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ABSTRACT
We envision a world where people-centric sensing and personalized
services can be achievedwithout centralized data collection and pro-
cessing or the reliance on video-based surveillance. To help assess
the feasibility of building context-aware applications while allow-
ing users to fully control their potentially sensitive data, we studied
the feasibility of people-centric sensing using only user-side data
acquisition. Using only o�-the-shelf, energy restricted sensor kits
in a smart environment together with an energy-e�cient message
exchange scheme implemented on top of Bluetooth Low Energy, the
collected dataset provides insight on a continuous cyber-physical
view from users’ individual perspectives. The availability of the
dataset encourages further studies of users’ activities, for instance
to perform distributed inference on users’ social interactions and
activity trajectories.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Networks→ Network properties; • Computer systems
organization → Embedded and cyber-physical systems.
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1 INTRODUCTION
In people-centric sensing [3], individuals utilize sensors to learn
and share information about themselves and their environments
to enable personalized digital services or contribute to a social
good. With technological advances in embedded systems and wire-
less communication, today’s low power Internet-of-Things (IoT)
devices enable numerous, formerly impossible opportunities for
sensing and sharing information about the ambient environment.
In this work, we are interested to how user-side data acquisition
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can stimulate the fusion of personal, public, and social sensing in a
privacy-preserving way.

Wireless �ngerprinting, in particular via Bluetooth technology,
is known to be useful to provide distance estimations in indoor
localization [5, 11]. Recent years have also seen an increasing inter-
est in leveraging Bluetooth beacons as a tool for device interaction
in many application-speci�c contexts, including tourism [12, 17],
device-to-device collaboration [8, 10], social interactions [2], secu-
rity [13], smart buildings [16], and smart cities [1]. However, most
publicly available datasets are collected from service-side devices
(e.g., devices connected on unmetered networks). There is a lack
of datasets directly acquired from the user side with context infor-
mation that can correlate to device-to-device or human-to-device
interactions. In this work we focus on the idea of people-centric
sensing and provide a dataset containing continuous views of users’
digital surroundingswith rich contextual information.We introduce
the setup of our data acquisition in Section 2. Section 3 provides
details of the presented dataset. Lastly we discuss the potential
usage of this dataset in Section 6.

2 HARDWARE SETUP AND CONTINUOUS
COLLECTION

To keep our study focused on data collection and make it easy to
repeat in other environments, our hardware setup uses o�-the-shelf
Nordic Thingy52 IoT sensor kits [15]. The device is equipped with
eight on-board sensors, Bluetooth Low Energy (BLE) for wireless
connectivity and a rechargeable lithium polymer battery. BLEnd [6]
is implemented on top of the BLE stack as the communication
substrate. In the deployment, the devices continuously transmit
beacons that can be received by other devices in range. In particular,
we parameterize the BLEnd protocol on each device to achieve a
95% guarantee that each neighboring device receives that device’s
beacon every four seconds.

In our deployment, we programmed and deployed 55 IoT sen-
sor kits during the 6-week data collection period. Of these kits, 48
were placed as anchor nodes at 24 locations inside a university aca-
demic building1. These stationary beacons (illustrated in Figure 1)
were programmed as pairs; at any time, one device in a pair was
deployed at the anchor location, while the other was pulled for
battery charging. The remaining 7 sensor kits were carried by the
human participants in the data collection. All devices beaconed as
described above. Each human participant also carried an Android
device that also collected any overheard beacons and stored the
data from all received beacons into a local SQLite database. Finally,
the deployment also included three Android tablets installed at
three separate building locations (the two doors to an interior space

1http://www.ece.utexas.edu/about/facilities/eerc
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Table 1: Sample Data Entries in the Beacon Table

HostId Timestamp(ms) Bluetooth Address RSSI Sound avg. Sound max ... Temp. Humidity Air Pressure eCO2(ppm) tVOC(ppb)
4 1554330245495 C1:DA:6A:2A:4E:D5 -67 269 669 . . . 22.96 48% 994.88 427 4
1 1556731374232 D1:DE:0B:60:CA:95 -99 1215 2193 . . . 27.70 73% 996.43 400 0
0 1557160392903 F0:55:C1:1B:5D:6B -98 306 669 . . . 23.29 86% 993.97 408 1

Figure 1: Static Beacon Deployment

and an open cubicle work area). The deployment used these tablets
to collect participants’ explicit “check-ins,” which served as ground
truth participant location information.

