Error-correcting Codes for Short Tandem
Duplication and Substitution Errors

Yuanyuan Tang and Farzad Farnoud
Electrical & Computer Engineering, University of Virginia, {yt5tz, farzad}@virginia.edu

Abstract—Due to its high data density and longevity, DNA
is considered a promising storage medium for satisfying ever-
increasing data storage needs. However, the diversity of errors
that occur in DNA sequences makes efficient error-correction
a challenging task. This paper aims to address simultaneously
correcting two types of errors, namely, short tandem duplication
and substitution errors. We focus on tandem repeats of length at
most 3 and design codes for correcting an arbitrary number
of duplication errors and one substitution error. Because a
substituted symbol can be duplicated many times (possibly as
part of longer substrings), a single substitution can affect an
unbounded substring of the retrieved word. However, we show
that with appropriate preprocessing, the effect may be limited to
a substring of finite length, thus making efficient error-correction
possible. We construct a code for correcting the aforementioned
errors and provide lower bounds for its rate. In particular,
compared to optimal codes correcting only duplication errors,
numerical results show that the asymptotic cost of protecting
against an additional substitution is only 0.003 bits/symbol when
the alphabet has size 4, an important case corresponding to data
storage in DNA.

I. INTRODUCTION

Recent advances in DNA synthesis and sequencing tech-
nologies [1] have made DNA a promising candidate for rising
data storage needs. Compared to traditional storage media,
DNA storage has many advantages, including higher data
density, longevity, and ease of generating copies [1]. However,
DNA is subject to a diverse set of errors that may occur during
the various stages of data storage and retrieval, including sub-
stitutions, duplications, insertions, and deletions. This poses a
challenge to the design of error-correcting codes and has led
to many recent works studying the subject, including [1]-[8],
among others. The current paper focuses on correcting short
duplication and substitution errors.

A (tandem) duplication error generates a copy of a sub-
string of the DNA sequence and inserts it after the origi-
nal substring [2]. For example, from ACGT we may obtain
ACGCGT. The length of the duplication is the length of the
substring being copied, which is 2 in the preceding example.
In the literature, both fixed-length duplication [2]-[5], [9] and
variable-length duplication, where the duplication length is
bounded from above [2], [10]-[12] have been studied. For
duplications whose length is at most 3, [2] proposed error-
correcting codes that were shown to have an asymptotically
optimal rate by [11].

In a substitution event, a symbol in the sequence is changed
to another alphabet symbol. Substitution errors may be re-

This work was supported in part by NSF-CCF grants under grant
nos. 1816409 and 1755773.

stricted to the inserted copies, reflecting the noisiness of the
copying that occur during the duplication process [13], [14]
or be unrestricted. For fixed-length duplication, these settings
have been studied in [5], [15].

We focus on correcting errors that may arise from channels
with many duplication errors of length at most 3, which we
refer to as short duplications, and one unrestricted substitution
error. We restrict ourselves to a single substitution error
as a first step towards the general case of ¢ substitution
errors. As a simple example, in a channel with many short
duplications and one substitution, the input ACG may become
ACTCTACTACTCG, where the occurrences of the symbol T
result from copies of a substitution of the form C — T.
Given that an arbitrary number of duplications are possible, an
unbounded segments of the output word may be affected by the
errors and the incorrect substituted symbol may appear many
times. We show, however, with an appropriate construction
and preprocessing of the output of the channel, the deleterious
effects of the errors may be localized. We then use a maximum
distance separation (MDS) code to correct the errors. We
establish a lower bound on the code rate and provide an
asymptotic analysis that shows that the code has rate at least
log(q — 2), where g is the size of the alphabet and the log
is in base 2. We note that the rate of the code correcting
only short duplications is upper bounded by log(q — 1).
When ¢ = 4, the case corresponding to DNA storage, we
provide a computational bound for the code rate, showing
that, asymptotically, its rate is only 0.003 bits/symbol smaller
compared to the code that corrects short duplications but no
substitutions.

The paper is organized as follows. In Section II, we provide
the notation and relevant background. Section III analyzes the
errors patterns that result from passing through the duplication
and substitution channels. Finally, code construction as well
as the code size are presented in Section IV. Due to lack of
space, some of the proofs are omitted or only sketched.

