genetically modified
organisms. This technology was recently demonstrated exper-
imentally using CRISPR/Cas gene editing [9], [10]. One of
the challenges of this technology is that a diverse set of errors
are possible, including substitutions, duplications, insertions,
and deletions. Duplication errors, in particular, have been
previously studied by a number of recent works, including [3]—
[6], [8], among others. This paper focuses on error-control
codes for duplication and substitution errors.
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In a (tandem) duplication event, a substring of the DNA
sequence, the template, is duplicated and the resulting copy is
inserted into the sequence next to the template [12]. Evidence
of this process is found in the genomes of many organisms as
patterns that are repeated multiple times [2]. In a substitution
event, a symbol in the sequence is changed to another symbol
of the alphabet. It has been observed that point mutations such
as substitutions are more common in tandem repeat regions
of the genomes [7]. We consider two models for combined
duplication and substitution errors. In the first model, called
the noisy-duplication model, the copy is a noisy version
of the template. Noisy duplications in this model can be
viewed as exact duplications followed by substitutions that
are restricted to the newly added copy. Hence, this model
is also referred to as the restricted-substitution model. We
also consider an unrestricted-substitution model, which relaxes
the noisy duplication model by allowing substitutions at any
position in the sequence.

In this paper we construct both error-detecting and error-
correcting codes, which are capable of correctly handling any
number of tandem duplications of a fixed length k, and at most
a single substitution error, which occurs at any stage during
the sequence of duplication events. The main approach in both
cases is to reverse the duplication process while accounting
for the single substitution (which may spuriously create the
appearance of a duplication that never happened, or eliminate
one that did). Different challenges are also presented by the
possible locations for substitutions. We bring these differences
to light by providing a construction for an error-detecting code
for the restricted substitution model, and an error-correcting
code for the unrestricted substitution model.

Our main contributions are the following:

« We present an upper bound on the minimum required
redundancy cost for detecting a single restricted substi-
tution, over the necessary rate loss required to correct an
unlimited number of duplication events, in Theorem 11.
That cost is upper bounded by O(log(n — k)).

o Through Construction B and Construction C, we also
show that the redundancy cost (over the rate loss due
to duplication noise) is upper bounded by O(log(k)) and
O(k), respectively. While the former guarantees larger
codes, it is nonconstructive, as opposed to the latter. In
the likely regime where £ is fixed, both require only O(1)
extra redundancy.

e Through Construction D, we show that the redundancy
cost of detecting a single unrestricted substitution (again,
over the rate loss due to duplication noise) is upper



bounded by O (log(k?n)).

o Finally, in Theorem 26 and Theorem 28, we correct a
single unrestricted substitution in addition to any number
of duplications, but we incur further rate loss.

This paper is organized as follows. In Section II, we provide
the notation as well as relevant background and known results.
In Section IIl, we construct error-detecting codes for the
restricted substitution model. In Section IV, we introduce
error-detecting codes for unrestricted substitution channels.
Finally, in Section V, we give a construction for an error-
correcting code for the unrestricted substitution model. We
conclude with a discussion of the results, and point out some
open problems, in Section VL.

II. NOTATION AND PRELIMINARIES

Throughout the paper, we assume that the alphabet X is
a unital ring of size ¢ > 2 (e.g., Z, or, when ¢ is a prime
power, IF;). Thus, addition (or subtraction) and multiplications
of letters from the alphabet are well-defined. The set of finite
strings and strings of length at least k over X is denoted ¥* and
¥.Z* respectively. The concatenation of two strings, u, v € ¥*
is denoted by uv, and u* denotes concatenating k copies of u.
To avoid confusion, the multiplication in the ring is denoted
as a-b. We say y € ¥* is a substring of w € ¥* if there exist
x,z € X* such that w = zyz.

The length (number of letters) of w is denoted by |ul, and
for a € ¥, we use |u|, to denote the number of occurrences of
a in u. The Hamming weight of v is denoted by wt(u), and
if |u| = |v| we use d(u,v) to denote the Hamming distance
between u and v. If the need arises to refer to specific positions
in words, positions are numbered 1,2, ....

A (tandem) duplication of length k duplicates a substring
of length k£ and inserts it in tandem into the string, namely,
the copy immediately follows the template. For example, from
uvw, where |v| = k, we may obtain uvvw. As an example
for kK = 3 and alphabet > = Z3, consider

z = 1012121 — 2/ = 1012012121, (1)

where the underlined part is the copy. Since throughout the
paper all duplications considered will be in tandem and of
length k, we shall just use the term “duplication” to avoid
cumbersome terminology.

The analysis of duplication errors will be facilitated by the
k-discrete-derivative transform, defined in [1] in the following

way. For z € ¥2F, we define ¢(z) £ ¢(x)¢(z), where
$(x) £ w1y,

in which subtraction is performed entry-wise over X. We note
that ¢(-) is a bijection. The duplication length % is implicit in
the definition of ¢. For a set of strings S, we define ¢(S) =
{6(s) | €S},

Let 2’ be obtained through a tandem duplication of length
k from . It is not difficult to see that ¢(z) = (') and
that ¢(z') can be obtained from ¢(z) by inserting 0¥ in an
appropriate position [3]. For the example given in (1),

r =1012121 — 2/ = 1012012121
é(x) =101,1112 — ¢(z") = 101, 1000112

é(x)éxk_i_l...xn_Il...xn_k’

Here, a comma separates the two parts of ¢ for clarity.

Sometimes duplications are noisy and the duplicated sym-
bols are different from the original symbols. (Unless otherwise
stated duplications are assumed to be exact.) We only consider
the case where a single symbol is different. We view a noisy
duplication as a duplication followed by a substitution in the
duplicated substring. Continuing the example, the duplication
resulting in =’ may be followed by a substitution,

2/ = 1012012121 — 2/ = 1012112121,
¢(z') = 101,1000112 — (") = 101,1100012.

We also consider unrestricted substitutions, which can occur
at any position in the string, rather than only in a substring that
is duplicated by the previous duplication. A substitution may
be considered as the mapping x — x + ae;, where e; € X"
is a standard unit vector at index i, and a € X, a # 0. Since
¢ is linear over X (i.e., ¢(x + ae;) = o(x) + ad(e;)), we
denote the transform of e; as ¢; = ¢(e;), and observe that
€i=¢€;—¢eqrpfori<n—kande =e; forn—Fk <i<<n.
We note that substitutions might affect two positions in the
¢-transform domain.

Let D*()(2) (for t > p) denote the set of strings that can be
obtained from z through ¢ tandem duplications, p of which are
noisy (in any order), with each noisy duplication containing
a single substitution. D*(P) is called a descendant cone of .
Continuing our earlier examples, we have 2/ € D'(9)(z) and
x" € D' (z). We further define

D) £ J D), D)2 | D), @
t=p peP

where P is a subset of non-negative integers. We denote P =
{0,1} as < 1.

