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Abstract—Advances in mobile computing capabilities and an
increasing number of Internet of Things (IoT) devices have
enriched the possibilities of the IoT but have also increased
the cognitive load required of IoT users. Existing context-aware
systems provide various levels of automation in the IoT. Many of
these systems adaptively take decisions on how to provide services
based on assumptions made a priori. The approaches are difficult
to personalize to an individual’s dynamic environment, and thus
today’s smart IoT spaces often demand complex and specialized
interactions with the user in order to provide tailored services.
We propose rloT, a framework for seamless and personalized au-
tomation of human-device interaction in the IoT. rIoT leverages
existing technologies to operate across heterogeneous devices and
networks to provide a one-stop solution for device interaction in
the IoT. We show how rloT exploits similarities between contexts
and employs a decision-tree like method to adaptively capture a
user’s preferences from a small number of interactions with the
IoT space. We measure the performance of rloT on two real-
world data sets and a real mobile device in terms of accuracy,
learning speed, and latency in comparison to two state-of-the-art
machine learning algorithms.

Index Terms—pervasive computing; smart environments; de-
vice discovery and selection;

I. INTRODUCTION

With recent technology advances made in the Internet-of-
Things (IoT), there is a growing number of smart devices
helping to build the many smart-* scenarios that people have
long envisioned [40]. In scenarios like smart-homes and smart-
offices, the plethora of these new devices has created many
possibilities for automating daily tasks. At the same time,
new challenges arise; a particular challenge to note is that
applications demand responsive and intelligent approaches to
leverage context [10] in IoT environments. In this work, we
address a fundamental piece of this challenge: automating
human-device interaction, by asking a simple yet unsolved
question: how can contextual information be leveraged to
make IoT device interaction more seamless and personalized?

To make seamlessness and personalization concrete, con-
sider a smart home system, embedded with sensors and actua-
tors. Smart lights adjust lighting based on indoor illumination;
a smart coffee maker automatically starts coffee when the user
wakes up. While these individual applications enable some
automation, they do not achieve the full vision of disappearing
computer [40]. One gap that remains is directly related to
abstractions for user interaction chosen by manufacturers [2],

[7]. Simply put, interactions are not seamless. At setup, a
user usually needs to connect the devices based on mac
addresses, name each device, and remember them. To interact
with devices, the user either scripts the behavior in advance
in arbitrary computer-friendly languages (e.g., IFTTT [29],
Hydra [12]) or must recall the name defined at setup and issue
commands like “set the light over the stove to bright”. Neither
the scripted behavior nor the tailored commands provide a
seamless interaction paradigm. We argue that a truly seamless
IoT world will allow the user to interact with devices using
simple and generic instructions like “turn the light on”.

On the other hand, a key selling point of IoT applications
is the personalization they enable by allowing users to cus-
tomize the configuration with personal preferences. While such
features are common, they are often limited and contrived [1].
For instance, although the smart coffee machine may allow the
user to configure a customized time to start the coffee machine
every day, such “personalization” is under the assumption that
the interaction related to this device is based on time. If a user
wants to start coffee after returning home from jogging, which
may or may not happen every day, the user cannot benefit
from the “smartness” of the coffee machine. Personalization
in modern IoT systems should not require a user to express
her preference via manufacturer defined assumptions.

Our solution to seamlessness and personalization is through
context-awareness. Significant work has been done in context-
awareness over the past decade [14], [31], [36], supporting
better collecting, processing, and reasoning about context.
In the IoT, a user’s context can include any information
that describes the user’s situation, from location and time to
ambient conditions or the presence of others [11]. We focus
on utilizing collected contextual information to predict the
device and associated service(s) that a user needs when the
user makes a simple generic request (e.g., “turn on the light”).
Unlike existing solutions, we respond immediately to users-
supplied negative feedback and re-attempt the action.

We propose, rloT, a framework enabling responsive and
reinforcing automation in IoT service personalization. rloT
enables context-aware automation by providing a seamless
and low effort approach to personalizing how IoT services are
chosen to support a given request from a user. In contrast to the
common IoT application workflow in which users must exert
non-negligible efforts on the process of configuring, labeling,



and specifying a device before using it, rloT incorporates a
context learning algorithm that automatically adjusts based
on user intentions and the environment. This learning is a
continuous process that adaptively evolves a learned model as
users change their interaction preferences or the environment
changes. rloT does not rely on a priori knowledge and learns
a user’s intentions only from the history of user interactions.

In summary, rloT leverages rich contextual information
to enable increased automation of user-oriented IoT device
interaction. Our key research contributions are:

o We propose a context-aware learning framework, rloT,
for user-oriented IoT device selection.

o We incorporate user configurable context abstractions to
enable personalization at per device level.

o We devise a context-aware algorithm that learns a user’s
interaction pattern with no a priori knowledge about the
device, space, and user.

o We quantitatively evaluate rloT using two real-world
data sets. We show that rloT has high accuracy and can
quickly recover from environmental dynamics.