II. NOTATION AND PRELIMINARIES

Let ¥, = {0,1,...,¢g—1} denote a finite alphabet of size g.
The set of all strings of finite length over X, is denoted by X7,
while X7 represents the strings of length n. In particular, 37
contains the empty string A. Let [n] denote the set {1,...,n}.

Bold symbols, such as x and y;, are used to denote
strings over X,. The elements of strings are shown with plain
typeface, e.g., £ = x122-- 2, and Y; = Yj1Yj2 " Yjms
where x;,y;; € X4 Given two strings x,y € X}, Ty
denotes the concatenation of x and y, and =™ denotes the

concatenation of m copies of x. Let || denote the length of
a word z € ¥ For four words @, u, v, w € X7, if « can be
expressed as * = uvw, then v is a substring of x.

Given a word x € X7, a tandem duplication (TD) of length
k copies a substring of length k and inserts it after the original.
This is referred to as a k-TD. For example, a 2-TD may
generate abcbede from abede. Here, bebe is called a (tandem)
repeat of length 2. Our focus in this paper is on TDs of length
bounded by k, denoted < k-TD, for k = 3. For example, from
x = 1201210 we may obtain

x =1201210 — 1201201210 —

1
120120201210 — 1201202201210 = «/,)

where the underlined substrings are the inserted copies. We
say that @’ is a descendant of x, i.e., a sequence resulting
from x through a sequence of duplications.

Let D%, (x) denote the descendant cone of x containing
all descendants of x after an arbitrary number of < k-TDs.
Given a string z, let R<j(x) denotes the set of duplication
roots of x, i.e., sequences T containing no repeats of length
< k such that & € D%, (r). For a set S of strings, R<(5) is
the set of strings each of which is a root of at least one string
in S. If R<y(-) is a singleton, we may view it as a string
rather than a set. A root can be obtained from x by repeatedly
replacing all repeats of the form aa with a, where |a| < k
(each such operation is called a deduplication). For < 3-TDs,
the duplication root is unique [2]. If «’ is a descendant of
x, we have R<3(x) = R<3(x'). Finally, let Irr<x(n) C X7
denote the set of irreducible strings (more precisely, < k-
irreducible strings) of length n, i.e., strings without repeats of
length at most k. We observe that R<s(x) € Irr<3(x), where
Irr<3(*) denotes < 3-irreducible strings of arbitrary lengths.
For k = 3, we may drop the < 3 subscript and denote these
entities as D*(-), R(-), Irr(+).

We also consider substitution errors, although our attention
is limited to at most one error of this kind. Continuing
the example given in (1), a substitution occurring in the
descendant &’ of & may result in =’

' = 1201202201210 — x” = 1201202101210,

We denote by D"% (x) the set of strings that can be obtained
from x through ¢ TDs of length at most k and p substitutions,
in any order. Replacing t with * denotes any number of < k-
TDs and replacing p with < p denotes at most p substitutions.
We again drop < k from the notation when £ = 3. In the
example above, " € D*!(x).

IIT. CHANNELS WITH MANY < 3-TDs
AND ONE SUBSTITUTION ERROR

In this section, we study channels that alter the input string
by applying an arbitrary number of duplication errors and at
most one substitution error, where the substitution may occur
at any point in the sequence of errors. We will first study the
conditions a code must satisfy to be able to correct such errors.
Then, we will investigate the effect of such channels on the

Figure 1. Finite automaton for the regular language D*(012) [10].

Table T
PATHS REPRESENTING IRREDUCIBLE STRINGS STARTING FROM AND
ENDING AT SPECIFIC STATES.

state | Paths from | Paths from
Start to state | state to S'3
S1 0 012, 1012, 12, 12012,
Sa 01, 01201 012,1012, 12, 12012, 2, 2012, 212, 212012
S3 012 012, 02012, 12, 12012, 2, 2012, 212, 212012
S4 0120 012, 02012, 1012, 12, 12012, 2012
1> 010, 012010 | 012, 1012,12, 12012
T3 0121 12, 12012, 2, 2012, 212, 212012
Ty 01202 012, 02012, 2012

duplication root of sequences, which is an important aspect of
designing our error-correcting codes.