We define D*P(x) to be the set of strings obtained from
z through ¢ tandem duplications and p substitutions, where
substitutions can occur in any position (and so we do not
require t > p), and at any stage during the duplication
sequence. We extend this definition similarly to (2). Obviously,
for all x € X%,

DHO) (z) = D"O(x).

For a string z € X*, () is obtained by removing all copies
of 0% from z. Specifically, for

z = Om°w10m1w2 e demd,

where m; are non-negative integers and w; € X\ {0} are
nonzero symbols, we define

A Amo mod k m1 mod k mq mod k
= (™Mo wlO ! w U)d() d s

n(z) 2

where k is implicit in the notation p(z). For example, if z =
1000112 = ¢(«') from our earlier example, with k = 3, then
u(z) = 1112; note, then, that in that example, u(z) = é(z).
Define the duplication root drt(z) of x as the unique string
obtained from z by removing all tandem repeats of length &,
where the dependence on k is implicit in the notation. For

proof of the uniqueness of drt(z) see, e.g., [3]. Note that

$(drt(x)) = $z)u((x))



(see [3]); indeed, in our running example, z = drt(2’). For a
set of strings S, we define

drt(S) & {drt(s) | s € S}.

A string x is irreducible if © = drt(z). The set of
irreducible strings of length n is denoted Irr(n), where the
duplication length k is again implicit. We denote by RLL(m)
the set of strings in X" that do not contain 0 as a substring,
i.e., the (0, k—1)-run-length limited (RLL) constrained strings
of length m. A string = of length n is irreducible if and only
if ¢(z) € RLL(n — k).

A code C' C X" that can correct any number of k-
duplication errors is called a k-duplication code. We note that
a code is a k-duplication code if and only if no two distinct
codewords ¢y, ce € C have a common descendant, namely,

D*%(c;) N D*V(cy) = @. 3)
It was proved in [3] that this condition is equivalent to all
codewords having distinct roots:
Theorem 1 ([3]) For all strings, x1,zs € 3%,

D*%(z1) N D*(x5) # @
if and only if drt(x1) = drt(z2).

Using Theorem 1, it was suggested in [3] that error-
correcting codes that protect against any number of duplica-
tions may be obtained simply by taking irreducible words as
codewords. Up to a minor tweaking, this strategy was shown
in [3] to produce optimal codes.

Finally, we define the redundancy of a code C' C X" as

r(C) & n— log,|C| = n —logs|C],

and the code’s rate as

III. RESTRICTED ERROR-DETECTING CODES
A. The error model and the descendant cone

In this section, we consider the case of noisy-duplication
errors. Our goal is to correct errors consisting of any number
of exact duplications, or detect the presence of a single noisy
duplication, which contains only one substitution. We refer
to codes with this capability as [-noisy duplication (IND)
detecting. Let us first be more precise in our definition:

Definition 2 A code C' C ¥* is a IND-detecting code if there
exists a decoding function D : ¥* — C'U {error} such that if
¢ € C was transmitted and y € X* was received then D(y) = ¢
if only duplication errors occurred, and D(y) € {c,error} if
exactly one of the duplication errors that occurred was noisy,
where the noisy duplication could have occurred at any point
in the sequence of the duplication errors.

The following lemma, which relates the intersection of
descendant cones to the intersection of the sets of roots of these
cones, is of use in the discussion of 1ND-detecting codes.

Lemma 3 For any strings 21,22 € £* and sets Py, P, C Z,
D* P ()N D*P2) (1)) # &
if and only if
drt(D*PD) (1)) N drt(D*P2) (24)) # @.

Proof: The ‘only if’ direction follows from definition.
For the other direction, assume there exist , € D*(P)(z;)
and x5, € D*(P2)(25) such that drt(z}) = drt(z}). But then,
by Theorem 1, there exists = € D*©(z}) N D*O)(zh). Tt
follows that x € D*(P1)(2,) N D*(P2) (z5). This is illustrated
in Figure 1, where y = drt(z}) = drt(x}). [ |
We can now characterize 1ND-detecting codes in terms of
duplication roots and descendant cones.

Lemma4 A code C' C X" is a IND-detecting k-duplication
code if and only if for any two distinct codewords c¢;,co € C,

D*SV(e1) N D*O(cz) = 2, @)
or equivalently,

drt(cs) # drt(e), 5)
drt(c) ¢ drt(D*M(ey)). (6)

Proof: Consider the following decoder: If there is a
codeword with the same (exact-)duplication root as the re-
ceived word, output that codeword. If not, declare that a noisy
duplication error has occurred. Now, suppose (4) holds and
that c; is transmitted. If only exact duplications occur, the
decoder outputs c; since exact duplications do not alter the
root and there is no other codeword ¢y with the same root as
c;. If, in addition, a noisy duplication occurs, then the received
word either has the same root as ¢; or it does not. Note again
that the duplication root of the received word only changes as
a result of the noisy duplication, regardless of when it occurs
in the sequence of duplication events. In the former case, the
decoder correctly outputs c;. In the latter case, (4) implies
that no codeword has the same root as the received word, and
thus the decoder correctly declares that a noisy duplication has
occurred.

On the other hand, if (4) does not hold, no decoding method
can both ‘correct any number of exact duplications’ and ‘detect
the presense of one noisy duplication’. That is because there
exist distinct ¢; and ¢y and some x € D*(SY (¢;) N D*()(cy).
If x is received then there is no way to determine whether c;
or co was transmitted.

The equivalence between (4) and (5, 6) follows from
Lemma 3. |

Based on Lemma 4, we consider codes whose distinct
codewords satisfy (5) and (6). Further, the decoder outputs
the codeword with the same root as the retrieved word if it
exists, and otherwise declares a noisy duplication.

As a result of the substitution in the noisy duplication
error, the length of the duplication root may change. One
way to simplify the code design is to restrict ourselves to
codes whose codewords all have duplication roots with the
same length. Then, error patterns that modify this length can
be easily detected and we can focus on patterns that keep



Figure 1. Illustration for the proof of Lemma 3. Solid lines denote any number
of exact duplications and dashed lines represent a mixture of exact and noisy
duplications (the number of noisy duplications is determined by P; and P»).

the duplication-root length the same. Specifically, for a given
length n, we consider codes whose codewords are irreducible
strings of length n. The effect of this restriction on the size
of the code is discussed following Theorem 11.

Definition 5 A substitution error (as a component of a noisy-
duplication error) that changes the root but not the length of
the root is called an ambiguous substitution.