In Section II, we present an overview of the related work
and key preliminaries of our proposed approach. We then
present an overview of rloT and its position in an IoT
deployment. Section IV presents rloT in detail, including
the underpinning learning algorithms. We evaluate rloT in
Section V, comparing it to two alternative learning algorithms
in the context of real-world contextual data. Section VI con-
cludes.

II. MOTIVATION AND RELATED WORK

We use state of the art middleware in the IoT to motivate the
gap that rloT fills. IoT devices fall into two categories: sensors
and actuators. Users make requests to actuators to take some
action (e.g., turn on the lights, adjust the volume, etc.), while
sensors passively collect contextual information. A device can
take on both roles simultaneously, e.g., a thermostat can both
sense temperature and actuate the temperature set point.

Motivating Application Scenario. Alice is a smart home
enthusiast who owns several IoT actuators: a smart lock, lights,
security cameras, and a stereo system. She is an early adopter
who purchases solutions as they become available, so her
devices are from five different manufacturers. Alice also has
a networked sensor system throughout her home, provided by
yet another manufacturer. The stereo system is her favorite
because it supports sophisticated collaboration among all of
her speakers to provide ideal sound quality. Alice must figure
out how to control all of the devices to satisfy her needs but
minimize her overhead in interacting with them.

Existing Middleware Architectures for the IoT. Fig. 1
captures the architectures of the two primary control options
available to Alice, given today’s current technologies. The first,
in Fig. la, is a manufacturer-oriented view in which Alice
controls actuators through different manufacturer gateways and
their (proprietary) applications. The obvious advantage is that
manufacturers can provide comprehensive services for their
devices. For Alice, this means she can enjoy the features
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Fig. 1: Existing human-device interaction in the IoT

that achieve ideal sound quality from the stereo system.
On the other hand, Alice has to navigate steep and diverse
learning curves associated with each of the manufacturers.
Although some manufacturers allow users to define personal-
ized automation based on primitive context information like
time, they cannot leverage sensor data provided by other
manufacturers [6], and as a result, they fail to fully respond to
a user’s more subtle intentions due to lack of context [41]. In
other words, these systems’ approaches to “personalization”
do not truly reflect the user.

Fig. 1b shows another option in which Alice can employ a
general-purpose IoT middleware as a sort of universal gateway
(e.g., IFTTT [29], Hydra [12]). The advantage is that Alice
only needs to learn one control language that can also leverage
contextual data collected by diverse sensors. The disadvantage
is that Alice has to define all the interaction patterns by herself
using some script language defined by the middleware. Even
with current context-aware automation solutions [3], [4], [26],
since the control interfaces are designed by a third-party, some
device features may not be supported. For example, it may not
be feasible for a third-party framework to coordinate multiple
speakers to provide manufacture designed sound effect.

Context-Awareness in the IoT. An obvious pain point is
the inability of existing middleware to internalize an expressive
and complete notion of context, a need that has been identified
in both the research community [36] and in the industry [9].
Existing work incorporating context-awareness into loT-like
applications adopts a semantic approach [17], [24], [38], [39],
where context-awareness relies on a pre-defined ontology char-
acterizing devices, users, and their relationships. In contrast,
providing users seamless experiences requires an approach that
does not rely on a user having a priori knowledge about how
IoT devices affect the space in which they are located. This
is necessary to ensure the approach is suitable for new spaces
a user encounters for the first time or for spaces in which the
devices or environment are dynamic.

CA4IOT [31] is a context-aware architecture that selects
sensors to provide context based on a likelihood index that
captures the weighted Euclidean distance from the user’s con-
text and the context of the sensors. However, context reasoning
is based only on a pre-defined static distance function with
fixed contextual inputs. Probabilistic and association based
solutions [27], [23] provide efficient activity sensing and fluid
device interaction, while other approaches use Hidden Markov
Models (HMMs) to model context-awareness [4], [5], [25],
[34]. These approaches either require a list of pre-defined “sit-
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Fig. 2: The overview of the rloT framework

uations” to which they are restricted, or they make assumptions
restricting the context and the environment. More recently,
deep learning has provided context-aware activity recognition,
interaction prediction, and smart space automation [15], [28],
[33]. Despite their promise, these approaches require very
large data sets for training, which makes them not suitable
for personalized approaches in which data is small.

The aforementioned approaches inspire our work. We target
a more general space with diverse devices that may dynam-
ically change. The key challenges of interactive machines
in general [37], articulates a gap between what systems can
sense about the context and the user’s actual intentions. That
is, no matter how many sensors we use to capture context,
gaps will exist in the system’s knowledge. Therefore, unlike
existing solutions, we emphasize that user feedback should be
explicitly included in the decision-making process.