A code C'is able to correct many < 3-TDs and a substitution
if and only if for any two distinct codewords c;,co € C,
we have D*=!(c;) N D*<(cy) = @, to satisfy which it is
sufficient to have

R(D*=(e1)) N R(D*=Y(ey)) = @. 2)

Condition (2) implies that for distinct codewords ¢; and co,
R(e1) # R(c2). This latter condition is in fact sufficient for
correcting only < 3-TDs since this type of error does not alter
the duplication root. For correcting only < 3-TDs, defining the
code as the set of irreducible strings of a given length leads to
asymptotically optimal codes [2], [11]. The decoding process
is simply finding the root of the received word.

We take a similar approach to correct many < 3-TDs and
a substitution. More specifically, the proposed code C' is a
subset of < 3-irreducible strings, i.e., R(c) = c for ¢ € C. To
recover ¢ from the received word y, we find R(y) and from
that recover R(c) = ¢, as will be discussed.

We start by studying the effect of < 3-TDs and one
substitution on the root of a string. Consider a string « and
let " € D*=!(x). We either have =" € D*(z), ie., "
suffers only duplications or ”/ € D*!(z). In the former case
R(x") = R(x). Hence, below we consider z’/ € D*!(x).
Furthermore, duplications that occur after the substitution do
not affect the root and so in our analysis we may assume that
the substitution is the last error. We start by a lemma which
considers a simple case.

Lemma 1. For a string « € Irr(3),
L = max{|R(z")| : " € D**(x)} < 13.

Proof: Up to relabeling, the choices for « are 010 and
012. After a given sequence of < 3-TDs and a substitution,
we will obtain x”. We then deduplicate all repeats to obtain
R(x"). For the same sequence of errors, since any dedupli-
cation that is possible when & = 012 is also possible when
' = 010, the length of the root for & = 010 is not larger
than when = 012. Hence, from this point on, we assume
x = 012.

As shown in [10], D*(x) is a regular language whose
words can be described as paths from Start to S3 in the finite
automaton given in Figure 1, where the word is equal to the
sequence of edge labels. Let ' € D*(x) and " € D1 (z').
Assume ' = wwz and x” = wz, where u, z are strings
and w and w are distinct symbols. The string w represents a
path from Start to some state U and the string z represents a
path from some state Z to S in the automaton, where there
is an edge with label w from U to Z.

Since R(z"”) = R(R(u)wR(z)), we have |R(z")] <
|R(u)| + 1 + |R(z)|. The maximum value for |R(u)| is
the length of some path from Start to U such that the
corresponding sequence does not have any repeats. All such
paths/sequences are listed in the second column of Table I for
all choices of U. Similarly, the maximum value for |R(z)]
is the length of some path from Z to S3 such that the
corresponding sequence does not have any repeats, all of
which are listed in the third column of Table I. An inspection
of the Table shows that choosing U = T5 and Z = S5 leads to
the largest value of |R(u)|+1+|R(2)|, namely 6+1+6 = 13.
We note that the specific sequence achieving this length is
2’ = 0120103212012 which can be obtained via the sequence
x — 012012012 — 01201012012 — 0120101212012 —
x”, where we have combined non-overlapping duplications
into a single step. [|

We now consider the roots of arbitrary strings when passed
through a channel with arbitrarily many < 3-TDs and one
substitution. We show that even though a substituted symbol
may be duplicated many times, the effect of a substitution on
the root is bounded.

Theorem 2. Let * € X* and x" € D*1(x). There exist
o, 83,0,y € X* and a (minimal) positive integer L such that
R(xz) = afy and R(z") = af’~y where |8|,|8'| < L for
all choices of x. Furthermore, L < 39.

Proof Sketch: We may assume x is irreducible. If it is
not, let ¢y = R(x) so that " € D*'(x) C D*!(z). If
the statement of the theorem holds for x, it also holds for x
since R(z) = R(xo).

The upper bounds on the length of 3 and B’ are the
same. To see this, note that a3’ is obtained from a3~ by
applying, in order, duplications, a single substitution, more
duplications, and finally removing all repeats (performing
all possible deduplications). Since duplications that occur
after the substitution do not make any difference, we may
instead assume that the process is as follows: duplications,
substitution, deduplications. Since this process is reversible,
general statements that hold for 3’ also hold for 3.