It is easy to verify that when £ = 1 a noisy duplication
is never ambiguous. Thus, challenges arise only when k > 2.
The following sequence of lemmas characterize the conditions
under which a substitution is ambiguous.

Lemma6 Let z € X* be some string resulting from a k-
duplication, & > 2. If a substitution occurs (as part of a
noisy duplication) in the last k£ positions of x then it is not
ambiguous.

Proof: Since a substitution that occurs as part of a noisy
duplication changes the copied part, we must have z £ ¢(z) =
uOFw, with |w| < k — 1. After the substitution we get z’,
with 2/ £ ¢(2') = u0*~*~1p0%w, for some b € X\ {0} and
i+ |w| < k — 1. It is, however, obvious that |u(z)| < |u(2')],
and thus |drt(z)| < |drt(z’)]. [ |

Lemma7 Let x € ¥* be some string resulting from a k-
duplication, k > 2. If 2’ is obtained from z as a result of
a substitution that occurs (as part of a noisy duplication) in
position £ < |z| —k, and in ¢(x) positions £+ 1,...,¢+k—1
contain only zeros, then the substitution is not ambiguous.

Proof: Denote z = ¢(z). Assume 2’ = z+b €, (where
the subscript is indeed £ — k since by considering ¢(z) we are
omitting the prefix ¢(z) of length k). Then we may write

w 001 ¥ w

z =
b-ep =0 b0t (=p) ol
2 = u bOFL (B —b) w

where u € LR w € B*, b € X\ {0}, and &' € . We
now have two cases. If b’ # b, then obviously |u(z)| < |u(2')],
namely |drt(z)| < |drt(2’)|. If b’ = b, then drt(z) = drt(z’),
which is again not ambiguous. |

The remaining cases are all handled in the following lemma.

TABLE I
EXAMPLES OF AMBIGUOUS SUBSTITUTION ERRORS FOUND IN LEMMA 8.
IN ALL CASES y = ¢(x), 2 = ¢(z), 2/ = ¢(z)

la

2¢c

@ = 12122022002200
(y, z) = (121,10200010201)
drt(z) = 12122002200

@ = 12122122002200
(y, z) = (121,10000210201)
drt(z) = 12122002200

@’ = 12122022202200
(y,2') = (121,10200210001)
drt(z’) = 12122022200

o' = 12122120002200
(y,2') = (121,10001212201)
drt(z') = 12120002200

Lemma8 Let x € ¥* be some string resulting from a k-
duplication, k > 2, and let 2’ be obtained from z as a result
of a substitution that occurs as part of a noisy duplication.

Denote z = ¢(x) and 2’ = ¢(2') = z + €;_j. Assume

z = u QPRFmEi=l g koo b w
b€y = Olul gprtmEi=l p gk=i glvl (_p) lvl
2 = u OPRIMEIL k=i g (W —b) w

where u, w € ¥*, v € X1, v is not empty and begins with a
non-zero letter, b € 32\ {0}, &’ € %, the run of zeros OPF+m+k
in z between v and v is maximal, p € Z3o, 0 < m < k,
1 < i < k. Furthermore, denote the length of the run of zeros
to the left of b’ in z by m1, and to its right by ms. Then the
substitution is ambiguous exactly when either:

Cll<i<k—m,b =b and %] < |mutmatl |
C2 k—m<i<kand (¢ {0,b} or 2| = [utmatl |y

Proof: The following cases are possible:

1) If 1 <i < (k—m) then:

a) if ¥’ = b and [Z2| < [Zatm2tl| then a run of
Os of length at least k& will be created in 2/, leading
to |u(z")] = |u(2)] but p(z") # p(z). Thus the
substitution is ambiguous.

b) if o’ =0 and [ %2 | < | ™"+ | then length of the
root over all increases by 2k.

c) in all other cases, the root’s length increases by k.

2) If (k—m) < i < k, then a run of Os of length m+i—1 >
k will exist before b, implying that the length of the root
before v will not change. Then:

a) if o =band |22 | < |™tm2tl | Cthen the length of
the root decreases by k.

b) if &' =0 and [ %2 | < |Z1m2+L | then the length of
the root increases by k.

c) in all other cases, the length of the root remains the
same, resulting in an ambiguous substitution.

|
Examples for the two cases in which ambiguous substitu-
tions occur, as described in Lemma 8, are given in Table I.

B. Bounds on the size of the code

We use the analysis of the previous section to find lower
bounds on the size of 1ND-detecting codes. For x € X", a



quantity that will be useful in bounding the size of codes is
the following:

V(z) 2 |drt(D* SV (z) nxn|.

This counts the number of strings 2’ that can be obtained from
x through any number of duplications, at most one of them
noisy, and such that |drt(x)| = |drt(z’)].

Lemma9 For x € Irr(n), where n > 2k >
Vi) <(n=k)(g—-1) - Wt(¢(w))(q -2).

Proof: We first assume, without loss of generality, that the
noisy duplication occurs last, since subsequent duplications
(which are not noisy) do not change the duplication root.
Assume the notation is as defined in Lemma 8.

We first bound the contribution of the case la of the proof
of Lemma 8 to V(z). Since n > 2k and z is irreducible, we
have that wt(z) > 1. There are wt(z) non-zero elements in z
that can serve as the first letter of v, which we shall call the
anchor. In this case, b’ # 0, and it is found at most k —m — 1
positions after the anchor. We contend that there is at most
one such choice for ¢’. Indeed, if we are in case 1a, then there
is a run of m;y zeros immediately to the left of &', and ms to
the right. But

Lm1+m2+1J > L@

5 2

implying
mi+mo+1>k.

Thus, if case 1a holds then there is a single non-zero element
in the k positions following the anchor. Additionally, since
b' = b, we have a single choice for the value of . Finally, we
note that case 1a cannot occur when the anchor is the last non-
zero element in z. Hence, in total, the contribution of case la
does not exceed wt(z) — 1.

We now turn to the case of 2c. Assuming an anchor was
chosen, the value of 7 can take at most m values, which is
the length of the run of zeros before the anchor, taken modulo
k. Ranging over all the run’s zeros, the effect of modulo &
simply leaves us with a choice of a position containing a 0
in z, since z is irreducible. There are n — k — wt(z) such
positions. Finally, there are at most ¢ — 1 possibilities for b.
Thus, this case contributes at most (n — k — wt(z))(¢ — 1) to
V(). Noting that x itself also contributes to V(z) completes
the proof. |

To find a lower bound on the size of the code, we apply the
Gilbert-Varshamov (GV) bound with the average size of the
sphere (see, e.g., [11]).