System Support for rIoT. Efficiently collecting context has
been well studied. Through multi-device cooperation, contin-
uous monitoring systems like CoMon [20] and Remora [18]
enable context generated by sensors to be consumed by
applications executing on nearby smartphones. Self-organized
context neighborhoods [22], [21] built using low-end sensors
have negligible communication overhead. It is exactly because
of the availability of these cost-effective continuous sensing
systems that rloT’s vision of IoT personalization can seam-
lessly incorporate expressive context in an IoT enabled space.

We rely on existing solutions to provide connectivity among
heterogeneous IoT devices. The web-of-things [13] makes
devices available as web services and thus accessible through
a canonical interface. Lightweight solutions [35] opportunisti-
cally discover surrounding devices and control them through
users’ personal devices. In this work, we focus on how to
utilize context to better select and control these devices.

III. AN OVERVIEW OF RIOT

In this section, we overview rloT’s core contributions and
define its underlying key concepts. We describe our algorithms
in detail in the following section. Our work targets smart
spaces that contain multiple rooms equipped with IoT devices.
There may be one or more users sharing the space, however
we assume that requests from different users are compatible
with each other (e.g., we assume that two users never simul-
taneously request different actions on the same devices).

In Fig. 1, we identified a trade-off between user-oriented
personalization and manufacturer-oriented features. We argue
that it is important to enable personalization yet retain the full
capabilities of devices. As shown in Fig. 2, rloT inserts itself

between applications and IoT devices to allow applications
to leverage context to automatically determine which devices
and what actions on those devices best match a user’s needs
and expectations. rloT encapsulates a context builder that
collects and abstracts sensor readings into high-level, usable
context. rloT’s decider uses context information, knowledge
about available IoT devices, and knowledge about the user’s
prior interactions to choose (i) the best device to fulfill a user’s
request and (ii) the best action to take on that device.

We assume that users’ requests for IoT devices to take
actions may be of varying levels of detail. At one end of
the spectrum, a user may ask for a specific device to take a
specific action (e.g., “turn off the kitchen light”). At the other
end, the user might simply ask for the IoT to “act”. In this
case, rloT needs to determine which action on which device
is most likely to satisfy the request. There are a variety of
requests in between; for example, given the request “turn on
the light”, rIoT knows that the right action is to “turn on” and
that the rype of device is “light”, but must determine which
light device to act on. While we support all levels of specificity,
in this paper, we focus primarily on the least specified, i.e.,
situations in which the user simply says “act”, and rloT must
select the combination of device and action that best satisfy
the user.

rloT learns a local utility model for each IoT device; this
model (f;) captures the likelihood that a given action on
that device is the “best” action to take given a snapshot of
the context at the moment that the user makes a request.
Conceptually, each device proposes the action on that device
that has the highest utility in the given context. rloT’s decider
compiles all of the devices’ proposals and selects the one with
the highest overall utility. Given rloT’s choice of action, each
device receives implicit feedback (i.e., if the device’s proposal
was selected, the device receives positive feedback; otherwise,
the device receives negative feedback). Thus a device can learn
about the utility of its actions in the context of other co-located
devices. In addition, once the action is taken, rloT allows the
user to provide explicit feedback to reinforce (either positively
or negatively) rloT’s selection. The feedback is incorporated
into the device’s utility model, allowing it to learn over time
based on the user’s interactions in the space.

rloT’s architecture also allows applications to maintain
access to manufacturer-specific actions. In such situations,
rloT controls the devices as a system through an external
controller as depicted to the right of Fig. 2. Rather than the
individual devices proposing an action, this controller proposes
for all devices it controls. This allows exposing manufacturer-
specific actions as part of the rloT decision framework.

We next define some terms that we use throughout the paper.

Definition 1. (context ¢) Practically, a context ¢ is any single
piece of numerical or categorical data and can be raw sensor
reading like temperature or illumination level, or an abstract
value derived from raw data, e.g., isAtHome, Cooking.

Definition 2. (context snapshot C;) We define C; as a vector
of context values c; ; that describe the user’s situation at time
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Fig. 3: The overview of data flow in rloT

t, i€, Cp = (Ct0y--+,Ctiis---,Ctn). We assume that the i
element of any snapshot is always the same type of context;
co 1s always the user’s identity.

Definition 3. (device d) A device is an actuator that can be
discovered and controlled through a virtual controller.

Definition 4. (device class T) A class T is a set of devices that
have the same type, and therefore the same action interface,
e.g., d € Tjgn. We assume a hierarchy of classes. For example,
a dimmable light is also a light, i.e., Tuimmabie C Tiight-

Definition 5. (action a) An action is performed by a device,
e.g., turnOn, turnOff, etc. A is the set of all actions; Ay is the
set of actions device d can perform. We assume A, is finite.