It can be shown that we can write

T = ayabedey;
' =us've D*(x) (3)
x" =us"v e D" ('),
where s’ belongs to D*(abede) and starts with ab and ends

with de; s” is obtained from s’ by substituting an occurrence
of ¢; uwab € D*(ayab) and dev € D*(dey,).

From (3), R(x"”) = R(a1R(s")y1), where R(s") starts
with ab and ends with de (which may fully or partially
overlap). The outer R in R(a;R(s"”)~1) may remove some
symbols at the end of a1, beginning or end of R(s”), and the
beginning of =1, leading to at3'~, where « is a prefix of a,
B’ is a substring of R(s”), and < is a suffix of ~;. Hence,
18] < [R(s")].

It can be shown that s’ is the concatenation with overlap!
of a descendant of abe, a descendant of bed, and a descendant
of cde. In s” each of these descendants are altered in at most
one position. And so |3'| < |R(s"”)| < 3L = 39. |

IV. ERROR-CORRECTING CODES

Having studied how duplication roots are affected by tan-
dem duplication and substitution errors, in this section we
construct codes that can correct such errors. We will also
determine the rate of these codes and compare them with the
rate of the codes that only correct duplications, which provides
an upper bound.

A. Code constructions

As noted in the previous section, the effect of a substitution
error on the root of the stored codeword is local in the sense
that a substring of bounded length may be deleted and another
substring of bounded length may be inserted in its position.
A natural approach to correcting such errors is to divide the
codewords into blocks such that this alteration can affect a
limited number of blocks. In particular, we divide the string
into message blocks that are separated by marker blocks known
to the decoder. We start with an auxiliary construction.

Construction 3. Let [,m, N be positive integers with m > 1
and o € Trr(l). The code Coy (where dependence on N, m
is implicit) consists of strings x obtained by alternating
between (message) blocks of length m and copies of the
marker sequence o, i.e., * = BioBso ---oBy, such that
x € Irr(N(m+1) — 1) and |B;| = m,i € [N]. Furthermore,
there are exactly two occurrences of o in oB;o, for all
i € [N]. Thus, there are precisely N — 1 occurrences of o
in x.

We remark that for our purposes, it is sufficient to relax the
condition for B; to requiring exactly one occurrence of o in
Bio and similarly, the condition for By can be relaxed. For
simplicity however, we do not use these relaxed conditions.

With this construction in hand, we show that the effect of
a substitution error and many tandem duplications is limited
to a small number of blocks.

Theorem 4. Let C, be the code defined in Construction 3. If
m > L, then there exists a decoder Dy that, for any x € C,
and y € R(D*=Y(x)), outputs z = D, (y) such that, relative
to x, either two of the blocks B; are substituted in z or four
of them are erased.

By concatenation with overlap, we mean identical symbols at the extremes
can appear once. For example, concatenation with overlap of abc and bed
results in either abcbed or abed.

Proof: Let * = afv and y = af'~, where by
Theorem 2, |B],]3| < L. The decoder considers two cases
depending whether the marker sequences o are in the same
positions in y as in the codewords in C,. If this is the case,
then |3 = |B'| < L. Since £L < m = |B;|, at most two
(adjacent) blocks B; are affected by substituting 3 by 3’ and
thus z = y differs from = in at most two blocks.

On the other hand, if the markers are in different positions
in y compared to the codewords in C,, the decoder uses the
location of the markers to identify the position of the blocks
that may be affected and erases them, as described below. To
avoid a separate treatment for blocks By and By, the decoder
appends o to the beginning and end of ¢y and assumes that the
codewords are of the form oBjo ---oByo. Define a block
in y as a maximal substring that does not overlap with any o.
By the assumption of this case, there is at least one block B
in y whose length differs from m. Hence, y has a substring
wu of length m + 2! that starts with o and contains part or all
of B but does not end with o.

Since w is not a substring of any codeword, it must overlap
with 3’ (if 3’ is the empty string, then u surrounds the location
from which 3 was deleted and we may still consider that u and
3’ overlap). Let § = |z|—|y| = |8|—|3'| and 6T = max(0, §).
Since |8'| < min(L,L—0) = L—46T, removing u along with
the £—97 —1 elements on each of its sides, with a total length
of m+20+2L—26T —2, will remove 3’ from y. This results
in a sequence that relative to « suffers a deletion of length at
most m + 21 + 2L — 267 — 2+ |B| — |8'| < 3m + 2l from
a known position. The deletion affects at most 4 blocks and
since its location is known, the decoder can mark these blocks
as erased.]