Lemma 10 Let z be a randomly and uniformly chosen string
from Irr(n). If n > 2k > 4, then

E[V(2)] <2(n —k)(¢ - 1/g-

Proof: Let z = ¢(z). From Lemma 9, to find the expected
value of V(x), it suffices to find the expected value of wt(z).
Fix 7 and let U be the set of strings obtained by removing
position 4 from the strings in RLL(n — k) (if multiple copies

of a string exist we keep only one). Let .S be the set of strings
s in U that contain a run of Os of length at least k£ — 1 that
includes s;_; or s;. Furthermore, let S¢ = U \ S. Now, the
number of strings in RLL(n — k) that contain a 0 in position
i equals |.S°|, while the total number of strings in RLL(n — k)
equals |S¢|g + |S|(¢ — 1). Hence, for a randomly chosen z €
RLL(n — k),

s 1
S<lg +1SI(a—=1) ~ q
Thus, E[wt(z)] > (n — k)(¢ — 1)/q. The result then follows
from Lemma 9. u

The above lemma leads to the lower bound in the following
theorem.

PI‘(ZZ‘ = O) =

Theorem 11 For positive integers n > 2k > 4, the maximum
size Ainp(n,q, k) of a IND-detecting codes of length n over
Zg4 satisfies

1
— M g A ) ak < M:
A(n — k) np(n, ¢, k)
where
ln/k]—1 Ln/k)
ME& N |r(n—ik)| = Y ¢*RLL(n—ik)| (7)
i=0 i=1

is the number of irreducible words whose descendant cones
intersect ™.

Proof: First we show that
¢"*YRLL(n — k)|
2(n—k)(g—1)

The lower bound follows by applying the generalized GV

bound [11] with Lemma 10. The upper bound follows from

the fact that the code must be able to correct any number

of duplication errors and from [3] where such codes are
discussed.

To get the lower bound to the more appealing form we
claim, we note that to any string of length m — k that has no
0* substring, we can append a string of length k whose first
element is nonzero, and thus obtain a string of length m that
has no 0F substring. Hence,

[RLL(m)| > [RLL(m — k)|(¢ = 1)¢" "

< Ainp(n, ¢, k) < M.

Thus
[RLL(n — k)|

(¢ — 1)i-lg—Dk-1)"

IRLL(n — ik)| <

We then have
[n/k]
M =Y ¢"[RLL(n — ik)|

i=1

|RLL n—k |Z (q—1)i~ 1gi—1)(k—1)
1=1
> 1
< ¢"|RLL(n — k)| - 1gG—1)(k—1)
—@—-1)""q
— g !
< k LL —k (q—
IRLLG =B



Since ¢ + k > 4,
Trr(n)| = ¢"|RLL(n — k)| > M/2, (8)

and we have the desired claim. [ |

C. Code construction

The goal of this section is to construct IND-detecting codes.
We shall first consider an auxiliary code construction which
will be useful not only here, but also in the following section.
The error we would like to detect by this auxiliary code is as
follows:

Definition 12 For n, k > 0, let z, 2’ € ™ be some strings. If

we can write
2 =u v woll g
!

d=u 0l w v 2

where u,v,w,x € £*, 1 < |v| < k—1, v is a non-zero string,
and |v| + |w| = k, then we say z and z’ differ by a single
k-switch error.

Intuitively, a single k-switch error takes a non-zero non-
empty substring of length at most k — 1, and switches it with
an all-zero substring of the same length found % positions
before or after it.

Any non-empty string z € X" may be partitioned into non-
overlapping blocks of length k:

Z = Bl(Z)BQ(Z) N B(n/k‘\ (Z),

where B;(z) € X for all 4, except if k does not divide n, in
which case, B,/ € X" mod k We note that k is implicit in
the definition of B;(z).

We now give a construction for a family of codes which we
then show are all capable of detecting a single k-switch error.

Construction A Let £ > 2 and let p be the smallest odd
integer larger than k£ — 1, namely

k—1
22| —— 1.

Fix a code length n € N and let S C X" be an arbitrary set
of strings. For any string x € S, and ¢ = 0,1, 2,3, we define

Z(x) £ Z|Bi(1)|07
i€l
where I, = {1<t<[n/k]|t=¢ (mod 4)}. For all
0 < 1,5 < p, we construct
C’f‘)‘;x(S) £ {x esS ’ Zo(x) +2Z5(x) =4 (mod p),
Z1(x) +2Z5(w) = j (mod p)}.

Theorem 13 Each code C37*(.5) of Construction A can detect
a single k-switch error or a single zero replaced by a non-zero
letter.

Proof: Since k > 2 we have p > 3 which immediately
enables the detection of a single zero replaced by a non-zero
letter. Let us therefore focus on the problem of detecting a
single k-switch error.

We assume n > k+1, otherwise the claim is trivial. Assume
r € C(S) sustains a single k-switch error, resulting in the
string ' € ™. For 0 < £ < 3, let

Az £ Zg(x’) — Ze(x).
Furthermore, for 0 < ¢ < 1, let
Fr & Ap+20050.

To prove the error detection capabilities of the code it now
suffices to show that

Fy#0 (mod p) or Fi #20 (modp). (9

Based on the definition of a k-switch error, the number
of zeros changes in some blocks. We consider the following
possible cases.

First, if the number of zeros changes in 2 consecutive
blocks, then one of the pairs (Ag, A1), (A1, As), (A, Ag),
(As, Ag) equals (4, —d) for 0 < |0] < k, and the two other
A’s are equal to 0. Then, |Fy| = |d| or |Fp| = 2|d]. In the
former case Fy £ 0 (mod p) since 0 < |§] < k < p. In the
latter case, Fy Z 0 (mod p) since 0 < 2|0] < 2p and 2§ # p
(recall that p is odd).

Second, if the number of zeros changes in two non-
consecutive blocks, then only one of the pairs (Ag, As) and
(A1, Asz) equals (6, —6) for 0 < |0] < k, and the other equals
(0,0). Then, either |Fy| = |4| or |Fy| = |J], and in both
cases (9) is satisfied.

Third, if the change of number of zeros occurs in three
consecutive blocks, then there exists ¢ such that Ay = §’ # 0
and Agyp = 0 (indices taken modulo 4), where 0 < |0’ < k
and 2|6’| # p. Then either F, or F) takes on the value of ¢’
or 20’. But 6’ # 0 (mod p) and 26’ £ 0 (mod p), implying
that (9) is satisfied. [ |

We now turn to construct 1ND-detecting codes. As before,
we consider codes that consist of irreducible strings of length
n. We thus need to devise a method to detect ambiguous
substitutions.

As mentioned before, when k = 1 ambiguous substitutions
cannot occur. Hence Irr(n) is a IND-detecting code. For
k > 2, our analysis rests on the following lemma.