Definition 6. (request R) A request R; made by the user at
time ¢ is a pair of class and action, both of which are optional.
Specifically, R; = (T, a) indicates that the user wants a device
d € T to do action a. A request’s fields can be blank, i.e.,
R = (1, 1), which indicates that the user requests the IoT to
“act”, or have only one of the two fields, e.g., R = (light, 1)
indicates a request for some light to take some action.

Formally, our problem statement is:

Given a user’s request Ry at time t and a snapshot
of the context C, at the same time t, output a tuple
(d, a) that specifies the action a to be taken on device
d to best satisfy the request R

IV. CONTEXT-AWARE DECISION MODELS IN RIOT

We now describe the components and processes that allow
us to fill in the architecture in Fig. 2. We then describe rloT’s
contextually-driven learning algorithm in detail.

A. rloT Approach

As described in the overview, rloT learns a local utility
model for each IoT device. Conceptually, these models “be-
long” to the devices themselves, but, as Fig. 2 shows, the mod-
els are part of rloT. The only exceptions are external models,
which may contain manufacturer-proprietary information; in
these cases, the rloT local model is a proxy for the external
model, which resides under the manufacturer’s purview.

Fig. 3 shows the flow of requests, context, and decisions in
rloT. The user (at the left) makes requests to rloT’s decider,
which resolves them using input from the local utility models.
These models in turn rely on context snapshots generated by
the context builder. Given a decision, the user may accept
the proposal (providing implicit positive feedback) or reject

it (providing explicit negative feedback). This information
is used to update the local models. In the case of negative
feedback, the decider repeats the decision process and makes
a new proposal to satisfy the original request.

1) Building Context Snapshots: The context builder trans-
lates raw sensor data into contextual data, which the local
utility models use for learning. We rely on four generic context
abstractions: (1) the numeric context allows the context builder
to capture standard numerical values, e.g., temperature, pres-
sure; (2) the cyclic numeric context captures context types that
are numerical but “roll over” on some predictable schedule,
e.g., time, day of the week; (3) the N-dimensional vector
context captures context values that are represented by a tuple
of values, e.g., location coordinates; and (4) the categorical
context captures labeled values, e.g., human activity, binary
data. Depending on the type of context and the available
sensors, the context builder assembles the higher level values
out of the raw sensor data. rloT leverages existing work in
context construction to implement the context builder.

2) Context Distance Functions: The devices’ local utility
models will propose actions to take in a given context based
on the feedback they have received about prior actions in
the same or similar contexts. To judge the similarity of two
contexts, rloT relies on context distance functions. We first
define dist(c, '), or the distance between two contexts (e.g.,
the distance between two locations, the distance between two
temperature values, etc.). Primitive context types typically
have easily defined distance function (e.g., geometric distance,
absolute value, cyclical distance). rloT makes one additional
constraint on any dist(c, '), i.e., that the distance is normal-
ized to the range [0, 1]. With this simple definition of contex-
tual distance, we build a distance function dist(C,,Ch, W)
that captures the distance between two context snapshots.

Definition 7. (context snapshot distance dist(Cy,Cp, W))
This distance is computed using the Manhattan distance [19];
the vector W weights the elemental values of the snapshots:

dist(Cy, Cyp, W) = sz X dist(ca,i; Cb,i)
i=0

v€an), Co = (Cb0,Cp,15 - -

,wn), (0 <w; < 1)

where, Cyq = (€a,0,Ca,1, - - 1 Cbn),s

W = (’wO7U)1,...

Because the weight vector W is an input to the function,
each local model can use a different distance function for con-
text snapshots, enabling personalization. For instance, some
users may have a strict daily routine based on the clock, in
which case a difference in time means more for this user than
other context types. An interaction with lights is more likely
based on location, while requests for a remote camera may
depend more on suspicious sounds or movements.

Because context values can be continuous, it can be useful
to discretize context snapshots into buckets. When we do so,
we need to ask whether a bucket “contains” a context snapshot.
We define contain(c!,c®,c) for the first three elemental con-
text types as ¢! < ¢ < c* and as ¢ € (¢! U c*) for categorical
context. We next extend this to context snapshots:



Definition 8. (context snapshot contains contain(Cy, Cy, Cy))
This function simply requires the contain function for all of
the elements of the snapshot to be true:

contain(Cq, Cy, Cy) =

FALSE, if 34, s.t. contain(cqq, Cbi, Coi) = FALSE
TRUE, otherwise

3) Defining and Using Local Utility Models: rloT’s local
utility models capture the suitability of devices’ actions to
requests from users in certain context states.

Definition 9. (local model f;) f4: C x R — A x IR maps
a request and context snapshot onto an action the device can
take and a wrility value, v € [0,1]. The utility captures the
likelihood that the action is the “right” one given the request
and context. fq(C, R) results in a proposal Py = (d, a,u).