In Construction 3, the constraint that & must be irreducible
creates inter-dependencies between the message blocks, mak-
ing the code more complex. The following theorem allows us
to treat each message block independently provided that o is
sufficiently long.

TheoremS5. Let x be as defined in Construction 3 and assume
[> 5. The condition x € Irr(N(m +1) — 1) is satisfied if

oB;o € Irr(m+2l), forallie[N]. 4

Proof: Suppose that x has a repeat aa, with |a| < 3.
Since |aa| < 6 and |o| > 5, there is no ¢ such that the
repeat lies in B;o B; 1 and overlaps both B; and B;;;. So
it must be fully contained in B;o, 0By, or o0 B;o for some
2 <17 < N — 1, contradicting the assumption (4).]

We now present a code based on Construction 3 and
prove that it can correct many tandem duplications and one
substitution error.

Construction 6. Let [, m be positive integers with m > | >
5 and o € Irr(l). Furthermore, let B denote the set of
sequences B such that o Bo € Irr(m + 21) has exactly two
occurrences of o, and M = MS™ = |BZ|. Finally, let t be

a positive integer such that 28 < M and ¢ : Fo: — BT be a
one-to-one mapping. We define Cp;ps as

Cups = {¢(c1)o¢(c2)o -+ a(cn):c € MDS(N, N—4,5)},

where MDS(N, N — 4,5) denotes an MDS code over Fa: of
length N = 2t — 1, dimension N — 4, and Hamming distance
dg = b.

Theorem 7. If m > L, the error-correcting code Cyps in
Construction 6 can correct any number of < 3-TD and at
most one substitution errors.

B. Construction of message blocks

In this subsection, we study the set B of valid message
blocks of length m with o as the marker. First, in Construc-
tion 6, the markers o do not contribute to the size of the code
and so to maximize the code rate, we set [= |or| = 5. Then
o € Irr(5).

For a given o, we need to find the set B7'. The first step
in this direction is finding all irreducible sequences of length
m + 2l = m + 10. We will then identify those that start and
end with o but contain no other os.

As shown in [2], the set of < 3-irreducible strings over an
alphabet of size ¢ is a regular language whose graph G, =
(V. &q) is a subset of the De Bruijn graph. The vertex set V,
consists of 5-tuples ajasasasas that do not have any repeats
(of length at most 2). There is an edge from ajasasasas —
asazagasag if ayasaszasasag belongs to Irr(6). The label for
this edge is ag. The label for a path is the 5-tuple representing
its starting point concatenated with the labels of the subsequent
edges. In this way, the labels of paths in this graph are the
irreducible sequences. The graph G4, when ¢ = 3, can be
found in [2, Fig. 1].

The following theorem characterizes the set 7" and will be
used in the next section to find the size of the code.

Theorem 8. Over an alphabet of size q and for o € Irr(5),
there is a one-to-one correspondence between B € B[and
paths of length m + 5 in G that start and end in o but do
not visit o otherwise. Specifically, each sequence B € Bl
corresponds to a path with the label o Bo.

C. Code rate

We now turn to find the rate of the code introduced in this
section. For a code C of length n and size |C|, the rate is
defined as R(C) = L log|C|. For the code of Construction 6,

N —4
R(Cmps) =

- Tt g(N+1
Nt v =1y eV D

&)
where N depends on the choice of o € Irr(5). More specif-
ically, N < 2U10sM5™] _ 1 Choosing the largest permissible
value for N implies that N > (M((,m) —1)/2 and

1—-4/N
R(CMDS) > miqL/l log(N + 1)
6)
1 8 (
_ (m) _
> o (1 M~ 1> (log My 1).

If we let m and M,(,m) grow large, the rate becomes

R(Cumps) =

For a given alphabet >, let A denote the adjacency matrix
of G, where the rows and columns of A are indexed by v €
Vy € Eg. Furthermore, let A, be obtained by deleting the
row and column corresponding to v from A and c(,,) (resp.