Lemmal4 Let £k > 2. If x € ¥* and 2’ is obtained from x
via any number of duplications among which one contains an
ambiguous substitution, then ¢(drt(z)) and ¢(drt(z’)) differ
by a single k-switch error, or

|6 (drt(2))]o — [¢(drt(z))[o| = 1.

Proof: Denote z = ¢(z) and 2/ = ¢(a'). With the
notation of Lemma 8, one can verify that in Case 1a we have

,u(z) —u v Oiflf\v|b0k7i O|v\ w’

’u(z/) = o olvl gi—1=lvlpgk—i o (10)

and in Case 2c,

wz) =o' 001y B W

w(z') = b 0F M=y (0 —b) W (D



for some ', w’ € ¥*. In (10) we see a single k-switch error.
In (11), if ¥’ = b we have a single k-switch error, and if b # o'
then the number of zeros differ by one. |

Construction B Let n, k& be positive integers, n > k, and let
S £ RLL(n — k). For all 0 < i,j < p, we construct

Cij 2 {07 (yz) |y € =%, 2 € C2¥(9)},

where p and C'J*(S) are defined in Construction A.

Theorem 15 With the setting as in Construction B, the code
C;; is a IND-detecting code.

Proof: By our choice of S, we necessarily have that
C;; CIrr(n). If k =1, then Cy o = Irr(n) is the only code
and the theorem is immediate.

Assume k > 2. Let c1,co € C;; be distinct codewords.
Since C; ; C Irr(n), drt(c1) = ¢ and drt(c2) = o, which
are distinct. Based on (6) it suffices to show that for any ¢} €
D*(M(¢;), we have ¢y # drt(c}).

If drt(c)) = drt(e1) = ¢, then clearly ¢y # drt(c)). So
we assume drt(c}) # c;. It is then sufficient to show that
drt(cy) ¢ C; ;. This is obvious if |drt(cj)| # n and the
substitution is not ambiguous. If the substitution is ambiguous,
we obtain the claimed result by combining Lemma 14 and
Theorem 13. |

Corollary 16 If n > k > 2 then

1
AIND(n7qa k) 2 2( M7

k+1)2°
where M is given by (7).

Proof: Let p and C} ; be defined as in Construction B.
The set {C;; | 0 < i,j < p} forms a partition of Irr(n).
Thus, a simple averaging argument shows that there exist ¢
and j such that

|Trr(n)|
1Cijl 2 —%—-
p
Since p < k + 1, and by (8), we obtain the claim. [ |

Note that the lower bound on A;Nxp(n, ¢, k) in this corollary
may be better than the one given in Theorem 11.

The problem with the bound of Corollary 16 is that it is
not constructive. In particular, we do not know exactly what
choice of ¢ and j gives the largest code C;; in Construc-
tion B. Construction C below provides a sub-code of Cg g
from Construction B whose size can be lower bounded, albeit,
somewhat smaller than the guarantee of Corollary 16.

Construction C Let £ > 2 and let p be the smallest odd
integer larger than k£ — 1, namely

E—1
Lol = 1.
p {2 ]+

Fix a code length n € N, n > 5k. We construct a code C' C X"
in the following way: For each y € RLL(n — 5k), construct
four strings of length k, denoted By, By, Bo, Bz € ¥,

By =0%1FF%_ v0<i<3

where
Bi = (=(G + 2Gi42) mod p) — 2Bi42, i=0,1
Bita = V(Q - QC;”Q) mod p)J, i=0,1
Gi = Zi(o~ ' (0%y)), i=0,1,2,3

and add the codewords ¢~'(BBoB;B2Bsy) where B runs
over all strings in X¥.

Theorem 17 Let g be the alphabet size, k& the duplication
length, ¢ + k > 4, and n € N, n > 5k. Then the code C'
from Construction C is a 1ND-detecting code of size

|C| = Irr(n — 4k) >

2. q4k ’
where M is given in (7).

Proof: One can easily verify that 0 < 1 < k, hence
all the blocks B; end with a non-zero symbol and therefore
all the codewords are irreducible. Additionally, by inspection
we can verify that C' C Cj o, where Cp is obtained from
Construction B. Thus, C' is 1ND-detecting. Finally, all the
codewords constructed are distinct, hence

1
— ok —
|C| = ¢%|RLL(n — 5k)| = |Irr(n — 4k)| > T g -M,
where the last inequality follows from the fact that
[Trr(n — 4k)| > |Trr(n)|/¢** and then from (8). [ |

IV. UNRESTRICTED ERROR-DETECTING CODES

Substitution mutations might occur not only in duplication
copies, but also independently in other positions. In what
follows, we consider a single substitution error occurring in
addition to however many duplications, at any stage during the
sequence of duplication events, but not necessarily in a dupli-
cated substring. We refer to codes correcting many duplication
errors and detecting a single independent substitution error as
1S-detecting codes.

Definition 18 A code C' C X* is a 1S-detecting code if there
exists a decoding function D : ¥* — C U {error} such that if
¢ € C was transmitted and y € X* was received then D(y) = ¢
if only duplication errors occurred, and D(y) € {c,error}
if in addition to the duplications, exactly one unrestricted
substitution occurred.

Lemma 19 A code C' € ¥" is a 1S-detecting code if and only
if for any two distinct codewords ¢y, co € C, we have

drt(cy) # drt(cz) and  drt(cp) ¢ drt(D*'(c1)).

Proof: In the one direction, we define for any y € X%,
D(y) = c if drt(c) = drt(y), and D(y) = error otherwise.
Clearly if (12) holds then D is a decoding function proving
that C' is a 1S-detecting code.

In the other direction, if (4) does not hold we have two
(not mutually exclusive) cases. If there exist c¢;,c0 € C
such that drt(c;) = drt(cz) then by Theorem 1 there exists
y € D*9(c;)ND*P(cy) and no decoding function can always

(12)



correctly decode y. Similarly, if drt(cz) € drt(D*!(c;)) then
there exists y € D*!(c;) such that drt(y) = drt(cz) and no
decoding function D can always decode y correctly. |

We shall adopt the same general strategy as the previous
section. Namely, we will construct a code based on irreducible
words of length n. Descendants whose duplication root is not
of length n will be easily detected. Our challenge is therefore
to detect errors that do not change the length of the root caused
by, what we refer to as, ambiguous substitutions.

Definition 20 An unrestricted substitution error that changes
the root but not the length of the root is called an ambiguous
unrestricted substitution.

As in the previous section, when the duplication length is
k = 1 there are no ambiguous unrestricted substitutions. In
that case Irr(n) can easily serve as a 1S-detecting code. Thus,
we shall focus on the case of k > 2.