When a user requests an action, rloT captures the context
and requests a proposal from each device’s local utility model.
rloT’s objective is to output the final decision Pgr, o, =
(d, a, u), which is the winning proposal, i.e., the proposal with
the maximum utility across all of the devices’ proposals.

rloT’s key challenge is therefore how to compute the f;
models for each device d. Because we do not want to make any
assumptions about or place any constraints on the environment
in which rloT operates, our approach is to fit the f; models
using each user’s history of interactions with each device,
leveraging similarities among the contexts of the interactions.

B. Context Learning in rloT

Imagine that Alice has four IoT lighting devices in her
home. Depending on the context, a “turn light on” request
may indicate a desire to turn on any one of these lights. For
instance, when Alice awakens at 6:30am and says “turn light
on”, she intends to illuminate the bedroom. While cooking in
the kitchen (regardless of the time of day), a “turn light on”
request should control the kitchen light. And when Alice is
reading anywhere in her home, “turn light on” should affect the
light closest to her current location. Alice’s context snapshots
may contain, for example, time (captured as a cyclic numeric
context), Alice’s location (captured, in a coordinate system),
and activity (categorical context).

The goal of rloT is to learn each local utility function
fa(C,R) based on the user’s interactions and feedback.
However, learning this function directly can be challenging.
Context can be continuous, and the target function may be
non-linear and non-continuous. Therefore, rather than learning
fa(C, R) directly, we introduce a piecewise function set as an
approximation, based on a concept we call state:

Definition 10. (state S) A state is defined by three context
snapshots, S = (Chin, Crmaz, Cmid)- We use two functions to
compare states: contain(S, Cy) = contain(Chrin, Cmaz, Cz),
determines whether a state contains a given context snapshot,
while dist(S, Cy, W) = dist(Ciq, Coy W) computes how far
a context snapshot is from the state. We define the radius of
a state as rg = dist(Ciaz, Cmin) /2.

Algorithm 1: Computing the Local Model

1 S: set of known states, initially empty

2 fa(C, R): set of piecewise local functions, initially empty
3 Function ONRECEIVEREQUEST: R = (T, a), C;

4 if(T# LAdET) or (areqg # L N areq ¢ Ag) then
5 | return (areq, 0)

6 end

7 if a = L then let Ar < Ag else let Ar + {a}

8 if AS; € S, s.t. contain(S;, Cy) = TRUE then

9 Snew < (Ct -, Ct + 7, Ct)

10 it S =0 then Va € Ay, fu,a(Snew) < 0.5

11 else Va € Ag, initialize fd,a(Smw) from neighborhood
12 S+ SU{Shew}

13 fa(C, R) + fa(C, R) U{fa,a(Snew) : a € Aa}
14 end

15 let Sk < {Si : contain(S;,Cy) = TRUE}

16 let Umaz <maXa§AR,si€sR : fd,a(Si)>

17 let amaz < a s.t. f4,0(Si) = Umas

18 return P; = (d, dmaz, Umaz)

19 end

20 Function ONFEEDBACK: P = (d, a,u), Ct, feedback

21 for S; € S s.t. contain(S;,Ct) = TRUE do

22 if feedback is positive then

23 ‘ fa,a(Si) < fa.a(Si) + reward

24 else

25 ‘ fd,a(Si) — fd,a(S,') — reward

26 end

27 end

28 end

The set of states that discretizes the space of context
snapshots is not defined a priori but are learned over time.
The learned states need not cover the entire space of possible
context snapshots, and different devices can have different
relevant states. In our scenario, Alice’s lights may learn states
defined by ranges of time and activity labels; her living room
lights may not learn anything about states in the very early
morning, though her bedroom lights will.

We use this concept to approximate each device’s local
utility model by combining a utility learned for each state.

Definition 11. (local utility of a state, f4,(S)) Each function

fd,a =wu: S — IR captures the utility of taking action a on d
when the context is contained by .S. The default value is 0.5
which means the likelihood action a is a good choice is 50%.

Given a request R = (T, areq) in which T is a (potentially
empty: T' = 1) device type and a4 is a (potentially empty:
areq = 1) requested action, device d’s local utility function
fd,o(C, R) can then be approximated as:

Ad, if a‘7‘6q = J_
Agp = ]
Qreq, Otherwise
Umas = (max a, S : contain(S,C) Aa € Ag = fa.a(S)))
<amaz; umaz>’if(T =1VvVde T)/\
(Greg = LV g € Ag)
(Areq, 0), otherwise

fa,a(C, (T, areq)) =

Algorithm 1 shows our approach. When receiving a request



R = (T, a), if Cy is not “contained” in any states, rloT will
create a state with a default radius r around C} (Line 9). This
new state’s utility is the default (Line 10) or initialized based
on other “nearby” states (Line 11; explained in detail below).
Once Cy is “contained” in a known state, rloT will output
the action that has the highest utility of all actions and is
compatible with the request R (Lines 15-18). When receiving
feedback from the user, rloT takes the prior proposal P and the
prior context, C'y, and updates the local model. The reward is
computed using the Sigmoid function; we translate the utility
from (0,1) to (—oo,+00), increment or decrement it by a
constant reward, and then translate it back to (0,1). This
adjusts the utility more slowly when it is close to 0 or 1.