3 DATA DESCRIPTION
We collected the beacon data from the local databases on the partic-
ipants’ Android devices into a single merged database. Within this
database, each “row” contains information about one received bea-
con, as shown in Table 1. These are indexed by the identi�er of the
participant device that received the beacon (i.e., HostId, a value in
the range [0..6]). Each row contains information about the received
beacon: a description of the received beacon including the times-
tamp, the received signal strength indicator (RSSI), the sender’s
Bluetooth address, and the receiver’s id. The data also includes
the summary of the sensor information read from the sender’s on-
board sensors, including sound level indicators (peak and average),
temperature, air quality measurements (eCO2 particles per million
and volatile organic compound particles per billion), air pressure,
and humidity. During the data collection period, it was possible for
a device to receive more than one beacon from a given neighboring
device within a short time period. Because the phenomena being
sensed were unlikely to change at a very high frequency, we down
sampled the beacons received to one second (i.e., each device stores
at most one beacon from any other device each second). Our par-
ticipants also carried the Android devices for 24 hours; we pruned
any data collected o�-campus for privacy reasons. The main table
in our �nal dataset contains 20,612,286 entries. As described above,
we used tablet check-in locations to collect additional ground truth
labels for the data set; we stored these events in a second table as a
time series of ParticipantId, check-in location, and timestamp.

4 USES
The data set has a variety of potential use cases.

Composition: This dataset leverages user-side acquired beacons
that carry a rich set of ambient context information that can be
useful, for example, for mining the correlation between context
snapshots and human activity recognition and prediction [4, 14].
Context snapshots can be derived from the beacon entries in the
main beacon table at any aggregation level as needed. Inter-human
encounters can be inferred from the senders’ Bluetooth addresses,
which are cross-referenced in the device description table. While the
relative location of the hosts could be estimated using the RSSI of
the beacons sent from the stationary nodes (category provided as
part of device description), the check-in table o�ers explicit human-
to-machine interactions.

Beacon Carried Context: The sensed attributes contained in
each beacon are sampled with the same interval from the device
(identi�ed by its Bluetooth address). Note that time consumption
for sampling can vary between di�erent types of sensors. Most
sensors can return the readings back to the controller with negligi-
ble delay. The air quality sensor and microphone, however, need
more sampling time. The accuracy of the embedded sensors are
referred to the hardware speci�cation in [15]. Depending on the
use case, certain pre-processing or noise reduction should be ap-
plied when extracting higher-level contexts from the raw data. For
instance, characteristics of RSSI (e.g., multi-path fading) [18] need
to be considered when deriving proximity information.

Example Usage: The presented dataset can be explored from
both user and environment perspectives. The nature of user-side ac-
quisition makes it straightforward to navigate the context changes
for a given user through time. For instance, one of the things the �rst
row in Table 1 can tell us is that host #4 is relatively close to a device
di (C1:DA:6A:2A:4E:D5) at time t . Then we can do a simple �lter on
the HostId and timestamp columns to �gure out what other devices
host #4 had encountered in an arbitrary look back time(e.g. last �ve
minutes). Alternatively, we could make predictions on what host
#4 would encounter in the next �ve minutes and the subsequently
assess the accuracy of these predictions. From the environment
perspective, we have leveraged the dataset to develop an approach
for continuous authorization in smart buildings [7]. The dataset
allows us to use the frequency of beacons within a given interval
of time to re�ect the “presence” of a device from the perspective
of a host. The density of beacons in the dataset is su�cient for us
to generate useful access control rules at the smart building scale,
based on attributes derived from this “presence” information. Exist-
ing datasets do not provide the necessary granularity of beacons
necessary to support these types of applications.

5 DATA ACCESS
The data collection can be found at [9].
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6 CONCLUSION
The presented dataset provides a new perspective on studying
people-centric sensing that is essential in continuous context-aware
applications. The people-centric nature of the dataset lends itself
to the development of privacy conscious applications, where the
sensors take a passive role and the users are in control of the sensor
aggregation. In the future, the proximity based message exchanges
captured in the dataset can be used to evaluate applications or
scenarios to exploit social or personalized services without the
assumption of a central collector.
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