Lemma?2l Let n > 2k > 4. For any string x € X", let
2’ € drt(D*S1(x)) N X" be a string obtained from z via a
single ambiguous unrestricted substitution. If

d(p(drt(z)), ¢(drt(z"))) > 3,
then ¢(drt(z)) and @(drt(z’)) differ by a single k-switch

€I1or.

To improve the flow of reading, the proof of this technical
lemma is given in the appendix.

Our strategy, based on Lemma 21, is to build a code as an
intersection of two other component codes. If one component
code can detect the swapping of two substrings and the other
component code has a minimum Hamming distance of 3 or
more, then their intersection is a 1S-detecting code.

Construction D Let ¢ be a prime power, and ¥ £ F q be
the finite field of ¢ elements. Let n 12 k > 2 and let r be the
unique positive integer such that < q_;l namely,
r £ [log,(n(qg—1)+1)].

Denote by C# the [n,n —1,3] shortened Hamming code over
F,, and by C{1,CH,.. .,C;{_l its ¢" cosets. Finally, let p
and C; ; be defined as in Construction B. For all 0 < ¢,5 <p

and 0 < /£ < ¢", we construct

Ci,jyg £ {C S Ci,j | (;5(6) S CéH}

e
<n< =

Theorem 22 With the setting as in Construction D, the code
C; j¢ is a 1S-detecting code. In particular, there exist ¢, 7, ¢
such that

[rr(n)| |Trr(n)]
gp* " qln(g—1)+1)(k+1)>

Proof: By Construction B we have that C; ; C Irr(n),
hence also C; ;, C Irr(n), which implies it can correct any
number of duplications. Thus, following Lemma 19, it only
remains to consider two distinct codewords ¢, ca € C; ;¢ and
show that drt(ce) ¢ drt(D*!(c1)), namely consider the case

1Cijel =

in which a single ambiguous unrestricted substitution occurred
as part of the duplications.

Assume to the contrary this is not the case. By Lemma 21,
if d(¢(c1), (ca)) = 3, then ¢(c1) and ¢(cz) differ by a single
k-switch error, and this is contradicts the fact that C; ; detects
a single k-switch error in the ¢ part of the root, a fact that
has already been used in Theorem 15. If d(¢(c1), ¢(c2)) < 2,
then this contradicts the minimum distance implied by using
the shortened Hamming code.

Finally, the existence of the code with the lower bounded
size is guaranteed using a simple averaging argument since
{Cije | 0<4,j <p0<¥¢<q"} forms a partition of
Irr(n). [ |

V. UNRESTRICTED ERROR-CORRECTING CODES

In this section, we again observe the case of many tandem-
duplications and a single substitution, occurring at any point
during the duplication sequence, and not necessarily in a
duplicated substring. However, unlike previous sections, there
is no mix of correction and detection — rather we aim to correct
all duplications and a single substitution (occurring at any
stage during the sequence of duplication events), which makes
the definition of the code more straightforward. We refer
to codes able to correct such errors as a single-substitution
correcting (1S-correcting) code. Obviously, a code C' is 1S-
correcting if and only if for any two distinct codewords
c1,co € C, we have

D*<Y(e;) N D*<Y(ey) = 2.

In this context, we will find it easier to consider strings in
the ¢-transform domain. We also define the substitution dis-
tance o(u,v) to measure the number of substitutions required
to transform one string into the other, when u, v are assumed
to be in the transform domain. More precisely, if u,v € X"
andv—u=> ", a;- ¢, then

o(u,v) = {1 <i<nla; #0}.

A. Error-correcting codes

In contrast to Lemma?21 and Construction D, we shall see
in the following example that an intersection of a single
substitution correcting code with a duplication correcting code
is not, in general, a 1S-correcting code.

Example 23 Set > = Z, and k& = 3, and observe the following
two sequences of duplication and substitution, as seen in the
¢-transform domain:

u 2 111010111 — 111010111000 — 111000101000
v = 111101010 — 111000101010 — 111000101000

It is clear that if C' C X** is a code correcting even a
single duplication and a single substitution, even given the
order in which they occur, then ¢~!(u) = 111101010 and
¢~ (v) = 111010000 cannot both belong to C. Observing that
u,v € RLL(9) and o(u,v) = 4, however, we find that C' =
{¢7 (u), =1 (v)} can correct any number of duplications, or
correct a single substitution. Simple intersections, hence, do



not suffice for a code correcting a combination of such errors.
d

In what follows, we propose a constrained-coding approach
which resolves the issue demonstrated in the last example. It
relies on the following observation: substitution noise might
create a 0% substring in the transform domain—that is not due
to a duplication—as well as break a run of zeros. However,
a constrained system exists which allows us to de-couple the
effects of duplication and substitution noise.

More precisely, we denote

W £ {u € £?¥ |V substring v of u, |[v] =k : wt(v) > 1}.

We shall show that intersecting a single-substitution-error-
correcting code with the reverse image of W N X" %, instead
of RLL(n — k), is a 1S-correcting code. More precisely, we
aim to show that restricting codewords to be taken from W
(in the transform domain), the following holds.

Lemma 24 Take an irreducible = € 2%, and y € D*<!(x).
If v £ $(y) contains a 0% substring, and v is derived from
v by removing that substring, and if ¢(z) € W, then ¥ €

¢(D*<!(x)).
Proof: We denote
v =ac0kp

for 0 # ¢ € ¥ and o, € ¥*, and by abuse of notation
assume |ac| > 0 is the shortest with the properties stated
above (allowing v = 0% as a private case).

We also take iy’ € D*(x) to be the descendant of = derived
by the same sequence of duplications as y, where a substitution
never occurs, and

’U/ _ qﬁ(y’) — alclojaok—jflﬂ/’
for0<j<k d,ael, o, €%* where |o/c| = |ac|.
(We know v’ can be represented in this fashion since y suffered
a single substitution.)

If a = Oithen the claim is trivial. Assume, therefore, a # 0.
Note that ¢(x) € W and wtz (07a0¥~7~1) = 1, implying that
0*=7=153’ begins with a k-tuple of zeros. Le., 3/ = 0715,
for some 8” € X2*. Thus, a descendant of z is also z’, where
(') =o'V ap".

We now reexamine v’, v:

vV =ao ¢ 09 a0k B
v=oac0 0013

and since y is derived from x by the same sequence of tandem-
duplications as 7', with a single substitution, we may deduce
that v, 8 and o, 8’ differ, respectively, in precisely one of the
following manners:
o There existb € ¥ and a1, ag € ¥*, with |age| = k—j—1,
such that
v =a; (b—a) ag ¢ 09 a 0FI71p
v=a b ayc0 00713
and, again, by abuse of notation, including the case of

|aac] = 0, meaning b = ¢ and b — a = ¢/; in all other
cases ¢ = c.