1) Initializing Models from Nearby States: We assume that
a user will have similar behaviors in similar contexts [31].
Therefore, when initializing a new state S, rloT computes the
initial utility values based on utility values for nearby states.
For example, if Alice’s actions routinely trigger the bedroom
light at 6:30am, even the first time she requests a light at
7:00am, it is likely that she also wants the bedroom light. To
capture this “nearness” in rloT, the first time a user makes a
request in a new state, we use the k learned states that are
closest to the new context and use their learned models as a
basis for the new state’s utility value; a state’s contribution is
weighted by its distance to the new context. More formally:

fd,a(si) —0.5
dZSt(S»“ Cne’wa Wd)/rs

A 1
fd,a(Snew)*0~5+%SZ +1

1 €ESkNN

new

Since 0.5 is the default value, we first shift the utility value to
it and weight it with the distance plus one to make sure that
the derived utility value is closer to 0.5 than the original value
to prevent initializing the new state with too much confidence.

Although the assumption that behaviors in “nearby” states
are likely to be similar is valid in general, this assumption
can sometimes be misleading, for example, when there is
a wall between two locations. In such a case, the utility
value we “borrow” from the neighborhood can be very wrong.
Therefore, we add a flag to any new state S,,,. If the user
gives negative feedback immediately following initialization,
we abandon the initialized utility value and reset it to 0.5.

2) Decision-Tree Like State Splitting: rloT splits states as
its models learn more nuanced behaviors of users. We might
initially learn the difference in behaviors between morning and
afternoon; over time, differences between early morning and
late morning might become apparent. Our approach is inspired
by the splitting used in the ID3 decision tree algorithm [32].
To detect candidate states for splitting, we define entropy using
the feedback the device has received for actions taken in each
state. Conceptually, entropy captures how internally different
the feedback is for a given state. If a state has an even mix
of positive and negative feedback, it gives “wishy-washy”
proposals; it therefore makes sense to look for a way to split
the state into two that are more internally consistent.

Definition 12. (feedback cache ®g) For each state, a device
stores a feedback cache &5 = {(C1, P1,b1), (Ca, P2, b2),...}.

Algorithm 2: State Splitting
20 Function ONFEEDBACK: P = (d, a, u), Cy, feedback

21 for S; € S s.t. contain(S;, Ct) = TRUE do
... as in Algorithm 1. ..
27 D+ D U{(Cy, P, feedback)}
28 if Es, > threshold then
29 U« {(S1, S2) : all pairs of Sy and .S split .S;
along every context value}
30 maxGain < max (Es, — (Es, + Es,))

(S51,S2)ew

31 if maxGain > requiredGain then
k) | Split S; into Sy, So

33 end

34 end

35 end

36 end

Each element ¢; € &g contains the context in which an action
was recommended (C};), the proposal that was made by the
device (P;), and the (boolean) feedback (b;).

Definition 13. (entropy Egs) To compute entropy, we first
compute the fraction of positive (and negative) feedback for
each action a € Ay:

_ {9 c®sAda) =ang(d) =1}
Ppos(S,a) = Ho: ¢ € PsAd(a) = a}

We use ¢(a) to indicate the action associated with the proposal
in ¢ and ¢(b) to indicate the boolean feedback associated with
¢. The value of p, (S, a) is defined similarly but constraints
¢(b) to be 0. We then compute the entropy of state S as:

Es = géi)j{ — Ppos (57 a) IOg(ppos(57 a))
— Pneg(S, @) log(pneg (S, @)}

Intuitively, the more similar p,,s and p,., are, the more
“indecisive” the state is, and the higher the entropy value.

Algorithm 2 shows how we extend the ONFEEDBACK
function to split states. After a new piece of feedback is
incorporated into the local model and added to the feedback
cache, the new entropy of the state is computed. If the entropy
exceeds a threshold, then rloT determines whether a split of
the state S; is preferable. Specifically, rloT mimics the ID3
algorithm, using context as the attribute for splitting [32]. In
rloT, each split will be based on a single context. We compute
all pairs (S1,S52) that split .S; according to context value.
For categorical context, we simply split along all possible
categories. For continuous contexts, we use a constant number
of split points for each context value, splitting the range
(Chrin, Cmagz) evenly, given the target number of split points
(Line 29). For each pair (S7,.52), we compute the information
gain of splitting, which is defined as the entropy of the original
state (5;) minus the sum of the entropies of the two new
states after splitting (Line 30); we choose the split (S, S2)
that has the maximal information gain (maxGain) as the final
candidate. To avoid overfitting, we use a second threshold,
requiredGain, as a required lower bound for information gain
to achieve before we split (Line 31).