T) be the column (row) of A corresponding to v with the

element corresponding to v removed. Recall that Mg m) —

|BZ*|. From Theorem 8, we have

1
“log M{™ (1 1)).
—log M, (1+0(1))

M =1l (Aw) (o) (7

where (-)7 denotes matrix transpose. As m — oo, if A(y) is
primitive [16], we have

1
l log M{™ — log(As), (8)

where)\, is the largest eigenvalue of A,). Maximizing

over o € V, yields the largest value for Mc(,m) in (7)
and (8), and thus the highest code rate. This is possible to
do computationally for small values of ¢ and, in particular,
for ¢ = 4, which corresponds to data storage in DNA. In
this case, A, is primitive for all choices of o € Irr(5) and
the largest eigenvalue is obtained for o = 01201 (and strings
obtained from 01201 by relabeling the alphabet symbols). For
this o, we find Ay = 2.6534, leading to an asymptotic code
rate of 1.4078 bits/symbol.

It was shown in [2] that the set of irreducible strings of
length n is a code correcting any number of < 3-TDs. In [11],
it was shown that the rate of this code, X log]|Irr(n)|, is
asymptotically optimal. It is easy to see that L ~log | Trr(n)| <
log(g—1) as no symbol can be repeated. For the case of ¢ = 4,
we have Llog|Irr(n)| = log2.6590 = 1.4109 bits/symbol.
Therefore, the cost of protection against a single substitution
in our construction is only 0.003 bits/symbol. It should be
noted, however, that here we have assumed m is large, thus
ignoring the overhead from the MDS code and marker strings.

In addition to the computational rate obtained above for the
important case of ¢ = 4, we will provide analytical bounds on
the code rate. The next lemma will be useful in identifying an
appropriate choice of o, and the following theorem provides
a lower bound for M.(,m) for such a choice.

Lemma 9. For ¢ > 2, a vertex v = ajasasasas in G4 has
q — 2 outgoing edges if a3 = as or aias = aqas. Otherwise,
it has q — 1 outgoing edges.

Proof: Consider v = ajasaszagsas € Irr(5), and w =
asazagasag € Irr(5). There is an edge from v to w if
ajasazagasag € Irr(6). The number of outgoing edges from
v equals the number of possible values for ag such that
this condition is satisfied. Clearly, ag # as. Furthermore, if
as = as, then ag # a4 and if ajay = aqas, then ag # as.

However, a3 = a5 and ajas = agqas cannot simultane-
ously hold, since that would imply a2 = ag, contradicting
v € Irr(5). Hence, if either az = a5 or ajas = aqas holds,

then there are ¢ — 2 outgoing edges and if neither holds, there
are ¢ — 1 outgoing edges. []

Theorem 10. Over an a (phabet of size q > 2, there exists
o € Irr(5) such that My , where cq is a
constant independent from m.

m)> _ mcq

Proof: Recall that M((,m) is the number of paths of length
m~+>5 in G, that start and end in o but do not visit o otherwise.
Since the path must return to o, we will show below that for
an appropriate choice of o, there is a path in G, from any
vertex to o and define ¢, such that the length of this path is
at most ¢, + 5. Hence M,(,m) is at least the number of paths
of length m — ¢, from o to another vertex that do not pass
through o.

As shown in Lemma 9, each vertex in G has at least ¢ — 2
outgoing edges. We select o such that this still holds even if
edges leading to o are excluded. We do so by ensuring that
each vertex v with an outgoing edge to o has ¢ — 1 outgoing
edges. Let v = ajasasaqas and o = asazaqasag. Based on
Lemma 9, if as # a5 and ag # as, then v has ¢ — 1 outgoing
edges. In particular, we can choose o = 01020 since ¢ > 3.
With this choice, M{™ > (q — 2)™¢.