In this case

acf = arbagcd? LB

=a1(b— Q)QQC/OjGﬁH TG €pe|+i—k

v

= ¢(2) + a €ae/4j—k-
e B =07aB", implying o'c’ = ac and
U= acf = aclaf” = 4(2).

o There exist s > 0, b€ X, v € ¥~ and B € ¥* such
that 3” = 0%*~b5", and
v = ac 0] a Okfjfl Oj+l+sk:,y b B///
v =ac 0 00FI7L gitltsky (h 4 q) B
Let 2" be the ancestor of 2z’ (thus descendant of x)
satisfying

(") = act aybp"”

and note that

8]
= ac0/ T aybB" + (—a) - €lac|+sk+
(DO (2" + (—a) - €jacl+5))

|

Recall from [3] that a decoder for correcting an unbounded
number of duplications simply has to remove incidents of 0"
from the ¢-part of the noisy string. This lemma shows that
the same approach can be taken with the addition of a sin-
gle substitution—without increasing the substitution distance—
provided that coding is done in W.

Next, we consider the case where a substitution breaks a
run of zeros (in the transform domain). The following lemma
allows us to remove appearances of 07a0*~1=J from the ¢-
part of a noisy string (by applying an appropriate substitution)
without increasing the substitution distance.

Lemma 25 Suppose u € XZ¥ contains a substring 0 starting
at index ¢, and suppose v = u+a- ¢, for some ¢ < j <1+ k,
0#ae€X, and ¢ € {j,j—Fk} (so that v; # 0). Note that
v' £ v—v;-¢; has a 0% substring at index i (like u); we remove
that substring from both wu,v’ to produce u, v, respectively.
Then, irrespective of what value ¢ takes, o(@,v) < 1.

Proof: The lemma is straightforward to prove by case for
0. If £ = j then v/ = u, and consequently ¥ = .
Otherwise, £ = j — k and v; = —a, hence

vV=u+a-(e_k+€j)

and ¥ = @+ a - €;_j, which concludes the proof. [ |

It is therefore seen that a restriction to VY allows the
correction of the substitution error without encountering the
issue demonstrated in Example 23. This fact is more precisely
stated in the following theorem:

Theorem 26 If C C X", n > !c, is an error-correcting code
for a single substitution, and ¢(C') C W, then C is a 1S-
correcting code.



Proof: Take z € C, y € D*<!(z), and define u 2 ¢(z),
v = ¢(y). We first remove 0F substrings from v, stopping
if we reach length n — k. By Lemma 24, every removal of
0* does not increase the substitution distance of the received
sequence from a duplication descendant of z; if indeed it is
possible to arrive at ¥ of length n— k, then the error-correcting
capabilities of C' now suffice to deduce = from ¢~ (ud).
The only other possible case is that we ultimately arrive
at v of length n which contains a substring of length k£ of
weight 1. We remove that substring to obtain ¢/, and reverse
the ¢-transform, namely, ¥’ = ¢! (u?’). By Lemma 25, this
produces y’ of the same length as x and differing from it by at
most a single substitution, which we may once more correct
in the standard fashion. ]

B. Code Construction and Size

In this section we construct a family of codes satisfying
Theorem 26. We also study the redundancy and rate of the
proposed construction. We start by bounding the rate loss of
using constrained coding by restricting codes to W:

Lemma 27 For every integers ¢ > 2 and n > k > 1,
r(Wnxm) q
—— K 71 _
n g OB g—1

Proof: We note that C,, C W N X", where C,, is the set
of length-n strings in which, divided into blocks of length &,
every block ends with two non-zero elements. Hence,

e (TC)

q
-1

E 1qu

Theorem 28 If ¢ is a prime power, » > 2, and n =
< =1 1 [20] then a 1S-correcting k-duplication code C' C
W ﬂ [y exists, with

R(C) =

2
1— —log, qL —o(1).

k -1

Pl -

Proof: We begin by encoding data into W N TF '
incurring by Lemma 27 redundancy

y ¢ —1 2 q
< —r)Zlog, —1 .
) (q—l T)kogqq—l

Next, f;l ,7, 3} Ham-
ming code (under the change of basis to {el}) can encode

. ’1
W nT, e — F,", incurring r additional symbols of
redundancy, and resulting in a code which can correct a single
substitution.
Note, due to the systematic encoding, that the projection

of this code onto the first qqr_—lr — r coordinates is contained

in WW. We may simply cushion the last 7 symbols with [2C]
interleaved 1’s (two per k£ data symbols) to achieve a code
C C WnNFy which may still correct a single substitution. H

r(WﬂIqu_l

a systematic encoder for the

Taking n — oo, we can compare the rate obtained by the
code in Theorem 28 to a simple upper bound of the best codes
correcting only tandem duplications of length & (see [3]),

—1)log, e
Ry <1- @ Dlee gy
q

Clearly, then, a gap in rate exists, as %logq(qfql) >

(qHQ) log,(e) 4 o(1) for all k > 2. Note, however, that this
upper bound is not necessarily tight, as it does not account for

the combined error mode.

VI. CONCLUSION

We have studied the combination of a single substitution
error with an unlimited number of tandem-duplication errors,
with a fixed duplication-window length. We focused on two
noise models, where the substitution error is either restricted
to occur in an inserted copy during one of the duplication
events, or may occur at any position in the string. We have
presented bounds and a construction of error-detecting codes
in the former error-model, as well as constructions of error-
detecting and error-correcting codes in the latter.

In all cases, a rate loss is observed due to the need to
recover from an unlimited number of duplications. Thus, we
are interested in the extra redundancy cost due to single-error
detection or correction. In the first case, of detecting a single
restricted substitution, we show that the additional required
cost in redundancy is bounded from above by log, (4(n — k))
using a GV argument in Theorem 11, where Construction B
also shows that it is bounded from above by log, (2(k 4 1)?);
depending on the asymptotic regime of k, either may be
tighter than the other. In Construction C we find a constructive
procedure for generating codes for that purpose, which incur
a higher redundancy cost of 4klog,(2); if k is fixed, which
is a likely scenario, then that cost is nonetheless constant as
well, and improves upon Theorem 11.

Further, in the second case of unrestricted substitution noise,
Construction D provides error-detecting codes for a single sub-
stitution incurring an extra redundancy cost of O(log(k?n)).
Finally, in the same error model, Theorem 26 and Theorem 28
provide error-correcting codes which have lower rates than
codes designed solely to correct duplication errors. Although
we did not develop lower bounds on the required redundancy,
it is our conjecture that both solutions offered here are sub-
optimal. In particular, these latter codes rely on a constrained-
coding approach which we do not believe is necessary in this
context. We also note that while both the upper bound and
lower bound on the rates of these codes approach 1 as k — oo,
the lower bound does so as ©(k~!) whereas the upper bound
is much faster as ©(g~*), implying a gap yet to be resolved.