V. EVALUATION

In this section, we evaluate rloT on two real-world data
sets [8]'. We sought to answer the following questions:

1) How does rIoT perform on (noisy) real-world data?

2) How sensitive is rloT to the specificity of context types?

3) How do request details assist rloT in decision making?

4) How resilient is rloT to dynamics?

5) Is it feasible for rloT to run on mobile devices?
In our experiments, we compare the performance of rloT’s
algorithms to two machine learning approaches: random forest
(RF) [16] and multi-layer perceptron (MLP) [30].

A. rloT in the Real World

In our first experiment, we use a data set (HH118) generated
from seven months of interactions of an adult living in a
smart home. The data set includes data from 18 infrared
motion sensors which each generate a binary output indicating
whether a human is present. From the data set, we derived
context values from the raw sensor readings:

« current location [categorical context] — a label associated

with the most recently activated motion sensor

« previous location [categorical context] — a label associ-

ated with the most recently de-activated motion sensor

« second of the day [cyclic numeric context] — the time
The home contained 10 light devices. We used the dataset’s
light on/off events to construct requests in rloT. All such
generated requests are the least specified type R = (L, 1),
meaning the user simply requests the environment to “act”
without providing a device type or action to take, however
since there are only light devices in this experiment, the
request is the same with or without device type. We compared
rloT with MLP, RF, and a baseline that always selects the light
closest to the user’s location. For ground truth, we used the
light that was actually chosen by the user in the dataset.

Among the alternatives, only rloT supports re-selection
after negative feedback. Therefore, we use a metric, First
Decision Accuracy (FDA) that evaluates the success of the
first decision made by each approach; we define FDA as the
percentage of requests that are satisfied by the first decision.

Fig. 4 shows the results. For rloT, we compute the accu-
mulated FDA at each request. For RF and MLP, we re-train
the model after every 100 requests. The hyper-parameters for
RF and MLP are tuned during each training process. rloT not
only has the overall best FDA at 82.35%, but it also learns
significantly faster than the alternatives. rloT requires 2059
fewer requests (about 50 days) than RF to reach 80% accuracy
and 863 fewer requests (about 20 days) than MLP to reach
70%. In addition, rloT provides immediate correction if the
user gives negative feedback; in this experiment, 98.5% of the
requests are satisfied by the first two decisions in rloT.

B. rloT’s Sensitivity to Context and Request Detail

We next experiment with different contexts and requests to
show that when the user provides more information, rloT can
opportunistically improve its performance.

IThe data sets (HH118, HH107) are at http://casas.wsu.edu/datasets/.
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Fig. 4: Experiments I and 2. The figure shows the learning curves for
each approach on the sequence of 9523 requests we derived from the
data set. The curve “rloT with action” is the result when the request
states the action (“on” or “off”) to take. rloT learns faster and has
higher overall accuracy.
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Fig. 5: Experiment 3. This figure shows the impact of context
specificity on rloT by contrasting the use of categorical location
context versus coordinate context. The user needs to give fewer
negative pieces of feedback for coordinate context because rloT is
able to learn from similar requests.

1) Request Specificity: We first demonstrate how providing
more detailed requests assists rloT. In particular, when the
user specifies the particular action to take (e.g., “on” or
“off”) rloT’s achieved FDA improves (see Fig. 4). With
the specificity of the request, the overall FDA is 92.10%,
compared to 82.35% when the specific action is not provided.

2) Representing the User’s Location: Although motion
sensor readings can categorically label the location of the
user, this sacrifices the ability to compare locations, which
in turn hinders rloT’s ability to leverage similarities between
contexts. Therefore, we evaluate the performance of rloT in
the same setup as above but with location represented as a
two-dimensional coordinate rather than a label. We compute
the Average Feedback per Request (AFR), defined as the
average number of negative feedbacks the user gives per
request before rloT selects the right device.

Fig. 5 shows the results for the first 200 requests. In the first
several requests, the two options have the same AFR because
rloT has not yet learned from feedback. However, after 11
requests, rloT with coordinate context initialized new states
based on information from similar contexts. Quantitatively,
rloT with categorical context requires the user to give 39 more
pieces of feedback in the first 200 requests, which increases



the user’s overhead and frustration in employing rloT.

C. rloT’s Resilience to Dynamics

Our next goal was to determine how rloT responds to
changes in the IoT deployment. We generated simulated
contexts and requests so that we could inject uncertainty in
sensor readings and changes in IoT devices. We simulated a
user interacting with lights, cameras, and speakers based on
the real activities in our second dataset (HH117). We created
6393 requests from 26 different daily activities performed over
one month by two real people; the labeled activities included
sleeping, bathing, cooking, reading, working, watching TV,
etc. We created ground truth of how each user interacts with
devices during these activities. For example, we assumed that,
when the user is engaged in the bathing activity, the user
will turn on the bathroom light or when watching TV in the
living room, the user will turn on the living room speaker. We
similarly assigned each activity to a location context based
on the particular activity. If an activity had multiple possible
locations (i.e., reading happens both in the living room and
bedroom), we used the motion sensor reading in the original
dataset to decide which room is the true location for the
instance of the activity. We built each context snapshot using
the time of the activity and a random x-y coordinate sampled
from the room in which the activity was occurring. To simulate
habitual interaction patterns, we added three activity types:

o Wake up: the wake up activity was added after every
sleep activity. Our simulated user desired the bedroom
speaker to play soft music upon waking.