To complete the proof, we need to show that there is a path
in G, from any vertex to o = 01020. For ¢ = 3,4, 5, we have
checked this claim computationally by explicitly forming G|,.
Let us then suppose ¢ > 6, where the alphabet X, contains
{3,4,5}. Let v = a4 - - - a5 be some vertex in G,. There is an
edge from v to as - - - ag for some ag € {3,4,5} since, from
Lemma 9, at most two elements of ¥, are not permissible.
Continuing in similar fashion, in 5 steps, we can go from v
to some vertex w = by ---b; whose elements b; belong to
{3,4,5}. We can then reach o in 5 additional steps via the
path w — by - - - bgb50 — b3bsb501 — --- — o, proving the
claim. In particular, for ¢ > 6, we have ¢4 < 5. |

We can now find a lower bound on the asymptotic rate:

Corollary 11. For g > 2, as m — 0o, R(Cvps) > log(q —
2)(1+ o(1)).

We note that this gives the lower bound of 1 bit/symbol
for ¢ = 4, which we can compare to the upper bound of
log(q—1) = 1.585 for codes correcting only duplications and
to the rate obtained computationally following (8), which was
1.4078 bits/symbol.

REFERENCES

[1] S. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and
0. Milenkovic, “DNA-based storage: Trends and methods,” IEEE Trans-
actions on Molecular, Biological and Multi-Scale Communications,
vol. 1, no. 3, pp. 230-2438, 2015.

[2] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-correcting
codes for data storage in the DNA of living organisms,” IEEE Transac-
tions on Information Theory, vol. 63, no. 8, pp. 4996-5010, 2017.

[3] M. Kovacevi¢ and V. Y. Tan, “Asymptotically optimal codes correcting
fixed-length duplication errors in DNA storage systems,” I[EEE Commu-
nications Letters, vol. 22, no. 11, pp. 2194-2197, 2018.

[4] Y. Yehezkeally and M. Schwartz, “Reconstruction codes for DNA
sequences with uniform tandem-duplication errors,” IEEE Transactions
on Information Theory, vol. 66, no. 5, pp. 2658-2668, 2020.

[5]

[6

=

[7

—

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

Y. Tang, Y. Yehezkeally, M. Schwartz, and F. Farnoud, “Single-error
detection and correction for duplication and substitution channels,” in
2019 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2019.

A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding over
sets for DNA storage,” IEEE Transactions on Information Theory, 2019.
K. Cai, Y. M. Chee, R. Gabrys, H. M. Kiah, and T. T. Nguyen, “Optimal
codes correcting a single indel/edit for DNA-based data storage,” arXiv
preprint arXiv:1910.06501, 2019.

O. Elishco, R. Gabrys, and E. Yaakobi, “Bounds and constructions of
codes over symbol-pair read channels,” IEEE Transactions on Informa-
tion Theory, vol. 66, no. 3, pp. 1385-1395, 2020.

H. Lou, M. Schwartz, J. Bruck, and F. Farnoud, “Evolution of k-
mer frequencies and entropy in duplication and substitution mutation
systems,” IEEE Transactions on Information Theory, vol. 66, no. 5, pp.
3171-3186, 2020.

S. Jain, F. Farnoud, and J. Bruck, “Capacity and expressiveness of ge-
nomic tandem duplication,” IEEE Transactions on Information Theory,
vol. 63, no. 10, pp. 6129-6138, 2017.

M. Kovacevi¢, “Codes correcting all patterns of tandem-duplication
errors of maximum length 3, arXiv preprint arXiv:1911.06561, 2019.
Y. M. Chee, J. Chrisnata, H. M. Kiah, and T. T. Nguyen, “Deciding
the confusability of words under tandem repeats in linear time,” ACM
Transactions on Algorithms (TALG), vol. 15, no. 3, pp. 1-22, 2019.

D. Pumpernik, B. Oblak, and B. Borstnik, “Replication slippage versus
point mutation rates in short tandem repeats of the human genome,”
Molecular Genetics and Genomics, vol. 279, no. 1, pp. 53-61, 2008.
F. Farnoud, M. Schwartz, and J. Bruck, “Estimation of Duplication
History under a Stochastic Model for Tandem Repeats,” BMC
Bioinformatics, vol. 20, mno. 1, 2019. [Online]. Available:
https://doi.org/10.1186/s12859-019-2603-1

Y. Tang and F. Farnoud, “Error-correcting codes for noisy duplication
channels,” in 57th Annual Allerton Conference on Communication,
Control, and Computing, 2019, pp. 140-146.

D. Lind, B. Marcus, L. Douglas, and M. Brian, An introduction to
symbolic dynamics and coding. Cambridge university press, 1995.