For future research, we would like to suggest a few general-
izations of the noise model considered herein. First, we suggest
studying codes capable of handling a higher number of sub-
stitution errors. We also believe codes designed for handling
only a bounded number of duplication events are of interest.
Finally, we suggest to observe combinations of different noise
mechanisms, including bounded tandem-duplication, end- or
interspersed-duplication noise [1], or duplication and deletion
noise.
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APPENDIX
Proof of Lemma 21: Let 2’ € D*SY(z), where

|drt(2")| = |drt(z)], but drt(z") # drt(z),

namely, an ambiguous unrestricted substitution occurred. Let
us denote

y £ (), 2 £ ¢(a),

y' £ (), 7 2 4(a).

Since duplications do not change the root, we assume without
loss of generality that no duplications occur and only a single
substitution occurs. Thus, we can write

=x+a-e;, yz=1y'72 +a-e,

where ¢ denotes the location of the substitution, and a €
%\ {0}. Depending on %, a single substitution may result in
one or two changed positions in the transform doamin of ¢.
The proof of the claim comprises of many cases, and we start
with some simple ones.

In the first simple case, the substitution occurs in the first
k positions, namely, 1 < ¢ < k. Since ¢(drt(z’)) = v'u(2’),
and y # v/, if we have |drt(z’)| = |drt(x)| then

d((drt(x)), p(drt(z))) < 2,

by virtue of positions ¢ and ¢ + k.
In a similar fashion, if the substitution occurs in the last k
positions, namely, || —k+1 < i < |z, only a single position

is changed in the transform ¢. Since ¢(drt(z')) = v’ u(z’),
and z # 2/, if we have |drt(z')| = |drt(«)| then

d(¢(drt(z)), p(drt(z))) < 1,

by virtue of positions 4.

We are now left with the last interesting case, in which the
substitution changes two positions, ¢ and 7 + k, both in the z
part of the ¢-transform. We therefore disregard the part y = y/'.
We may now write

z =u ay v as w
/

Z'=wu (a1 +a) v (ag —a) w
where u,w € ¥*, v € £¥71, a,a;,a0 € X, and a # 0. We
distinguish between two major cases, depending on whether
v=0F1

Case I: In the first major case we have v = 0*~1. Let us
write

/ /
u=u0", w= 0w,

where all the indicated runs of zeros are maximal. Thus,

z =u 0™ ap 051 gy 0™ W

2 = 0™ (ay+a) 0F71 (ag —a) 0™ w'.

The length of the substring between «’ and w’ is mj +my4 +
k + 1 and we note that

{mﬁmHHlJ _ LEJ“LVM

K 2 ?J t e

where s € {1,2}. We distinguish between the following cases:
1) If a1 # 0 and aq # O:
a) Ifaj+a#0and ag —a #0

d(¢(drt(z)), ¢(drt(z"))) < 2.

b) If exactly one of a1 + a and as — a is zero, the length
of u(z") decreases by k.

¢) If a1 +a =ay —a =0, the length of pu(z’) decreases
by sk.

2) If a; # 0 and ay = 0:

a) If a; +a # 0, since ay — a # 0 the length of p(z')
increases by k.

b) If a1 +a =0, since as —a # 0

d((drt()), $(drt(x"))) < 1.

3) If a; =0 and ay # 0:
a) If ag —a # 0, since a; + a # 0 the length of u(2’)
increases by k.
b) If as —a =0, since a; +a # 0

d(¢(drt(x)), ¢(drt(a"))) < 1.

4) If a; = ay = 0, the length of u(z’) increases by sk.
Case II: In the second major case, assume v # 0F~1. Let
us write

/ /
u=1u0m, v =0"20'0™3, w = 0w,

where all the indicated runs of zeros are maximal. Let ¢ €
¥\ {0} be some nonzero letter in v/, important to us only for



the purpose of being able to refer to the part of the string left
of ¢ and the part of the string to the right of c.

1) Examining the part of the string to the left of c:
a) If a1 # 0:
1) If aq = —a:

A) If |mutmetl| s | ™ the length before c
decreases by k and the substring 07 ~!(—a)0*~7
is deleted.

B) If |Zudmetl | | Z1], the length before ¢
stays the same and the substitution a; — 0
occurs.

ii) If a; # —a, the length before ¢ stays the same and
the substitution a; — (a; + a) occurs.
b) If a; =0, then a; # —a, and:
i) If [madpetd | > |7, the length before ¢ in-
creases by k and 0~ 1a0*77 is inserted.
i) If [%"”HJ = L%J the length before ¢ stays
the same and the substitution 0 — a occurs.
2) Examining the part of the string to the right of c:
a) If ag # 0:
i) If as = a:

A) If |matmatl| > M4 the length after c
decreases by k and 0'~'a0*~* is deleted.

B) If L%’"“HJ = {%J , the length after c stays
the same and the substitution as — 0 occurs.

ii) If ay # a, the length after ¢ stays the same and the
substitution ag — (a2 — a) occurs.
b) If as = 0, then as # a, and:
i) If L%m“ﬂj > L%J the length after c increases
by k and 0'~!(—a)0*~* is inserted.
ii) If |matmatl| — | 7 | the length after c stays the
same and the substitution 0 — (—a) occurs.
Based on the changes of a; and ag, there are two types of
ambiguous unrestricted substitutions:
« Define the sets of cases A = {1(a)iB, 1(a)ii, 1(b)ii} and
B £ {2(a)iB, 2(a)ii, 2(b)ii}. Any substitution scenario
from A x B results in only two changed symbols, hence

d(¢(drt(z)), p(drt(2"))) < 2.

o The scenarios (1(a)iA,2(b)i) and (1(b)i,2(a)iA) are more
complex because they involve both an inserted a substring
and a deleted substring of length k. Since the two cases
are similar, we only show the analysis of the first case
(1(a)iA,2(b)i). We therefore have

2 =4 0m g 0™2 o O™s 0 0™ W'
2= 0™ 0 0™ v 0™ q 0™ w'

where we recall that a # 0, [v'| < k—1, and v’ starts and
ends with a non-zero letter. Looking at u(z") compared
with p(z), the part to the left of v' becomes shorter by k
letters, whereas the part to the right of it becomes longer
by k letters. In particular, we can write

p(z) = O omaa0me o w”

/ 13
,u(z/) —u" 0™3 g (™2 O\v\ w" ( )

where ms + mg3 + |v'| + 1 = k.

Having considered all cases, this last case is the only one
in which we have an ambiguous unrestricted substitution in
which potentially d(¢(drt(z)), ¢(drt(z'))) > 3. The swap-
ping described in (13) completes the proof of the claim. M
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