« Evening news: the evening news activity was added every
day the user was home at 18:00. Our simulated user
desired to turn on the living room speakers no matter
where he was located or what else he was doing.

e Doorbell: we added a randomly generated doorbell; when
this event occurred, our simulated user would desire the
doorbell camera to be turned on.

All the requests specified the device type that the user wants
to use and related action, e.g. R = (light, turnOn); rloT’s task
was therefore to determine the most appropriate device.

Before considering dynamics, we compared the overall FDA
of the three approaches; the accuracies of rloT, MLP, and
RF were 98.92%, 84.06%, and 84.12% respectively. With no
artificial inaccuracies in the contextual data, rloT very closely
captures all of the users’ interaction patterns.

To test responsiveness to dynamics, we simulated the situa-
tion when the user moves the devices in her home by switching
the dining room light and the doorway light midway through
the experiment, after all algorithms have initially converged.
We use the average of the FDA of the previous 30 requests
to represent the instantaneous accuracy at this request; recall
that the FDA is the probability that this request is satisfied by
each algorithm’s first decision. Fig. 6 shows the results.

The accuracy of all three approaches drops dramatically
immediately following the switch. rloT recovers significantly
faster and restabilizes to a high accuracy. This quick recovery
is because rloT recomputes the utility value of the affected
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Fig. 6: Experiment 4. This figure demonstrates that rloT can rebound
from dramatic changes. The graph shows the FDA of rloT, MLP, and
RF when the user completely swaps two IoT devices in her environ-
ment after 200 requests. rloT is much more agile in responding to
the change.

models if it detects a disparity of between recent feedback
and the previous learned model. Although it may seem faster,
clearing the model and learning from scratch would harm the
accuracy of unaffected requests. Further, there is no oracle that
indicates that a dramatic change has occurred and thus a reset
is in order. To the best of our knowledge, existing context-
aware approaches do not consider environmental change ex-
plicitly, and thus must either retrain the entire model or wait
until the new interactions dominate the old ones.

D. rloT’s Feasibility on Mobile Devices

We implemented rloT on Android to demonstrate its feasi-
bility on real IoT devices. All of our measurements are made
using a Moto X (2nd Gen.) with Android 5.1 Lollipop.

In automating device interactions, rIoT does incur overhead.
We measured both the response latency and the feedback
latency in rloT. The former is the time between a user issuing
a request and rloT responding with a proposal. The feedback
latency is measured as the time between when rloT receives
a piece of feedback until it finishes updating the local utility
models. We used the same requests and context snapshots as in
Section V-A. To test how the latency is related to the number of
contexts, we added random numerical contexts to the original
contexts; the number of total contexts is increased from 3 to
33; measurements are averaged over all requests.

Fig. 7 shows the results. Response latency blocks the UI; it
is below 400ms even with the maximal number of contexts.
Incorporating feedback into the models can be scheduled in the
background, but even so, the overhead is reasonable. Note that
increasing the number of contexts does not always increase
the latency; for non-random contexts (e.g., the binary types in
Fig. 7), rloT learns the model more quickly, so requests and
feedback can be processed more efficiently.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated rloT’s ability to provide
context-aware automation and personalized human-device in-
teraction with no setup cost from the user. rloT ensures
user-oriented decision making by explicitly including and
responding to a user’s immediate feedback. We evaluated rloT
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Fig. 7: Experiment 5. This figure shows the average response and
feedback latency per request given an increasing number of contexts.
The “binary” bar use 36 context attributes with only two possible
values. In all cases, but especially for realistic numbers of contexts,
rloT is feasible on real devices.

on both real-world noisy data and simulated scenarios to show
that rloT performs well in terms of its accuracy and is resilient
to environmental changes, which are common in the mobile
IoT world. rloT is also sufficiently lightweight and efficient
to run on mobile devices. However, work with rloT is not
complete. For instance, our presentation of rloT assumes that
each request corresponds to one action on one device. In
practice, a user may expect multiple devices to act together. An
extension of rloT could allow devices to coordinate to submit
shared proposals. In addition, interfacing rloT with existing
smart home platforms like Google Smart Home? is also worth
researching. In conclusion, rloT opens new possibilities of an
IoT world that is truly personalized, providing users seamless
and intuitive interactions with the digitized world around them.
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